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Abstract

AFOSR Multidisciplinary University Research Initiative (MURI), “Integrated Mea-
surement and Modeling Characterization of Stratospheric Turbulence”, is a 5-
year effort to resolve significant operational issues concerning hypersonic vehicle
aerothermodynamics, boundary layer stability, and aero-optical propagation. In-
situ turbulence measurements along with modeling will quantify spatiotemporal
statistics and the dependence of stratospheric turbulence on underlying meteorol-
ogy to a degree not previously possible. Data from high altitude balloons sampling
up to kHz is required to characterize turbulence to the inner-scale, or smaller, over
altitudes from 20 km to 35+ km.

This thesis presents the development of a standard balloon bus, based on re-
liable COTS components, that includes radios operating in Ham/ISM frequencies
with high-gain ground station antennas to achieve high telemetry rates that poten-
tially enable sub-cm scale sampling. It also presents the development of controlled
descent systems based on reliable COTS components that allow high resolution un-
perturbed measurements during the descent of the balloon payloads. Both single
and double balloon configurations for a controlled descent are investigated while
maintaining a suitable cost for mass production of the system. We are also in-
vestigating configurations for multiple ground station to allow the use of Single
Payload Multiple Ground Stations strategies to facilitate low error rate high vol-
ume data downlinking and closely-timed launches. The performance of using some
retransmission techniques to download the data over altitudes from 20 to 35+km
when the balloon is out of the altitude range of interest (below 20 km) is analyzed;
thus, being able to reduce the percentage of packet losses even during slow descent
rates, reaching long slant ranges.

This thesis is designed and implemented using Arduino IDE and MATLAB for
software development and testing, circuit design with National Instrument’s Multi-
sim and Ultiboard, transceivers configuration with proprietary software, extensive
components and system testing, 3D printing, temperature calibrations using a
TestEquity temperature chamber, and actual high-altitude balloon launches for
final performance analysis.
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Glossary

A
ASeg: Air Segment
APRS: Automatic Packet Reporting

System
AGU: American Geophysical Union

C
COTS: Components-Off-The-Shelf
CDU: Controlled Descent Unit

F
FAA: Federal Aviation Administration
FCC: Federal Communications Com-

mission
FTU: Flight Termination Unit

G
GS: Ground Station
GSeg: Ground Segment

GUI: Graphical User Interface

H
HAB: High Altitude Balloon

P
PCB: Printed Circuit Board

I
IARU: International Amateur Radio

Union
ISM: Industrial, Scientific and Medical

U
UHF: Ultra High Frequency
UTLS: Upper Troposphere, Lower

Stratosphere
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Chapter 1

Introduction

High-altitude balloons (HABs) are manned or unmanned balloons, usually filled
with helium or hydrogen, that are released into the stratosphere. They have
been used for climate and meteorological research for more than 100 years, allow-
ing near-continuous measurements from the Earth’s surface into the stratosphere.
HABs typically burst around 30 km and the instrument payload descends under
a parachute, unless other controlled descent techniques are considered.

The most common application or balloon type are the weather balloons; how-
ever, high-altitude flight operations provide a platform for applications such as
telecommunications, surveillance and intelligence, real-time monitoring for regions
susceptible to natural disasters, and scientific research among others. They have
even been considered for space tourism. In this section, some example of HAB
systems are presented, including information about their main application, perfor-
mance and specifications parameters. Some information about how those systems
could not be used for the scope of this project is analysed in next sections. From
this section, conclusions about why a HAB system design with different capabil-
ities from the ones available is required for the successful of this project can be
extracted.

1.1 Weather Balloon Systems

A weather or sounding balloon is a type of high-altitude balloon that carries instru-
ments to send back information on atmospheric pressure, temperature, humidity
and wind speed by means of a small, expendable measuring device called a ra-
diosonde. These systems are basically designed to get data beginning at three
meters above the Earth’s surface.

Twice a day, every day of the year, these systems are released simultaneously
from more than 800 locations worldwide, including 92 launched from US terri-
tories by the NOAA National Weather Service (NWS)[1]. During their 2-hour
duration flights, the weather balloons are being tracked to be able to calculate
wind speed and direction with high precision, among other meteorological data
that is sent to the ground station. One of the radiosonde models used by NWS is
the Vaisala RS92-SGP [2], which downloads the data at 2.4 kbps in the 403 MHz
frequency band.
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Figure 1.1: Weather balloon, top; parachute, middle, radiosonde instrument, bot-
tom (National Weather Service).

