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ABSTRACT

Understanding wall-jet-induced turbulence and mixing is an important challenge in

modern engineering, as drag reduction and mixing enhancement are attainable by

modifying the flow development. Simulations are performed to investigate the effect on

skin friction and flow mixing due to introducing controlled perturbations, at the initial

shear layer of a planar wall-jet using jet inlet cyclic pulsing. The billow production by the

Kelvin-Helmholtz instability, the instability that drives turbulence in a wall-jet, is

modified by the excitation of the inlet velocity profile by a sine wave perturbation. Two

types of wall-jet simulations are carried out, a two-dimensional compressible case at

Rein = 5000 using the PyFR solver and a three-dimensional incompressible case at

Rein = 6000 using the Nek5000 solver. The compressible wall-jet simulation indicates

that the addition of a sine wave perturbation of 1% on the inlet velocity, at the initial shear

layer, increases the wall-normal turbulence intensity at a Strouhal number (Sr) of 0.05 and

reduces the turbulence intensity in all directions at a Sr of 0.25. The incompressible

wall-jet simulations show that a perturbation of magnitude 40% of the inlet velocity at a

low Sr number of 0.0048 damps turbulence and leads to skin friction reduction. The

forced wall-jet experiences a repetitive re-laminarization process that delays transition as

well as separation from the wall. A qualitative parametric analysis of the perturbation of

the global behavior of the flow development on a plane wall-jet under forced velocity

profiles is also presented. Cases at Sr = 0.0048 experience a reduction in the number of

turbulent structures while becoming more stable, indicating potential drag reduction.

Cases at Sr = 0.02 experience a frequent energy re-supply from the inlet that helps
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maintain large turbulent structures at further downstream locations, useful for mixing

related applications.



1
1. Introduction

In a rapidly evolving world, modern technologies search new techniques to modify

turbulence and turbulence flows. The ability to manipulate the flow development as

desired is of immense practical importance. To enhance aerodynamics performance,

improve heat transfer capabilities, and reduce noise, flow control techniques provide

different methods to manipulate boundary layers structure, vortices and wake flow for

engineering benefits. Flow control uses the fluid mechanics knowledge of a certain

phenomenon to affect the evolution of a flow. For instance, modifying large scale

structures in a wall-bounded flow to reduce skin friction, delaying separation point on an

airplane wing to enhance aerodynamic performance, or triggering turbulence to increase

the mixing in a combustion chamber.

1.1 Motivation

Multiple types of flow control strategies such as active, passive, open-loop,

closed-loop, etc. have been developed and studied over the years, and some have provided

significant engineering advantages. The focus of this study will involve flow control

applied to wall-bounded flows and specifically to wall-jets. Wall-jets are a very common

flow configuration in nature and the turbulent wall-jet dynamics include interesting

phenomena with close resemblance to numerous engineering applications related to fluid

mechanics, aerodynamics, and heat transfer. Therefore, the study of wall-jets is of

paramount importance for arising applications in thermal protection, mixing, combustion,

and noise generation. In a practical example, wall-jets are employed for film-cooling the

lining walls of gas-turbine combustion chambers. A cool layer of fluid parallel to the wall

is introduced to provide protection from a hot external stream. This layer behaves as a
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wall-jet and it is used to modify the heat and mass transfer by Launder and Rodi (1983).

Further, wall jets are used to enhance the internal mixing in the near-wall of combustion

chambers. The efficiency of mixing rates plays a key role in combustion and thermal

efficiency, and engine-out emissions (Pouransari et al., 2011).

In the case of separation control, the manipulation of the flow aims to achieve enhanced

near-wall momentum and increased mixing between the wall jet and the outer flow to

suppress separation (Naqavi et al., 2018). On the other hand, for film-cooling applications,

the jet, and ambient flow should reduce mixing between layers. The versatility of this flow

configuration is shown with the opposite requirements for these applications. To obtain

maximum benefit from modifying the turbulence in the flow one requires a better

understanding of the flow development with and without control measurements. In

addition to its diverse applications, a wall jet is a practical flow configuration for resolving

the intricate interactions between the layers structures in a turbulent boundary layer. This

particular flow provides a larger degree of flexibility and controllability of flow parameters

than a boundary layer. Consequently, one can alter the vorticity in the outer layer without

a concomitant alteration in the momentum input which might also change the

susceptibility of the wall jet to external perturbations (Katz et al., 1992).

1.2 Wall-Jet Physical Description

A wall-jet is obtained when a stream of fluid is directed tangentially along a flat surface

in the presence or absence of an external stream. Different types of wall-jet can arise

depending on the type of jet, wall-boundary and inlet conditions, nozzle geometry and

flow injection. Despite variety in type, all wall-jets are characterized by similarities with
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two distinct flow regimes: (i) An inner flow stream from the wall to the maximum

stream-wise velocity, which behaves like a conventional boundary layer and (ii) An outer

stream from the maximum stream-wise velocity to the ambient flow is similar to a

canonical free shear flow. This simplified view is an incomplete description of the flow

configuration, because of the interaction between the inner an outer layers which creates a

unique complex flow field, where different kinds of large scale structures from each layer

interact with each other causing turbulence. Considering the presence of the wall

constraint combined with the structure interaction, the flow field is a single interacting

wall-bounded flow entailing turbulent structures that resemble those seen in a free shear

layer as well as within boundary layers (Gnanamanickam et al., 2019).

Figure 1.1 Schematic Representation of a Planar Wall-Jet.

Figure 1 shows the schematic of a plane turbulent wall-jet with an external stream,

where the inlet height of the jet is represented by h. The maximum streamwise velocity,
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Um, separates the two characteristic layers on the flow, and ym is the correspondent

wall-normal position. Uc is the velocity of the external stream or co-flow being deployed

to ensure large vortices propagate out of the domain. The parameter y1/2 denotes the

wall-normal location where U =Um/2 for a wall-jet without external stream and

U = (Um−Uc)/2 for a wall-jet with a co-flow and it is used for outer scaling. There is

also a half-width denoted (y1/2)in correspondent to U =Um/2 which characterizes the

thickness of the inner region. (y1/2)in is not shown in Fig. 1.1, but is a common length

scale used for inner scaling. The inlet wall jet Reynolds number can be defined as

Re =Uinh/ν, where h is the slot height, Uin is the jet slot exit velocity and ν is the

kinematic viscosity.

1.3 Review of Previous Work

The term "wall-jet" was formally introduced by Glauert in 1956 and provides the first

similar solution known for the flow configuration (Glauert, 1956). The solution proposed

by Glauert consists of the division of the flow into two layers. First, the inner layer is

considered as a boundary layer with a freestream velocity corresponding to Um and a

boundary layer thickness equivalent to ym. Second, the outer layer is described as

free-shear flow, which initial point is ym and expands to the ambient conditions. This

solution was also considered by Schwarz and Cosart (1961) and Myers et al. (1963) in

their corresponding work. However, this simple description was discarded as a complete

similarity due to the lack of fidelity in predictions. On one hand, the inner layer behaves

closely to a boundary layer, but due to the interaction with the outer layer, the behavior is

not identical. On the other hand, the outer wall is influenced by the presence of the wall
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and it does not expand like a perfect free-jet (Glauert, 1956). In an attempt to determine

suiting scaling laws for wall-jets, multiple experimental and computational studies have

been performed over the years. Two compilations of this work are papers by Launder and

Rodi (1983) for studies before 1980, in which they provide a review over theoretical,

experimental and early RANS studies. Banyassady and Piomelli (2014) presented a

review for later studies.

To explain the behavior of both layers, the studies sought scaling laws for the mean

profiles based on different parameters such as jet inlet, Reynolds number, and viscosity.

Among the experimental studies, it has been found that the wall-jet reaches self-similarity

at a streamwise distance greater than 20 times the inlet height. This conclusion was drawn

from the jet spreading rate, scaled by the jet half-height (y1/2). Using this, Wygnanski et

al. (1992) and Irwin (1973) found good scaling agreement on the mean velocity profile by

using y1/2 and Um. However, Wygnanski et al. (1992) showed that second-order turbulent

statistics do not converge using this conventional outer scaling lengths. Narasimha et al.

(1973) proposed a different perspective than the traditional scaling parameters by scaling

the mean properties by the inlet momentum flux and the kinematic viscosity. After

reconsideration and analysis on Narashima’s parameters, Launder and Rodi (1983)

discarded the novel parameters because of poor two-dimensionality on the data sets.

George et al.(2000), suggested that there is a possibility of a complete similarity

solution as the Reynolds becomes infinitely large. Hence, at finite Reynolds number, there

might not be suiting scaling laws that can collapse all the data (George et al., 2000). This

conclusion is drawn by the wide separation of scales inevitably present between the
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near-wall region and the outer shear layer. The inner region turbulence is governed by the

near-wall effects, where characteristic scales end to the viscous boundary layer scales

whereas the turbulence in the outer region is governed by the free shear layer scales,

where the turbulence scales are similar to those found in free-shear flows. For inner

scaling, George et al. (2000) proposed friction velocity, uτ and ν/uτ for the stream-wise

and the normal direction respectively on the inner layer.

For the outer layer, he proposed conventional outer scaling (y1/2 and Um) (George et

al., 2000). The scaling purposed by George et al. (2000) is applied by Eriksson (2003) and

Rostamy et al. (2011) in their respective studies, they found that the stream-wise mean

velocity profile, as well as, Reynolds stresses scale with his parameters. Barenblatt et al.

(2005) showed two self-similar layers in their study, outer and wall layer, where the slot

inlet height is shown to have a strong influence on the flow development. The mean

velocity profiles are scale using the maximum stream-wise velocity, Um for both layers,

while for the normal direction the correspondent length scale is y1/2 for the outer layer

and (y1/2)in for the wall layer (Barenblatt et al., 2005).

The experimental study of 2015 , agrees with Barenblatt’s scaling parameters as results

collapsed in mean velocity profiles. Although scaling parameters agree for various

studies, the near-wall region where the log-law (U+ = Ay++B, where A = 2.44 and B =

5.0 for a zero pressure gradient boundary layer) applies does not seem to find accordance

for the planar wall-jet law constants. Few studies by (Eriksson et al., 1998) and Dejoan

and Leschziner (2005) suggested that the law constants are the same as for a zero pressure
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gradient boundary layer, however a wide range of studies present scatter data for these

constants.

For a wall-jet in the presence of an external stream, the previous scaling does not

converge perfectly, a wall jet does not present self-similarity with the same velocity and

length scales as a wall-jet without external stream. By studying a wall-jet developed in a

moving stream, Zhou and Wygnanski (1993) determine that the normalized mean velocity

profile depends on two velocity scales and two length scales. These velocity and length

scales are given by the momentum flux at the nozzle, the viscosity of the fluid, and the

initial velocity ratio between the jet inlet and the freestream at the desired position defined

by R = (U j−U∞)/(U j +U∞). By applying different a series of jet velocity ratios M =
U j
U∞

where U j is the jet inlet velocity and U∞ is the external stream, Naqavi et al. (2014) found

that the scaling parameters for the outer region are dependent on the M range previously

defined, while in the inner region parameters are almost independent of the inlet of M and

scaling with inner parameters converged.

Additionally, Naqavi et al. (2014) discovered that wall-jets than maintained a ratio M

< 1 developed von Karman type shed vortices in the wake region, while ratios of M > 1

endure Kelvin Helmholtz instabilities and the space between billows is narrow down. For

wall-jets in a moving stream, the scaling for the outer region is mainly affected. To reduce

scaling discrepancies, 2007 used an adjusted version of the traditional outer scaling,

U−Uc
Um−Uc

, where the Uc term is the velocity of the external stream (Ahlman et al., 2007).

To understand the flow development over different circumstances, the influence of

roughness over the surface was thoroughly studied by experiments and simulations.
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Tachie et al. used multiple wall-jets with different types of surface roughness at a range of

Reynolds numbers from 5900 to 12500 with the to study the effects of roughness over the

surface using Laser Doppler Anemometry (LDA). Their study reported that surface

roughness does not influence the spreading rate of the maximum mean velocity.

According to their results, skin friction increased between 15 % and 30 % when roughness

was present on the surface. When analyzing the effects on the scaled outer layer, Tachie et

al. (2004) found that the surface roughness does not have major influence in the Reynolds

stresses. To study the repercussion on the flow mean characteristics and turbulence

properties caused by surface roughness, Smith utilized Hot-Wire Anemometer over

various wall-jets. Smith targeted the analysis of roughness physical size and wall-jet inlet

Reynolds number to measure the streamwise Reynolds number. His study conluded that

the Reynolds stresses are dependent on the Reynolds number and the roughness size. He

suggested that at a given Reynolds number as the roughness size increases, the level of the

stream-wise Reynolds stress decreases in the inner layer (Smith, 2008).

With more focus into the application of wall-jets, studies have revolved around

understanding the inner-outer layer interaction and the development and synergy of

large-scale structures. To analyze these parameters, one should study the turbulence

characteristics of the flow including, turbulent structures, turbulent kinetic energy and

Reynolds stress budgets for both layers. Bradshaw and Gee (1962) were pioneers on the

study of turbulence on a wall-jet as they took the first measurements of turbulence

quantities in a smooth wall jet configuration. In their study, a finite value of the shear

stress at the point of stream-wise maximum velocity, Um, was observed. To quantify the
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turbulence phenomena, studies presented Reynolds stresses by the means of turbulence

intensity or Reynolds Stress budgets.

Turbulence intensity for a planar wall-jet exhibits two characteristic peaks as shown in

Figure 1.3. According to Zhou et al. (1996), the inner turbulence intensity peak occurs at

y+ ≈ 15 and has a lower magnitude the outer peak. Naqavi et al. (2014) suggests that the

near-wall Reynolds stresses and turbulence productions have strong boundary layer

characteristics. The outer peak is analogous to the outer turbulence intensity peak seen in

the adverse pressure gradient boundary layers (Harun et al., 2013). For the particular case

of a planar wall-jet, Reynolds stresses are scaled by regions. The outer layer scales with

squared maximum streamwise velocity, U2
m, while the inner layer scales with squared

friction velocity, u2
τ as suggested by Banyassady and Piomelli (2014).

Figure 1.2 A still shot of a PWJ shear layer showing the formation and evolution of the
Kelvin-Helmholtz instability (Gnanamanickam et al., 2017).

On the experimental side, the only results related to turbulence analysis are presented

by Irwin (1973) and Zhou and Wygnanski (1993). For experiments previous to Particle

Image Velocimetry (PIV) flow visualization technique, measurements in the inner region

were not achievable, hence, the turbulence analysis is performed just for the outer region.
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Experimental results related to turbulence properties are a combination of measurements

and assumptions, which includes extrapolation of data. Although experimental studies

provide accurate sets of data, it exists multiple incentives that shift the attention to

simulations.

Computational methods provide highly detailed and physically reliable information,

which gives great insight into turbulence properties such as transitional features and

confirming suggested scaling and similarities. One of the main advantages of simulations

is the ability to determine Reynolds stresses budgets, which are fundamental to understand

the layer interaction on a wall-jet configuration. Knowledge surrounding all scales of

motion involved in wall-jet development demands numerical techniques such as Large

Eddy Simulations (LES) and Direct Numerical Simulations (DNS). A highly resolved

LES of a plane wall jet was performed by 2005 to identify turbulent mechanisms on the

flow development. Their work captures a wall-jet at Reynolds number of Re = 9700 and

presents an analysis of turbulent kinetic energy and Reynolds stresses to interpret the

variation of second moments. Dejoan and Leschziner (2005) concluded that turbulent

diffusion transfers turbulent kinetic energy from the inner and outer layers to the

interaction region. Compared to experimental studies, the earlier LES work has good

agreement with Eriksson et al. (1998) experimental results.

