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ABSTRACT 

The development of research spacecraft systems has a significant impact on the 

preparation and simulation of future space missions. Hardware, software and operation 

procedures can be adequately tested, validated and verified before they are deployed for 

the actual mission. In this thesis, a spacecraft vehicle test-bed named Extreme Access 

System (EASY) was developed. EASY aims at supporting validation and verification of 

guidance, navigation and control algorithms. Description of EASY spacecraft systems, 

sub-systems and integration is presented in this thesis along with an analysis of results 

from numerical simulation and actual implementation of control laws. An attitude control 

architecture based on quaternion feedback linearization is also described, and 

performance analysis in the compensation of undesired dynamics is presented. The 

results show the capabilities and potential of EASY to simulate missions that require 

validation and verification stages. 
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1.  Introduction 

 

For years, the paradigm of space exploration has been a field of interest among 

researchers. Over the last decade, the development of new space technologies geared 

towards human space exploration and the search for space bodies holding new resources 

have exponentially increased. These types of missions require significant progress in 

order to cope with the extreme conditions of these environments, which in general 

include precise landing procedures, cooperative control, proximity operations, 

rendezvous, docking maneuvers. Hence, for a space mission to be successful, it has 

become vital the development of spacecraft test-bed so the hardware, software, control 

algorithms, and operation procedures can be tested, validated and verified on the ground 

to ensure precision and system functionality. 

Many teams have contributed to the development of vehicle technologies that access 

these environments to complete exploration and resource extraction missions (Brophy, 

2014; Hockman, Frick, Nesnas & Pavone 2015). For instance, Hover of Mini-Free Flyer 

Prototype XA-B and Hover of a Mars Mini-Free Flyer Prototype XA-C (See figure 1.1a 

and 1.1b ) developed by NASA are two type of vehicles that were built with the aim of 

reaching restricted areas where a normal rover cannot operate (Prazenica, 2016). Its 

design, similar to a quad-copter, restricts its effective functionality in environments of 

low gravity where there is no existence of air. 

More realistic prototypes such as the Mars Mini-Free Flyer and the Asteroid 

prospector flyer developed at NASA’s Kennedy Space Center are alternative space 

vehicle approaches that use a gimbaled frame to allow free motion of the vehicle in roll, 

pitch and yaw axes (see Figure 1.1c and 1. 1d) (Perez, 2016). This gimbaled frame allows 
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the demonstration of angular velocity regulation in gravity less environments. However, 

this test-bed setup presents undesired friction in the attitude motion and does not allow 

vehicle translation, which reduces the overall testing performance and reliability. 

  

 

 

a.  Hover of a 

Mini-Free Flyer 

Prototype XA-B 

b.  Hover of a Mars 

Mini-Free Flyer 

Prototype XA-C 

c. Mars Mini-Free 

Flyer Prototype 

Mounted in 

Gimbal Setup. 

d. Asteroid 

Spacecraft 

Mounted in 

Gimbal Setup 

 

Figure 1.1 Facilities for Testing Mini-Free Flyer Prototypes for Extreme Access 

Environments. 

As per all of these types of missions, appropriate testing facilities for those vehicles 

have become challenging. This is because constraints such as gravity and degrees of 

freedom hinders the acquisition of correct data to test and validate guidance, navigation, 

and control algorithms. 

To overcome the aforementioned challenges, recent research efforts at the Advanced 

Dynamics and Control Research Laboratory (ADCL) at Embry Riddle Aeronautical 

University have been focused on the development of new extreme access vehicles and 

multiple control law algorithms that ensure guidance, navigation, and control of space 

vehicles as well as test-fidelity facility on-ground capable of simulating partial gravity 

(Garcia, 2017). This thesis aims to contribute to such a research goal.  

In this thesis, a research Spacecraft test-bed Extreme Access System (EASY) is 

introduced and developed along with the implementation of a quaternion feedback 

linearization based control system. Additionally, a Mathematical Thrust Error model 
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(MTE) is presented to describe undesired dynamics such as Thrust Magnitude Error 

(TME) and Thrust Misalignment Angles Error (TMAE). Finally, the results of simulation 

and implementation are shown with the integration of the whole system. 

1.1  Thesis Outline 

This thesis is organized as follows. Firstly, Chapter 2 provides an overview of the 

different systems and components that integrate the Extreme Access System (EASY) 

research test-bed. As such, a description is provided regarding mechanical, pneumatic or 

propulsion, electronic, and electrical components. Chapter 3 presents a general 

description of quaternions and how they are used to represent spacecraft’s dynamics and 

kinematics. Chapter 4 focuses on the modelling of undesired dynamics by understanding 

the impact of thrust misalignment angles errors and thrust magnitude errors. The design 

and development of control laws for attitude stabilization are then presented in Chapter 5. 

Chapter 6 describes a developed simulation environment using MATLAB/Simulink 

software that support numerical simulation for performance analysis of the control laws. 

A flight testing environment is also presented in Chapter 7 by implementing the 

Integrated Gravity Offloading Robotic System (IGOR). Complementary in chapter 8, an 

analysis of the performance system in the simulation and implementation stages is 

provided to investigate the control and stability capabilities of EASY’s control system. 

Finally, general conclusions regarding the development, testing and analysis of results of 

EASY’s spacecraft are presented.  
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2.  Extreme Access System –EASY Research Test-Bed  

The purpose of this chapter is to introduce the Extreme Access System (EASY) 

research test-bed and its main components. A description of the mechanical, pneumatic or 

propulsion, electronic, and electrical systems is provided, including a general review of 

the hardware that was implemented. Two types of main configurations of the mechanical 

system are also considered: standard and Thrust Vectoring Control (TVCC).  

The pneumatic or propulsion system is developed with a focus on the EASY’s nozzle 

design, the test-bed duty cycle, and the pneumatic or propulsion system components, 

which include the solenoid valve, compressed air tanks and air compressor. As per the 

electronic system, the description includes the electrical system along with the onboard 

computer, sensors, communication hardware, power, and propulsion hardware. Finally, a 

description of the manufacture and assembly process is provided. 

 

Figure 2.1 EASY Spacecraft. 

2.1  EASY Spacecraft 

EASY is a novel concept of spacecraft developed to support the testing, validation 

and verification of guidance, navigation and control algorithms required for space 
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exploration missions (See Figure 2.1). EASY integrates four main systems: mechanical, 

pneumatic or propulsion, electronic, and electrical systems. 

2.2  Mechanical System 

The mechanical system consists of two configuration types: standard and Thrust 

Vectoring Control (TVCC). In the standard configuration, the spacecraft uses sixteen 

fixed thrusters grouped in pairs. Here, a yaw rotation is created by the thrusters that are 

orthogonally located to the reference plane X and Y. The second type of configuration 

known as Thrust Vectoring Control, uses eight thrusters placed in pairs that are connected 

to a servo motor mechanism. This configuration allows each pair of solenoids to have a 

rotation around its position to achieve a yaw rotation. In both configurations through 

control allocation equations, an arrangement of thrusters is turned on and off to produce 

pitch, roll and yaw maneuvers. Figure 2.2 depicts the location of each of the thrusters 

around the X and Y axes of the vehicle.  

 

Figure 2.2 Location of the Thrusters in the X and Y Axes. 
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2.2.1  Standard Configuration 

In standard configuration, EASY uses thrusters number 1, 2, 3, 4, 5, 6, 7 and 8 to 

generate pitching maneuvers in the positive and negative directions about the Y axis. This 

is shown in Figure 2.3. For pitching maneuvers in the positive direction, thrusters 2, 3, 5 

and 8 are fired while thrusters 1, 4, 6 and 7 remain off. For negative pitching maneuvers, 

thrusters 1, 4, 6 and 7 are fired while 2, 3, 5 and 8 remain off.  

 

Figure 2.3 EASY Pitching Maneuver, Standard Configuration. 

 

Figure 2.4 EASY Rolling Maneuver, Standard Configuration. 

 

Figure 2.4 shows a roll maneuver in the positive and negative direction around the X 

axis. Thrusters 2, 4, 5 and 7 are fired while thrusters 1, 3, 6 and 8 remain off in order to 
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generate a positive roll rotation. In the opposite rotation, thrusters 1, 3, 6 and 8 must be 

fired while thrusters 2, 4, 5 and 7 remain off. 

Yaw motion is accomplished by using four pairs of solenoids as shown in Figure 2.5. 

To perform a yaw maneuver in a positive direction about the Z axis, thrusters 9, 11, 13, 

and 15 are fired while solenoids 10, 12, 14, and 16 remain off. For a yaw maneuver in a 

negative direction about the Z axis, thrusters 10, 12, 14, and 16 are fired while thrusters 

9, 11, 13, and 15 must remain off. 

 

Figure 2.5 EASY Yawing Maneuver, Standard Configuration. 

2.2.2  Thrust Vectoring Control Configuration 

The second type refers to Thrust Vectoring Control Configuration (TVCC). In this 

configuration, EASY uses thrusters number 17, 18, 19, 20, 21, 22, 23, and 24 to perform 

pitching maneuvers in the positive and negative directions about the Y axis. This is 

shown in Figure 2.6. For a positive pitching maneuver, thrusters 18, 20, 21, and 23 are 

fired while 17, 19, 22, and 24 remain off. For negative pitching maneuvers, thrusters 17, 

19, 22, and 24 are fired while 18, 20, 21, and 23 remain off. 

Figure 2.7. shows a rolling maneuver in the negative and positive direction about the 

X axis. For a negative rolling maneuver, thrusters 17, 20, 22, and 23 are fired while 
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thrusters 18, 19, 21, and 24 remain off. For a positive rolling maneuver, thrusters 18, 19, 

21, and 24 are fired while thrusters 17, 20, 22, and 23 remain off. 

 

Figure 2.6 EASY Pitching Maneuver, Thrust Vectoring Control Configuration. 

 

Figure 2.7 EASY Rolling Maneuver, Thrust Vectoring Control Configuration. 

To accomplish yaw motion, all four pairs of thrusters must rotate in the same 

direction. This rotation will allow the spacecraft to produce either a negative or positive 

yaw movement, as shown in Figure 2.8 and Figure 2.9, respectively. To perform a yaw 

maneuver in a positive direction about the Z axis, thrusters 17, 19, 21, and 23 are fired 

while thrusters 18, 20, 22, and 24 remain off. For yaw movement in a negative direction 

about the Z axis, thrusters 18, 20, 22, and 24 are fired while thrusters 17, 19, 21, remain 

off. 
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Figure 2.8 EASY Negative Yawing Maneuver, Thrust Vectoring Control Configuration. 

 

Figure 2.9 EASY Positive Yawing Maneuver, Thrust Vectoring Control Configuration. 

2.3  Pneumatic or Propulsion System 

The overall functionality of the EASY’s pneumatic or propulsion system is 

illustrated in Figure 2.10. Compressed air was selected as the primary energy supply for 

the propulsion system due to its simplicity and safety for indoor testing.  The compressed 
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air used in the spacecraft is stored in a pair of reservoirs (R1, R2) at high pressure. The 

reservoirs, fabricated with composite materials, can contain up to 90 cubic inch of 

compressed air at 4500 psi as maximum pressure.  