Figure 1.1 presents an example of one of those systems launches. When the
balloon bursts, the system descends only under a parachute at 40 ms−1 at the
beginning and achieves descent rates of less than 10 ms−1 by the end of the flight.

1.2 Telecommunications Systems

An example of HAB systems used in telecommunications applications is the Loon
project. Loon LLC is an Alphabet Inc. subsidiary working on providing Internet
access to rural and remote areas. The company uses HAB systems placed in the
stratosphere at an altitude of 18 to 25 km to create an aerial wireless network with
up to 4G-LTE speeds [3].

The balloons are maneuvered by adjusting their altitude in the stratosphere to
float to a wind layer after identifying the wind layer with the desired speed and
direction using wind data from the National Oceanic and Atmospheric Adminis-
tration (NOAA). The balloons also adopted figure-eight patterns instead of simple
circles to stay in a specific area over longer periods of time, which indeed proved
the more effective way to deliver a reliable and consistent LTE connection over
time. Figure 1.2 presents one of the balloons that Loon LLC uses during their
internet access campaigns.

Their communications systems have been working at unlicensed 2.4 and 5 GHz
frequency bands. Google also experimented with laser communication technology
to interconnect balloons at high altitude and achieved a data rate of 155 Mbps
over a distance of 100 km[4].
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Figure 1.2: A Loon balloon used for the internet access campaign.

1.3 Transport Systems

Due to the limitations in terms of downloaded data and validation of the results,
HAB are often used just as transport platforms, so other complex systems can reach
stratospheric altitudes. There are a few private companies, such as Zero2Infinity
[5], using HAB systems transport platforms for “elevation services”, as they called
them. Their applications are divided in platforms for payload testing, satellite sub-
systems validation, marketing, drop tests, weather data or remote sensing. They
even consider high altitude balloon platforms for “human payloads” [6].

Their stratospheric transportation service uses high altitude balloons to bring the
equipment/payload to up to 22 km. Their flight cycle includes ascent rates be-
tween 4-5 ms−1, up to 24h floating at a constant altitude between 18 and 22 km,
and a descent using a parachute. The flight endurance depends on the total pay-
load mass: for payloads between 2.5 and 10 kg, the maximum flight time is 10h.
In those flights, the data is saved on board and the payload is usually recovered.
Figure 1.3 presents an example of the balloons used for these systems.

Figure 1.3: Elevate - Zero2Infinity HAB stratospheric transportation systems.
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Figure 1.4: Stratodynamics Flight Height Graphic.

An example of a completely external system that takes advantage of HAB
transport platforms is the HiDRON [7]. The HiDRON is an unmanned glider de-
signed by Stratodynamics to collect high-altitude atmospheric data autonomously.

The glider is designed to be lifted by a high altitude balloon up to an altitude
of 35 km, where it is released and starts descending and collecting data. Despite
the harsh environments, the HiDRON is able to transmit data at 256 kbps to the
ground station during a four-hour controlled descent up to a range of 100 km to
a data relay network. This system requires a flight path pre-programmed to work
as expected. This subsystem trajectory can be seen in Figure 1.4.

1.4 Academic Research Systems

The low cost of the equipment for high-altitude balloon launches, makes them
a hands on project; where several organizations even assist and commercialize
the development of their payloads. One such example is High Altitude Science
[8] that provides HAB kits and instruments at a relatively affordable cost, from
launch setup materials to communications systems. Even if there is no science in-
strument on board a HAB, a communication link is required to at least be able to
track it. Under certain regulations, their payloads can use ISM and amateur radio
frequencies for the data transmission, assisting the flight path tracking, and the
data downloading from the on-board sensors. The data rate required from those
sensors depends on the balloon application and desired measurements resolution.

There are global education programs and companies that provide students an
opportunity to design and compete to launch experiments into space using high-
altitude balloons; they can engage in activities to design and develop the on-board
experiments and they expand the usage of these profitable systems.
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Figure 1.5: Idoodlelearning - Cubes in Space Program, 2016.