A recent LES study is presented by Banyassady and Piomelli (2014), where the effect

of roughness on the wall-jet surface is studied. Considering, a long domain up to 35h at a

Reynolds number of Re = 7500, where the flow reaches a fully developed state, they make

a comparative analysis between smooth and rough surfaces wall-jets. These simulations
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showed that roughness does not affect the outer layer. Therefore, turbulence structures and

scaling parameters for the outer layer are not affected by the roughness. Their analysis led

them to the conclusion that roughness redistributes wall-normal and spanwise turbulence

towards isotropy. In a further study, Banyassady and Piomelli (2014) performed LES and

used probability density functions to analyze layer dependency on planar and radial

wall-jets. Banyassady and Piomelli (2015) in their conclusion they agreed with George et

al. (2000), that the level of influence of the outer layer on the inner layer is practically zero

for infinitely large Reynolds numbers and a larger scaling overlap region as local

Reynolds number decreases.

Since the complexity of wall-jets causes the presence of particularly small scales it is

important to utilize highly resolved direct numerical simulations (DNS). These studies

require more computational power as the Reynolds numbers increases. Pioneering DNS

studies on wall-jet were performed on the transitional regime and as computational power

improved over time turbulent wall jet simulations have been refined. Visbal et al. (1998)

presented a DNS study in the transitional regime with a focus on flow control as the

wall-jet is being forced (Visbal et al., 1998). The study concluded that with adequate

forcing amplitude the formation of phase-locked vortices is observed close to the jet exit.

These vortices are transported stably for a two-dimensional wall-jet, while for a

three-dimensional wall-jet these vortices caused the loss of coherence in both inner and

outer regions.

One of the first DNS studies on turbulent and compressible isothermal wall-jet was

carried out by Ahlman et al., which characterized the inner layer as a turbulent zero
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pressure gradient boundary layer (from y+ = 0 to y+ = 13) and the outer layer as a free

shear flow scaled with a self-similarity as plane jets. Their study was limited to a

Reynolds number of 2000 and focuses on wall-jet dynamics and mixing properties.

Ahlman et al. (2007) studied inner and outer scalings showing self-similarity behavior at

several downstream locations. Results were in good agreement with Ericksson’s

experimental study (Eriksson et al., 1998). Later, Ahlman et al. (2009) expanded their

study by investigating turbulent and compressible non-isothermal wall-jets at higher

Reynolds numbers. This study utilized a significant density gradient between the jet and

the surroundings to analyze the development of the flow for combustion and cooling

applications (Ahlman et al., 2009).

Ahlman’s work is followed by a series of papers by Pouransari et al. (2011, 2013,

2014, 2015, 2016), who studied wall-jets flow characteristics and scalar concentration for

combustion applications. These studies are confined to low Reynolds numbers between

2000 and 6000. Pouransari et al. (2013) aimed to analyze the effects of mixing related to

chemical reaction and heat release. Some of the findings that were drawn by the

simulations are, that heat release delays the transition and increases density, pressure, and

species concentration fluctuations. By varying the Reynolds number, they concluded that

the flames and turbulent structures thickness is reduced as the Reynolds number increases

(Pouransari et al., 2014).

Naqavi et al. (2017) used DNS simulations on a wall-jet to study the heat transfer

process. Their study presented scaling for thermal properties including mean temperature

and wall-normal heat fluxes. The resulting mean velocity, Reynolds stresses, and thermal
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scaling converged and compared well with the available data from various wall jet studies

(Naqavi et al., 2017).

Figure 1.3 Mean streamwise velocity and turbulent kinetic energy (tke) profiles at 30h for
outer and inner scaling respectively (Naqavi et al., 2018).

To expand the knowledge of the flow physics, Naqavi et al. (2018) conducted a DNS of

a classical wall-jet with the highest known Reynolds number (Re = 7500) to date. This

study provides fully balanced, explicitly calculated budgets for the turbulence kinetic

energy, mean flow statistics, and Reynolds normal and shear stress profiles. In addition,

the study analyzed layer interaction by means of turbulent diffusion and concluded that

energy in the outer region transfers to the spanwise direction in the inner region (Naqavi et

al., 2018).Since previous experimental and computational studies have provided an

understanding of the flow physics, it is as well important to study the manipulation of the

turbulence of a wall-jet to obtain engineering benefits.

According to Schober and Fernholz (2000), large scale coherent structures play a key

role in the transverse momentum transport of turbulent shear flows and mixing layers.
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Hence modifying the global characteristics of a wall-jet can ultimately provide drag

increase or reduction as well as enhance mixing. Previous experimental studies have

analyzed the manipulation of turbulent structures by the excitation of the shear-layer

instability or its subharmonics. Katz et al. (1992) and Zhou et al. (1996) investigated the

influence of acoustic excitation on the coherent structures of a plane wall-jet. In 1996,

Zhou et al. (1996) concluded that the momentum exchange between the wall-jet and the

entrainment is depended on large-scale structures, which coherence is increased due to the

forcing at the inlet. Katz et al. (1992) achieved a reduction of the skin friction of up to

30%, but only when the acoustic excitation amplitude equals 20% of the wall-jet inlet

velocity.

Based on these studies, Schober and Fernholz (2000) analyzed the turbulence control in

a wall-jet by the means of an oscillating wire at the inlet nozzle. As a result of introducing

a perturbance in the initial shear layer, turbulence structures are significantly modified.

Schober and Fernholz (2000) draws an interesting criterion for inlet perturbation,

proposing that low oscillation frequencies lead to the formation of large vortices, which

increase in size over several stages of vortex pairing causing skin friction reduction. Tsai

et al. (2007) performed Reynolds Average Navier-Stokes Simulations (RANS) to analyze

the effect of external turbulence produced by a mixing box. Their results concluded that

external velocity perturbations cause a significant influence on the growth of the jet.

Increasing the mean thickness of the jet resulted in a slight decrease in the skin friction.

The velocity fluctuations also increase in the mixing layer and interact with the flow in the

inner layer. This interaction will consequently caused an amplification of the turbulence
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kinetic energy in the inner region. Bursting in the mixing layer appears to be stimulated

by the external turbulence, which transports energy to the wall region (Tsai et al., 2007).

Targeting large scale motions and scale interaction, 2019 studied a classical wall-jet.

The study observed that the large-scales of the flow amplitude modulate the finer scales,

which ultimately resulted in skin friction reduction. Their study concluded that it exists

transport of turbulent kinetic energy from the regions of peak production to the in-between

region (Gnanamanickam et al., 2019). Bhatt (2019) used the same experimental facility as

Gnanamanickam et al. (2019) and forced the wall-jet by the mean of a pulse at different

frequencies (driven by a speaker). The perturbation at the inlet modify the turbulence

behavior of the flow, and a reduction of skin friction and an increase in turbulent intensity

is observed for all studied frequencies. Introducing perturbations modifies the transport of

the energetic large-scales between the inner and outer region which resulted in the

transport of momentum from the inner region to the outer region. The effects on

inner-outer layer interaction contribute to skin friction reduction. The major contribution

to skin-friction reduction is observed at 12 Hz (Bhatt, 2019).

Base on previous work, the study in this thesis will focus on a planar wall-jet which is

exposed to inlet perturbations by the means of a sine wave. Since previous studies of the

forced turbulent planar wall-jet showed that manipulating the outer shear layer strongly

influences the near-wall region, the objective is to characterize the scale interaction and

the effects of the pulsing inlet over mixing and skin friction in a wall-jet. The periodic

forcing of the jet intensity can be characterized as active flow control and in engineering

can be identified as a blowing-suction technique. For a wall-jet, the kinetic-energy balance
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in a modulated flow enables one to assess in principle the interaction occurring between

coherent motions and the incoherent turbulence.

1.4 Scope and Outline

In order to study all turbulence length scales present on a wall-jet configuration, direct

numerical simulations (DNS) are performed. The scope of this work entails the study of

flow physics with emphasis on turbulence analysis and particular interest on the scale

interaction. A classical wall-jet and a forced wall-jet will be compared to study the effects

of inlet jet perturbation on turbulent structures.

This manuscript is organized as follows. A comprehensive introduction including

motivation and background was given in Chapter 1. Turbulent quantities and statistical

analysis methods are presented in chapter 2. Chapter 3 presents The numerical approach

use through out each case. Chapter 4 presents simulations of a two-dimensional

compressible wall-jet. It entails governing equations, numerical method, flow

configuration, results, and conclusions. Chapter 5 focuses on a three-dimensional

incompressible wall-jet. Chapters 4 and 5 results will present the instantaneous snapshots

of the flow field, turbulent statistics, and flow visualization of turbulent structures (for the

three- dimensional case). Each case will also analyze the influence of the jet pulsing over

mixing and skin friction. Conclusions for each case will be presented at the end of

Chapter 4 and 5. Summary and Future Work are drawn in Chapter 6.
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2. Analysis Tools for Wall-Bounded Turbulent Flows

Most flow phenomena in our everyday surroundings, whether it is the air over a plane

or the fuel inside a car engine, involve turbulence. Modern technology encounters the

need to predict quantitatively the behavior of turbulent flows. These types of flows are

characterized as complex and are not trivial to understand because of the wide ranges of

length and velocity scales. For this study, wall-bounded turbulent flows are of particular

interest as they are commonly found in diverse fields such as biology, geology,etc., but

most interesting for engineering technologies associated with drag, acoustics or heat

transfer. Wall turbulence encompasses the richest spectrum of scales from the small scales

influencing the stress and the energy close to the wall to the large scales at the edge of the

flows. It is important to notice that the range of scales increases as the Reynolds number

increases. as well as, the interaction between scales.

2.1 Statistical Description of Turbulent Flows

Turbulent flows are characterized by the presence of random and chaotic processes and

the diversity of turbulence structures, and their behavior has been widely studied over the

years. Even though different techniques have been applied, to this day there is not an exact

description of the phenomena of turbulence as it is highly influenced by multiple factors

including geometry, initial conditions, and boundary conditions. However, a few

fundamental characteristics can be defined to describe a turbulent flow process. The

following characteristics are highly dependent of the environment in which the flow

develops Tennekes et al. (1972).
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• Irregularity: refers to the random processes which do not allow an inherent solution

for the phenomena; hence, turbulent flows require statistical analysis. Due to the

non-linearity and randomness of turbulence, it is extremely challenging to

understand turbulence in its entirety.

• Diffusivity: the characteristic responsible to enhance mixing and increase turbulent

transport of mass, momentum, and energy Tennekes et al. (1972). For engineering

application, this characteristic is essential as it is involved with flow separation, heat

transfer and momentum transport.

• Large Reynolds numbers: turbulence regime is defined at higher Reynolds number,

where the flows become unstable and the presence of instabilities is notable due to

the interaction of viscous and non-inertial terms.

• Three-dimensional vorticity fluctuations: Turbulent flows are characterized by a

strong three-dimensional vortex generation mechanism generated by high levels of

fluctuating parameters. Turbulent flows are characterized by rotationality.

• Dissipation: is the process where the turbulent kinetic energy is transformed into

internal energy by viscous shear stresses. Turbulence is always dissipative and

requires a continuous energy supply or else the flow decay.

• Wide range of length and time scales: as turbulence entails small scales

characteristics to near the wall-behavior to large scale motions observe at free flows.

Turbulent scales have been defined to characterized the eddies in turbulent flows. These

scales guide computational simulators to determine the size of the cells on a grid, the
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refinement needed and the time step for the simulations. Smallest eddies are governed by

two important parameters, kinematic viscosity, and turbulent kinetic energy dissipation as

a function of time. Equation 2.1 is known as Kolmogorov length scale and Equation 2.2 is

the time scale for the smallest eddies (Pope, 2001).

ηk =

(
ν3

ε

)1/4

(2.1)

τk =
(

ν

ε

)1/2
(2.2)

As discuss in the characteristics of turbulence, the study of turbulent flows heavily

relies on statistical and probabilistic analysis due to the presence of random variables.

Since velocity, pressure and density are characterized as random variables in a turbulent

flow, their value is inherently unpredictable. The use of probability density functions

(PDF) is required to help characterize the flow development. A PDF will provide the

probability per unit distance in the sample space of a variable. Other important tools that

are used for statistical analysis include ensemble average, different order of moments and

flow visualization (Pope, 2001). The following sections will briefly discuss the definition

of the tools being used for the analysis of the flow subject of this study.

2.1.1 Mean Flow Properties

Using Reynolds decomposition, a turbulent parameter, ui can be decomposed into the

mean. Ui, and fluctuation, u′i components as shown in Figure 2.1 and Equation 2.3 (Pope,

2001).

u′ = u−U (2.3)
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Figure 2.1 Reynolds Decomposition of ui.

The ensemble average, shown in Equation 2.4, is used to obtain the arithmetic mean of

the turbulent parameters. The use of ensemble average is based on the assumption of

independent statistical events, even though the definition requires an infinite number of

events it provides a good approximation for the mean.

〈ui〉= lim
N→∞

1
N

N

∑
n=1

(ui)n (2.4)

From the ensemble average of velocity, density and pressure, fluid mechanics defined

flow parameters that help describe the turbulent phenomena. Among these parameters are

the wall shear stress, mean velocity profiles, friction coefficient, velocity decay, Reynolds

numbers, etc (Pope, 2001).

2.1.2 Turbulent Statistics and Kinetic Energy

For the analysis of the fluctuating component of the turbulent parameters, Probability

Density Functions (PDFs) and corresponding moments are defined. These functions will
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provide a complete description of the turbulent parameter at a given space and time.

Mathematically a PDF is written as Equation 2.5. The PDF is constructed using all values

of the turbulent variable at a fixed location on the sample space at different times.

〈un
i 〉=

∫
∞

−∞

un
i P(ui)dui (2.5)

where P(ui) is the probability density function of the random variable ui. Moments of the

turbulent variable are defined using the PDF, and depending on the order will provide

different aspects that will help characterize the flow. The first moment is the mean of the

flow U or 〈ui〉.The second moment is known as variance, shown in Equation 2.6,. It is

defined as the mean-square fluctuation of the assigned property (Pope, 2001).

< u′2i >=
∫

∞

−∞

(ui−Ui)
2 P(ui)dui (2.6)

Taking the square root of the variance one can express the standard deviation of the

property as shown in Equation 2.7. In the analysis of turbulent flows, this value is also

known as the root mean square of the assigned property (Pope, 2001). Variance is used to

study the turbulence intensity in different directions, this analysis allows us to visualize

the peaks of fluctuations in each region of the flow.

σui =
√

var(ui) =< u
′2
i >

1
2 (2.7)
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When working with random variables, such as Ûi, it is more convenient to analyze the

flow properties using standardization. The standardization of a random variable is shown

in Equation 2.8, while the standardization of the moment is shown in Equation 2.9

Ûi =
(u′i−Ui)

σui

(2.8)

ûi =
〈un

i 〉
σn

ui

(2.9)

where σui is the standard deviation of the property. Two standardizations over the velocity

are used for this study. The first one is the skewness, which is the third moment of the

velocity normalized by its variance as shown in Equation 2.10. This function reveals the

information about the asymmetry of the velocity PDF. If the velocity PDF is symmetric

about the mean, it has zero skewness. Positive skewness indicates that the PDF has a

longer tail. Hence a positive skewness reveals that the fluctuation velocity is more likely

to take positive values than negative values (Pope, 2001).

< u′3j >

(< u′2j >)
3
2

(2.10)

To study the mean kinetic energy associated with turbulent flow, turbulent kinetic

energy (tke) is calculated. The turbulent kinetic energy of the flow is defined using the

fluctuation component of the velocity in all directions, as shown in Equation 2.11

κ =
1
2

(〈
u′2
〉
+
〈

v′2
〉
+
〈

w′2
〉)

(2.11)
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The transport equation of the Reynolds-stress tensor can be written as Equation 2.12.