To handle the high pressure coming from the reservoirs, four pressure regulators 

(PR1 – 4) are used to regulate the pressure within the system. Two regulator pressures 

PR1 and PR2 are located in the high-pressure zone to drop the pressure from 4500 psi to 

an output pressure range of 800 to 850 psi. The second pair of pressure regulators are 

located in the low-pressure area. Similar to the first pair of pressure regulators, this pair 

drop the pressure from 800-850 psi to 130 psi, which is the desired operating pressure of 

the thrusters. Tubing plastic with high-pressure resistance is installed within the system to 

distribute the pressure to each of the thrusters.  

Additionally, four sensors (PS1-4) are placed along the system to monitor the 

pressure levels. For safety purposes, four relief valves (RV1 - 4) are used before each 

pressure regulator in case the system suffers overpressure. Solenoid valves (Q1-24) are 

placed at the end of the system with their corresponding nozzles. Each nozzle has been 

designed to produce at least 1 Newton of Thrust.  

2.3.1  Nozzle  

The EASY’s nozzle design is based on three main assumptions. First, the gas flow is 

assumed to be quasi-one-dimensional. Second, the flow is considered isentropic (no heat 

transfer). Third, the gas is treated as a perfect (ideal) gas. With these assumptions, 

multiple iterations were performed to obtain the optimal configuration of the nozzle. The 

maximum thrust obtained with the actual configuration of the nozzle at an operating 
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pressure of 130 psi in the simulation was 2.0 Ns. Table 2.1 shows the main characteristics 

of EASY’s nozzle.  

 

 

Figure 2.10 EASY’s Pneumatic System Schematic. 

 

Table 2.1 

Characteristics of the EASY’s Nozzle 

Parameter Value 

Pressure at the entrance of the Nozzle 130 psi 

Mach at the Throat 1 

Ratio of specific heats 1.4 

Specific gas constant 286.8881 kg/moL 

Molar mass of air 0.028966 

Diameter at the entrance 0.282 cm 

Diameter at the throat 0.414 cm 

Diameter at the exit 0.30 cm 
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2.3.2  Test-Bed for duty cycle characterization  

2.3.2.1  Duty Cycle  

 

Pulse Width Modulated (PWM) signals are used to determinate the duty cycle of a 

solenoid valve. PWM signals are based on two main characteristics: the frequency and 

time period or cycle. The frequency is characterized by two features: the first one is 

related to the velocity of the switching between the maximum and minimum value of the 

signal. The second one defines how fast the PWM signal completes a time period. 

 

Figure 2.11 Duty Cycle of a Solenoid Valve. 
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The duty cycle of a PWM signal for a solenoid valve is determined by the amount of 

time that the valve remains open or closed during one period of time. It is considered a 

100% duty cycle when the solenoid valve remains open during the whole time period. In 

the same way, 50% of duty cycle occurs when the solenoid valve remains open only for 

half of the time period. Figure 2.11 represents a typical behavior of a PWM signal with 

90%, 50%, and 15% of duty cycle used in EASY to command a specific thruster activity. 

2.3.2.2  Nozzle’s TestBed 

 

Nozzle's testbed (see Figure 2.12) was developed to obtain data regarding the amount 

of thrust produced by the thruster when the entry pressure at the nozzle is 130 psi. The 

Nozzle's testbed uses a single solenoid valve with its corresponding nozzle assembly. A 

voltage is provided to the solenoid valve by using an external power source. The 

compressed air is supplied to the thrusters by using the pair of reservoirs described in 

Section 2.2. The nominal operating pressure provided by the reservoirs is 130 psi. A 

PC/104 onboard computer and an I/O digital expansion board are used to compile codes 

and send digital commands to the thruster. The PC/104 onboard computer runs a boot 

system called Simulink real-time that uses xPC-Target tool. The xPC- Target is set up on 

a Host Computer using Matlab and enables the capability of the system to communicate 

in real-time with the onboard computer using TC/IP interface communication. This way, 

duty cycle commands can be sent to the solenoid valve. 

A stochastic method is implemented to characterize the performance of the thruster. 

This method uses a scale to read small weights in grams (with 0.01 g sensitivity for 

accurate measurements). The thruster is located on the scale, and it is calibrated by 

considering the weight of the thruster so that it reaches zero without any action. 
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Once the duty cycle commands are sent from the Host computer, the scale provides 

the weight sensed. A direct correlation between the weight and duty cycle can be made to 

get the total force produced. As a result, thrust values are obtained at different constant 

duty cycle, as well as, the maximum thrust produced by the thruster. The maximum thrust 

achieved at 100% of the duty cycle was 1.35 Newtons. 

 

Figure 2.12 Nozzle’s Testbed Setup. 

The results obtained from the nozzle’s testbed were grouped into a lookup table, as 

shown in Figure 2.13. This lookup table shows the relationship between normalized 

thrust and percentage of duty cycle where 0.1 and 1 represent the 10 %, and 100% of the 

duty cycle, respectively. Thus, the output given to the thruster will be in terms of duty 

cycle, which depends on how much thrust is required. 
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Figure 2.13 Thrust Normalized vs Duty Cycle Lookup Table. 

 

2.3.3  Pneumatic or Propulsion Components 

In this section, is presented an overall description of the principal pneumatic or 

propulsion components used for EASY spacecraft within its pneumatic or propulsion 

system. A solenoid valve, compressed air tanks with big bore line and an air compressor 

as described in terms of main functionality characteristics.   

2.3.3.1  Solenoid Valve 

 

The solenoid valve selected were Festo MHE2-M1H-3/2G-M7 of electrical actuation 

(see Figure 2.14). The MHE2 solenoid valve is a 3/2 closed monostable configuration 

with mechanical spring. Its normal nominal flow rate is 100 [l/min] with a maximum 

switching frequency of 130 Hz and a repetition accuracy of ±0.2ms. This fast-switching 

rate provides response times of 2-millisecond speed within a shorter cycle time. This 
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solenoid valve offers a constant dynamic response regardless of temperature or supply 

voltage fluctuations with an extremely long service life of 500 million cycles (FESTO, 

n.d.). It can be powered on with 24 V DC/1 A and no maintenance is required. 

 

Figure 2.14 MHE2-M1H-3/2G-M Solenoid Valve by FESTO® (FESTO, n.d.). 

2.3.3.2  Compressed Air Tanks 

Since compressed air was chosen as the main source of energy for EASY’S 

propulsion system, the reservoirs selected to store the compressed air were a pair of Ninja 

Lite carbon fiber air tanks - 90/4500 (see Figure 2.15). These commercial tanks are 

fabricated in composed materials and contain D.O.T and TC regulations approved. 

Additionally, these tanks have a 5-year hydro test guarantee. Each ninja tank provides a 

capacity of 90 cubic inch of storage and can contain up to 4500 psi. (NINJA, 2019).  

The tanks have installed pressure regulators which provide a high output pressure 

between 800 and 850 psi. Due to the need for regulating the output pressure to the desired 

operating pressure 130 psi, the second stage of regulators is located on top of the first 

stage. The second stage of regulators is Ninja V2 LPR (see Figure 2.15). To drive the 

pressure around EASY, two big bore lines are connected to the second stage of 

regulators, which drive the pressure to a set of plastic tubing. The plastic tubing finally 

drives the pressure to the solenoids by using different FESTO® pneumatic connectors. 
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Figure 2.15 Ninja Lite Air Tank - 90/4500 and Ninja V2 LPR Regulator with Big Bore 

Line (NINJA, 2019). 

2.3.3.3  Air Compressor 

 

The solenoids MHE2 selected and described in previous sections operate with 

compressed air that complies with the regulations established in ISO 8573-1:2010 [7:4:4]. 

These regulations are related to air quality type. Because of this, specific setup of air 

purification is mandatory. Additionally, equipment to fill the compressed air tanks with a 

pressure capability up to 4500 psi is required. As a solution to these two previous 

requests, the W31 Mariner electrical compressor (See Figure 2.16) is selected to fill the 

requirements. W31 Mariner provides P21 Purifier with Refillable Purifier Element, 2nd 

and 3rd Stage Water Condensate & Oil Separator that complies with Air Quality 

regulations established in ISO 8573-1:2010 [7:4:4]. Moreover, this compressor has a 

maximum operating pressure of 5000 psi with a charging rate of 105 l/min (Compressors, 

2019).  
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Figure 2.16 W31 Marine Air Compressor by Alkin® (Compressors, 2019). 

2.4  Electronic System 

Within the EASY’s electronic system, an EASY’s solenoid driver board was 

designed, built and tested. This board provides control of the switching on/off of each 

solenoid valve, as well as, the communication interface between the mentioned board and 

the onboard computer PC/104. This interface is manage by the use of I/O digital ports.  

The block diagram shown in Figure 2.17 depicts an example of the schematic of 4 

out of 24 channels that integrates EASY’s solenoid driver board. Each channel represents 

each of the 24 Festo solenoid valves. The overall system is powered with 22.4 Volts. The 

main components of EASY’s solenoid driver board include resistors, diodes, and 

MOSFET transistors. The MOSFET transistor controls the flow of current to the solenoid 

valve. A set of diodes is used in order to prevent voltage spikes (caused by the continuous 

fast switching on/off of the solenoids) from potentially damaging the transistors. 

Moreover, the circuit contains a series of LEDs that are turned on at the same time that 

the solenoids are in operation. The implementation of the LED allows the proper 

identification of solenoids that are being operated at a specific time.  
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Figure 2.17 EASY’s Solenoid Driver Board Schematic. 

2.5  Electrical Power System 

The provision of electrical power for EASY is perhaps one of the most fundamental 

requirements. Failure in the electrical power system will result in the loss of any 

hardware. In general, the electrical power system consists of two major energy sources, 

an overvoltage protection system and a power control/distribution network.   

The two primary energy sources distribute voltage to two different lines (see Figure 

2.18). The first line receives a power source of 22.4 V while the second line receives 14.8 

V. A control/distribution network delivers the appropriate voltage/current levels to each 

of the components. This network uses three DC-DC CONV for 5, 6, and 24 output 

voltage. Thus, from the first line, the onboard computer can be powered on with 5V and 

the Solenoid driver board with 22.4 V. From the second line, the Antenna and servos are 
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powered on with 6 V and 24 V, respectively. Finally, an overvoltage protection system 

keeps the onboard computer protected from any overvoltage condition. This system uses 

a crowbar circuit. When an overvoltage condition occurs, a tripping of the circuit breaker 

indicates that the system is being protected.   

 

Figure 2.18 EASY’s Electrical System Schematic.  

2.6  Hardware Description 

In this section, is presented an overall description of the hardware components used 

in EASY spacecraft.  

2.6.1  Onboard Computer 

The PC/104 reference PCM -3355 computer (see Figure 2.19) was selected as the 

onboard computer to process the control laws algorithms and to integrate sensors data 

collection. The PCM-3355 is a small (96X9mm) single-board computer (SBC) that offers 

acceptable processing and memory capabilities (1GB). This SBC computer supports 
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different types of serial communication, such as RS-232 (two), RS-422/485(one), SATA 

(one), and USB 2.0 (two ports). Additionally, it includes multiple I/Os, and a single 

10/100Mbps Ethernet. The PCM-3355 uses an AMD low power LX800/500 MHz and 

LX600/366 MHz Processor. This SBC has the capability to use TCP/IP protocol to 

download codes on it. Furthermore, PCM-3355 offers a convenient connector layout for 

an easy system expansibility (ADVANTECH, 2019). This computer can be powered with 

+5V or +12V. 