Idoodlelearning inc. [9] is a global education company that provide free high-
altitude balloon and rocket launches to students participating in their program
‘Cubes in Space’ with the collaboration of NASA. The students have to design
an experiment that fits into a 4 cm cube that has to be launched into space (or
near space environment) and perform different analysis, e.g. materials, sensors
accuracy, battery cells experiments. Figure 1.5 presents the deployment of this
system for the program of 2016.

NASA has a collaborative High Altitude Student Platform (HASP)[10] that uses
HAB systems to provide students with flight/launch opportunities for their re-
search payloads. The HASP flight program is supported by the NASA Balloon
Program Office and the Louisiana Space Consortium. Currently, HASP flies once
a year in September from the Columbia Scientific Balloon Facility (CSBF) base in
Fort Sumner, New Mexico.

HASP carries all the payloads to altitudes of 36 km at an ascent rate of 5 ms−1,
for durations of up to 20 hours. After that, the platform descends at rates higher
than 15 ms−1. Figure 1.6 presents an example of one of the HASPs.

Figure 1.6: NASA High-Altitude Student Platform launch.
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1.5 AFOSR - MURI Project

The design of hypersonic vehicles needs to account for the effects of ambient at-
mospheric turbulence and particles in the middle stratosphere. The lack of sta-
tistically significant turbulence measurements at those altitudes makes it hard to
design the aerodynamics of aircraft that can consistently fly at hypersonic speeds
(above Mach 5 or 3,800 mph) for a long time. Furthermore, availability of such
data will enable constraining and parameterizing of detailed modelling.

The AFOSR funded Multidisciplinary University Research Initiative (MURI) “In-
tegrated Measurement and Modeling Characterization of Stratospheric Turbu-
lence” [11] is a 5-year project consisting of a consortium of three universities -
University of Colorado Boulder, Embry-Riddle Daytona Beach, and University of
Minnesota- working on HAB platforms for common goals. The HAB platforms
will be used for hypersonic boundary layer modeling, aero-optical propagation as-
sessments, and linkages from meteorology to stratospheric turbulence statistics,
yielding the following expected outcomes addressing US Air Force capabilities:

• Quantify the roles of atmospheric turbulence and particle concentrations on
laminar-turbulent transition for hypersonic flight conditions.

• Rigorously connect the atmospheric turbulence state to the disturbance forc-
ing amplitude of relevant boundary layer instability mechanisms.

• Understand how atmospheric particles interact with a hypersonic flow field
and promote instability growth and transition to turbulence.

• Quantify the impacts of stratospheric turbulence spatio-temporal statistics
and larger-scale coherent refractive index fluctuations on long-distance aero-
optical propagation.

• Provide a “strawman” stratospheric turbulence forecasting scheme account-
ing for variable environments and energy inputs from meteorology at lower
altitudes.

To cover the previous capabilities, the following research points shall be addressed:

• Spatio-temporal statistics of small-scale turbulence measurements in the
middle and upper stratosphere, and to what extent are they dictated by
larger-scale motions, such as primarily gravity waves that arise from meteo-
rological sources at lower altitudes.

• Distributions of particles in the stratosphere, and their dependence on un-
derlying meteorology.

• Relative roles of particles and pre-existing atmospheric turbulence for the
laminar-turbulent transition at hypersonic speeds in the middle and upper
stratosphere.

• Effects of particles, temperature sheets, and small-scale turbulence in the
middle and upper stratosphere on long-range optical propagation and how
can these effects be accurately represented in computational simulations.
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1.6 Thesis Outline

The MURI HAB system design, implementation, and testing constitutes the scope
of this thesis, from payload subsystem components to controlled descent units for
single and double balloon configurations. The development work is enumerated in
several chapters and appendices, showing the progress made in the different stages
of the design and the different approaches analysed:

• In the next Chapter 2, the state of the art of HAB regulations and policies,
controlled ascent and descent systems, payload tracking and data download-
ing techniques is presented.

• Chapter 3 presents the hardware and software design of both ground sta-
tion and payload systems. From early design stages with first considered
transceiver and on-board microcontroller models to double and single bal-
loon controlled descent unit designs. It includes the PCB design for the
final stages, when needed, and a summary of main changes and conclusions
considered when updating the design.