∂

∂t
uiu j = Pi j + εi j +Di j +Ti j−Π

s
i j +Π

t
i j−Ci j (2.12)

where Pi j is the production tensor

Pi j =−uiuk
∂U j

∂xk
−u juk

∂Ui

∂xk
(2.13)

εi j is the dissipation tensor

εi j =−2ν
∂ui

∂xk

∂u j

∂xk
(2.14)

Πt
i j is the pressure transport

Π
t
i j =−

1
ρ

(
∂

∂x j
pui +

∂

∂xi
pu j

)
(2.15)

Πs
i j is the pressure strain

Π
s
i j =−

1
ρ

(
p

∂ui

∂x j
+ p

∂u j

∂xi

)
(2.16)

Di j is the viscous diffusion

Di j = ν
∂2

∂x2
k

uiu j (2.17)

Ti j is the turbulent transport

Ti j =−
∂

∂xk
uiu juk (2.18)

Ci j is the convection

Ci j =Uk
∂

∂xk
uiu j (2.19)
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and ρ, ν, p are defined as the density, kinematic viscosity and pressure of the fluid

respectively. For a planar wall-jet, the Reynolds stress balances will visually look like a

combination of boundary layer and free-shear layer due to the inner and outer regions

characteristic of the flow. According to Dejoan and Leschziner (2005), these budgets

provide information related to the behavior of second moments of the flow and they are

sought to understand the role that the interaction between layers plays on the development

of turbulence on a wall-jet . The budget data has particular importance for wall-bounded

flows as the influence of Reynolds stresses become strong near the wall. Mansouri

observed in his study that the pressure-gain term near the wall is not of the same order as

the production term away from the wall (Mansour et al., 1988). The importance is given in

this study to the production terms which are more predominant near-the wall and can offer

insight into the interaction between regions.

2.1.3 Scaling Parameters

To characterize the wall turbulence two types of scales are defines: intrinsic and

extrinsic. Extrinsic scales are assigned as desired by the experimentalist or computational

simulation. For instance initial and boundary conditions, fluid properties, and external

forces. Intrinsic scales result from the flow response subject to the extrinsic scales, some

examples include boundary layer thickness or maximum velocity decay. It remains

uncertain what is the appropriate scale for a meaningful description of the turbulent

phenomena. As many studies have shown, scaling is used to determine the predictability

over a certain flow. As described in the introduction, for wall-jets, many different scaling
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lengths have been proposed, yet no common scaling parameter has been found to scale

correctly both mean velocity and higher-order moment statistics (Davidson et al., 2012).

For a wall-jet configuration, the scaling laws depend on the region of the analysis.

Commonly, the flow is analyzed by inner and outer scaling which have varied over

multiple studies. To better understand the inner and outer separation, one takes the

classical description of a flow which is divided into 4 layers:

1. Viscous sublayer: y+ < 5; U+ = y+

2. Buffer layer: 5 < y+ < 30; U+ = f1(y+)

3. Log layer: 30 < y+ < 0.15Reτ; U+ = 1
κ

lny++A

4. Wake layer: y+ > 0.15Reτ; (U∞−U)+ = f2(
y
δ
)

where y+ represent wall units defined in Equation 2.21 and k and A are constants that

depend on the flow type. The inner scaling converges over the viscous, and the buffer

layer. The outer scaling tends to agree on the wake layer. The logarithmic layer for a

wall-jet is a section of overlap between inner and outer region where scaling have been

dependent of the layout of the flow. Some of the parameters that have been explore for

inner scaling include friction velocity, shown in Equation 2.20 and kinematic viscosity.

Generally the inner region is scaled using wall units which are defined in Equation 2.21.

Other scaling have been suggested including (y1/2)in and it is taken into account to

determine the convergence and predictability of the flow (Pope, 2001).
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uτ =

√
τw

ρ
(2.20)

y+ =
yuτ

ν
(2.21)

For the outer region, it exists a dependence in whether the flow is developed in a still

environment or in a moving fluid stream. Based on the presence or absence of an external

stream, the proposed scaling will be the maximum stream-wise velocity, Um or a

combination of the stream-wise velocity and the velocity of the co-flow (Um−Uc)

(Naqavi et al., 2014). The correspondent normal length scales that have been proposed

include the slot inlet height and y1/2. For this work, the laws applied by Naqavi et al.

(2018), are mainly considered for results comparison.

2.2 Turbulent Structures

To describe the complex multi-scale and chaotic motions associated with turbulent

flows, researchers have been able to describe elementary flow features known as turbulent

structures or coherent structures. In these structures, vorticity is usually stochastic

containing orderly elements. These elements are instantaneously coherent over the spatial

extent of the turbulent flow structure. In other words, coherent structures are organized

components of the vorticity which is phase-correlated over the entire space of the structure

(Hussain, 1986). Coherent structures are characterized by high levels of coherent vorticity,

production, Reynolds stress, and mass and heat transport.

The large-scale transport of mass, heat, and momentum without requiring high amounts

of energy is done by these structures. Researchers have been able to identify these

structures by flow visualization, conditional sampling techniques or statistical analysis
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over the velocity fluctuations (Pope, 2001). Coherent structures are typically formed from

instabilities in the flow. The initial or boundary conditions of a flow can trigger

instabilities in which their growth is determined by evolutionary changes due to non-linear

interactions with other coherent structures, or their decay onto incoherent turbulent

structures (Hussain, 1986). The instability that drives this flow configuration is known as

Kelvin Helmholtz instability. and will be explained more in detail in the following section.

The evolution of the initial instability is shown in Figure 2.2, where different turbulent

structures are illustrated, such as roll structure, ejections, as well as behavior near the wall.

Figure 2.2 Kelvin-Helmholtz Instability Evolution described by Gogineni and Shih
(1997).

For wall-bounded flows, Robinson (1991) characterized the coherent structures in eight

categories:

1. Low-speed streaks in the region 0 < y+ < 10. At the near the wall region , these

structures correspond to the relatively slow-moving fluid (stream-wise velocity

equivalent ot approximate half of the local mean). The fluid between the streak

structures is known to be of fast motion Pope (2001). The streaky structure has been

associated with quasi-streamwise vortices near the wall. These vortices are
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counter-rotating vortex filaments on either side of the low speed streak Davidson et

al. (2012).

2. Ejections of low-speed fluid outward from the wall. When the migration of a streak

away from the wall is suddenly faster, the process is known as streak lifting or

ejection. Ejections are fundamental for production of turbulent energy. In Figure

2.3, the u′v′ space or the velocity fluctuation space is illustrated as four quadrants

which are used to statistically define ejections as the points where the stream-wise

fluctuation are negative and the normal fluctuations are positive. These points are

known to be in the second quadrant, Q2 (Pope, 2001).

Figure 2.3 Schematic diagram showing different turbulent fluid motions according to
quadrant analysis procedure (Saha et al., 2017).

3. Sweeps of high-speed fluid toward the wall. The movement of fluid away from the

wall cause a counter action of high speed fluid toward the wall referred as sweeps.

Sweeps like ejections are important produce turbulent energy. In Figure 2.3, the u′v′
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space representing sweeps is the fourth quadrant, Q4, where the stream-wise

fluctuations are positive and the normal fluctuations are negative Pope (2001).

Figure 2.4 (a) Schematic of a hairpin eddy attached to the wall; (b) signature of the hairpin
eddy in the streamwise-wall-normal plane (Adrian et al., 2000).

4. Vortical structures of several proposed forms. In the vicinity of the wall

(y+ < 100),pairs of conter-rotating stream-wise vortices also known as rolls have

predominance over other vortical structures. The fluid between the pair of rolls has

reduced axial velocity and contribute to the velocity profiles. Away from the wall

the dominant vortical structure is known as horseshoe or hairpins vortices. Hairpins

are characterized by a head as shown in Figure 2.4, which is a region of compact

vorticity, followed by a small neck structure and two legs. The head and the neck

are located in plane where Q2 orientation is almost perpendicular to it. The legs are

in located in the low-speed steak near the wall (Adrian, 2007). Hairpins are

suggested as a fundamental strucutre to describe the transport mechanisms in wall

turbulence, hence it has been used by several researchers to model turbulence near
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the wall (Davidson et al., 2012). Larger structure have been suggested to be formed

by an ensemble of hairpin vortices (Pope, 2001). Quasi-streamwise vortices, hairpin

vortices, and packets of hairpins are commonly found coherent structures in

wall-bounded turbulence and there are identified by their long persistence

5. Strong internal shear layers in the wall zone (y+ I 80). Shear layers occurs when

two parallel streams of fluids meet at an interface with a velocity difference or

between the moving flow and a motionless surface.Instabilities like

Kelvin-Helmholtz instabilities (KHI) are resultant of shear layer on the flow.

6. Near-wall pockets, observed as areas clear of marked fluid in certain types of flow

visualizations.

7. Backs: surfaces (of scale δ) across which the streamwise velocity changes abruptly.

8. Large-scale motions in the outer layers (including, for boundary layers, bulges,

superlayers, and deep valleys of free-stream fluid). Valleys are non-turbulent fluid

that travels deeply into the boundary layer structure. They are commonly found

between two bulges, which are large inclined eddies. The inclination is normally

between 20 to 25 degrees. They slowly evolve as they travel downstream of the

domain and they can be scale with conventional outer scaling.

To visualize these turbulent structures, the curl of the velocity or vorticity is being used

to identify vortices, specially at the inlet of the jet. One of the disadvantages of this

method is that swirling motions and shearing motions cannot be separated, therefore

another method is used to visualized more complex structures. The Q-criterion method is

based on the velocity gradient tensor, Di j =
∂ui
∂x j

. The second order tensor can be
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decomposed into symmetric and a skew-symmetric part such that Di j = Si j +Ωi j, where

Si j =
1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
is the rate-of-strain tensor and Ωi j =

1
2

(
∂ui
∂x j
− ∂u j

∂xi

)
is the vorticity

tensor. In Q-criterion, a vortex is consider to be a connected fluid region with a positive

second invariant of the velocity gradient tensor. Q represent the vortical areas where the

vorticity magnitude is greater than the magnitude of the rate-of strain.

The iso-surfaces obtain by this method are good indicators of turbulent flow structures

(Holmén, 2012). For instance, Figure 2.5 illustrates the iso-surfaces obtained for the outer

layer of a wall-jet, where one can observed the billows or vortical structures generated by

the Kelvin-Helmholtz instability that grow as they are convected downstream. In the

downstream domain, various large scale vortical structures are pictures in the outer layer

of the wall-jet. Other techniques to visualize turbulent structures include ∆-criterion,

λa-criterion, swirling strength criterion and triple decomposition, Q- criterion is chosen

for this study since there exist results for comparison.

Figure 2.5 Iso-surfaces of the second invariant of the velocity gradient tensor in the wall
jet (Naqavi et al., 2017).
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2.3 Kelvin-Helmholtz Instability

As mentioned before the outer layer resembles a free shear flow which is subjected to

Kelvin Helmholtz instability (KHI). KHI happens in a single continuous fluid when one

region of fluid has a higher velocity than the other, the interaction between the different

velocities forms a shear layer, which can break down into a wavy pattern formed by

eddies. KHI is characterized by the frequency of formation of individual eddies and the

growth of wavelike disturbances to induce turbulence and mixing. The process of

transition from laminar to turbulent flow involves the breaking of internal waves which

allows a turbulent diapycnal mixing. In variable density flows, Kelvin-Helmholtz

Instabilities is a shear driven instability caused by the juxtaposition of two layers at

different velocities, different densities or both conditions. At the contact surface, the two

layers will create shear that will develop roll structures known as billows. Affecting the

billow production will modify the turbulent structures at the downstream domain.

Figure 2.6 Kelvin-Helmholtz Instability Evolution.

The perturbed turbulent structures will affect the skin friction and mixing of an

unforced wall-jet. In this thesis we observe KHI in a single continuous fluid at different

velocities.
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2.4 DNS Approach

Direct Numerical Simulation approach consists of numerically solving Navier-Stokes

equations without a turbulence model. This approach solves all the scales of motion of

turbulence by using initial and boundary conditions to predict the desired flow, providing a

high-fidelity solution of turbulent flows. Due to the accuracy of the method and the

constant improvement in high-performance computing techniques, this method is gaining

importance in the turbulence field according to Moin and Mahesh (1998). A planar

wall-jet is a complex flow configuration which displays a wide range of turbulence scales

from transition close to the nozzle entry to high Reynolds number turbulence in the fully

developed regime; therefore, the flow demands a highly accurate (in space and time)

computational method like Direct Numerical Simulation (DNS). The equations governing

this approach are Navier-Stokes equations of continuity, momentum and energy presented

in Equation 2.22, 2.23 and 2.24. For the different descriptions of flows, such as

dimensionality or compressibility, appropriate assumptions are taken to simplify this set

of equations.

Continuity equation:

∂ρ

∂t
+

∂ρui

∂x j
= 0 (2.22)

Momentum equation:

∂ρui

∂t
+

∂ρuiu j

∂x j
=− ∂ρ

∂xi
+

∂τi j

∂x j
(2.23)
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Energy equation:

∂ρE
∂t

+
∂ρEu j

∂x j
=−

∂q j

∂x j
+

[ui(τi j−Pδi j)

∂x j
(2.24)

where,

τi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
µ

∂uk

∂xk
δi j (2.25)

When using DNS, numerical methods are required to accurately compute the flow

quantities its evolution over a wide range of length and time scales. For this study two

numerical methods are described, Discontinuous Galerkin methods (DG) and Spectral

Element Method (SEM), for the compressible and the incompressible case respectively.

For this study, the emphasis is placed on the specification of inflow and outflow boundaries

for each case studied. The following sections will provide a detailed description of each

numerical method used, as well as, the computational set-up for each case.
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3. Numerical Method

When numerically solving the Navier-Stokes equations, it is customary to discretize

space and time independently. A variety of spatial discretizations exist, among the most

common are finite difference (FD) method, finite volume (FV) method and finite element

(FE) which have been widely used in academia and industry to successfully solve fluid

flow problems. An important consideration when choosing the appropriate discretization

is accuracy. The methods, previously mentioned, provide first or second order of accuracy

in space, causing a large degree of numerical dissipation. Numerical dissipation is not

suitable to simulate fundamentally unsteady phenomena.

In the need of better simulation tools, attention has recently shifted towards high-order

methods. Theoretical studies and numerical experiments suggest that high-order methods

for unstructured grids can solve hitherto intractable fluid flow problems in the vicinity of

complex geometrical configurations. These methods tend to increase accuracy order while

reducing computational cost (Witherden et al., 2016). In the present work, two examples

of high order methods are utilized. The first one is the flux reconstruction (FR) approach

implemented by the PyFR framework. The second one is spectral element methods (SEM)

implemented by the Nek5000 framework. The following sections provide a detail

description of each framework which includes spatial and time discretization, as well as,

additional functions implemented in each framework to perform this study.

3.1 PyFR

An open source Python based computational fluid dynamics framework designed for

advection diffusion problems, using the flux reconstruction approach by Huynh (2007).

PyFR is designed to solve a range of governing systems (from Euler to Navier-Stokes
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equations) in mixed unstructured grids with different element types (Witherden et al.,

2014). In addition, it is designed to target a range of hardware platforms via use of an

in-built domain specific language based on the Mako templating engine. In the present

study, this framework is used to perform simulations of a two-dimensional compressible

wall-jet in a single GPU Workstation. Table 3.1 summarize the capabilities of the

framework (Witherden et al., 2014).

Table 3.1

PyFR Capabilities

Dimensions 2D,3D
Elements Triangles, Quatrilaterals, Hexahedra
Spatial orders User defined
Time steppers RK methods, DOPRI5
Precisions Single, Double
Platforms CPUs via C/OpenMP, Nvidia GPUs via CUDA
Parrallel Computing MPI
Governing Equations Euler, Navier-Stokes

3.1.1 Spatial Discretization

The flux reconstruction approach is a high order method that brings together under

integrated collocation-based nodal Discontinous Galerkin (DG) schemes and spectral

difference (SD) scheme. An overview of FR approach applied to solving

advection-diffusion problems. Inside an arbitrary domain Ω in ND dimension, consider the

following advection diffusion problem:

∂uα

∂t
+∇ · fα = 0 (3.1)
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where uα = uα(x, t) is a conserved quantity, α is the field variable index ranging from 0

to NV , fα = fα(u,∇u) is the flux of the conserved quantity, and x = xinRND . Notice u is in

its unscripted form to represent all NV field variables and ∇u consists on the gradient of

each field variable. To start the spatial discretization, the desired equation (equation 3.1) is

expressed as a first order system.

∂uα

∂t
+∇ · fα (u,q) = 0 (3.2a)

qα−∇uα = 0 (3.2b)

Where q is an auxiliary variable, which represents the gradients of all field variables.