 

 
 

Figure 2.19 PC/104 Computer - Reference PCM -3355 by Advantech® (ADVANTECH, 

2019).  

An Emerald –MM-4M-Port Serial Module (see Figure 2.20) is integrated into the 

PCM-3355 to provide additional serial port capacity. This board provides four serial ports 

operating at speeds up to 15 kbps (Diamond Systems, 2019). The power consumption of 

this board is not higher than +5V, which the power to be on through its connection with 

the PCM-3355. The connection between the Emerald –MM-4M-Port Serial Module and 

the PCM-3355 computer is made through the PC/104 8-bit and 16-bit bus connectors.  
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Figure 2.20 Emerald –MM-4M-Port Serial Module by Diamond Systems® (Diamond, 

Systems 2019). 

An additional Onyx MM Digital I/O Module (See Figure 2.21.) is also integrated 

with the PCM-3355 and the Emerald –MM-4M-Port Serial Module. This board provides 

digital communication capabilities. It features 48 digital I/O lines, 3 16-bit 

counter/timers, and 3 independent PC bus interrupt inputs (Diamond Systems, 2019). The 

digital I/O lines are used to communicate with the EASY’s solenoid driver board. 

 

 
 

Figure 2.21 Onyx MM Digital I/O Module by Diamond Systems® (Diamond Systems, 

2019). 
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2.6.2  Sensors 

An inertial measurement unit (IMU) is used in EASY to provide accurate data 

information of angular rates and attitude (Euler and quaternions).  The 3DM-GX4-45™ 

by Lord MicroStrain® (see Figure 2. 22.) is selected as the IMU. This IMU features 

various embedded sensors such as a triaxial accelerometer, gyroscope, magnetometer, 

temperature sensors, and a pressure altimeter. The main characteristics of these sensors 

are shown in Table 2. 2. The 3DM-GX4-45™ IMU runs a sophisticated Extended 

Kalman Filter (EKF) to provide excellent data output of position, velocity, and attitude 

using Dual on-board processors (LORD SENSING MicroStrain, 2019). 

Table 2.2 

Inertial Measurement Unit (IMU) Sensor Characteristics 

 Parameter Accelerometer Gyroscope Magnetometer 

Measurement range 
±5 g (standard) 300°/sec (standard  

±2.5 Gauss ±16 g (option) ±75, ±150, ±900 °/sec  

Resolution <0.1 mg <0.008°/sec -- 

Initial bias error ±0.002 g ±0.05°/sec ±0.003 Gauss 

Noise density 
 

100 µg/√Hz 

 

0.005°/sec/√Hz 

100 

µGauss/√Hz 

Alignment error ±0.05° ±0.05° ±0.05° 

Sampling rate 30kHZ 30kHZ 7.5 Khz max 

IMU data output 

rate 
1 Hz to 500 Hz 

 

The 3DM-GX4-45™ IMU uses an RS232 serial communication to send its sensor 

data to the PCM-3355. Its USB 2.0 (full speed) is used to power on it by connecting it to 

the PCM-3355 onboard computer. 
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Figure 2.22 3DM-GX4-45™ by Lord MicroStrain® (LORD SENSING MicroStrain 

2019). 

2.6.3  Communication Hardware 

A NanoBeam M5 16dBi is assembled into EASY (see Figure 2.23.). The 

implementation of this antenna allows the communication of the onboard PC/104 

computer with a host computer. This antenna is also used to change the parameters of the 

controller (tuning of control gains) and to monitor any signal in real-time (Inc, 2019). 

 

 
 

Figure 2.23 NanoBeam by Ubiquiti® (Inc, 2019). 

A Polulu Mini Maestro 18 channels USB servo controller is used to send PWM 

signals to the servos. To establish serial communication between the Polulu servo 

controller and the onboard computer PC/104, a TTL to RS232 converter module is used 

(See Figure 2. 24).  
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Figure 2.24 RS232 Serial Port to TTL Converter Module and Polulu Mini Servo 

Controller. 

2.6.4  Power and Propulsion Hardware 

As mentioned in the Electrical Power System description, two lithium-ion polymers 

(LiPo) battery are used to provide power to EASY (see Figure 2. 25.). The Turnigy® 

batteries of 22.4v/5.0 Amp and 14.8v/4.0 amp provide good performance and reliability.  

 
Figure 2.25 5000mah 5s 20C and 4000mAh 4S 30C LiPo batteries by Turnigy®. 

 

2.6.5  Integration Hardware 

A general schematic of the connections between each hardware component is shown 

in Figure 2. 26. The red lines represent how the power is distributed to the components. 

Power source No. 1 provides power to the EASY’s solenoid driver board, which also 

provides power to the 24 EASY’s solenoids. Power source No. 2 provides power to the 

Polulu servo controller that then power the servos and the NanoBeam antenna. Finally, 

the EASY’s IMU is powered directly from the PC/104 onboard computer. 



26 

 

 

Additionally, in Figure 2.26, the green, yellow and blue lines represent how the 

communication is handled between each of the components. The PC/104 onboard 

computer uses a serial protocol to receive the data coming from the IMU and also to send 

PWM commands to the Polulu servo controller. The PC/104 onboard computer is also 

interfaced with the EASY’s solenoid driver through digital protocol communication. 

Finally, the Ethernet protocol allows the communication between the NanoBeam antenna 

and the PC/104 onboard computer. The NanoBeam antenna also receives information 

from the Host computer using Wireless.  

 

 

Figure 2.26 Power Distribution and Communication Setup. 

2.7  Manufacture and Assembly 

Manufacture and assembly of the vehicle were performed by considering the design 

described in previous sections. Due to simplicity, 60% of EASY’s structure was built 

using a 3D printer of 5Th generation. For the remaining 40%, materials such as 3003 

Aluminum honeycomb panel, carbon steel, carbon fiber, commercial steel and 
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commercial aluminum were used as shown in Figure 2.27. Figure 2.28 shows the final 

assembly of EASY spacecraft mounted on a gimbal structure. The gimbal structure 

provides the facility to have a rotation in the three axes. 

 

Figure 2.27 EASY’s Building Process. 

 

Figure 2.28 EASY Spacecraft. 
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3.  EASY Model 

This chapter provides a general description of the Spacecraft’s dynamics and 

kinematics. This description will consider the role of quaternions and will assume that the 

spacecraft is a rigid body to obtain the rotational kinematics. With these considerations in 

mind, this section will focus on a set of key topics such as the determination of the frame 

and the implementation of quaternions with an explanation on its properties, rotational 

matrix quaternions, and Direction Cosine Matrix in Quaternion and Quaternion error. 

Other subsections will revolve around Attitude Quaternions Kinematics, Attitude 

Dynamics, Translational Dynamics, Rotational Dynamics, and Forces and Moments.  

3.1  Determination of Frame 

It is convenient for attitude analysis to define a body fixed reference frame fB and an 

inertial reference frame fI (Wie 2015), as shown in Figure 3. 1. Conventionally, a frame 

is defined by the orientation of its Cartesian axes and the location of its origin. The body 

fixed reference frame is usually tied to the actual vehicle where the origin of each 

coordinate is the center of mass of the body. This frame rotates with the body, thus 

providing the body’s rotation state. An inertial reference frame instead is typically 

described as a frame that moves at a constant velocity but does not rotates with the body. 

In this manner, the attitude of any rigid body can be analyzed when a change occurs from 

an initial orientation to any other given orientation. 



29 

 

 

 

Figure 3.1 Rigid Body Reference Frame. 

3.2  Quaternion Implementation  

Spacecraft are required to perform fast maneuvers with rotations that are higher than 

90 degrees. Using Euler representation of the rotations in the three axes represent a 

limitation for maneuvers that requires +/- 90 degrees rotation. This limitation is generated 

by a singularity in the Euler based Kinematic of rotation equations. This phenomenon 

known as Gimbal lock, can be resolved by using quaternions based representation of the 

rotations.  

A quaternion is an ordered pair  0 1:3,q q q  represented with a vector 3
1:3q   and a 

scalar part 0q ( Landis Markley & Crassidis, 2014), as denoted in Equation 3.1. Therefore, 

a vector quaternion part states to a quaternion with a zero-scalar component and a scalar 

quaternion part states to a quaternion with a zero-vector component. 

 0 1 2 3, , ,
T

q q q q q  (3.1) 

  

3.2.1  Properties of Quaternion 

Some properties govern the quaternion; and a few are described as follows (Sidi, 

1997): 
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A quaternion is defined as 0 1 2 3q q iq jq kq       where  1q  , 2q  , and 3q   are real 

numbers. The symbols i , j and k  obey the following relationships 

2 2 2 1i j k    ,    ij k , ki j ,    jk i , ji k  ,    kj i  ,    and    ik j  . 

1. The norm of quaternion should be a unit quaternion, which means its norm must 

be equal to 1, as shown in Equation 3.2.  

2 2 2 2
0 1 2 3 1q q q q     

 

1q   

(3.2) 

  

2. The conjugate quaternion is equal to Equation 3.3 

,
0 1 2 3і ј kq q q q q     (3.3) 

  

3. The cross product of two quaternions is defined by Equation 3.4 (Landis Markley 

& Crassidis 2014): 

0 1:3 0 1:3 1:3 1:3

0 0 1:3 1:3

c c c

c c

c

q q q q q q
q q

q q q q

   
   

   

 (3.4) 

  

4. The dot product between two quaternions is defined by Equation 3.5 (Landis 

Markley & Crassidis 2014): 

0 1:3 0 1:3 1:3 1:3

0 0 1:3 1:3

c c c

c c

c

q q q q q q
q q

q q q q

   
  

   

 (3.5) 

  

3.2.2  Rotational Matrix Quaternion  

The rotational Matrix quaternions are represented, as shown in Equation 3.9. This 

matrix is obtained by considering the principal eigenvector or principal axis of rotation in 

Equation 3.6. where, r  is the angle of rotation and 1, 2, 3,n n n  are the vector components of 

the principal axis of rotation n . 
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 (3.6) 

  

Having a rotation order Z→ Y → X, the rotation matrix from Inertial reference 

frame to Body fixed reference frame using quaternions can be represented as:  

q

B
I R R RR q q q      (3.7) 

  

where , Rq  , Rq  , and Rq   are the vector components of the rotational matrix with respect 

to the yaw, pitch and roll angles, respectively as defined in Equation 3.8.  
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(3.8) 

Applying the fifth property of quaternions shown in section 3.2.1, the Rotational 

Matrix from body fixed reference frame to inertial reference frame is as follow (Wie, 

2015): 
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3.2.3  Direction Cosine Matrix in Quaternions 

The Rotational Matrix Quaternion provides the attitude angles in terms of 

quaternions, which now can be implemented to obtain the Direct Cosine Matrix (DCM) 

using transformations. To find a point 2P  relative to point 1P  with quaternion 

representation, Equation 3.10 is used. 