• Then, Chapter 4 presents the main results obtained from the final designs.
The results will demonstrate that the project requirements are met and will
present the system behaviour in real scenarios.

• Chapter 5 details the final design costs and the available facilities that were
used for the development of this thesis.

• The main conclusions of the thesis efforts are discussed in Chapter 6.

• The future approaches to improve the final designs and the integration of
the ERAU part of the AFOSR-MURI project are presented in Chapter 7.

• Finally, a series of appendices incorporate information about modules config-
uration, ground station setup, sensors calibration, PCB designs, and software
used for both ground and air segments.

Figure 1.7: ERAU HAB Systems - Single and Double Balloon Configurations.
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Chapter 2

State of the art

The state of the art of this project is a brief introduction of high-altitude balloon
system performances and applications from both the ground and the air segments.
It covers regulations considered when developing these HAB systems, approaches
used for single and double balloon configuration launches to achieve a controlled
ascent and descent, performance parameters of interest -achieved altitude, resolu-
tion of the measurements-, and the payload tracking techniques.

2.1 HAB Regulations and Policies

HAB launches are subjected to governing laws and regulations of the country to
ensure the safety of pilots and the communications regulations.

The following FAA and FCC laws and regulations shall be considered and al-
ways checked for possible updates. The following list presents a summary of the
most important ones to apply to the HAB design and launches:

• Federal Aviation Administration (FAA) - Part 101 [12]:

– No person may operate an unmanned free balloon at any altitude where
there are clouds or obscuring phenomena of more than five-tenths cov-
erage.

– No person may operate an unmanned free balloon at any altitude below
60,000 feet (18 km) standard pressure altitude where the horizontal
visibility is less than five miles.

– No person may operate between sunrise and sunset an unmanned free
balloon with a suspension device more than 50 feet (15 m) along, with-
out this device being visible for at least one mile.

– The balloon shall be equipped with at least two payload cut-down sys-
tems or devices that operate independently of each other.

– The balloon envelope shall be equipped with a radar reflective device(s)
or material that will present an echo to surface radar operating in the
200 MHz to 2700 MHz frequency range.

– Any individual payload must weight less than 6 pounds (2.7 kg).
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– Total payload of two or more packages carried by one balloon must be
less than 12 pounds (5.4 kg) total.

– The balloon cannot use a rope or other device for suspension of the
payload that requires an impact force of more than 50 pounds (22.7 kg)
to separate the suspended payload from the balloon.

– No person operating any balloon may allow an object to be dropped
therefrom, if such action creates a hazard to other persons or their
property.

– The local FAA ATC must be notified of the estimated date and time
of launching, amended as necessary to remain within plus or minus 30
minutes, as well as the launching site and forecast trajectory.

– Each person operating an unmanned free balloon shall forward any
balloon position reports requested by ATC.

– One hour before the descent, the person operating the balloon shall
forward to the nearest FAA ATC facility the altitude and forecast tra-
jectory.

– If a balloon position report is not recorded for any two-hour period of
flight, the person operating the balloon shall immediately notify the
nearest FAA ATC facility, providing the last recorded position and any
revicion of the forecast trajectory.

• Federal Communications Commission (FCC) - 22.925 [13]:

– Cellular telephones installed in or carried aboard must not be operated
while are airborne. The violation of this rule could result in suspension
of service and/or a fine.

2.2 Controlled Ascent and Descents

High-altitude balloon experiments are a key point for vertical profile measurements
in the upper troposphere and lower stratosphere (UTLS). Traditional meteorolog-
ical methods employed by national weather services start with ascent at approx-
imately 5 ms−1 up to the altitude of balloon burst, when it starts descending at
high speed (40-60 ms−1) for about 20 km, until the parachute reduces the descent
rate to less than 40 ms−1. Considering that the parachute works as expected, the
payload impacts the surface at up to 15 ms−1 [14]. It has been demonstrated that
ascending weather balloons can perturb the UTLS measurements; and at the afore-
mentioned descent rates, the vertical resolution and accuracy of the measurements
are critically reduced. Consequently, the use of controlled descent techniques has
been investigated in this thesis.