Proceed by dividing the domain up into elements, e, of any length. ε represents the set of

available element types in RND , in NEK5000 triangles, quadrilaterals, hexahedral, prisms,

pyramids, and tetrahedral elements are used depending on the dimensionality. These

elements are then used to construct a conformal mesh as shown below:

Ω =
⋃
enε

Ωe and Ωe =

|Ωe|−1⋃
n=0

Ωen and
⋂
enε

|Ωe|−1⋂
n=0

Ωen =∅

where Ωe refers to the element type, e, inside the domain, |Ωe| is the number of elements

of each type in the decomposition, and n is the index running over these elements. Inside

each element, Ωe, the following should comply

∂uenα

∂t
+∇ · fenα = 0 (3.3a)

qenα−∇uenα = 0 (3.3b)

To facilitate implementation a transformed space is defined. For each element, a

mapping function is assumed such that x̃ = x̃i, where for each element type a standard
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element Ω̂e is defined. The following expressions represent the mapping function for each

element

xi = Meni (x̃) xi = Men (x̃)

x̃i = M −1
eni (x) x̃i = M −1

en (x)

along with the correspondent Jacobian matrices,

Jen = Jeni j =
∂Meni

∂x̃ j
Jen = detJen

J−1
en = J−1

eni j
=

∂M −1
eni

∂x̃ j
J−1

en = detJ−1
en =

1
Jen

Using these expressions, the governing equations can be transformed from the physical

domain to the computational domain. Notice that,

∂uenα

∂t
+ J−1

en ∇̃ · f̃enα = 0 (3.4a)

q̃enα− ∇̃uenα = 0 (3.4b)

where ∇̃ = ∂

∂x̃i
and ũenα, f̃enα, and q̃enα are the transformed solution, flux, and gradients

respectively, inside each element Ωe.

ũenα = uenα (x̃, t) = Jen (x̃)uenα (Men (x̃) , t) (3.5a)

f̃enα = fenα (x̃, t) = Jen (x̃)J−1
en (Men (x̃)) fenα (Men (x̃) , t) (3.5b)

q̃enα = qenα (x̃, t) = JT
en (x̃)qenα (Men (x̃) , t) (3.5c)

The approximate solution, ueσnα, is defined within each e element type by a

multidimensional polynomial of degree ℘. The set of points from the polynomial, x̃(u)eρ

(where 0≤ ρ < N(u)
e (℘)), are used to build a nodal basis set `eρ

(u)(x̃) with the property

that `eρ
(u)(x̃) = δρσ. In Figure 3.3, the solution points are represented as blue dots. Along
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with the solution points, a set of flux points, x̃( f )
eρ , are defined on each ∂Ωe. In Figure 3.1,

the flux points are represented as orange squares. Notice the use of the superscript (u) for

solution points and ( f ) for flux points. Figure 3.1 also visually represents a set of normal

flux vectors, ñ( f )
eρ that are used to calculate the common normal flux.

Figure 3.1 Solution points (blue) and flux points (orange) in a triangular and quadrilateral
element in physical space. The normal vectors for the quadrilateral element are
represented in black (Witherden et al., 2014).

Having set the domain space for the spatial discretization method, the FR approach

starts by transforming the discontinuous solution at the solution points to the

discontinuous solution at the flux points.

u( f )
eσnα = u(u)eρnα`

(u)
eρ x̃( f )

eσ (3.6)

where u( f )
eσnα is an approximate solution of the field variable α inside of each element at

solution point x̃(u)eρ . The common solution can be computed as

Cαu( f )
eρnα = Cαu( f )

ẽρnα
= Cα

(
u( f )

eρnα,u
( f )
ẽρnα

)
(3.7)
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where Cα(uR,uL) is a scalar function that given two points returns a common value. The

common solution is allowed to perform upwinding or downwinding solution, therefore it

is important that each element interface yields the same common flux. Further, a vector

correction function is defined as g( f )
eρ . This function is associated to with each flux point

such that,

ˆ̃n
( f )
eσ ·g

( f )
eρ

(
x̃( f )

eσ

)
= δρσ (3.8)

The solution for the auxiliary Equation 3.4b is defined using the common solution and the

vector correction

q̃(u)
eσnα =

[
ˆ̃n
( f )
eρ · ∇̃ ·g

( f )
eρ (x̃)

{
Cαu( f )

eρnα−u( f )
eρnα

}
+u(u)eνnα∇̃`

(u)
eν (x̃)

]
x̃=x̃(u)eσ

(3.9)

where
{
Cαu( f )

eρnα−u( f )
eρnα

}
represents the jump at the element interface and the final term

is an order ℘−1 approximation of the gradient resultant from differentiating the

discontinuous solution polynomial. The physical gradients can be calculated using the

approaches of Kopriva (1998) and Sun et al. (2007) as shown in equations 3.10 and 3.11.

q(u)
eσnα = JT

eσnαq̃(u)
eσnα (3.10)

q( f )
eσnα = `

(u)
ρ

(
x̃( f )

eσ

)
q(u)

eσnα (3.11)

where JT (u)
eσnα = J−T

en

(
x̃(u)eσ

)
. Having the solution for the auxiliary equation allows us to

evaluate the transformed flux

f̃(u)eσnα = J−1
eρnJ−1(u)

eρn fα

(
u(u)eσn,q

(u)
eσn

)
(3.12)

where J(u)eσn = detJen

(
x̃(u)eσ

)
. Using Equation 3.12, the normal transformed flux is

calculated at each flux points
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f̃ ( f⊥)
eσnα = `

(u)
eρ (x̃

( f )
eσ ) ˆ̃n

( f )
eσ · f̃

(u)
eρnσ (3.13)

Considering the physical normals (represented in Figure 3.3 as arrows in the surface

interface) at the flux points

n( f )
eσn = n( f )

eσnn̂( f )
eσn = J−T ( f )

eσn n̂( f )
eσ (3.14)

Notice that between two elements the boundary is common, hence the normal flux has

the property of n̂( f )
eσn =−n̂( f )

ẽσn. Then, at a flux pair a common normal flux can be specified

such that

Fα f ( f⊥)
eσnα = Fα f ( f⊥)

ẽσnα
= Fα

(
u( f )

eσn,u
( f )
ẽσn,q

( f )
eσn,q

( f )
ẽσn, n̂

( f )
eσn

)
(3.15)

The relationship Fα f ( f⊥)
eσnα = Fα f ( f⊥)

ẽσnα
arises from the desire for the resulting numerical

scheme to be conservative; a net outward flux from one element must be balanced by a

corresponding inward flux on the adjoining element. The common normal fluxes can be

transformed such that

Fα f̃ ( f⊥)
eσnα = J( f )

eσnn( f )
eσnFα f ( f⊥)

eσnα (3.16)

Fα f̃ ( f⊥)
ẽσnα

= J( f )
ẽσnn( f )

ẽσnFα f ( f⊥)
ẽσnα

(3.17)

where J f
eρn = detJ−1

en

(
x̃( f )

eσ

)
. Using the definition of common normal flux in the

transformed space, an approximation for the divergence of the continuous flux can be

defined (see equation 3.18)

(
∇̃̃f
)(u)

eρnα

=
[
∇̃ ·g(u)eσ (x̃)

{
Fα f̃ ( f⊥)

eσnα− f̃ ( f⊥)
eσnα + f̃ ( f⊥)

eσnα

}
+ f̃( f⊥)

eσnα · ∇̃`
(u)
eν (x̃)

]
x̃=x̃(u)

′
eρ

(3.18)
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resulting into a semi-discretised form of the governing system,

∂u(u)eρnσ

∂x
=−J−1(u)

eρn (∇̃ · f̃)(u)eρnα (3.19)

where J( f )
eρn = detJ−1

en

(
x̃(u)eρ

)
= 1

J(u)eρn
.

The semi-discrete form of Navier Stokes is a simplified set of ordinary differential

equations in time. Finally, this system can be solved by using any time discretization

scheme (Witherden et al., 2014).

3.1.2 Time Discretization

For this study, the discretized compressible Navier-Stokes are solved using the

Runge-Kutta Fehlberg method (RK45). This method combined the Runge-Kutta fourth

order method (RK4), with an additional function evaluation for error estimation which

allows to determine the proper step size for the solution. To apply RK45, first an

approximation to the solution of the initial value problem is made using RK4 (Mathews

and Fink, 2003).

yk+1 = yk +
25

216
k1 +

1408
2565

k3 +
2197
4101

k4−
1
5

k5 (3.20)

Followed by a better approximation of the solution using six function evaluations.

zk+1 = yk +
16

135
k1 +

6656
12825

k3 +
28561
56430

k4−
9
50

k5 +
2

55
k6 (3.21)

For equations 3.20 and 3.21, each step requires the use of the following six values where,
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k1 = h f ( fk,yk) (3.22a)

k2 = h f (tk +
1
4

h,yk +
1
4

k1) (3.22b)

k3 = h f (tk +
3
8

h,yk +
3

32
k1 +

9
32

k2) (3.22c)

k4 = h f (tk +
12
13

h,yk +
1932
2197

k1−
7200
2197

k2 +
7296
2197

k3) (3.22d)

k5 = h f (tk +h,yk +
439
216

k1−8k2 +
3680
513

k3−
845

4104
k4) (3.22e)

k6 = h f (tk +
1
2

h,yk−
8

27
k1 +2k2−

3544
2565

k3 +
1859
4104

k4)−
11
40

k5 (3.22f)

At each iteration two solution values are calculated and compared with the following

conditions: If the two solutions are in close agreement, the approximation is accepted. If

the two answers differ to a certain accuracy defined by the user, the step size is reduced. If

the answers agree to more significant digits than required, the step size is increased.

According to Mathews and Fink (2003), the proper step size h can be determined by

multiplying the scalar s times the current step size h as shown in equation 3.23.

s =
(

tolh
2 |zk+1− yk+1|

)1/4

≈ 0.84
(

tolh
2 |zk+1− yk+1|

)
(3.23)

3.2 Nek5000

The fast and scalable fluid/thermal simulation code Nek5000 developed by Argonne

National Laboratory (2017) is designed to simulate laminar, transitional and turbulent

flows at Low Mach numbers. Applications for this code are diverse ranging from fluid

flow and heat transfer to combustion and magnetohydrodynamics. This high order solver

is based on the spectral element method (SEM), which combines spectral methods with
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finite element method for high-level discretization (Patera, 1984). This approach divides

the computational domain in a finite number of elements and the basis on each element

corresponds to polynomials up to order N. The combination of these approaches provides

a high-order weighted residual technique that combines the geometric flexibility of finite

elements with the rapid convergence and tensor-product efficiencies of global spectral

methods. This high order approach has an exponential decay of error proportional to the

increment of the polynomial order. Besides, the SEM approach is highly suitable for

unsteady phenomena since it offers minimal dissipation and dispersion, high accuracy and

exponential solution convergence. Tailored for structured and certain unstructured grids

(no hanging nodes), the framework is written in Fortan77 and C and uses MPI for message

passing. It provides a highly scalable platform from personal workstations to large

supercomputers of diverse architectures (Offermans, 2017).

Table 3.2

NEK5000 Capabilities

Dimensions 2D,3D
Elements Quatrilaterals, Hexahedra
Spatial orders User defined Nth order polynomial
Time steppers Backward difference, Extrapolation
Precisions Single, Double
Platforms CPUs via MPI
Governing Equations Euler, Incompressible Navier-Stokes

Table 3.2 summarizes the capabilities of the open-source framework. In the present

study, this framework is used to perform simulations of a three-dimensional

incompressible wall-jet in a CRAY CPU cluster.
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3.2.1 Spatial Discretization

To explain the spatial discretization lets consider the non-dimension incompressible

Navier-Stokes equations presented in eqns. 3.24 and 3.25

∇ ·u = 0 (3.24)

∂u
∂t

+(u ·∇)u =−∇p+
1

Re
∇

2u+ f (3.25)

where u(x, t) is the velocity, p(x, t) is the pressure and f(x, t) is the forcing term. The

Reynolds number Re is defined as Re = ul
ν

, where u is the velocity scale, l the length scale,

and ν the kinematic viscosity of the fluid. The incompressible Navier-stokes are consider

in an Ω arbitrary domain with associated initial and boundary conditions. Consider d

dimensions, where eqns. 3.24 and 3.25 can be reconstruct as a weak form

(
∂u
∂t

,v
)
+((u ·∇)u,v) = (−∇p.v)+

(
1

Re
∇

2u,v
)
+(f,v) ∀v ∈ X0 (3.26)

(∇ ·u,q) = 0, ∀q ∈ Z (3.27)

where

(a,b) =
∫

Ω

a(x) ·b(x)dx ∀a,b ∈ L2(Ω) (3.28)

X =
{

v : {vinH1(Ω), i = 1, ...,d,v = gD on ΓD
}

(3.29)

X0 =
{

v : {vinH1(Ω), i = 1, ...,d,v = 0 on ΓD
}

(3.30)

Z = L2(Ω) (3.31)

L2 is the Lebesgue space with L2-norm and H1 is the Sobolev space of functions

belonging to L2. ΓD represents the limit of the domain where Dirichlet boundary
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conditions are applied. The inner products observed in equations 3.26 and 3.27 are

computed using Gauss quadrature.

Figure 3.2 Point distributions for velocity and pressure using PN−PN−2 method by Paul
F. Fischer and Kerkemeier (2008).

For the Nek5000 framework, the polynomial associated to the Gauss quadrature are

Legendre polynomials (LN of order N) and the correspondent points are the

Gauss-Lobatto-Legendre (GLL) points for velocity (Offermans, 2017). The order of the

polynomial is defined by the user and ranges typically between 7 and 15. In the case of

pressure, the user can choose between GLL points and Gauss-Lobatto points (GL) as

shown in Figure 3.2 described by Paul F. Fischer and Kerkemeier (2008). The GLL

points, designated as ξi, i = 0, ...N, satisfy Equation 3.32

(1−ξ
2)L

′
N(ξ) = 0, ξn [−1,1] (3.32)

The associated Gaussian quadrature for a one-dimensional domain is defined as

∫ −1

1
u(r)dr ≈

k=0

∑
N

ρku(ξk) (3.33)
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The global domain Ω is partitioned into E number of non=overlapping elements, which

are high-order quadrilateral (or hexahedral) elements. Inside each element, Ωe, the basis

functions are given by PN(Ω
e), which represents the set of polynomials of order N. Hence

the space X from the weak formulation is limited to a finite dimensional subspace such

that

XN = X ∩Pd
N,E (3.34)

where Pd
N,E represents the distribution of polynomials on each of the E elements.To

choose the subspace ZN there are two option: ZN ≡ XN or ZN ≡ Pd
N−2,E . The first option

is known as PN−PN , where the pressure and velocity points are collocated and spurious

modes are bypass using a method developed by Tomboulides et al. (1997). The second is

referred as PN−PN−2, for this method the spurious modes are retrained by considering a

N−2 Lagrange interpolants for the pressure calculation. On each element, the basis basis

functions for XN are defined using Lagrangian interpolants of order N on the

correspondent GLL quadrature points. Notice that according to Galerkin methods, the test

functions are identical to the basis functions. When working in multi-dimensions, the

solutions are presented via tensor products of the basis polynomials, for instance for a two

dimensional case the associated Lagrange interpolants are written such that

π
N
i, j(r,s) = π

N
i (r)π

N
j (s), (r,s) ∈ [−1,1]× [−1,1] (3.35)

where the Lagragian interpolants are defined as πi(ξ j). A visualization of the resultant

grid by combining the user defined grid given by the finite element (FE) and the inner

GLL points given by the spectral is presented in Figure 3.3 (Offermans, 2017).
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Considering the global domain is partitioned into E number of elements, which are

high-order quadrilateral (or hexahedral) elements. The solution for the governing

equations can be mapped within each each element as an expansion of the local Lagragian

Nth-order polynomials cast in tensor-product form as presented in Equation 3.36.

Figure 3.3 Spectral element methods (SEM) grid (Offermans, 2017).

u(x) =
N

∑
i=0

ûiLi(r) (3.36)

Where ûi is the spectral coefficient of u(x) based on the order i of the Legendre

polynomial, Li(r). The trial and test functions represented as Nth-order tensor-product

polynomials within each element in combination with the E number of elements will

represent the number of grid points as EN3 for a three-dimensional mesh (Offermans,

2017). For the spectral element method an assembly of local operator referred as local

spectral matrices are defined to define the semi-discrete system. On each element the local

mass matrix and the local stiffness are defined as equations 3.37 and 3.38.