2 1P q P q  
¸
 (3.10) 

  

By using the property five from section 3.2.1, the Direct Cosine Matrix based on 

quaternions is obtained, as shown in Equation 3.11. 
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2 2
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q
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     

 (3.11) 

  

Quaternion attitude representation can also be converted back to a Euler’s angles 

attitude representation. In this case, it is recalled the well-known DCM. By obtaining the 

transpose of this DCM, it can be illustrated a rotation from a body fixed reference frame 

to the inertial reference frame, as shown in Equation 3.12.   

cos cos sin sin cos cos sin cos sin cos sin sin

sin cos sin sin sin cos cos cos sin sin sin cos
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T I
BDCM R

              
 

               
 
       

 (3.12) 

  

An extra positional row-column matrix *DCM  (see Equation 3.13) is used to 

correlate the DCM described in Equation 3.12 with the DCM quaternion based in 

Equation 3.11. Accordingly, to that correlation between those two DCM matrices, the 

attitude Euler’s angles can be obtained using Equations 3.14, 3.15 and 3.16. 
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 (3.13) 
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132 2 3 1 0

2 2
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 31 1 3 2 0sin 2( )R a q q q q   
 (3.15) 
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R q q q
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(3.16) 

  

3.3  Quaternion Error  

Once quaternion is defined, the quaternion error between two quaternions can be 

obtained by the operation of a quaternion product as described in Equation 3.17. For 

control law purposes, one of the components of the quaternion error is assigned to be the 

desired dQ  and the remaining part is considered as the nominal (estimated). 

1
e dq Q q   (3.17) 

  

As shown in Equation 3.18, the quaternion desired Matrix dQ  can be described exactly 

in terms of desirable quaternion scalar, and desirable quaternion vector  
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 (3.18) 

  

By computing the quaternion error, the matrix defined in Equation 3.19 can be 

obtained.  
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 (3.19) 

  

3.4  Attitude Quaternion Kinematics 

The relative orientation between the Inertial and the Body fixed reference frames 

from Section 3.1 can be described in terms of the angular velocity vector of the body 
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fixed reference frame with respect to the inertial reference frame. This angular velocity 

vector time-dependent is defined as shown in Equation 3.20 (Wie, 2015). 

/ ( )

x

B I y

z

t



  



 
 

   
 
 

 (3.20) 

  

Similar to Euler’s angles attitude representation, a differential vector equation in 

terms of quaternions can be written using the angular velocity vector (Sidi, 1997) from 

Equation 3.20. These differential vector equations are known as the kinematic equations 

for quaternions and are given by: 

1
( ( ))

2
q t q   (3.21) 

  

In Equation 3.21, ( ( ))t  is known as the kinematic quaternion matrix and it is 

described as shown in Equation 3.22. 
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Equation 3.23 is a matrix form definition of  equation 3.21.  
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 (3.23) 

  

Taking the time derivative of Equation 3.17 and replacing it into Equation 3.21, the 

quaternion error kinematics (Landis Markley & Crassidis, 2014) can be found as 

shown in Equation 3.24. Where q is the quaternion error. 
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1
( ( ))

2
q t q     (3.24) 

  

3.5  Attitude Dynamics  

The rigid body assumption can be used to describe the vehicle motion based on 

position and velocity in the body fixed frame with respect to the inertial reference frame. 

Thus, the rigid body dynamics can be studied using to types of motion: translational and 

rotational:  

3.5.1  Translational dynamics 

In a rigid body system, the number of particles becomes infinite, and the mass of 

each particle becomes infinitesimal (De Ruiter  Damaren  & Forbes, 2013). Thus, the 

translational dynamics of the center of mass of a rigid body can be defined as: 

cmr F  (3.25) 
  

In Equation 3.25, F   represents the total force on the body due to external forces, m  

the total mass of the system, and r  the center of mass.  

3.5.2  Rotational dynamics 

The inertia matrix J  is defined in the body fixed reference frame. J  is real positive 

definite and symmetric matrix, where xJ , yJ , and zJ  are called the principal moments of 

inertia as shown in Equation 3.26: 

0 0

0 0

0 0

x

y

z

J

J J

J

 
 

  
 
 

 (3.26) 

  

In the rotational dynamics, the rotational velocity and the body’s inertia is 

represented by the angular momentum vector and  defined by Equation 3.27 as: 

H J    (3.27) 
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Using the inertia matrix J  from Equation 3.26, the angular velocity from Equation 

3.20, and the angular momentum vector from Equation 3.27, the rotational equation of 

motion about its center of mass of a rigid body can be expressed as:  

1

( )

( )

J J M t

J J M t

  

  

  

    

 (3.28) 

  

Equation 3.28 is also called the Euler’s rotational equation. From this equation, it can 

be obtained three nonlinear differential equations, which describe the rotational motion of 

a rigid body with three degrees of freedom, as shown in Equation 3.29  
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( )

( )

x x z y y z x

y y x z x z y

z z y x x y z

J J J M

J J J M

J J J M
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  

  

  

  

 (3.29) 

  

 

Figure 3.2 Forces and Moments EASY Spacecraft. 
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3.6  EASY Forces and Moments  

In Chapter 2, the standard propulsion configuration system was described as a set of 

16 Thrusters distributed uniformly around the X,Y, and Z axes of EASY spacecraft. 

Based on the mentioned actuator configuration, the diagram in Figure 3. 2 shows a 

general view of the forces and moments that act on the XYZ body fixed reference frame 

of EASY  

Equation 3.30 describes the sum of forces generated by the thrusters in each 

individual axis. This set of forces is with respect to the center of gravity (CG) of EASY, 

as shown in Equations 3.31 through 3.35. Based on EASY’s design, the orientation of 15 

degrees in the yaw’s thrusters location is taken into consideration. 
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The total moments produced by the thrusters in each of the axes with respect to the 

center of gravity is described in Equations 3.36 and 3.37. In these equations, xL , yL , and 

zL correspond to the actual distance (X,Y and Z body fixed reference frame) of each 

thruster to the CG of the vehicle. 
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4.  Undesired Dynamics 

Deviating from the desired flight path, losing control of the system, actuator 

saturation and increasing the fuel consumption are common errors directly related to the 

presence of undesired dynamics (or undesirable moments) acting on a space vehicle. The 

moments by itself depend on the forces generated by the vehicle’s actuators (thrusters). 

The mentioned forces can change due to Thrust Misalignment Error and Thrust 

Magnitude Error (Hu, L,i Huo, & Shi, 2013). Thus, these two thrust errors become the 

two leading causes that could explain the generation of these undesirable dynamics.  

Thrust Misalignment Error is defined by the tilt angle of the thrust vector from the 

nominal position. Misalignments can happen through different ways: inconsistencies in 

the nozzle geometry (disproportional roughness in the surface, bulges, out of round); out-

of-position transient flows when starting or stopping; unequal deviations of the 

propulsion system or vehicle when containing a load; and inconsistencies in the gas flow 

(unequal burning rate in propellants, defective injector) (Sutton & Biblarz, 2010). 

Because of the deviation of the thrust vector, the attitude control and stability of the 

vehicle may be compromised (NASA, 1974). Difficulties may arise when the thrust axis 

of the propulsion system of a fixed nozzle is out of position. Even the misalignment of 

the high thrust engine system by an angle of less than 0.50 degrees can significantly 

affect the performance of the vehicle attitude. If this error is not minimized, the vehicle 

could fall or take a different direction (Sutton & Biblarz, 2010). The nozzle axis of the 

propulsion systems shall be aligned with precision to the aby vehicle so that the vehicle’s 

compensating attitude control capability is not affected. 
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Also, a thrust magnitude error is mainly caused by increasing or decreasing the fuel 

mass at the thrusters (Dentis, Elisa & Guglieri, 2016). This kind of error is always tied to 

the failures that the propulsion system can suffer. 

These two types of causes for undesired dynamics can be understood as uncertainties 

on the system and can be studied in decomposition in the controls area as unknown 

parameters. These unknown parameters are the misalignment angle and the error in the 

thrust magnitude, which are included as extra inputs of the system. A Mathematical 

Thrust Error (MTE) model is presented as the mathematical formulation used to study the 

behavior of these undesired dynamics in EASY spacecraft.  

4.1  Mathematical Thrust Error (MTE) Model   

The mathematical thrust error model introduced in this section is a general 

mathematical formulation of the total vector force of the system that considers the force 

calculation from each thruster under the presence of the thrust error caused by 

misalignment, and the thrust magnitude error already described. The total force is 

calculated by considering the fixed body reference frame (Lim & Bang, 2009). Thus, the 

total force for a given thruster is expressed as the sum of its thrust in nominal condition 

(no error), thrust with misalignment error, and thrust with magnitude error, as shown in 

Equation 4.1.  
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MTE model considers all kinds of misalignments in the positive and negative 

direction with respect to all of three axes. Two types of misalignments angles are defined: 

misalignment angle   denotes the angle at which the thrust force is located with respect 

to the X and Y axes; and misalignment angle   refers to the angle at which the trust 

force is located with respect to the Z axis. Thrust magnitude error is defined as a function 

of time ( )t  that directly affects the thrust in nominal condition. Equation 4.2 shows the 

force vector calculation for each of the thrusters based on Equation 4.1, and n  represents 

the thruster number. In Equation 4.2, nT  is the desired thrust, 1 3xP  refers to the X, Y, and 

Z vector’s components of the desired thrust without any error in consideration. The 

matrix 3 2[ ] xM  correlates “sin” and “cos” angle’s components of the thrust misalignment 

error in the X, Y and Z axes. Finally, the vector 2 1xE  describes the actual misalignment 

angle  and  . 

1 3 3 2 2 1 1 3[ ] ( ( ) )n n x n x x n xF T P T M E t T P    (4.2) 
  

Within this MTE model, some assumptions are made, as shown in Equation 4.3. 
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  
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        

 (4.3) 

  

Multiple configurations of misalignment angles can occur depending on the angle by 

itself and the axis from which the misalignment occurs. Due to the multiple 

configuration, a case of study is defined for EASY, and the mathematical thrust error 

model for this configuration is applied and presented through sections 4.2 and 4.3. This 

case of study includes the estimation of the total forces produced by each thruster using 
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the fixed body reference frame. Additionally, in Equation 4.4, some mathematical 

identities that applied for this case of study are described. 
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 (4.4) 

  

4.2  MTE Model for Thrusters Associated with Pitch and Roll Maneuvers 

In the development of the MTE model for thrusters involved in the performing of 

pitch and roll maneuvers (thrusters 1 to 8),   and   angles are considered to be zero. 

The consideration of these zero angles will keep the thrust force aligned with the Z axis 

in a normal condition. On the other hand, the presence of misalignment angles will make 

the thrust force to deviate from its initial alignment generating extra thrust force 

components in the X, Y and Z axes. Figure 14 shows a graphical representation of 

misalignment angles and thrust magnitude error. 

 

Figure 4.1 Generalized Graphical Representation of TMAE and TME for Pitch and Roll 

Thrusters. 

As an example, the derivations to calculte the total force for n  given thrusters (1 to 

8) is presented  in Equation 4.5: 
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(4.5) 

  

Figures 4.2 through 4.5 are also a graphical representation of misalignments angles 

and thrust magnitude error calculations for each of the considered thrusters. Equations 4.6 

through 4.13 are the total force vector obtained for each of the mentioned thrusters. 

 

Figure 4.2 Thruster No. 1 and 2 under TMAE and TME. 
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Figure 4.3 Thruster No. 3 and 4 under TMAE and TME. 