There are different designs to control the start of the descent, commonly known
as Flight Termination Units (FTU) or Controlled Descent Units (CDU). Custom
packages located above the parachute that separates/cuts the payloads from the
balloon before its burst altitude are considered FTU. In this case, the payload
descents with a single parachute at the aforementioned high speeds.
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Figure 2.1: Single balloon method of controlled descent the balloon flight con-
sisting of (A) the automatic balloon valve and pressure sensor assemblies (B) a
parachute (C) a 52 m string unwinder and (D) the instrument payload. The valve
and pressure sensor assemblies include (E) a valve cap assembly (F) a PVC pipe
segment (G) four screw-in eyelets and (H) a pressure sensor, logic board and bat-
teries. The pipe cap assembly includes (I) a pipe cap (J) a hot wire string cutter
(K) two cap anchoring strings and (L) a helium fill port.

For a slow descent, CDU designs are considered for double/single balloon con-
figurations. In those designs, at least one balloon will descend with the payload,
enabling descent rates of 2-4 ms−1 to obtain high-resolution measurements during
that part of the flight.

A. Kräuchi et al.[14] presented two different approaches, used by NOAA for the
past decade, for achieving controlled slow descent: single-balloon scheme with a
vent mechanism for the lift gas and double-balloon scheme wherein one balloon is
released and descent occurs under one balloon.

For the single balloon mechanism, a valve system attached to the neck of the
balloon is activated at a desired pressure. The valve system consists of a PVC
pipe, a pipe cap, two anchoring strings and a hot nichrome wire. The strings will
retain the pipe cap until a certain pressure is reached and the nichrome wire will
burn them. Once the cap falls away, the helium flows out of the balloon through
the pipe. The balloon keeps ascending until it reaches a neutral buoyancy and
then begins the descend as more helium is released. An sketch of this design can
be seen in Figure 2.1.

Payloads up to 5 kg were able to successfully flown with this CDU, achieving
descent rates of approximately 5.4±0.4 ms−1 at 30-25 km to 3.1±0.3 ms−1 below
14 km. The difference in those rates is based on the air pressure at the valve open-
ing and the temperature of the internal gas at different altitude ranges. Between
2008 and 2016, NOAA launched 250 balloons with this CDU design, achieving
successful controlled descent in 75% of them, reaching a maximum altitude of 30
km.
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Figure 2.2: Double balloon method of controlled descent with carrier and parachute
balloon connected to the payload via the triangle that includes an Intelligent Bal-
loon Release Unit (IBRU) release mechanism.

The double balloon configuration technique presented in A. Krauchi et al [14]
can be seen in Figure 2.2. As it can be seen, this technique uses a carrier balloon
to lift the payload and a second balloon that acts like a parachute to allow a slow
descent. The payload is connected to a triangular frame, where each balloon is
connected to one vertex. The frame contains another hot wire mechanism to cut
the string of the carrier balloon at a certain altitude, periodically measured by a
GPS receiver. In this case, the carrier balloon is inflated with enough gas to lift
the payload at 5 ms−1, while the other balloon is only inflated with enough gas to
maintain a 5 ms−1 descent rate once the other balloon is released.

The double balloon mechanism presents reduced pendulum motions when com-
pared with the single balloon mechanism, which is important for the quality of the
measurements. This mechanism also improves the stability of the descent rates.

In Vignelles et al.[15], the data of 95 launches over 3 years achieving a mean
altitude of 30.5±4.2 km is presented. The main goal of those launches was to
measure the spatial and temporal variability of aerosols in the troposphere and
stratosphere. The minimum altitude achieved was 14.4 km and the maximum was
36 km, with only two balloons crossing 35 km. During these launches, only the
ascent part of the flight was considered, since a CDU was not included in the
system, and the payload was descending under a parachute. The data of 18% of
the launches was declared invalid, due to perturbations in the measurements. The
source of some of those perturbations are caused by the balloon system crossing
the area of measurements before the specific sensors.
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2.3 Payload Tracking Systems

It is important to be able to track a balloon trajectory due to regulations, but
there are other important reasons to do that:

• A balloon tracking system allows to communicate with the payload and
receive telemetry back or send commands to it even at high slant ranges
from the ground station.

• An accurate balloon tracking system provides a possibility to recover the
payload when it lands, with low uncertainty of its final location.