Me
i j =

Le

2

∫
Ω̂

πi(r)π j(r)≈
Le

2

N

∑
i=0

ρkπi(ξk)π j(ξk) =
Le

2
ρiδi j (3.37)

Ke
i j =

2
Le

∫
Ω̂

dπi(r)
dr

dπ j(r)
dr

dr =
2
Le

N

∑
i=0

ρk
dπi(ξk)

dr
dπ j(ξk)

dr
(3.38)
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Since each operator acts locally and independently on each element a continuity

enforcement is required, therefore; these local operators are unassambled forming

diagonal matrices denoted as ML, KL, and DL which are mass, stiffness and derivative

matrices respectively. The grid definition between local and global mapping differs as

seen in Figure 3.4, hence continuity need to be enforced at the interface Offermans (2017).

Figure 3.4 Mapping between local (left) and global (right) numbering for a domain of two
spectral elements (Offermans, 2017).

Equation 3.39 and 3.40 defined the mapping vectors at local and global domain for the

example in Figure 3.4.

u = (u1,u2, ...,u15)
T (3.39)

uL = (u1
1,1,u

1
1,2, ...,u

1
3,3,u

2
1,1,u

2
1,2, ...,u

2
3,3)

T (3.40)

To introduce continuity between these vectors a connectivity matrix is defined, Q to

map u to uL. The operation shown in equation 3.41 is defined as scatter from global to

local vector, while the reverse operation shown in equation 3.42 is defined as gather

(Offermans, 2017).

uL = Qu (3.41)

v = QT uL (3.42)
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Using the operators described above, the incompressible Navier Stokes can be written

as the semi-discrete problem presented on equations 3.43 and 3.44, where p and u are

taken to be the discrete form of the pressure and velocity fields

M
dui
dt

+Cui = DT
i p− 1

Re
Kui +Mfi, i = 1, ...,d (3.43)

Diui = 0 (3.44)

where M is the global mass matrix, C is the convection operator, Di is the global first

derivative in the direction i and K is the global stiffness matrix. Note the matrix Di

depends on the method used for pressure resolution, if PN−PN is used the matrix is

squared else if PN−PN−2 the matrix is rectangular ((N−1)× (N +1)). Given the

discretized form of the governing equations, the framework proceeds to discretize the

domain in time.

3.2.2 Time Discretization

Temporal discretization is accomplished by implicit backward differentiation (BDF)

subject to the given initial conditions. Due to the complexity of implicit behavior and to

obtain more computational efficiency, some of the terms are solve using k-th order

extrapolation. This method solves the advective term using the convective form of BDF

and an extrapolation (EXT) formula. Equation 3.45 defines the times discretization

method of order k

k

∑
j=0

b j

∆t
Mun− j

i +
k

∑
j=1

a jCun− j
i = DT

i pn− 1
Re

Kun
i +Mfn

i (3.45)

Diui = 0, i = 1, ...,d (3.46)
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where b j are the coefficients correspondent to BDF and a j are the coefficients

correspondent to EXT.

To obtain the approximate solution, the fractional step method is used. This enables

decoupling of viscous and pressure terms via a time splitting operation on equations 3.45

and 3.46. To explain the Helmholtz operator is defined as

H =
bo

∆t
M+

1
Re

K (3.47)

and we let

rn
i =−

k

∑
i=1

b j

∆t
Mun− j

i −
k

∑
i=1

a jCun− j
i +Mfi

n (3.48)

For the simulations performed under this work, the PN−PN−2 method is considered.

For this specific method, a block LU-descomposition is performed and the system to be

solved is defined as

Hui
∗ = DT

i pn−1 + rn
i (3.49)

− bo

∆t
DiM−1DT

i (pn− pn−1) = Diui
∗ (3.50)

ui
n = ui

∗+
∆t
bo

M−1DT
i (pn− pn−1) (3.51)

For specifications to solve the system using the PN−PN method refer to Offermans

(2017).

3.2.3 Tripping Force

To speed the transition from laminar to turbulent regime, a random volume force is

applied on the normal direction to a certain section of the domain. The section below
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explains the physics behind the implemented subroutine. A more detailed description and

validation of the module can be found on the study by Schlatter and Örlü (2012) on

turbulent boundary layers. The line tripping module follows the structure of the tripping

force implemented in the SIMSON code (Chevalier et al., 2007). The intent of the line

tripping module is to mimic the behavior of physical sand paper. The forcing is applied in

the elliptical region along the user defined line(s) by the smoothing lengths SMT HX and

SMT HY which are rotated counterclockwise by the ROTA angle. The rotation angle is

also used to rotate the components of the force into a normal position with respect to the

wall. The smoothing force is expressed as the set of Equation 3.52

fsmth(r) =


exp(−r2)(1− r2)2 i f r ≤ 1.0

0 i f x > 1.0
(3.52)

where

r2 =
( xrot

SMT HX

)2
+
( yrot

SMT HY

)2
(3.53)

and

xrot = xtr ∗ cos(ROTA)+ ytr ∗ sin(ROTA) (3.54)

yrot =−xtr ∗ sin(ROTA)+ ytr ∗ cos(ROTA) (3.55)

In equations 3.54 and 3.55, xtr and ytr correspond to the GLL point coordinates where

the tripping line is positioned. The randomness of the function is increased by having both

steady and unsteady parts where the amplitudes correspond to T IAMP and T DAMP

respectively. Equations 3.56 and 3.57 define the components of the tripping force.
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fx =− fsmth(r)∗ f (z, t)∗ sin(ROTA) (3.56)

fy = fsmth(r)∗ f (z, t)∗ cos(ROTA) (3.57)

where,

f (z, t) = T IAMP∗g(z)+T DAMP∗
[
(1−b(t))hi(z)+b(t)hi+1(z)

]
(3.58)

and

i = int(
t

T DT
) (3.59)

b(t) = 3p2−2p3 (3.60)

p =
t

T DT
− i (3.61)

In Equation 3.58, g(z) and h(z) are Fourier series of unit amplitude with NMODE

random coefficients. This volume force generates noise with a uniform distribution over

all frequencies lower than the cutoff frequency corresponding to 2π/T DT . T DT is the

time step for the change on the time dependent part of the trip as described in Schlatter

and Örlü (2012) study.
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4. Compressible Wall-Jet

4.1 Computational Set-up

The computational domain for the two-dimensional compressible wall-jet is in the

shape of a rectangle with dimensions are based on the jet inlet height, h. The physical

rectangle dimensions are Lx = 46h in the stream-wise direction, and Ly = 23h in the

normal direction, the domain is based on a two-dimensional approach for the

computational domain from Ahlman et al. (2007). The streamwise direction is chosen to

be sufficiently large to achieve self-similar behavior. The simulations are perfomed in an

unstructured grid with 752025 gridpoints.

This grid is refined using a stretching function, which allows bigger cells towards the

top of the domain. In addition boundary layer refinement is added near the wall and at the

inlet to capture the wide range of velocity and length scales which are characteristic of a

wall-jet. Figure 4.1 presents the computational mesh defined for this compressible case.

The inlet height is denoted as h and x, and y denote the streamwise and wall-normal

directions, respectively. The inlet jet is positioned parallel to the streamwise direction and

adjacent to the bottom wall as observed in Figure 4.1. The fluid is injected tangentially

along the wall. The simulations as previously mentioned are performed using PyFR with

third order polynomial for spatial discretization and RK5 for time discretization.

To promote the transition to turbulent regime, roughness is introduced near the inlet for

a distance of x = 3h, ensuring fully turbulent flow in large part of the domain. The

roughness, observed in Figure 4.1, is placed 2h away from the inlet and has a triangular

shape with a height of 10% of the inlet height.
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Figure 4.1 Compressible Wall-Jet Mesh.

4.1.1 Inlet and Boundary Conditions

Figure 4.2 illustrates the boundary conditions prescribed for the compressible case.

The Mach number used for the simulation is M=0.5 and the inlet Reynolds number is

Re = 5000. The fluid is introduced to the domain at the jet inlet of height, h = 1cm. The

baseline inlet profile for the three cases consists of a jet inlet velocity, Ui, which includes a

co-flow that is 10% of the inlet velocity, Uc = 0.1Ui. This co-flow is applied to ensure that

the large-scale eddies propagate downstream and leave the computational domain.

Co-flow is added because it increases the parametric flexibility of a wall-jet by allowing us

to change the ratio between the freestream velocity outside the boundary layer and the jet

velocity near the wall. Thus, the turbulent structure of the wall jet can be manipulated and

the importance of the outer vortical layer on the wall region can be evaluated.

The wall boundary is flat and smooth, except at the roughness section, with no slip

condition to include viscous effects and shear stresses in the study. At the bottom wall, the

no-slip isothermal condition is fullfied for the velocity such that u = v = 0. At the top of
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the domain, an inflow velocity of 2.6 % of the jet inlet is applied to account for

entrainment.

Figure 4.2 Compressible Wall-Jet Boundary Conditions.

At the outlet, a characteristic-Riemann invariant with standard environment conditions

(P = 101,325Pa and T = 25C) is applied to prevent the reflection and generation of

pressure waves. The outflow ensure all eddies exit the domain and avoid any back

pressure. The fluid is assumed to be calorically perfect (Cp is constant) and it follows the

perfect gas law.

Table 4.1

Compressible Case Study Description

Baseline Case Case 1 Case 2
Inlet Mach Number 0.5 0.5 0.5

Co-flow Velocity 0.1 Uin 0.1 Uin 0.1 Uin

Entrainment Velocity 0.026 Uin 0.026 Uin 0.026 Uin

Inlet Perturbations — 0.1Uin(sin 4440 t) 0.1Uin(sin 850 t)
Strouhal Number — 0.25 0.05

The study aims to compare two different velocity inlet profiles with the baseline for

turbulence modulation. For the two forced cases, the inlet profile includes a sine wave
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perturbation based on Strouhal number (Sr) variation as presented in Table 4.1. Case 1

refers to the high-Sr case and Case 2 refers to the low-Sr case.

4.2 Results

Two-dimensional simulations were performed in order to describe the primary

instability process of the baseline and forced compressible planar wall jet. In addition the

two-dimensional mesh will help analyze the computational need for a future

three-dimensional version.

4.2.1 Instantaneous Fields

Visualizations of the instantaneous velocity, density, and pressure fields are presented

in Figure 4.3. Using the velocity field, the change from laminar to the turbulent regime is

observed. The transition occurs rapidly after the fluid undergoes the imposed roughness

near the jet inlet, becoming fully turbulent beyond x > 20h. Beyond position x > 20h,

there is a higher presence of vortices and velocity fluctuations. The flow is subject to two

shear processes causing the formation of vortices in the opposite direction. One is caused

by Kelvin Helmholtz instabilities at the initial shear layer between the nozzle and the

co-flow and the second is caused by the introduced roughness at the wall. The interacting

eddies have different characteristics that reflect on the downstream domain. In Figure 4.3,

one can observe that the flow experiences detachment from the wall at an earlier stage

than expected. Leading to the conclusion that the vortices produced by the roughness are

overtaking the ones from the instability.
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Comparing the three cases, one can observe that the low-Sr case shows longer

attachment to the wall compared to the other two cases. The baseline presents more

chaotic behavior in the downstream domain where the flow tends to re-attach to the wall.

The density and pressure fields in Figure 4.3 highlight the formation of pure

Kelvin-Helmholtz instabilities at the inlet. The production of vortices at the roughness is

also observed. The eddies formed collapse and propagate downstream over time. The

density field shows the direction of the flow wrapping the center of the vortices which

enables us to visualize the undergoing vortex process. The pulsed jet controls the

amplitude and frequency of eddy production at the inlet which modifies turbulent behavior

at downstream positions. The perturbation causes changes in the turbulent kinetic energy

and large-scale structures. Large-scales structures frequency modulate the finer scales of

turbulence and can be a factor enclosing turbulence modulation. Notice that the vortex

pairing process occurs close to the wall for the baseline and low-Sr case, while for the

high-Sr case this process occurs further from the wall due to the early separation.

4.2.2 Mean Flow Characteristics

Figure 4.4 presents the decay of the maximum streamwise velocity as function of the

local position in the stream wise direction. As characteristic, the maximum velocity

decreases as it travels downstream. The decay is quantified by a power law as presented in

Equation 4.1.

Um

Uin
= Am

(x
h

)γm
(4.1)
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where Am = 2.55 and γm =−0.4907, Uin is the jet inlet velocity and h is nozzle height.

The results for this study are compared with Tang et al. (2015) whose power law constants

are Am = 3.55 and γm =−0.4907 and Barenblatt et al. (2005) with Am = 5.15 and

γm =−0.6. The current results follow the same power as Tang et.al with different

magnitude. The values for this exponent and for the amplitude are scattered, with an

accepted range from −0.6≤ γm ≤−0.49 and 4≤ Am ≤ 7 as reported by Narasimha et

at.(1973). Streamwise mean velocity decay and wall normal position development are

consistent for the three cases studied.

Figure 4.4 Decay of maximum mean stream-wise velocity, Um as a function of the
streamwise position normalized with the inlet height. Data compared to Tang et al. (2015)
blue line and Barenblatt et al. (2005) red line.

Figure 4.5 shows the streamwise evolution of the wall normal location corresponding

to Um. Following the decay analysis, the wall-normal location can be quantify by a power

law given by equation 4.2

ym

h
= Bm

(x
h

)m
(4.2)
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where Bm = 0.095 and m = 1.05. The data is compared with Naqavi et al. (2018) and

Tang et al. (2015) which constants are Bm = 0.040 and m = 0.717 and Bm = 0.0403 and

m = 0.7403, respectively.

The comparison cases are incompressible as there was not this literature evaluating this

parameter for compressible case. Part of the discrepancies are caused by the different flow

conditions in the comparative data. Current data presents higher value constant for the

wall-normal position of the maximum velocity, which is likely a consequence of the early

flow separation induced by the tripping methodology.

Figure 4.5 Wall-normal position ym of the maximum mean stream-wise velocity Um as a
function of the over stream-wise position x. Values normalized by the inlet height. Data
compared to Tang et al. (2015) magenta dashed line and Naqavi et al. (2018) green ♦.

Figure 4.6 presents the skin friction coefficient as a function of the local Reynolds

number Rem. The Rem is taken as Umaxymax
ν

and C f = 2( uτ

Umax
)2. The current study presents

lower values of skin-friction; nonetheless, the slope of the decay matches Tachie et al.

(2004). The offset could be the product of the early detachment. The variations of skin
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friction between cases are fairly small as observed in Figure 4.6; however, the high-Sr

case seem to present relatively lower values than the baseline and low-Sr case.

Figure 4.6 Skin friction coefficient as a function of the local Reynolds number. Data
compared to Tachie et al. (2004).

To better understand the velocity statistics at upstream and downstream positions of the

wall-jet proper inner and outer scaling are applied and presented in the following figures.

For outer scaling, the maximum mean stream-wise velocity and the co-flow velocity

(Um−Uc) are used for the velocity scale, and the half-width jet normal position y1/2 is

used for the length scale. Figure 4.7 shows the mean stream-wise velocity scaled with

outer parameter at x/h = 20 and 30. The mean velocity profile converged in the outer

region, some discrepancies are observed in the inner region of the jet. The mean profiles

show inconsistency with the conventional incompressible wall-jet profile when compared

to Naqavi et al. (2018), but we are 2D compressible, which may contribute to the

discrepancy. Notice the early separation from the wall is confirmed by these profiles. As
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described in the instantaneous velocity section the high-Sr case presents the earliest

separation.

Figure 4.7 Mean stream-wise velocity profiles scaled using outer parameters. Data
compared to Naqavi et al. (2018).

For inner scaling, the convention for turbulent boundary layer is followed, where the

friction velocity uτ is the velocity scale and uτ/ν is the length scale. Figure 4.8 presents

the mean stream-wise profiles scaled with inner parameters in a semi-logarithmic form.

The current results collapsed for any y+ ≤ 20 where the viscous layer and part of the

buffer layer are defined. The scaling fails for the outer layer as observed in Figure 4.8.