 

Figure 4.4. Thruster No. 5 and 6 under TMAE and TME. 
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Figure 4.5 Thruster No. 7 and 8 under TMAE and TME. 
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4.3  MTE Model for Thrusters Associated with Yaw Maneuvers 

EASY’S mechanical standard configuration described in Chapter 3 considers the 

nominal position of the attitude thrusters for yaw motion with an inclination angle of 15 

degrees with respect to the X  and Y axes. Based on that inclination,   and   angles are 

considered to be 15 and zero degrees, respectively. Generalized graphical representation 

of misalignments angles and magnitude acting on yaw thrusters are shown in Figure 4.6. 
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Depending on the location of the yaw’s thrusters around EASY spacecraft,   

misalignment angle will be subtracted from the nominal one. This situation indicates that 

the misalignment is negative. Figures 4.7 through 4.10 shows graphical representation of 

thrusters 9 to 16 under misalignment and thrust magnitude error. Equations 4.14 through 

4.21, represent the mathematical thrust error model for the already mentioned set of 

thrusters. 

 

Figure 4.6 Generalized Graphical Representation of TMAE and TME for yaw thrusters. 

 

Figure 4.7 Thruster No. 9 and 10 under TMAE and TME. 
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Figure 4.8 Thruster No. 11 and 12 under TMAE and TME. 
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Figure 4.9 Thruster No. 13 and 14 under TMAE and TME. 
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Figure 4.10 Thruster No. 15 and 16 under TMAE and TME. 
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5.  Control Laws Design and Development 

A full nonlinear (time-invariant) spacecraft attitude motion can be defined using 

Equations 5.1 and 5.2, where ( )x t and ( )y t  are called state equation and measurement 

equation, respectively. The vector function f  and h  are dependent of  ( )x t  (state vector), 

( )u t (input vector) and t (time).  

 ( ) ( ), ( )x t f x t u t  (5.1) 
  

 ( ) ( ), ( )y t h x t u t  (5.2) 

  

The state vector 7 1xx  can be defined as shown in Equation 5.3. Where ,x y  and 

z are the angular velocities and 0 1 2, ,q q q    and 3q  are the quaternion error.  

0 1 2 3, , , , , ,
T

x y zx q q q q           (5.3) 

  

The input vector defined in Equation 5.4 contains the moments ,x yM M and zM  

acting on the vehicle.  

( ) , ,
T

x y zu M t M M M      (5.4) 

  

Using Equations 3.24, 3.28, 5.3, and 5.4, the state equation from 5.1 can be expanded 

into a state-space form as shown in Equation 5.5: 
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                           

 (5.5) 

  

5.1  Quaternion Feedback Linearization Based Controller 

A quaternion feedback linearization based controller was designed and developed, 

and a general description is provided in this chapter. The goal of this controller is to 

provide regulation control by driving the actual quaternions to the desired states and the 
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angular velocities to zero (Landis, Markley & Crassidis, 2014). By means of, quaternions 

at the desired states is understandable that the actual attitude has been driven to the 

desired fixed location (in the body fixed reference frame) by producing a sequence of 

rotations. This process involves the implementation of a quaternion error operator, as 

shown in Equation 3.17. 

The designed controller is based on a feedback linearization of the angular rotational 

dynamics of Equations 3.28. Equation 5.6 represents the control laws for this system, 

where ( , )vu q  is considered to be a time-invariant virtual controller (Wie & Barba, 1985). 

 ( ) ( ) ( , )NLDI vM t u t J Ju q       (5.6) 
  

The virtual controller ( , )vu q   is defined by the multiplication between qK (control 

gain matrices) and , q   vectors (angular velocity and quaternion errors), as shown in 

Equation 5.7. The implemntation of this virtual control will stabilize the system. 

 ( , ) ,
T

v qu q K q     (5.7) 

  

By incorporating Equation 5.7 into Equation 5.6 the new control law shown in 

Equation 5.8 is obtained.  

    ( ) ( ) ,
T

NLDI qM t u t J J K q         (5.8) 

  

The system presented in Equation 5.5 is modified by the new control law introduced 

in Equation 5.8. Equation 5.9 describes the close loop system. However, the presence of 

quaternions kinematics makes the system to remain nonlinear:  

 
 

 

1

4 3

( ),

( ) ( ), ( ) ( )1 0( ( ))
( )2

T
xq

y
e x

z

M tK q
J

x t f x t u t M t
q t q

M t

  


 


        

         
        

   

 (5.9) 
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To overcome this nonlinearity, a linearization is made with respect to an equilibrium 

point of x shown in Equation 5.10: 

 0,0,0,1,0,0,0
T

x   (5.10) 

  

Given the equilibrium point, the linearization of the system is accomplished by 

introducing the Jacobian matrix calculation. The mathematical determination of a 

Jacobian matrix is performed based on the partial derivatives of a set of functions ( , )nf x t  

with respect to the state vector shown in Equation 5.3. Equations 5.11 through 5.17 are 

the set of functions used to obtain the Jacobian matrix. 

11 1( , )
xx x qf x t K K q       (5.11) 

  

22 2( , )
yy y qf x t K K q       (5.12) 

  

33 3( , )
zz z qf x t K K q       (5.13) 

  

 4 1 0 2 3

1
( , )

2
x z yf x t q q q q           (5.14) 

  

 5 2 0 3 1

1
( , )

2
y x zf x t q q q q           (5.15) 

  

 6 3 0 1 2

1
( , )

2
z y xf x t q q q q           (5.16) 

 7 0 1 2 3

1
( , )

2
x y zf x t q q q q            (5.17) 

  

Equation 5.18 shows an example of the calculation of the jacobian matrices A  

and B . 

1 2 1 2
1 2 1 2

1 1 1 1 1 1

( , ) ( , )
1 1( , ) ( , )

. .

. . . . . .

. .

n m

X X X X
n n n n n mX X X X

f x f x f u f u
f f

A B
x u

f x f x f u f u

        
       

                        

 (5.18) 

  

Following Equation 5.18, the closed loop matrix A  in Equation 5.19 can be obtained. 

This closed-loop A  matrix contains an eigenvalue related to the quaternion’s scalar part, 
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which cannot be controllable. To deal with the uncontrollable eigenvalue, the 

quaternion’s scalar part can be excluded from the state vector in Equation 5.10. In the 

same way, from the quaternions error kinematics, the scalar part 0q  is omitted. This 

process leads to a reduction of the closed-loop A  matrix’s size to a 6x6 matrix, which 

contains only 6 states, 3 inputs, and 3 quaternions to be controlled. 
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 (5.19) 

  

The states space form of the system yields: 

x Ax Bu

y Cx Du

 

 

 (5.20) 
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 (5.21) 
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      
    

        

 (5.22) 

  

Using the closed-loop A  matrix from Equation 5.21, the polynomial characteristic 

equation can be found as defined in Equations 5.23 through 5.26: 
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1
1 1 0( ) det( ) n n

np I A a a a    
       (5.23) 
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 (5.24) 

  

   1 2 3

2 2 22 2 2 2 2 2
( ) 0

8

x y zq q qK K K K K K
p

       


     
   (5.25) 

  

31 22 2 2( ) 0
2 2 2x y z

qq q KK K
p K K K        

   
             
   

 (5.26) 

  

To find the control gains
x

K ,
y

K ,
z

K , 
1qK , 

2qK , and 
3qK , the obtained polynomial 

characteristic equation from Equation 5.26 is directly compared to a desired polynomial 

characteristic equation introduced in Equation 5.27. 

   2 2 2 2 2 2( ) 2 2 2 0x x x y y y z z zp                         (5.27) 

  

The direct comparison between the two polynomial characteristic equations yields 

the definition of control gains, as shown in Equations 5.28 through 5.33, where , ,x y x  and 

, ,x y z  are desirable damping ratio and natural frequency. 

2 2
x xx x x xK K          (5.28) 

  

2 2
y yy y y yK K          (5.29) 

  
2 2

z zz z z zK K          (5.30) 

  

1

1

2 22
2

q

x q x

K
K     (5.31) 

  

2

2

2 22
2

q

y q y

K
K     (5.32) 
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3

3

2 22
2

q

z q z

K
K     (5.33) 

The desired damping ratio and natural frequency for each of the control gains 

described before can be calculated using Equations 5.34 and 5.35. 

2

, , 2
2

ln
100%

ln
100%

x y z

PO

PO




 
 
 


 

  
 

 (5.34) 

  

: , ,
, ,

2

4
n x y z

x y z





  (5.35) 

  

After obtaining the control gains qK , the virtual controller, ( , )vu q   of the control 

law control system described in Equation 5.8, can be updated, as shown in Equation 5.36. 

    ( ) ( ) ,
T

NLDI qM t u t J J K q         (5.36) 

  

The control law described in Equation 5.36 ensures the stabilization of the system to 

the desired attitude quaternions. However, it does not provide the shortest path to achieve 

the final orientation. To solve this problem, Equations 5.37 includes a modification to the 

quaternion scalar part into the virtual controller (Landis Markley & Crassidis 2014).This 

modification takes into consideration the sing of the scalar quaternion part. 

     0 1:3
( ) ( )NLDI qM t u t J J K sign q q K           (5.37) 

  

A general schematic of the discussed controller is shown in Figure 5.1. This 

schematic includes the control law considered as a Inner Loop Controller, a control 

allocation form for EASY spacecraft, EASY Dynamics and a representation of an XA 

6DOF simulation discussed in Chapter 6. 
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Figure 5.1 Control Law Schematic of Quaternion Feedback Linearization Based 

Controller. 

5.2  Control Allocation  

As previously mentioned in Chapter 2, there are 12 thrusters for nominal 

configuration. In chapter 3, the forces and moments equations that acted on EASY 

spacecraft were presented in Equation 3.32 and 3.34. However, the solution of those 

equations to find the exact thrust forces yields to a set of six equations with sixteen 

unknowns. To resolve this limitation, a new mathematical grouping of thrusters is 

introduced just with the aim of finding the exact thrust forces. This new configuration is 

based on a selection of pair thrusts R and W that states: “if thruster R is on, then thruster 

W will never be on and vice versa.” The new configuration based on thruster’s pair is 

described in Table 5.1 

Table 5.1 

Configuration of Thruster’s Pair for Control Allocation 

Thruster Pair Thruster Number 

ET  7 and 8 

FT  3 and 4 

GT  1 and 2 

HT  5 and 6 

ABCDT  9,10,11,12,13,14,15 and 16 
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Equations 5.38 and 5.39 show the new forces and moments equations obtained using 

the new configuration of thruster’s pairs.  

sin( ) sin( ) cos( ) cos( )

cos( ) cos( ) sin( ) sin( )
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   

   

     
  

        
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  (5.38) 

  

 
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M T L T L T L T L M
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   

        
         

  (5.39) 

  

Recalling the configuration of EASY spacecraft and the type of controller discussed 

in section 5.1, it is stated that EASY will not perform any translation motion, but instead, 

it will perform rotational motion. Therefore, to find the exact thrust forces, the total 

forces acting in the X and Y axes are neglected. Then, the vertical force must be divided 

in two. Equations 5.40 through 5.45 are the new set of the equation used to find exact 

thrust forces. 
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x H y E y F y G yM T L T L T L T L      (5.42) 

  

y H x F x E x G xM T L T L T L T L      (5.43) 
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 (5.45) 
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The simultaneous solution of the system described in Equation 5.45 yields the results 

shown in Equation 5.46 through 5.50 for the exact thrust forces. 
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5.3  Performance Metrics 

In order to evaluate the performance of the control system architecture presented in 

section 5.2.; a set of three performance metrics were developed and included in the 

simulation and implementation results in chapter 8. The mentioned metrics monitor the 

ability of the controller to achieve the desired attitude while maintaining a high tracking 

control performance during a given maneuver (Perez 2016). 