The different available techniques to track the payload are based on GNSS/GPS
technology to transmit the position of that payload. The main difference between
those techniques is how to get the information to the ground station to be able to
track the system: the coordinates can be sent using an on-board transceiver that
transmits the payload position to a satellite network, amateur Automatic Packet
Reporting System (APRS) stations, cellphone towers or custom ground stations
working at the frequency band of the transmitter.

Considering that FCC regulations don’t allow the use of cell phones during the
flight, only satellite and amateur tracking techniques are going to be analysed in
this section:

• Satellite Balloon Tracking.
Satellite trackers are designed to rely on a network of satellite in orbit to
receive their position signal. Once the correct coordinates are obtained, the
tracker beams the packets to a communication satellite to relay the position
to various ground stations using Internet connections. However, there are a
few things to keep in mind when using a satellite tracker:

– The antenna of the payload shall be always pointed at sky. If not, the
satellite in orbit will possibly not receive the position signal. Many
payloads have been lost for this reason.

– Satellite trackers require a subscription fee.

– The position is only updated once every 5 or 10 minutes, so the accuracy
of the measurements based on position is low, because only flight path
predictors cannot provide the required level of accuracy.

– Satellite trackers do not use specialized GPS receivers and there are
typically stop updating position above 18 km. Once the balloon starts
descending, below 18 km, the tracking is resumed.

• Amateur Balloon Tracking.
A portion of the ISM spectrum is reserved for amateurs and can be used to
send your balloon position to your ground station. In this case, there are
different options too:

– 1.- Automatic Packet Reporting System (APRS).
Thousands of stations are listening your balloon transmissions, per-
formed by modules similar to the one presented in Figure 2.3 from
Stratotrack.
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Figure 2.3: StratoTrack APRS Transmitter [16].

Once they hear your packet, they automatically push it to the internet
to display on a map. The system can rely on data backup and there is no
need to download the data during the flight if the payload is recovered.
These are the main things to consider about these systems:

∗ To legally use an APRS tracker, the FCC does require that you
have an amateur radio license.

∗ Most APRS trackers are designed for tracking vehicles; therefore,
their GPS receivers have the same issue of not working above cer-
tain a altitude (18 km in this case) as satellite trackers do.

∗ The cost of a APRS tracker can vary from $200 to $600.

∗ If the payload lands in a rural area, far from an amateur radio
station that can receive the tracker’s signal, the payload coordinates
are never received. That is why these systems are usually used as
supplements to satellite trackers.

– 2.- ISM - Communications System.
A completely dedicated and independent from other sources commu-
nications system is used where the balloon sends its GPS coordinates
and the telemetry of interest to a ground station that is tracking only
the signals from that particular balloon during its flight, and saving
all the data of interest. This is the approach presented in this thesis
since it is completely modular and customizable; therefore, it can be
adapted to possible project changes. Moreover, it is not dependable of
the availability of external signals or monitoring systems.

2.4 Data Downloading

HAB platforms are usually used as on-board data loggers, due to the fact of not
having a dedicated ground station to download the data to, and their maximum
slant ranges capabilities.

During the 95 launches presented in D. Vignelles [15], in order to avoid mea-
surement disturbances, the data recorded on-board was only transmitted 0.35/1
seconds. During that transmission time, the data was not saved, resulting in only
0.65/1 seconds of measurements. For an average ascent rate of 5 ms−1, 1.7 m every
5 m was not recorded. For the purpose of this project, high spatial and tempo-
ral resolutions are required and, therefore, this approach should be improved if it
needs to be used for the MURI HAB launches. The total time that the communica-
tions of the payload are stopped can be reduced using data rates as high as possible.

In A. Shagger and N. Amilia [17], a communications subsystem independent of
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the GPS tracking system (APRS) was designed by the University Saints Malaysia
with a maximum range of 50 km, but most of the data was stored on-board to de-
crease the data transfer to the ground. Considering that the payload is not always
recovered, this approach could easily translate in low measurements resolution or
even invalidation of the launch data.

Another example of HAB communications systems is the one designed to test
a CubeSat payload in terms of functionality in H. Kimm et al. [18]. This system
only transmitted data from a movement sensor at 1 Hz, with a system based on
APRS. The communications link was maintained for the whole launch duration
and the payload was recovered, but the resolution of the measurements was low.
Moreover, the on-board subsystems were COTS CubeSat components, which make
the balloon system very expensive to mass-produce for this project analysis pur-
poses.