The profiles are also compared with the conventional laws for turbulent boundary layers,

where < u+ >= y+ below y+ = 4 and < u+ >= Aln(y+)+B for the logarithmic layer.

The constant A and B are scattered. For different studies for the current results the values

of A = 2.44 and B = 5.0 are used. Based on the scaled mean profiles, all the scales near
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the wall seem to be captured by the simulation and the discrepancy with the conventional

wall-jet profile is not caused by the grid resolution.

Figure 4.8 Mean stream-wise velocity profiles scaled using inner parameters. Left figure
x/h = 20 and right figure x/h = 30. Blue line < u+ >= y+ and red line
< u+ >= Aln(y+)+B.

4.2.3 Turbulent Statistics

The Reynolds stresses are evaluated with inner and outer scaling. For outer scaling, the

normal and shear stresses are normalized by (Um−Uc)
2 and half-width on the length

scale. Figure 4.9 shows the normal Reynolds stresses in the stream-wise and the normal

direction for two stream-wise positions.

The current results give higher values of turbulent intensity compared to previous

experimental and computational studies. Due to the separation from the wall, just a small

hint of the characteristic peak of the inner layer is shown at the upstream position. The

outer layer weakens the inner layer effects as its intensity is relatively higher. Despite the

quantitative discrepancies between the literature and these results, the figure provides

relevant information on how the Strouhal number affects the flow development relative to

the baseline. In the stream-wise Reynolds stresses, the notable jump at the downstream
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position represents a more complex-chaotic flow in the fully developed region. The

wall-normal stresses appeared to have an opposite effect as they remain constant in value

but they are confined closer to the wall in the downstream domain.

Figure 4.9 Reynolds stresses profiles at two stream-wise positions scaled with outer
parameters. Left figure stream-wise 〈u′u′〉 - right figure 〈v′v′〉.

The high-Sr case presents the lowest values of turbulent intensity on average. The

low-Sr case is close in stream-wise turbulence intensity and slightly lower in wall-normal

intensity compared to the baseline case. For inner scaling, the normal and shear stresses

are normalized by (uτ)
2 on the velocity scale and uτ/ν on the length scale. The inner

scaling allows us to investigate more closely what is happening in the inner region of the

jet. Figure 4.10 presents the Reynolds stresses scaled with inner parameter. The inner

peak characteristic of the near-wall region is slightly present, and it is more noticeable in

the downstream domain. The evident increase of turbulent intensity on the inner and outer

regions is observed. The high-Sr case shows a slightly higher stream-wise intensity in the

position closer to the jet, but at the downstream position, it is comparable with the other
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cases. The low-Sr case shows an appreciable increase in the wall-normal turbulent

intensity at the downstream domain.

Figure 4.10 Reynolds stresses profiles at two stream-wise positions scaled with inner
parameters. Top figures stream-wise 〈u′u′〉 - bottom figures 〈v′v′〉.

4.3 Conclusions

Direct Numerical Simulations of an unforced and two forced weakly compressible

turbulent wall-jets were performed to study turbulence modulation in the flow. The

physical domain extends for 46h (h is the inlet height) and measurements are taken at two
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streamwise positions x/h = 20 and x/h = 30 to have a comparison point with previous

studies. A summary of the findings is presented below.

1. The mean flow characteristics and turbulence intensities show the flow separates

earlier than expected from the wall. From the statistical analysis and the flow

visualization the lifting appears to be an effect of the imposed tripping device near

the inlet.

2. Tripping roughness needs to be reduced in height to get better comparison with

previous studies. However, reducing the tripping device height may require further

refinement of the computational grid near the wall.

3. The results indicate that, the sine wave perturbation changes the frequency of billow

production by KHI (Kelvin-Helmholtz Instabilities) which contribute to changes in

turbulent intensity in the downstream domain.

4. We observe there is a significant increase in the wall-normal intensity near the

surface for the lower Strouhal number case (Sr = 0.05) when traveling further

downstream. The coefficient of friction sustains the results with a increase of

magnitude in the sampling area.

5. Far away from the surface, the turbulence intensity in the streamwise and normal

direction is slightly reduced for the high Strouhal number (Sr = 0.25) case

compared to the baseline.

6. The two-dimensional study for compressible wall-jet shows that higher resolution is

needed for higher Reynolds number. The computational cost for the compressible

case is more demanding than for the incompressible case. The limited availability of
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Graphical Processing Units (GPU) computing power did not allow us to proceed

with a three-dimensional study.

7. Lessons learned from this compressible case are used as guidelines in the

development of the incompressible three-dimensional case study for which the

required computational resources were available.
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5. Incompressible Wall-Jet

5.1 Computational Set-up

The computational domain for the three-dimensional incompressible wall-jet is in the

shape of a rectangular cuboid, whose dimensions are based on the jet inlet height, h. The

domain dimensions are Lx = 50h, Ly = 18h, Lx = 5.5h in the streamwise, normal and

spanwise directions, respectively. The domain is based on a two-dimensional approach for

the computational domain from Pouransari et al. (2014). The streamwise direction is

chosen to be sufficiently large to achieve self-similar behavior. The normal direction

enables enough space to avoid boundary treatment issues and the span-wise direction is

chosen to be the minimum possible to limit the computational power requirements.

This grid is developed using the embedded Nek5000 subroutine genbox Argonne

National Laboratory (2017), in which the streamwise and spanwise directions have

elements uniformly distributed along each direction, while the normal direction is refined

towards the wall using a stretching function such that

Ny,e = 1+[tanh(β∗ (2∗ y−1))/ tanh(β)] (5.1)

where β is a factor that determines how close is the stretching in the vicinity of the wall.

Notice the higher the value the smallest the cells towards the wall, but the coarser the cells

away from the wall, hence one should find a balance to capture all the scale of motion.

Figure 5.1 presents the computational mesh defined for the incompressible case. The inlet

height is denoted as h and x, y, and z denote the streamwise, wall-normal, and spanwise

directions, respectively. The jet inlet is positioned parallel to the streamwise direction and

adjacent to the bottom wall as observed in Figure 5.1. The simulation as previously
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mentioned are performed using Nek5000 with ninth order polynomial for spatial

discretization and BD/EXT for time discretization. The Courant-Friedrichs Lewy (CFL)

number used for the simulations is 0.5, which provides enough stability to the flow.

Figure 5.1 Incompressible Wall-Jet Boundary Conditions.

Transition to turbulence is achieved by the tripping force previously defined in the

numerical methods section. This volume force mimics sandpaper in four locations for our

case. This four tripping lines are placed between 2h and 5h from the jet inlet, allowing

enough sampling space after the flow becomes turbulent. Each tripping line is chosen to

be different from each other to increases randomness. The first and third line have a low

Fourier mode while the second and fourth have a high Fourier mode which introduces

white noise to the previous lines.

5.1.1 Inlet and Boundary Conditions

The boundary conditions prescribed for the incompressible wall-jet are presented in

Figure. For this case, the inlet Reynolds number is Re = 6000 and the density is

ρ = 1.225kg/m3. The inlet height, h, is considered to be 8mm. Above the jet inlet, a
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co-flow of 7.5% of the inlet velocity is prescribed to endure the exit of large vortical

strucutres. The top boundary is taken as an entrainment inflow, which mean is point

downwards at a velocity equal to 2% or 5% of the inlet velocity depending on the section

of the study. The sides of the cuboid are taken as periodic boundaries. The outflow is

treated as open to the environment, however to warranty the exit of large eddies to the

environment the outflow needs boundary treatment. Nek5000 has a subroutine dedicated

to avoid back pressure at the outlet, this subroutine treat the boundary as a suction line that

avoid instability in the flow. Taking into account the repercussions of this treatment, the

sampling for this case is taken at least 10h away from the outlet. The bottom is considered

as a no-slip wall where u = v = w = 0.

The wall boundary is flat and smooth, except at the roughness section, with no slip

condition to include viscous effects and shear stresses in the study. At the bottom wall, the

no-slip isothermal condition is fullfied for the velocity such that u = v = 0. At the top of

the domain, an inflow velocity of 2.6 % of the jet inlet is applied to account for

entrainment. Table 5.1 gives a comprehensive summary of the boundary condition and

case used for this study. The study aims to compare the effects of two different

frequencies as well as different wave amplitudes with the baseline to observe effects over

turbulence phenomena. From this point on, Case 1 is defined as low-Sr case while Case 2

is defined as high-Sr case. In Case 1 and Case 2, a sine wave is added to the inlet velocity

as a controlled perturbation, the form of the sine wave is described in Equation 5.2.

Upert = 1+A(sin(2π f t)) (5.2)
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where A is the amplitude of the wave, y is the normal position, f is frequency, and t

represent the time.

Table 5.1

Incompressible Case Study Description

Baseline Case 1 (Low Sr) Case 2 (High Sr)
Strouhal

Number (Sr) 0 0 0 0.0048 0.0048 0.0048 0.0048 0.02 0.02 0.02 0.02

Frequency
[Hz] 0 0 0 12 12 12 12 50 50 50 50

Velocity
Range m/s 20 20 20 18-22 16-24 12-28 12-28 18-22 16-24 12-28 12-28

Resolution Low Low High Low Low Low High Low Low Low High
Top- velocity

(% of Uin) 2 % 5% 5% 2% 5% 5% 5% 2% 5% 5% 5%

Co-flow
(% of Uin) 7.5%

Figure 5.2 High resolution mesh with Ex = 30×Ey = 30×Ez = 4.

The first section is a refinement study is performed utilizing low resolution mesh with

30×24×4 resulting in a total count of v 2.09M. This resolution compared the baseline

and low Strouhal number case with 2% of entertainment velocity. For statistical analysis,

the refinement study showed lack of wall-normal elements; hence, a new low resolution
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case is defined as well a high resolution case to capture all scales of turbulence. The

remaining cases that used the second low resolution mesh were performed with

24×26×5 resulting in a total count of v 2.27M degrees of freedom. The high resolution

mesh seen in Figure 5.2 was performed with 30×30×4 resulting in a total count of v

2.67M degrees of freedom. Notice that between the low and high resolution grids the

emphasis on element count changes, after analysis the low resolution shows less number

of elements were needed on the spanwise direction and more in the streamwise and

normal direction in order to capture the small scale motion.

Table 5.2

Incompressible Case - Mesh Description

Low Low High
Nx×Ny×Nz 30×24×4 24×26×5 30×30×4

Polynomial order 9 9 9
Gridpoints ∼ 2.09M ∼ 2.27M ∼ 2.6M

This section is divided into three parts. The first one entails an analysis of the

low-resolution mesh that is used as a reference to make modifications for the following

low and high-resolution grids used in this study. The second part initially compares the

updated low-resolution mesh with the high-resolution mesh to characteristic any

information that is lost with resolution. Then, mean and turbulent characteristics are

analyzed with the high resolution simulations to compare the baseline and the force jet.

Finally, the third section presents a qualitative analysis of how the Strouhal number (Sr)

and amplitude of the perturbation added at the inlet affect the development of the flow as a

whole.
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5.2 Refinement Study

This section entails the comparison of low-resolution simulations between baseline

case and Low-Sr number case. Conclusions are drawn regarding mesh resolution and

perturbation parameters which are applied for the next section of the study.

5.2.1 Mean Flow Characteristics

The analysis that follows uses the low-resolution mesh with ∼ 2.09M degrees of

freedom. Similarly to the compressible case, this case uses inner and outer scales to

analyze the flow characteristics.

Figure 5.3 Mean streamwise and normal velocity at various streamwise positions (x/h =
25, 31.25, 37.5) for the baseline and the forced case (Sr = 0.0048 with A = 0.1Uin).

Figure 5.3 shows the streamwise and normal mean velocity normalized using

conventional outer scaling (Um, y1/2). Measurements are presented for three streamwise

positions (x/h = 25, 31.25, 37.5) for the baseline case and the low-Sr case ( f = 12Hz with

Amplitude = 0.1Uin) referred to as case 1 or forced case for this analysis. The data was

compared to Bhatt (2019). The current results for the streamwise mean velocity presents



75

detachment from the wall at an earlier stage than the experimental data. The normal-mean

velocity values do not converge and are not in agreement with previous experimental or

computational studies. To improve results in the normal direction resolution needs to

increase.

Figure 5.4 Mean streamwise velocity for the baseline and the force case at x/h = 25. Data
compared with Naqavi et al. (2018).

Figure 5.4 presents the mean streamwise velocity profiles scaled by the friction

velocity as a function of wall units. The data is compared with Naqavi et al. (2018). This

figure provides information on the grid resolution deficiencies as it magnifies the view of

the mean streamwise velocity in the near-wall region. In the vicinity of the wall few points

are entering the viscous layer. Notice the points presented in the graph represent the

elements defined by the user, but there exist ghost points in between the cells. The outer

layer does not converge within the logarithmic region, which presents a problem in the

normal resolution.
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Figure 5.5 Skin friction coefficient as a function of the local streamwise position. Data is
compared to the conventional 7th power law and the 7th power law with empirical data.

Figure 5.5 shows the skin friction coefficient as the local streamwise position. The

coefficient is calculated such that C f = 2( uτ

Umax
)2. The skin friction coefficient confirms

again that the normal direction requires higher resolution. The figure shows there is an

offset between the current results and the 7th power law which the coefficient of friction

should follow.

The decay of the mean streamwise velocity is presented in Figure 5.6. Compared to

Tang et al. (2015), George et al. (2000) and Barenblatt et al. (2005), the current results

find good agreement with the power-law exponent given by Tang et al. (2015). The power

law equation is given by Equation 4.4. The amplitude Am does not match with the

power-law provided, but it remains between the range of 3.55 and 5.15. These results

from the baseline and the forced case show that the streamwise resolution is appropiate to

obtain convergence in the results.
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Figure 5.6 Decay of maximum mean streamwise velocity as a function of the streamwise
position normalized by the inlet height. Data compared to Tang et al. (2015) orange line,
George et al. (2000) purple line, and Barenblatt et al. (2005) yellow line.

5.2.2 Turbulent Statistics

Figure 5.7 shows the root mean squared (RMS) of the normal velocity fluctuations and

the turbulent kinetic energy scaled by the inlet velocity and by the slot height. The profiles

are analyzed at x/h = 25. The streamwise fluctuations present the characteristic peaks for

the inner and the outer layer, notice the inner peak tends to be smaller than the outer peak.

The profiles agree on shape with results presented at Bhatt (2019), but the range for the

current results is shortened. The turbulent intensity is used as a benchmark to identify if

the amplitude of the perturbation is causing a significant effect on the flow development.

When comparing the baseline case with the forced case, slight changes are noticed. First

the streamwise and wall-normal fluctuations appear to be damped by the perturbation,

while in the spanwise direction the fluctuations have slightly higher values than the

baseline.
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The total turbulent kinetic energy compiles the effects of all the normal fluctuations

and shows that the forced case fluctuations are damped in the inner region and the outer

region the peak is slightly higher but after the peak, the values are comparable to the

baseline. These results for an amplitude of 10 % of the inlet velocity does not show a

significant change in the flow development which leads us to increase the amplitude of the

perturbation for the following simulations to clearly observe the effect of pulsing the inlet

jet.

Figure 5.7 Reynolds stresses and turbulent kinetic energy profiles scaled with outer
parameters. a. streamwise 〈u′u′〉 - b.wall-normal 〈v′v′〉- c.spanwise 〈w′w′〉 and d. turbulent
kinetic energy 〈k′〉.
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According to Schober and Fernholz (2000) effects on skin friction and mixing are

obtain at amplitudes larger than 20% of the jet inlet velocity. The low-resolution analysis

leads to changes in the mesh resolution and boundary conditions. For the next section, the

top boundary condition increases from 2% Uin to 5% Uin for all the grids. The updated

low resolution decreases on steamwise element count but increases on normal and

spanwise element count.

5.3 Detailed Statistical Analysis

The goal in this section is to capture all the scales on the normal direction and to

visualize turbulent structures like hairpins in the spanwise direction. The high-resolution

mesh keeps the steamwise and spanwise element count but increases grid-points in the

normal direction. The following section compared the new computational domains to

endorse the possibility of using a low-resolution grid solved with a high order numerical

method to study wall-jet. To reduce computational cost, the following grids are

interpolated from the low resolution case enabling stability on the flow.