Two of the performance metrics are related to the state vector in Equation 5.3, 

angular velocities and quaternions, whereas the third one correlates the total actuator 

activity of the system. All three performance metrics are calculated for a given time 

history and a set of cut-off parameters C , C Q  , C S , and CP , in Equations 5.51, 5.52, 

5.53 and 5.54 are used to represent the worst-case among a multiple performed tests.  

These cut-off values are used to normalize the global performance metric (Perez 2016). 
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5.3.1  Angular Rate Performance Metric 

The angular rate performance metric takes into consideration the error between the 

commanded values and the current values of the angular rates ex , ey  and ez . Thus, 

this metric is calculated using the root mean square of the sum of the three mentioned 

angular rate errors as shown in Equation 5.51. 

2 2 2

0 0 0

1
T T T

ex ey eze dt dt dt
C

  

 
   
 
 
    (5.51) 

  

5.3.2  Quaternion Performance Metric 

The attitude performance metric measures the accumulative error of the commanded 

attitude angles (in quaternion attitude representation) with respect to the current attitude 

angles, 0q , 1q , 2q , and 3q . This performance is calculated using the mean square 

root of the total unit quaternion tracking error, as shown in Equation 5.52.  

2 2 2 2
0 1 2 3

0

1
(1 )

T

q q q q q dt
C Q

         
    (5.52) 

  

5.3.3  Solenoid Performance Metric 

A solenoid performance metric is implemented with the aim of characterize the fuel 

consumption of the system in relation to the total actuation of each solenoid valve over a 

predetermined period of time. It is calculated as the sum of the root mean square of the 

PWM commanded signals of the total time the solenoid valve remained open, as shown 

in Equation 5.53 (Perez, 2016). 
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5.3.4  Global Performance Index Metric 

The results of the above performances metrics are grouped into a global performance 

Index Metric which provides an overall performance of the controller implemented for 

EASY. As shown in Equations 5.54 and 5.55, within this performance metric, a weight 

can be assigned to each of the performance metrics in consideration. The designation of 

the weight is based on controller performance’s criteria; more weight is assigned if the 

given performance metric under study affects the performance of the controller directly, 

while less weight is assigned in the case that the error for a given metric does not affect 

the performance of the system. For this thesis, is established the same weight for each of 

the performance metrics. 

1 1 1
1

3 3 3
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6.  Software Development 

The development of software tools or computing models that allow the prior and post 

testing of a defined system is a vital part when a research is being performed. In this 

chapter, is described the overall simulation and implementation environment of the 

algorithms used to model and test EASY spacecraft. Additionally, a description of the 

virtual environment developed for this research is also provided. 

 

Figure 6.1 Simulation Environment EASY Spacecraft.  

6.1  Simulation  

A simulation environment was developed using MATLAB/Simulink to support the 

development and design of the proposed control laws algorithms mentioned in Chapter 5. 

The simulation environment shown in Figure 6.1 describes the main setup and 

components. Signal generator module is used to generate the commanded or desired 

attitude in Euler angles. Transformation of Euler angles into quaternions is performed 

within the controller module, which solves the control law architecture described in 

Chapter 5. Flight Gear interface module is used to provide 3D visualization of EASY. 
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The simulation also contains a Performance Metric Activity module used to measure and 

evaluate the performance of the controller. EASY’s dynamics and compressed air 

modules are connected to the controller module. The simulation setup also features 

several output signals that are used to evaluate the attitude tracking performance within 

the Recording Data module. This last module includes scopes of desired parameters, such 

as quaternions and angular performance rates.  

The Thrust Error Model described in Chapter 4 was implemented using the 

simulation environment, as shown in Figure 6. 2. In this figure, Section A provides the 

calculation of EASY’s total forces and moments. As part of this section, the thrust frame 

to body module (section B) takes the normalized thrust force and calculates the force and 

moment vectors generated in the X, Y, and Z axes for each of the thrusters. In this 

calculation (section C), the thrust error caused by misalignment angles and the thrust 

magnitude error is included.  

 

Figure 6.2 Implementation of MTE into a Simulation Environment.  
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6.2  Implementation 

A general architecture of the control laws implementation code using 

MATLAB/Simulink® is shown in Figure 6.3. The main difference between simulation 

and implementation codes relies on the use of a hard real-time operating system (ROS) 

xPC-Target by MATLAB/Simulink®. This ROS system offers flexibility for fast 

prototyping capabilities by allowing compilation and deployment of developed Simulink 

models from a host computer on the EASY’s PC/104 onboard computer, referred to as a 

Target. The implementation code also contains multiple blocks developed at ADCL 

(Perez, 2016).to enable transmission of data from the sensors (IMU) and the delivery of 

data to the Solenoid’s drive board and Mini Polulu servo controller. 

 

 

Figure 6.3 General Architecture of Implementation Code. 

Using Simulink-Real time explorer, a GUI interface was developed at ADCL (Perez, 

2016). This GUI interface, shown in Figure 6.4, allowed the execution in real-time of 

EASY’s maneuvers and the monitoring of sensor data and thrust commanded to each 
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thruster. Additionally, a set of commands are programmed to inject selected thruster’s 

failures on the system in real-time.   

 

Figure 6.4 GUI used for Normal Flight-Testing.  

6.2.1  Tuning Real-Time  

Figure 6.5 shows an additional GUI developed at ADCL (Perez, 2016).with the aim 

of allowing the tuning of the control gains of the given control law system. This GUI 

allows the tuning in real-time of the qK control gains of the virtual controller described 

in Chapter 5. A plot example of the tuning process is also shown in Figure 6.5. From the 

plot, it can be noticed that the pre-define maneuver started at 20 seconds, and the tracking 

of the signal is not being accomplished for the followed 20 seconds. At 40 seconds, the 

controlled is already tuned, which increases the performance in real-time of the tracking 

signal.  



64 

 

 

 

Figure 6.5 GUI used for Tuning Purposes of the Controller. 

6.3  Virtual Environment 

The modelling process of the 3D visual display for EASY was developed using the 

interaction between a 3D creation software CATIA VR5, a flight simulator Flight Gear, 

and an intermediate software Matlab/Simulink. Matlab/Simulink uses User Datagram 

Protocol (UDP) as the communication protocol to send data to FlightGear. Figure 6.6 

shows Matlab/Simulink interface with Flight performing a given maneuver. 

 

Figure 6.6 EASY 3D Visualization in Simulation using FlightGear. 
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7.  Flight Testing Environment 

The flight testing setup for EASY includes the mounting of the vehicle on a gimbal’s 

frame and connected to an offloading system. This offloading system facility, known as 

Integrated Gravity Offloading Robotic System (IGOR), is available at the Advanced 

Dynamics and Control Laboratory. IGOR system allows the simulation of partial-gravity 

by using an offload mode, so a more realistic environment of a real space mission can be 

simulated. Figure 7.1 shows the general overview of the setup for EASY's 

implementation environment. 

During a typical flight testing, IGOR system is configured with the partial gravity of 

the desired environment. The spacecraft’s weight is sensed by IGOR and correlated to the 

pre-defined gravity value. Using Matlab/Simulink Real-Time, the communication 

between the host and the onboard PC/104 (Spacecraft) computers can be achieved. In this 

way, all the systems can communicate with each other in real-time. 

 

Figure 7.1 EASY Implementation Environment. 
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7.1  Integrated Gravity Off -Loading System – IGOR 

IGOR concept is an active system to gravity offloading of space structures that 

deploy in six degrees of freedom plus translation in the three axes. A scalable gravity 

offload device simulates reduced gravity for the testing of various surface system 

elements such as mobile robots, excavators, habitats, and flyers in a relevant 

environment. The system has been designed to support a wide range of payload weights 

over a wide space of vertical and horizontal travel with fast response and almost zero 

friction. The device is capable of simulating reduced gravity by integrating a single-point 

to suspend the space vehicle via a load cable and a pair of linear drive tracking stages in 

the horizontal plane. An active control system is being implemented to minimize the 

horizontal drag forces on the payload, and it will actuate the linear drive stages such that 

the vertical cable is centered over the vehicle payload. Thus, the load cable is kept close 

to vertical as the payload moves under its own power. The horizontal and vertical 

systems work together to deliver gravity offloading for arbitrary trajectories of the 

payload. 

Figure 7. 2 shows IGOR facility concept that includes three main subsystems: a 

gravity offloading device (IQ-GForce manipulator) that carries the weight and 

accommodates vertical motion of the payload; a linear movement X and Y stage system 

driven by commercial off the-shelf stepper motors that moves the IQ-device horizontally 

to keep the load cable vertical during active tracking; and an orientation sensor that 

measure the angle of the cable to control the horizontal movement. The result is a 

rectangular working area whereby the gravity offload device can simulate reduced 
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gravity in the area defined by the length of the linear movement system by the width 

(reach) of the 2 degree-of-freedom manipulator. 

7.1.1  G-Force Intelligent Assist 

The IQ-Device is a single-degree-of-freedom gravity offloading system that supports 

a wide range of payload weights over several centimeters or more of vertical travel with 

arbitrarily low stiffness, zero static deflection, minimal added mass, freedom from 

spurious modes, and perhaps most importantly, zero friction. The force application 

mechanism is principled upon precision and maintenance of pressure in an air cylinder. 

Precision regulation of pressure supply enables  

constant force over the throw of the air cylinder. Varying the regulator supply pressure to 

the air cylinder(s) modifies the force experienced by the test article and therefore enables 

a gravity offload device to simulate a range of gravity fields proportional to the ability to 

regulate pressure. 

7.1.2  Active Tracking Control System 

The X and Y tracking active system is being designed to move up to 6ft/sec 

approximately in each direction. This configuration minimizes the horizontal drag forces, 

so the IQ-device is centered over the payload, and the load cable is kept close to vertical 

as the payload moves under its own power. The horizontal and vertical systems will work 

together to deliver gravity offloading for arbitrary trajectories of the payload at different 

ranges of motion. 

7.1.3  Orientation Sensor 

An orientation sensor system will measure the angle of the cable to control the 

bridge and runway movement. During active tracking, the horizontal forces on the 
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payload will create an angle on the cable relative to true vertical. This angle can be 

measured, so a closed-loop control system will minimize it to maintain the cable very 

close to vertical as the payload moves. 

 

 

Figure 7.2 Integrated Gravity Offloading System. 
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8.  Performance Analysis 

In this chapter, the closed-loop performance system is analyzed using simulation and 

implementation. The main focus is to evaluate the stability and dynamic response of 

EASY’s while the controller stabilize the system at the desired attitude maneuver. In 

addition, an analysis is presented for the performance under undesired dynamics outlined 

in Chapter 4. Demonstration of the correct on-off switching logic (control allocation) of 

thrusters based on the commanded maneuver is also explained in this chapter. 