SparkFun provides several components to be used for HAB platforms, includ-
ing examples of complete HAB systems and flight analysis [19]. In one of them,
a 1W transmitter was included in the payload to download scientific data to the
ground working at the 900MHz ISM band. The system reached 15 miles (24 km)
of slant range before losing the transmission link, due to the type of antennas and
the tracking system used. Since slow ascent and descent rates can be translated
in HAB systems flying far away from the ground station, a slant range of only 15
miles is not enough to be compliant with the communications link requirements
for this project.

Future HAB communications systems are moving towards heavy systems of up
to 1 ton to be able to work as satellite or WiFi signals relays for fixed or mo-
bile services in stratospheric altitudes [20]. Those systems will be able to provide
high-data rates, but at a high cost and difficulty, which it is out of the scope of
this project, since their mass-production is not affordable. Figure 2.4 presents an
example of those platforms.

In summary, high-data rates HAB communications systems have not been ex-
ploited since they can be used as data loggers and they were not economically af-
fordable. Even with high data rates downlinks, the maximum slant range achieved
did not allow slow ascent and descent rates. A new communications systems needs
to be designed for this project, since payload recovering will not always be possi-
ble and downlink rates of at least 80 kbps shall be considered for high resolution
measurements.

Figure 2.4: High-Altitude Balloon Platform - Terrestrial System [20].
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Chapter 3

Design and Implementation

Considering the information presented in the previous chapters, chapter 3 presents
the design considerations and implementation of both the ground and the air seg-
ments of the project. First, a summary of the project requirements and objectives
is presented, followed by the design constraints and considerations. Then, the
ground station design is explained, including the Graphical User Interface (GUI)
used to control and monitor the system. Finally, a detailed description of the main
stages of the payload and controlled descent unit designs is presented.

3.1 Project Requirements and Objectives

The MURI High-altitude balloons will carry high data rate sampling instruments
on-board to allow sub-cm scale measurements. During their flights, real-time data
is transmitted to a ground station that is tracking the payload as well as storing the
received data for future analysis. The data transmission is required as retrieving
of balloons launched from certain locations is impossible; for example in Florida
where most of them end up in the ocean or in alligator swamps. Furthermore,
the sub-cm scale spatial sampling required by the instruments necessitates high
data rate communications over long range with a communications link with as low
percentage of losses or data errors as possible.

Taking into account that some of the sensors on-board will probably only record
valid data during the descent, a controlled descent mechanism must be considered.
Moreover, it makes possible to use the data at the altitude range of interest twice,
for the sensors that can obtain valid data during the ascent too.

In view of all previous research and the objectives of the project, the MURI project
in ERAU has set the following requirements for the balloon bus:

• Achieve capability for consistent high altitude (+30 km) launches.

• Achieve undisturbed environment for turbulence measurements, i.e. slow
descent.

• Achieve cheap high-data rate telemetry for centimeter scale turbulence mea-
surements (∼100 kbps).
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• Ability to ‘mass produce’ balloon payloads with optimum trade-off between
low cost and capability to allow more launches for the same cost.

• System design for simultaneous multi-point balloon launches and measure-
ments, or multiple follow-on launches for temporal measurements.

3.2 Design Constraints and Considerations

In this section, the main design constraints and considerations are discussed. First,
a summary of the size, weight, power and cost requirements and considerations
is presented. Then, a preliminary link budget is discussed considering expected
maximum working slant range for the communications link.

3.2.1 Size, Weight, Power and Cost (SWaP-C)

The SWaP-C considerations for this project were basically based in FAA/FCC
regulations and the requirements of the project. As it will be seen, they do not
present exact numbers, but an approximation of which limits or goals we should
or should not achieve/reach.

• Size and Weight
Considering the FAA regulations, the maximum weight for any individual
payload is 6 pounds (2.7 kg), and the total weight that a balloon can carry
is 12 pounds (5.4 kg). However, considering that cost is important for mass-
production purposes, the payload shall be as light as possible to be able to
reduce the cost in the type of balloon used for the launches and the amount
of helium to lift the payload at the desired ascent rate. While that could be
also translated into a specific size required to cover all the hardware, the use
of light styrofoam boxes eliminates size restrictions as long as the payload is
compliant with the other constraints and regulations.