5.3.1 Instantaneous Velocity Characteristics

Figure 5.8 shows a snapshot of the instantaneous streamwise velocity in an XY plane

for the baseline and case 1 (Sr = 0.0048 with A = 0.4Uin). Snapshots are taken at t =

0.0504s. The low resolution and high-resolution results are compared to visually

determine the effects of resolution in flow development. The results from the

low-resolution grid appear flatter than for the high -resolution grid. The high-resolution

grid shows more in detail the evolution of the Kelvin-Helmholtz instabilities, where the

shear layer structure is formed and initially detach from the wall and then reattach as
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traveling downstream. The fully developed region of the jet shows a higher amount of

large structures in the high-resolution grid as more scales are interacting with each other

and causing chaotic behavior. The forced case for both low and high resolution shows less

thickness in the overall flow development. This is associated with the changing energy

supply caused by the variation of the velocity at the inlet. For all cases, the flow transition

regime is observed between 0.05 and 0.1. However, in the following snapshots, the higher

resolution cases tend to become fully developed at a further downstream position.

Figure 5.9 shows a snapshot of the instantaneous velocity in an XZ plane for the

baseline and case 1. Figures are taken at y+ ∼ 7. In this region, elongated streamwise

streaks, characteristic of boundary layers, are present. These snapshots allow us to observe

the behavior of the inner region. At the inlet, the flow transitions from laminar to the

transitional regime. The development of KHI is visualized as long strips in the span-wise

direction. As the instabilities interact with each other and with the vortices produced by

the friction with the wall, turbulent spots are observed between 0.1 and 0.15 for the low

resolution. The flow becomes fully turbulent at early state for the low-resolution grid. As

the grid increases on resolution, the flow becomes more stable and the flow fully

developed region is observed further downstream for the high-resolution cases.
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Figure 5.10 shows a snapshot of the instantaneous velocity in an ZY plane for the

baseline and case 1. Snapshots are taken at two stream-wise locations x/h = 30 and

x/h = 40. The captures at different stream-wise positions provide information on the

development of the flow thickness and the decay of the velocity. Comparing both

positions shows that the scale of the flow structures grows significantly downstream, in

particular in the outer part of the jet. For low-resolution cases, the change is less

significant than for the high-resolution case; therefore, the resolution is capturing better

the interaction between scales.

To summarize, a low-resolution grid enables an early transition to the turbulent regime

where the turbulent statistical analysis is performed and large scale interaction is

observed. Despite, the flatness observed in the low-resolution cases, they are a good

reference to initially analyze different parameters for wall-jet turbulence manipulation.

A higher resolution grid captures in more detail small scales in the vicinity of the wall;

however, the flow becomes fully turbulent further downstream which points to the need of

a longer computational domain in the streamwise direction if self-similarity is not

achieved.
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5.3.2 Mean Flow Characteristics

Figure 5.11 Mean stream-wise and normal velocity at positions x/h = 30 and 35, left and
right figures respectively. For the baseline and the forced case ( f = 12Hz with
Amplitude = 0.4Uin) the low resolution and high resolution grids are compared with
Naqavi et al. (2018).

Figure 5.11 shows the mean stream-wise velocity scaled with outer parameter at x/h =

30 and 35. Recall that the outer parameters are the local maximum streamwise velocity

Um and the jet half-width y1/2. The high-resolution results of the mean velocity profiles

converged at x/h = 30, some discrepancies are observed at x/h = 30 and 35 for the

low-resolution case. The mean profiles show inconsistency with the conventional wall-jet
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profile when compared to Naqavi et al. (2018). The normal mean velocity profiles are not

converged at x/h = 30 for any of the cases, higher resolution reaches convergence at

x/h = 35. The baseline low-resolution case does not reach convergence. After analyzing

the discrepancies between the high and low-resolution grids, the following statistical

analysis is conducted using the high-resolution grid for the baseline and the forced case.

Figure 5.12 Normal velocity at positions x/h = 35. For the baseline and the forced case
( f = 12Hz with Amplitude = 0.4Uin) the low resolution and high-resolution grids.
Excludes low-resolution baseline for close-up. Data compared with Naqavi et al. (2018).

Figure 5.13 presents the mean stream-wise velocity profiles in a semi-logarithmic form

scaled by the friction velocity as a function of wall units. The data is compared with

Naqavi et al. (2018), finding good agreement in the inner region. When magnifying in the

near-wall region, one observes that the high-resolution grid is capturing all the turbulent

scales. The profiles in the viscous region are in agreement with the conventional turbulent

boundary layer wall laws. The outer layer does not converge within the logarithmic

region. the stretching function emphasizes the inner region close to the wall and the flow
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shows small scales are not captured in the outer flow. As the flow travels downstream, the

agreement with inner scaling improves.

Figure 5.13 Mean streamwise velocity for the baseline and the force case at x/h = 30
(solid line) and x/h = 35 (dashed line). Data compared with Naqavi et al. (2018) and with
conventional scaling functions for turbulent boundary layers.

Figure 5.14 presents the decay of the maximum streamwise velocity as a function of

the local position in the streamwise direction. As shown in the YZ snapshots in Figure

5.10 velocity decreases with the streamwise position. The decay is quantified by a power

law as presented in Equation 4.1. The constants vary between the baseline and the forced

case. The forced case appears to follow the power-law from Banyassady and Piomelli

(2014) study, while the baseline case follows the exponential constant for experimental

study of Tang et al. (2015) with a slightly lower magnitude for our study, Am = 3.11.

Notice the forced case differs from the baseline as the decay occurs less rapidly.
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Figure 5.14 Decay of maximum mean streamwise velocity, Um as a function of the
streamwise position normalized with the inlet height. Data compared to Tang et al. (2015)
dashed magenta line and Banyassady and Piomelli (2014) red dashed line.

Figure 5.15 shows the streamwise evolution of the wall-normal location corresponding

to the maximum mean streamwise velocity of Um. The wall-normal location is quantified

by a power law given by equation 4.2. Comparison with Tang et al. (2015) and Naqavi et

al. (2018) shows the growth of the wall-normal position is faster for the current results.

The baseline case follows the power laws of previous studies with a different virtual

origin. The forced shows slower growth of the wall-normal position compared to the

baseline, but faster than the presented studies. The exponent that follows the results from

the forced case is m = 0.88. The magnitude is comparable to Naqavi et al. (2018) results

Bm = 0.040.

The jet spreading rate for the inner and the outer regions can be quantified by using a

scaling power-law in the function of the inlet height. Equations 5.3 and 5.4 present the

power-laws for the outer and the inner region, respectively.
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Figure 5.15 Wall-normal position ym of the maximum mean streamwise velocity Um as a
function of the local streamwise position x/h. Data compared to Tang et al. (2015) green
dashed line and Naqavi et al. (2018) red dashed line.

y1/2

h
= Ao

(x
h

)γo
(5.3)

y1/2(in)

h
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(x
h

)γi
(5.4)

Figure 5.16 Wall jet spreading rate in the outer region. Data compared to Naqavi et al.
(2018) blue line, Tang et al. (2015) red line, and Launder and Rodi (1983) yellow line.
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Figure 5.16 shows the streamwise evolution of the outer layer half-width.The current

results are compared with Naqavi et al. (2018), Tang et al. (2015), and Launder and Rodi

(1983). The forced case appears to closely resemble the power-law by Tang et al. (2015)

with a small increase in amplitude. The exponent γo and the amplitude Ao for the baseline

case are higher than the values presented by previous studies. The amplitude increases by

8% while the exponent takes a value of 0.83. The half-width for the baseline case appears

to grow faster than for the forced case.

Figure 5.17 Wall jet spreading rate in the inner region. Data compared to Naqavi et al.
(2018) blue line, and Tang et al. (2015) red line.

Figure 5.17 shows the streamwise evolution of the inner layer half-width. The current

results are compared with Naqavi et al. (2018), and Tang et al. (2015). The power-law

amplitude for the baseline and the forced case is higher than the values presented. The

values of the power-law fit for the presented results are Ai = 0.02 and γi = 0.504. Notice

the exponent value is the same as previous studies, but the amplitude changes. The
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scattered results do not enable to make a clear comparison between the baseline and the

forced case.

Figure 5.18 shows the skin friction coefficient as the local streamwise position

normalized by the inlet height. The coefficient is calculated such that C f = 2( uτ

Umax
)2. The

scatterd data show the need for more simulation time to generate more converged results.

The figure shows there is an offset between the current results and the 7th power law.

Comparing the baseline with the forced case, the perturbation appears to reduce slightly

skin friction at positions higher than x/h = 30.

Figure 5.18 Skin friction coefficient as a function of the local streamwise position. Data is
compared to the conventional 7th power law.

5.3.3 Turbulent Statistics

Figure 5.19 shows the root mean squared (RMS) of the normal velocity fluctuations

and the turbulent kinetic energy scaled by the maximum local velocity and co-flow

velocity (Um−Uc)
2 and by the half-width y1/2 in the length scale. The profiles are taken

at x/h = 30 and x/h = 35. When comparing the baseline results to previous studies by

Naqavi et al. (2018) and Banyassady and Piomelli (2014), the values are smaller in the
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streamwise and spanwise direction. The normal direction fluctuations are lower for

position x/h = 30 and higher for x/h = 35. Notice that the inner characteristic peak has a

larger range than for previous studies and the magnitude of the outer peak is lower than

the inner peak. This could be caused by the entrainment velocity added at the top as a

boundary condition. Initially, the velocity was increased to avoid early separation from the

wall and following the standard established by Ahlman et al. (2007). The top velocity

appears to confine the turbulence fluctuations to the inner region. The fluctuations on the

spanwise direction are half the magnitude as the results presented by Naqavi et al. (2018).

It is possible that the reduced length on the spanwise direction is changing the turbulence

characteristics as the fluctuations might be correlated. The turbulent kinetic energy

profiles converge for each case.

Comparing the baseline to the forced case, turbulent fluctuations are weakened in all

directions. The turbulent kinetic energy illustrates this point, where one can observe that

the total magnitude of the turbulent kinetic energy for the baseline case is approximately 4

times bigger. Hence, the periodic forcing at the inlet is damping turbulence effects.

Observing the flow over time shows that the low Strouhal number and high amplitude

perturbation delay the transition point to fully developed turbulence. At a high peak of the

sine perturbation, a strong supply of energy is introduced in the domain and takes time to

travel downstream. At a low peak of the sine, the flow appears to momentarily

relaminarize. The combined effect of the high and low peak creates an offset between the

pulse and the downstream effect on turbulence. The combination of both effects limits the
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development turbulence at downstream positions which will explain the reduction in

velocity fluctuations and turbulent kinetic energy.

Figure 5.19 Reynolds stresses and turbulent kinetic energy profiles scaled with outer
parameters. a. streamwise 〈u′u′〉 - b.wall-normal 〈v′v′〉- c.spanwise 〈w′w′〉 and d. turbulent
kinetic energy 〈k′〉. Data compared to Naqavi et al. (2018) at x/h = 30 (blueF ) and
x/h = 30 (orange � ) and LES data by Banyassady and Piomelli (2014) (yellow � ).

Figure 5.20 shows the root mean squared (RMS) of the normal velocity fluctuations

and the turbulent kinetic energy scaled by the friction velocity uτ in the velocity scale and

by the friction velocity and kinematic viscosity uτ/ν in the length scale. The profiles are

taken at x/h = 30 and x/h = 35. Data is compared to DNS data by Naqavi et al. (2018)
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and LES data by Banyassady and Piomelli (2014). Profiles for the baseline and the forced

case converge in the streamwise and wall-normal direction the spanwise direction is not

well converged.

Figure 5.20 Reynolds stresses and turbulent kinetic energy profiles scaled with inner
parameters. a. streamwise 〈u′u′〉 - b.wall-normal 〈v′v′〉- c.spanwise 〈w′w′〉 and d. turbulent
kinetic energy 〈k′〉. Data compared to Naqavi et al. (2018) at x/h = 30 (blueF ) and
x/h = 30 (orange � ) and LES data by Banyassady and Piomelli (2014) (yellow � ).

The inner scaling shows the baseline presents a wider inner peak between y+ = 100

and y+ = 300. The outer peak range is reduced, as well as its magnitude. The higher
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changes are observed at the steamwise and spanwise directions. The normal direction

profiles are consistent in shape, but not in magnitude compare to Naqavi et al. (2018) and

Bayanssady et al. (2014). The values on the baseline present higher fluctuations in the

wall-normal direction. The outer peak in the spanwise direction is not present as values

are of comparable magnitude with the inner region. The turbulent kinetic energy profiles

appear to converge for the baseline case, but the forced case present discrepancies.

Comparing the results between the baseline and forced case, the same reduction of

turbulent fluctuation as observed with outer scaling is observed with inner scaling. The

inner scaling shows that more significant changes, between the baseline and forced case,

are present in the wall-normal direction. This is observable in the turbulent kinetic energy

profile as the outer peak of the flow experience a significant reduction in total turbulent

energy. The influence of manipulation of the inlet velocity is noticeable in the total kinetic

energy profiles.

Figure 5.21 Outer scaled Reynolds shear stress profiles at x/h = 30 and x/h = 35. Data is
compared with Naqavi et al. (2018).
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Figure 5.21 shows the Reynolds shear stresses scaled by the maximum velocity and

co-flow velocity (Um−Uc)
2 in the velocity scale and by the half-width y1/2(in) in the

length scale. The current data does not have good agreement with Naqavi et al. (2018);

however, the shape of the curve is initially attained at x/h = 30. For the baseline, the peak

of the shear stress matches the peak at Naqavi et al. (2018). For the forced case, this peak

is shifted to the outer layer. The values at x/h = 30 show an increment of about 50% in

magnitude, while at position x/h = 35 the shape is in less accordance but the values are

more in numerical range. Reynolds shear stresses do not reach convergence at the further

streamwise position; hence, the simulation requires more iterations.

Figure 5.22 Inner scaled Reynolds shear stress profiles at x/h = 30 and x/h = 35. Data is
compared with Naqavi et al. (2018).

Figure 5.22 shows the Reynolds shear stresses scaled by inner parameters, where the

convergence of the current data seems to have better agreement with Naqavi et al. (2018).

The figure shows disagreements on stress magnitude and peak position. As the flow

travels further, the magnitude reaches a better agreement, but the position of the peaks is
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still inconsistent with previous data. Notice that the dislocation, where values change sign,

observed in the graphs demonstrate the shear-stress transport in the mixing layer region.

The main contribution to the shear-stress transport arises from the gradients of triple

velocity correlations.

Figure 5.23 presents profiles of triple velocity correlations scale with inner variables.

The average of triple velocity relations < u′u′u′ >, < v′v′v′ >, < u′v′v′ >, and < v′u′u′ >

provides limited but significant assessment of the turbulence behavior. The triple

correlations are compared with experimental data by Eriksson (2003) and DNS data by

Naqavi et al. (2018).

< u′u′u′ > shows agreement with the compared data mainly in the inner section of the

jet for the baseline. The forced case shows a different behavior than the conventional

planar wall-jet in shape and value magnitude. A high value is observed at < u′u′v′ >,

which indicates that fluctuations in the normal direction for the baseline are higher than

for previous cases. For the baseline, this relationship shows large stress gain in the inner

section, while the forced case presents larger stress transport above y+ = 80.

< u′u′u′ > and < u′u′v′ > are related to the turbulent diffusion of the jet. < u′u′u′ >

has a weak influence on the balance as its gradient takes place on the budget. < u′u′v′ >

change of sign indicates turbulence exchange between lower and high production region.

This characteristic behavior is not present for the current results since the correlation does

not change in sign.
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Figure 5.23 Profiles of triple velocity correlations scale with inner variables. Data
compared with Eriksson (2003) (magenta), and Naqavi et al. (2018)(green).
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The relation in the wall-normal direction < v′v′v′ > has lower values for the baseline

case than for Naqavi et al. (2018) and Eriksson (2003). The forced case has good

agreement with a planar wall-jet compared to the baseline with a rising peak as it further

from the wall. For the baseline, < u′v′v′ > shows lower values at the inner region and

higher values in the outer region when compared to Naqavi et al. (2018).