As previously mentioned, the EASY’s equations of motion have been implemented 

using the quaternions approach. However, the quaternions are converted back into the 

Euler’s angles representation for visualization purposes. EASY’s configuration 

parameters used for simulation and implementation are shown in Table 8.1 

Table 8.1 

Design Parameters 

Parameter Units 

Gravity 0.28 m/s2 

Total Mass- EASY  23.1332 Kg 

Type of fuel  Compressed Air 

Max. Thrust per attitude thruster  1.35 N 

Ixx 0.5698 

Iyy 0.3679 

Izz 0.6355 

 

Since EASY has been designed for space exploration of bodies with low gravity 

environments, a dwarf planet known as Ceres has been established as the working 

environment for EASY’s mission operations. Table 8.2 shows the relevant characteristics 

of this dwarf planet: 
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8.1  Simulation Results  

Simulations results include the use of vehicle propulsion, attitude control system, 

control allocation, and dynamic model. Table 8.3 details the desired dynamic 

characteristics used to design control gains for numerical simulations. Likewise, Table 

8.4 shows outlines estimated gains that were implemented within the controller, as 

described in Chapter 5. 

Table 8.2 

Ceres Physical Characteristics 

Quantity Value Units 

Radius 473 km 

Surface Gravity 0.28 m/s2 

Escape Velocity 0.51 m/s 

Atmospheric Pressure Insignificant  

Sidereal period ~9 hours 

Solar Constant 154.2 to 209.0 W/m2 

Temperature Range Unknown min – 235 max K 

Surface material Carbonaceous regolith  

 

Table 8.3 

Desired Damping Ratio and Natural Frequency for Control Gains 

Damping Ratio Natural Frequency 

x  0.8261 nx  1.7293 [rad/s] 

y  0.8261 ny  1.7293 [rad/s] 

z  0.8261 nz  1.7293 [rad/s] 

 

Table 8.4 

Control gains 

qK Control Gains 

x
K  2.9630 

1qK  2.1709 

y
K  2.9630 

2qK  2.1709 

z
K  2.9630 

3qK  2.1709 
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8.1.1  Attitude Performance and Control Allocation for Nominal Condition 

To validate the attitude performance, a set of sequence rotations were identified. 

Each set of rotations is presented with a time period of six seconds, i.e. every six seconds, 

the new desired attitude angle is commanded. Table 8.5 illustrates the first set of these 

rotations, which is Maneuver No. 1. This maneuver includes different rotations (positive 

and negative direction) for different attitude angles. 

Table 8.5 

Maneuver No. 1.  

          Time [s] 

 

Attitude [o] 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝜙 0 0 -10 -10 0 0 0 0 0 0 0   0 0 0 

𝜃 0 0 0 0 0 0 -20 -20 -20 0 0 0 0 0 

𝜓 0 0 0 0 0 0 0 0 0 0 0 10 10 0 

 

The stabilization performance of the controller for maneuver No. 1 is shown in 

Figures 8.1 and 8.2 for quaternion and Euler’s angles representation, respectively. It is 

clear that the proposed controller achieves an acceptable performance with high 

stabilization accuracy after performing roll, pitch and yaw rotations. 

As described in Chapter 5, the controller was designed using a quaternion-based 

feedback linearization approach. This controller provides regulation control by driving 

the actual quaternions to the desired or commanded values while regulating the angular 

velocities to zero. As it can be noted in Figure 8.3, the angular velocities converge to zero 

once the maneuver is performed. 
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Figure 8.1 Quaternions Attitude Representation for Maneuver No. 1. 

 

Figure 8.2 Euler Attitude Representation for Maneuver No. 1. 
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Figure 8.3 Angular Velocities for Maneuver No. 1. 

Similarly, Figure 8.4 provides a time history of the Moments acting on EASY. 

Essentially, it can be noted that the stabilization performance of the moments given by 

the controller is well performed. As expected, during the period of times that the vehicle 

is not performing any maneuver, the desired attitude is zero degrees. The moments 

remain at zero, which does not generate any rotation on the vehicle. 
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Figure 8.4 Moments for Maneuver No. 1. 

Results from the actuation activity metric are shown in Figure 8.5. The bar represents 

the normalized value of the total actuation of the thrusters. The pie graph grouped the 

thrusters used for yaw rotation, and the thrusters used for roll and pitch rotations (due to 

the existing coupling). This graph shows the percentage of actuation activity performed 

by these two groups of thrusters with respect to the total actuation (solenoid) activity. 
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Figure 8.5 Actuation Activity for Maneuver No. 1. 

Figure 8.6 and 8.7 depict the time history of the thrust activity (for all 16 thrusters) 

while EASY performs maneuver No. 1. The plots show the amount of thrust required to 

perform each maneuver. If a thruster is not needed within a specific maneuver, no thrust 

will be commanded. In this manner, the commanded thrust can be correlated to the state 

of the thruster off/on (control allocation), which represents the thruster used to perform a 

specific rotation. Table 8.6 summarizes the configuration of the thrusters to perform roll, 

pitch, and yaw maneuvers in the positive and negative direction. 

Table 8.6 

Control Allocation to Accomplish EASY Rotations 

Attitude Command Thrusters 

Positive Roll 2, 4, 5 and 7 

Negative Roll 1, 3, 6 and 8 

Positive Yaw 9, 11, 13 and 15 

Negative Yaw 10, 12, 14 and 16 

Positive Pitch  2, 3, 5, and 8 

Negative Pitch 1, 4, 6 and 7 
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Figure 8.6 illustrates the commanded thrust for the thrusters involved in roll and 

pitch rotations. Within the first 11 seconds of simulation, EASY keeps its initial position. 

At 12 seconds, the negative roll maneuver starts with thrusters 1, 3, 6, and 8 turned on. A 

few seconds later, thrusters 2, 4, 5 and 7 are turned on to maintain the stability of the 

spacecraft. During this period of time, thrusters 2, 4, 5 and 7 are not spending a 

significant amount of thrust. Since the setup of maneuvers demands to be back to the 

initial position, the time between 24 and 38 seconds describe a positive roll maneuver 

which is accomplished by firing thrusters 2, 4, 5 and 7 first, and then thrusters 1, 3, 6, and 

8 (for stabilization proposes). Negative and positive pitch maneuvers can be seen 

between 30-50 seconds where thrusters 1, 7, 4, and 6 are turned on for a negative 

direction and 2, 3, 5, and 8 for a positive direction. 

Finally, Figure 8.7 shows a positive and negative yaw maneuver that is achieved 

between the seconds 68-80. Thrusters 9, 11, 13, and 15 are turned on for the positive 

motion while 10, 12, 14, and 16 produce a small thrust to keep the system stable. In the 

same way, thruster 10, 12, 14, and 16 are turned on to accomplish the rotation for 

negative motion while thruster 9, 11, 13, and 15 produce a small thrust for stability of the 

system. 

Table 8.7 

Maneuver No. 2. 

 

          Time [s] 

 

Attitude [o] 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝜙 0 0 0 0 0 0 0 0 0 0 0   5 5 0 

𝜃 0 0 -15 -15 0 0 0 0 0 0 0 0 0 0 

𝜓 0 0 0 0 0 0 -35 -35 -35 0 0 0 0 0 
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Figure 8.6 Control Allocation for Roll and Pitch Maneuvers No. 1. 

 
Figure 8.7 Control Allocation for Yaw Maneuver No. 1. 
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An alternative maneuver was also selected, as shown in Table 8.7. For this 

maneuver, a negative pitch and yaw rotations, and a positive roll rotation are 

implemented to demonstrate the capability of the controller to perform positive and 

negative rotations. Figures 8.8 and 8.9 (quaternions and Euler’s angles representation, 

respectively) show the attitude performance of maneuver No. 2 while the controller is 

stabilizing the system at the desired attitude. 

 
Figure 8.8 Quaternions Attitude representation for Maneuver No. 2. 
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Figure 8.9 Euler Attitude Representation for Maneuver No. 2. 

 

Figure 8.10 Angular Rates for Maneuver No. 2. 
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Similar to the previous maneuver, Figure 8.10 demonstrates that the angular 

velocities are driven to zero. The tracing of the moments for maneuver No. 2 is shown in 

Figure 8.11. 

 
Figure 8.11 Moments for Maneuver No. 2. 

Results from the Actuation activity metric are also shown for maneuver 2 in Figure 

8.12. Because this maneuver type was selected with higher rotations, the actuation 

activity of the system increases as expected. However, small rotations for roll and pitch 

angles were also selected, which reduce the actuation contribution due to these set of 

thrusters. On the other hand, the majority of the actuation was done by the set of thrusters 

involved in the yaw rotation. It can be seen from the plot that 84% of contribution was 

due by the yaw thruster against the 18% of contribution that was due by the roll and pitch 

thrusters. 
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Figure 8.12 Thruster Activity for Maneuver No. 2. 

Once again, the thrust commanded for each thruster is correlated to the on-off 

switching of attitude thrusters during maneuver No. 2, as shown in Figures 8.13 and 8.14. 

From Figure 8.13, it can be noted that during the first 11 seconds, the spacecraft remains 

in its initial position. At 12 seconds, the vehicle starts performing a negative pitch 

rotation. Thrusters 1, 4, 7, and 6 are fired while a few seconds later, thrusters 2, 3, 5 and 8 

are turned on to keep the vehicle stable. During 66 and 80 seconds, the configuration of 

on-off thrusters for a positive roll rotation is described. Roll rotation is performed by 

using thrusters 2, 4, 5, and 7 in the positive direction followed by thrusters 1, 3, 6, and 8, 

and in the negative direction thrusters 1, 3, 6, and 8 are followed by thrusters 2, 4, 5, and 

7. 

In Figure 8.14, during 37 to 55 seconds, the yaw rotation is accomplished. In the 

negative direction, thrusters 10, 12, 14, and 16 are turned on, followed by thrusters 9, 11, 

13, and 15. In the positive direction, thrusters 9, 11, 13, and 15.are turned on, followed by 

thrusters 10, 12, 14, and 16. 
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Figure 8.13 Control Allocation for Roll and Pitch Maneuvers No. 2. 

 
Figure 8.14 Control Allocation for Yaw Maneuvers No. 2. 
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8.1.2  Attitude Performance with TMAE and TME 

Simulations were also performed in order to evaluate the effects that the undesired 

dynamics produce in the attitude performance of the vehicle and its overall stability. For 

this purpose, a case of study is selected where a specific maneuver is established, as 

shown in Table 8.8. This maneuver includes a rotation of 90 degrees to show the 

capability of the controller to perform a rotation of 90 degrees in the pitch angle. 

Table 8.8  

Maneuver No. 3 

          Time [s] 

 

Attitude [o] 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝜙 0 0 0 0 0 0 2 2 2 2 0   0 0 0 

𝜃 0 90 90 0 0 0 0 0 0 0 0 0 0 0 

𝜓 0 0 0 0 0 0 10 10 0 0 0 10 10 0 

 

This case of study represents a simple scenery where undesired dynamics produced 

by Thrust Magnitude Error (Table 8.9) and Thrust Misalignment Angles (Table 8.10) are 

present in multiple thrusters. 