< v′v′v′ > and < u′v′v′ > are associated with the turbulent transport of the jet.

< v′v′v′ > indicates the turbulent transport between layers by the change from positive to

negative values. The results for this study, present transport between the region closer to

the wall for the baseline case and also non-existent for the forced case sustaining the

laminarization of the flow. < u′v′v′ > represents the transfer of positive shear stress from

the outer region to the inner region. For the baseline, this effect seems to appear stronger

than for a conventional wall-jet while the forced case follows closely the conventional

wall-jet behavior.

5.3.4 Turbulent Structures

Figure 5.24 presents the instantaneous snapshots for the high resolution baseline and

the forced case. Visualization is used to qualitatively analyze the flow and to observe

turbulent structures being formed. For both cases, vorticity at the outer region is

presented. In the baseline case, the shear layer vortices known as pure KHI are seen

around x/h = 11.5. Around the same region, vortices generated by the boundary layer are

observed. The interaction and breakdown of these instabilities travel downstream creating

large scale turbulent structures in the fully developed region. For the forced case, the

transition and laminar region are longer. The first pure KHI is visualized around x/h = 15.
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The interaction of the vortices is confined to the inner region. The wall-jet turbulence is

reduced for the forced case.

Figure 5.24 Instantaneous vorticity field at t = 0.08s of the high resolution baseline (top)
and the forced case (bottom).

The Q-criterion is used to visualize turbulent structures on the outer and inner regions

of the jet. Figure 5.25 shows the iso-surfaces associated to the Q-criterion for the outer

layer of the high-resolution baseline and the forced case. The criterion corresponds to the

second invariant of the velocity gradient tensor of the velocity. Near the jet inlet, the shear

layer region is observed at x/h < 14 for the baseline and at x/h < 25 for the forced case.

This is the billow production region for Kelvin-Helmholtz instabilities (KHI). Around

x/h = 16 for the baseline and x/h = 25, the eddies produced by the shear layer interacted

with the billows produced by the boundary layer.
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Figure 5.25 Iso-surfaces associated to the Q-criterion for the outer layer of the baseline
(top) and the forced case (bottom). The iso-surfaces are coloured with local velocity
magnitude.

These roll structures grew in size as they travel downstream interacting with each other

and transforming into a more chaotic and complex flow. When comparing the baseline

case with the forced case, one can observe the flow stability increases for the forced case

and less large structures are observed in the outer region.
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Figure 5.26 Iso-surfaces associated to the Q-criterion for the inner layer of the baseline
(top) and the forced case (bottom). The iso-surfaces are coloured with local velocity
magnitude.

Figure 5.26 shows the iso-surfaces associated to the Q-criterion for the inner layer of

the high-resolution baseline and the forced case. The slide to observe inner structures is

taken at y/h = 0.25. The inner layer isosurfaces enable the visualization of the transition

region. This region expands over the range 0 < x/h < 20 for the baseline and

0 < x/h < 20 for the forced case. The transition shows discontinuous spaces of

turbulence. The observation of a longer transition region made in the previous analysis is

visualized using the iso-surfaces.After the transition region, the flow is fully developed. In

this region turbulent structures are visualized as align tube structures, which in a teo

dimensional view will look like long stripes. The forced case shows the later separation

from the wall compared to the baseline and less turbulent structures are pictured after the

perturbation is introduced in the domain.
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5.4 Perturbation Parametric Analysis

The following section presents snapshots of different forced cases where the amplitude

and the Strouhal number varied. For figures 5.29, 5.30, 5.27 and 5.28, two Sr and two

magnitudes are used to qualitative analyze the influence in these parameter on the flow

development. The Strouhal numbers used are Sr = 0.0048 and Sr = 0.02, for each

Strouhal number (Sr) two amplitudes are tested, 0.2Uin and 0.4Uin. The XY plane is used

to analyze the outer region flow development, while the XZ plane is used to analyze the

inner region. The following section presents snapshots of different forced cases where the

amplitude and the magnitude varied. The simulations presented in this section are

performed using the updated low resolution mesh with ∼ 2.27 M gridpoints.

Figure 5.27 presents the snapshots at the high peak velocity of each perturbation on the

XY plane. At the high peak, the energy supply at the inlet is higher. For the low-Sr case,

shows strong vortical structures traveling downstream. The low amplitude case has a less

turbulent behavior than the high amplitude case. The high amplitude cases at both

frequencies present complex flow at the downstream domain. The high-Sr case at low

amplitude looks flatter compared to the low-Sr case, there is not a strong presence of

turbulence structures for this case. In the first instance, the low amplitude case appears to

develop faster and more turbulent structures are visualized.

Figure 5.28 presents the snapshots at the high peak velocity of each perturbation on the

XZ plane. The low-Sr cases at both amplitudes present transition closer to the jet inlet.

The roll structures produced by the KHI breakdown at a faster pace compared to the

high-Sr case. These cases start with strong velocity magnitude that become lower when
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reaching the end of the domain. Note that the cases have not reached a complete fully

developed turbulence region for any of the cases. The formation and development of KHI

is observed for the high Sr cases. The low amplitude high-Sr case develops faster than the

other cases and turbulence appear to be confined to the inner region. As mentioned

previously, this is the strongest turbulent flow present for the low-Sr case. These large

turbulent structures entered the domain but due to the low frequency cannot be maintained

over time.

As the following figures will illustrated, less turbulent structures at the low peak and

strong velocity structures at high peak for the case at Sr = 0.02. Faster transition and

bigger turbulent structures at the low peak and less strong turbulence at the high peak for

the case at Sr = 0.0048. It seems that the high-Sr develops turbulence when the supply

energy is low at the inlet while the low-Sr case does the opposite. To illustrate this point,

snapshots at a low peak in the perturbation are presented in Figures 5.29 and 5.30.
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Figure 5.29 presents the snapshots at the low peak velocity of each perturbation on the

XY plane. The change of Sr between Sr = 0.0048 and Sr = 0.02 appears to transition the

flow at an earlier downstream position for f = 50Hz for both amplitudes. The velocity

shows larger values on the high-Sr case. The low amplitude high-Sr case shows

high-velocity structures interacting between each other and traveling downstream. At high

amplitude, the structures are not as strong, but the vortex is bigger in size. Besides, we

observe spacing between the developed flow and the new vortex. The low-Sr case shows a

more stable behavior for both amplitudes. At high amplitude, this case shows less strength

in the velocity. The high-Sr case presents more interesting behavior in term of turbulence.

Notice the large turbulent structure turns and interacts with the upcoming inflow

maintaining a chaotic and complex behavior in the flow.

Figure 5.30 presents the snapshots at the low peak velocity of each perturbation on the

XZ plane. The inner region behavior is observed for all four cases. The inner region

confirms the transition occurs closer to the jet inlet. The KHI formation is more noticeable

in the high-Sr cases. The long strips, characteristic of the turbulent boundary layer, are

observed at all amplitudes and frequencies. These structures show a more consistent

behavior for the low-Sr case. On the low-Sr case, the velocity remains low within the

domain, while for the high-Sr case the velocity ranges from high to low. At the turbulent

spots and the beginning of the fully developed region, the velocity is at its higher

magnitude for the high-Sr case. the spacing between structures is appreciable in this

plane. In the high-Sr case, a high-velocity region is followed by a low-velocity region that

will translate in a detachment from the wall.
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5.5 Conclusions

A three-dimensional planar incompressible wall-jet, developing in the presence of an

external stream, is simulated for unforced and forced velocity profiles. The study is

divided into three sections: a refinement study, detailed statistical analysis, and a

perturbation parametric analysis. The following conclusions are drawn.

1. Low-resolution simulations compared well qualitatively but not quantitatively,

compared to previous studies. They do not capture all the scales of turbulence,

classifying them as an under resolved Direct Numerical Simulations.

2. Mean streamwise velocity profiles showed that flow self-similarity is reached after

x/h=35 for our high-resolution grids compared to x/h=20 on previous studies,

indicating that the sampling area is reduced for statistical analysis.

3. After reaching self-similar behavior (x/h > 35), the forced case (Sr = 0.0048, A =

40% Uin) presents a reduction of the mean coefficient of friction.

4. The high-resolution grids show that mean flow properties are converging for

first-order statistics; however, second and third-order turbulent statistics are not

fully converged. General trends can however be observed.

5. When increasing the inflow at the top boundary condition from 2%Uin to 5%Uin, the

velocity fluctuations appear to be confined to the inner region of the wall-jet which

leads to an increase of range for the peak Reynolds stresses in the inner region.

6. The statistical analysis shows that the forced case (Sr = 0.0048, A = 40% Uin)

experiences a decay of maximum velocity at a slower rate than the unforced case.
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Turbulent statistics show a reduction in turbulent fluctuations in all directions for the

forced case which indicates that the turbulent kinetic energy of the jet is decreasing.

7. Visualizations of the iso-surfaces of the Q-criterion in the outer region of the forced

case (Sr = 0.0048, A = 40% Uin), show the low Strouhal number forcing appears to

delay separation from the wall as the wall-jet encounters a cyclic process of

re-laminarization. This re-laminarization process is leading to skin friction

reduction as the transition region for the flow grows and the billow production by

Kelvin-Helmholtz instabilities is reduced in frequency.

8. Cases with forcing at Strouhal number (Sr = 0.0048) seem to damp turbulence as

the flow becomes more laminar and transition keeps being delayed. At this Sr, the

high amplitude (A = 40% Uin) perturbation speeds the process of re-laminarization

as the perturbation has a lower velocity at a low peak. The simulation shows that

forcing at this Strouhal number and amplitude maybe useful for skin friction

reduction applications.

9. Cases at Strouhal number (Sr = 0.02) act more like a pulse, supplying frequent big

energetic billows and maintaining a chaotic flow over time. At this Sr, the high

amplitude (A = 40% Uin) perturbation causes big swirls to interact with each other

making the outer layer grow in size at a faster rate than the low amplitude

perturbation. Forcing at this Strouhal number and amplitude could be useful for

mixing related applications.



112
6. Summary and Future Work

The current work simulates wall-jets flows for two different cases: a two-dimensional

compressible wall-jet and a three-dimensional incompressible wall-jet with unforced and

forced velocity profiles. The forcing is performed by introducing sine wave perturbation

to the inlet velocity at different Strouhal numbers (Sr) and amplitudes.

The main takeaways from the compressible case are:

• The velocity fluctuations are affected by the introduction of a cyclic perturbation.

For the case at the low-Sr (0.05), velocity fluctuations increased on the wall-normal

direction. For the case at the high-Sr (0.25) the turbulent intensities decrease in all

directions.

• The flow encounters an early detachment from the wall. We believe that the size of

the physical tripping device height maybe the culprit in the early detachment.

The major findings observed for the three-dimensional incompressible case are:

• The forced velocity profile at low-Sr (0.0048) shows that the flow experiences

turbulence damping and becomes overall more laminar while at high-Sr (0.02) the

flow has a frequent re-supply of energy that maintains the chaotic complex flow in

the downstream.

• The turbulence intensities are confined to the inner region. We suspect that the

cause is the increase of inflow at the top boundary condition.

To continue this study of wall-jet flows, the following recommendations should be

considered. For the compressible wall-jet simulation:

• The case should be expanded to three dimensions for a comprehensive study of

turbulence.



113

• The tripping device should reduce in height and, consequently, the mesh should be

refined to account for the tripping effects.

For the incompressible wall-jet simulation:

• The virtual tripping force should be modified to promote an earlier flow transition to

turbulence, thus increasing the available streamwise length of study for the

self-similar planar wall-jet.

• To reach convergence in second and third-order statistics, the simulation time needs

to be longer for statistical convergence.

Finally, the current results confirm that introducing a sine wave at the initial shear layer of

the flow modifies KHI billow production; however, more in-depth analysis is needed to

find the optimum Strouhal number and amplitude of the sine wave perturbation to allow

for drag reduction and enhancement of mixing. The current measurements focused on the

analysis of turbulence transport employing turbulence intensities and triple velocity

correlations. Reynolds stresses and turbulent energy budgets should be calculated to

further quantitative analysis. The decomposition of Reynolds stresses and turbulent

energy provides insightful information regarding energy transfer and turbulence transport

between layers. As a final note, a three-dimensional study involving compressible and

incompressible cases should be performed, with the same amplitude and Strouhal number

forced inlet profiles. This will allow for comparisons of compressibility effects on the flow

development and turbulent structures.
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Smith, B. S. (2008). Wall jet boundary layer flows over smooth and rough surfaces
(Unpublished doctoral dissertation). Virginia Tech.

Sun, Y., Wang, Z. J., and Liu, Y. (2007). High-order multidomain spectral difference
method for the navier-stokes equations on unstructured hexahedral grids.
Communications in Computational Physics, 2(2), 310–333.

Tachie, M., Balachandar, R., and Bergstrom, D. (2004). Roughness effects on turbulent
plane wall jets in an open channel. Experiments in Fluids, 37(2), 281–292.

Tang, Z., Rostamy, N., Bergstrom, D., Bugg, J., and Sumner, D. (2015). Incomplete
similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces.
Journal of Turbulence, 16(11), 1076–1090.

Tennekes, H., Lumley, J. L., Lumley, J., et al. (1972). A first course in turbulence.

Tomboulides, A., Lee, J., and Orszag, S. (1997). Numerical simulation of low mach
number reactive flows. Journal of Scientific Computing, 12(2), 139–167.



118

Tsai, Y., Hunt, J., Nieuwstadt, F., Westerweel, J., and Gunasekaran, B. (2007). Effect of
strong external turbulence on a wall jet boundary layer. Flow, Turbulence and
Combustion, 79(2), 155.

Visbal, M., Gaitonde, D., and Gogineni, S. (1998). Direct numerical simulation of a
forced transitional plane wall jet. In 29th aiaa, fluid dynamics conference (p. 2643).

Witherden, F., Farrington, A., and Vincent, P. (2014). Pyfr: An open source framework
for solving advection-diffusion type problems on streaming architectures using the flux
reconstruction approach. Computer Physics Communications, 185(11), 3028 - 3040.
doi: https://doi.org/10.1016/j.cpc.2014.07.011

Witherden, F., Vincent, P., and Jameson, A. (2016). High-order flux reconstruction
schemes. In Handbook of numerical analysis (Vol. 17, pp. 227–263). Elsevier.

Wygnanski, I., Katz, Y., and Horev, E. (1992). On the applicability of various scaling laws
to the turbulent wall jet. Journal of Fluid Mechanics, 234, 669–690.

Zhou, M., Heine, C., and Wygnanski, I. (1996). The effects of excitation on the coherent
and random motion in a plane wall jet. Journal of Fluid Mechanics, 310, 1–37.

Zhou, M., and Wygnanski, I. (1993). Parameters governing the turbulent wall jet in an
external stream. AIAA journal, 31(5), 848–853.


	Wall-Jet Turbulence and Mixing Control by Way of a Pulsed Inlet Velocity
	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Motivation
	Wall-Jet Physical Description
	Review of Previous Work
	Scope and Outline

	Analysis Tools for Wall-Bounded Turbulent Flows
	Statistical Description of Turbulent Flows
	Mean Flow Properties
	Turbulent Statistics and Kinetic Energy
	Scaling Parameters

	Turbulent Structures
	Kelvin-Helmholtz Instability
	DNS Approach

	Numerical Method
	PyFR
	Spatial Discretization
	Time Discretization

	Nek5000
	Spatial Discretization
	Time Discretization
	Tripping Force


	Compressible Wall-Jet
	Computational Set-up
	Inlet and Boundary Conditions

	Results
	Instantaneous Fields
	Mean Flow Characteristics
	Turbulent Statistics

	Conclusions

	Incompressible Wall-Jet
	Computational Set-up
	Inlet and Boundary Conditions

	Refinement Study
	Mean Flow Characteristics
	Turbulent Statistics

	Detailed Statistical Analysis
	Instantaneous Velocity Characteristics
	Mean Flow Characteristics
	Turbulent Statistics
	Turbulent Structures

	Perturbation Parametric Analysis
	Conclusions

	Summary and Future Work
	REFERENCES