Table 8.9 

Configuration of Thrust Magnitude Error for Maneuver No.  3 

Thruster No. Thrust Magnitude error 

1 and 2  
2% of Thrust desired 

9 and 10 

 

Table 8.10 

Configuration of Thrust Misalignment angle Errors for Maneuver No. 3 

Thruster No. Misalignment Angle 

1, 3, 4, 6, 7 and 8 3

2





 

 
 

10, 13, and 14 
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Figure 8.15 and Figure 8.16 show the overall attitude performance (quaternion and 

Euler’s angles representation, respectively) while maneuver No. 3 is executed. These 

figures present the results obtained for the cases of nominal condition (Actual), the 

presence of thrust misalignment angles (Misalignment), when a small thrust magnitude 

error is considered (Thrust error), and when the mathematical thrust error model is used 

within the control allocation to compensate for these undesired dynamics (MTE). 

 As noted in these figures, in the presence of undesired dynamics, the overall 

tracking performance is slightly degraded. However, the controller is able to maintain an 

acceptable commanded attitude around bounds of nominal condition. 

 
Figure 8.15 Quaternions Attitude representation for Maneuver No. 3. 
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Figure 8.16 Euler Attitude Representation for Maneuver No. 3. 

 
Figure 8.17 Angular Velocities for Maneuver No. 3. 
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The tracking response for angular velocities and moments acting on EASY are 

shown in Figures 8.17 and 8.18. The presence of  thrust misalignments angles in different 

thrusters create extra forces acting in all three axes. These forces contribute to the 

generation of undesired moments that affect the desired rotations. In Figure 8.18, it can 

be noted that due to misalignments in the yaw’s thrusters, an extra force in the X axis is 

generated. Thus, the moment around this axis presents a sudden rotation of higher 

magnitudes. This effect is also seen at the moment around Y axis. 

 
Figure 8.18 Moments for Maneuver No. 3. 

Overall, Thrust Misalignments Angles affect the attitude performance of the vehicle 

by creating unexpected rotations. The thrust magnitude error considered in this case also 

contributes to the degradation of the attitude performance. However, since it was only 
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considered in a few of the thrusters and its magnitude was not beyond 2%, the attitude 

response is close to the desired one. The implementation of the Mathematical Thrust 

Error model within the control allocation helped to compensate for this undesired 

dynamics by cancelling the effect in the feedback linearization process. 

8.2  Implementation Results  

This subsection describes the implementation results obtained from the quaternion 

based feedback linearization controller described in Chapter 5. An evaluation of the 

stabilization performance of the controller is presented under considering two cases: first 

case, nominal condition, and second case, presence of undesired dynamics. A newly 

defined maneuver is shown in Table 8.11 

Table 8.11 

Maneuver No. 4 for Implementation 

 
            Time [s] 

 

Attitude [o] 

0 1 2 3 4 5 6 7 8 9 10 

𝜙 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 

𝜃 0 0 0 0 0 0 0 0 0 0 0 

𝜓 0 0 0 0 0 0 0 0 0 0 0 

 

8.2.1  Attitude Performance for Nominal Condition 

Time history of attitude representation using quaternions and Euler is presented in 

Figures 8.19 and 8.20, respectively. During the implementation process, the GUI 

described in Chapter 8 is used, which facilitated the deployment of control law codes and 

calibration of the initial attitude conditions before starting the maneuver. While this 

process is in progress, the desired attitude maneuver is sent and recorded. 

In Figures 8.19 through 8.23, it can be seen that some undesired rotation is achieved 

in roll and pitch rotations at the beginning of the maneuver. This situation can be 



88 

 

 

explained due to the inaccurate distribution of pressure in the system. However, 

compensation for those undesired angles is accomplished. Although a steady state error is 

present in the pitch angle, it can be corrected with a better tuning of the controller. 

Despite this error, the attitude performance of the vehicle is acceptable. 

Angular velocities tracking performance shown in Figure 8.21 support the 

performance of the controller shown in Figures 8.19 and 8.20. Although there is not zero 

error tracking, the existing error does not exceed more than 2 degrees per second for the 

angular velocities p and q. 

 
Figure 8.19 Quaternions Attitude Time History for Implementation Maneuver No. 4. 
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Figure 8.20 Euler Attitude Time History for Implementation Maneuver No. 4. 

 

 
Figure 8.21 Angular Velocities Time History for Implementation Maneuver No. 4. 
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The desired moments provided by the implemented attitude control laws are used 

within the control allocation to provide the exact thrust force needed for each thruster. As 

part of the implementation process, each thrust force is converted into a duty cycle, as 

shown in Figure 2.13. Figure 8.22 shows the thrust force required for each of the thrusters 

involved in the yaw rotation. The corresponding duty cycle of this thrust force is shown 

in Figure 8.23. From Figure 8.23, it can be observed that the duty cycle is represented 

within a range between 1 and 0, representing the ‘on’ and ‘off’ state of the thruster. 

During the duty cycle corresponding to the yaw rotation, it can be seen that once the 

attitude is reached, the duty cycle is reduced. 

 
Figure 8.22 Thrust Commanded for Yaw Rotation in Implementation Maneuver No. 4. 
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Figure 8.23 Duty Cycle for Yaw Rotation, Implementation Maneuver No. 4. 

8.2.2  Attitude Performance with TMAE and TME 

As outlined in Tables 8.12 and 8.13, different thrust misalignment angles and 

magnitude thrust errors were chosen to study the performance of the controller under this 

type of undesired dynamics. For this case, the vehicle is commanded to perform a final 

maneuver as shown in table 8.14 

Table 8.12 

Configuration of Thrust Magnitude Error for Maneuver No. 5 

Thruster No. Thrust Magnitude error 

1 and 2  
1% of Thrust desired 

9 and 10 
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Table 8.13 

Configuration of Thrust Misalignment Angles Error for Maneuver No. 5 

Thruster No. Thrust Misalignment Angle 

11, 13, and 16 
3

2

 






 

 

Table 8.14 

Implementation Maneuver No. 5 

            Time [s] 

 

Attitude [o] 

0 1 2 3 4 5 6 7 8 9 10 

𝜙 0 0 0 0 0 0 0 0 0 0 0 

𝜃 0 0 0 0 0 0 0 0 0 0 0 

𝜓 25 25 25 25 25 25 0 0 0 0 0 

 

 

Figures 8.24 and 8.25 illustrate the time history of the attitude stabilization. As it can 

be seen in the referenced plots, the attitude stabilization of the desired yaw rotation is 

kept during the whole maneuver. However, the degradation performance on the roll and 

pitch maneuvers is due to the presence of thrust misalignment angles in the yaw’s 

thrusters (only) and the thrust magnitude error in the 1, 2, 9 and 10 thrusters. Thrust 

misalignment angles in the yaw thrusters generate an extra force component in the Z and 

X axes that creates a rotational moment with respect to the X and Y axes. As such, the 

thrust magnitude error decreases the force given to the thruster to perform the desired 

maneuver. 

Even though the controller is able to maintain the desired yaw maneuver and the 

performance is degraded in the roll and pitch maneuvers, it is clear that the proposed 

controller has the capability of handling these amounts of undesired dynamic while 

maintaining the vehicle inside bounds of nominal stability. 
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Figure 8.24 Quaternions Attitude Time History for Implementation Maneuver No. 5. 

 
Figure 8.25 Euler Attitude Time History for Implementation Maneuver No. 5. 
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Figure 8.26 Angular Velocities, Implementation Maneuver No. 5. 

Figure 8.26 shows the effect of undesired dynamics. Significant angular velocities p 

and q are present while the yaw maneuver is being performed. 

Figures 8.27 and 8.28 show the moments and accelerations experimented by the 

spacecraft while the maneuver is performed. As already seen in the quaternions and 

Euler’s angles representation plots, the stabilization performance of roll and pitch 

rotations is not accomplished. Looking at this error though the moments acting on the 

spacecraft in Figure 8.27, it can be noted that due to forces in the other axes, differential 

moments are generated thought the maneuver. A generation of extra moments implies a 

change in the acceleration of the corresponding axis. 
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Figure 8.27 Moments Time History for Implementation Maneuver No. 5. 

 

 
Figure 8.28 Body Accelerations Times History for Implementation Maneuver No. 5. 
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The amount of fuel spent by the propulsion system is increased, as shown in Figure 

8. 29, demonstrating a notable increase in fuel expense when misalignments and thrust 

magnitude errors are present in the attitude thrusters. This increase may be explained by 

the amount of extra firing activity of the thrusters trying to compensate for undesired 

moments generated by such undesired dynamics. 

As shown in Figure 8.30, the global performance index was also calculated for the 

entire duration of the maneuver. It is clear that the overall performance of the mission is 

degraded when misalignments and thrust magnitude errors are present in the system. 

 

 
Figure 8.29 Solenoid Activity Metric, Implementation Maneuver No. 5. 
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Figure 8.30 Global Performance Metric, Implementation Maneuver No. 5. 
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9.  Conclusions 

This thesis study has explored the functionality of implementing a research 

spacecraft test-bed Extreme Access System (EASY) to support the testing, validation, 

verification and assessment of control laws algorithms. The developed prototype 

demonstrated significant capabilities and potential as a testbed for design and testing of 

control law algorithms. Specifically, the controller exhibited high fidelity, attitude 

stabilization and satisfactory performance. 

A simulation environment was developed to support the objectives of this thesis and 

evaluate different mission scenarios previous to implementation. Performed numerical 

simulations included the analysis of the system when undesired dynamics such as 

misalignment angles and thrust magnitude errors are present. 

Moreover, a description of the design, development, and implementation of a 

quaternions feedback linearization controller has been described. Overall, it was 

demonstrated through the implementation the capabilities of the designed controller to 

maintain the overall stability of the spacecraft. Even in the presence of undesired 

dynamics associated to thrust misalignment angles in the thrusters and errors in the thrust 

magnitude generated by the propulsion system the vehicle was able stabilized to the 

desired maneuver. Errors by 2 degrees are presented in the stabilization performance of 

the attitude; this can be explained by multiple causes that are external to the proposed 

controller by itself. The mentioned causes are related to the disturbances presented at the 

laboratory such as air coming from the air conditioner system, deformation of the tubing 

plastic, leaks of pressure,etc.   
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10.  Recommendations and Future Work 

There are still many avenues not shown in this thesis for future work in different 

areas. As mentioned earlier, this research Spacecraft test-bed can be used for the design 

validation and verification of multiple control law systems. So far, only a quaternion 

feedback linearization based controller has been implemented. However, multiple 

controllers such a PID, LQR, Adaptive and other controllers can be tested using this 

Spacecraft test-bed. For the tuning process of each controller is recommended to have a 

constant fuel supply attached to the vehicle. A pneumatic setup with a pair of storage 

cylinder for compressed air attached to the IGOR structure will provide this capability. 

In terms of the propulsion system, there are two possible ways to enhance the thrust 

produced by the thrusters, that could be an interesting topic for future work, is to redefine 

the nozzle’s dimensions as well as the manufacture and material method used for them. A 

metallic 3D printer could be used for this purpose. Moreover, the second one is to change 

the type of fuel, EASY’S pneumatic system is able to handle cold gas using the same air 

tanks described in chapter 2. Regarding the pressure lines that conduct the compressed 

air, the use of steel tubing instead of plastic tubing will avoid pressure leaks of the 

system, as weel as, possible deformations of the material due to the use of it.  

For navigation purposes, the implementation of optical-flow based vision will 

provide the geopositional data required to perform translation displacements inside the 

environment testing described in chapter 7. 

Finally, this thesis was not shown the thrust vectoring  capability of the vehicle. 

Future implementation of control laws for the Thrust Vectoring Control Configuration 

will enhance the performance of the vehicle. 
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