• Power
In terms of power, it had to be considered that the power system shall be
designed to be able to power the whole payload subsystem for at least a 5
hour launch. This value accounts for slow ascent and descent rates and an
average altitude of 33 km.

• Cost
Taking into account that one of the project requirements is to mass-produce
the payloads to be able to launch several of them to take turbulence and other
measurements, cost is an important specification to consider when designing
the whole system. HAB academic launches costs typically are between $1,000
- $1,500 per launch, depending on the main on-board experiment. ERAU is
considering a price ceiling of $1250 per launch to make some of the design
decisions that will be seen in the next sections.
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3.2.2 Communications Link

A preliminary link analysis with worst case scenarios assumptions was used to de-
termine the possible transceivers to be considered for the communications system
design. The minimum required specifications to achieve long ranges with low per-
centage of data losses were specified when analysing this link budget. The results
of this analysis were taken into account during the design process and the selection
of some of the parts and components.

First of all, the frequency allocation was considered, based on the available transceivers
and the cost and performance of each one of them. In order to choose the proper
transceiver, a table of available transceivers and their characteristics was linked
to the link budget sheet used for the calculations. Based on that analysis, the
900-928 MHz frequency band was selected due to the following advantages and
specifications:

• 900-928 MHz frequency band is one of the Industrial, Scientific and Medical
(ISM) radio bands and no license is required to operate it.

• 900-928 MHz frequency band is part of region 2, which includes the Americas,
and the regulations applied are suitable for this project, such as maximum
Effective Isotropic Radiated Power (EIRP) allowed of 4 W (i.e. power output
of 1 W and up to 6 dBi of antenna gain).

• The number of available transceiver modules suitable for our design require-
ments in the 900-928 MHz band is higher than in other ISM bands -433MHz,
2.4GHz- and the specifications are better for this project: maximum trans-
mitted power and configurable data rate, and cost.

• SAIL, one of the facilities used for this project, already owned a 900MHz-
17dBi Yagi antenna that was available to be used in the project.

Considering the frequency selected, the transceivers list was reduced and the
best ones were selected to develop the payload design presented in next sections.
For the link budget analysis, the free space path losses, the atmospheric attenua-
tion, the receiver temperature and the antenna efficiencies were taken into account
to estimate the link margin for a FSK modulation, adding approximations of ex-
pected losses from hardware, atmosphere or environment interferences.

Table 3.1 present the main parameters considered when computing the link margin
of the communications link. There is not a specific valid link margin value, but
recommendations from IARU/AMSAT and local radio amateurs suggests that the
link margin should be approximately 8-10 dB on top of the SNR value in order to
be certain that the communication link will work. The SNR margin depends on the
bit error rate considered, taking into account the receiver sensitivity, which varies
depending on the data rate used. In this case, the maximum configurable data
rate (250 kbps) is considered as the worst case scenario, even though during the
final system integration this parameter could change. With those considerations,
the margin is approximately 8 dB for a maximum considered slant range of 140 km.

CHAPTER 3. DESIGN AND IMPLEMENTATION 17



Table 3.1: Link Budget

Parameter Symbol Units Value
Center Frequency f [MHz] 915
Transmitter Power Ptx [dBW] 0
Transmitter Antenna Gain Gr [dB] 5
Antenna/Transmitter Loss Lt [dB] -1.33
Equivalent Isotropic EIRP [dBW] 3.67
Radiated Power
Propagation Path Lenght [Max.] S [km] 140
Free Space Loss FSPL [dB] -134.60
Atmospheric Loss La [dB] -1
Polarization Loss Lp [dB] -3
Receiver Antenna Gain Gr [dB] 17
Receiver Loss Lt [dB] -1.5
Antenna Misalignment Losses - [dB] -1.78
System Noise Temperature Tsys [K] 1000
Power Flux Density - [dB(W/m2)] -110.25
Data Rate R [bps] 250000
Eb/No Eb/No [dB] 21.27
Required Eb/No [BER 1e-5] Eb/Noreq [Eb/No] 13.3
Margin - [dB] 7.97

The following link equation was considered to compute the link margin:

Eb

No

=
EIRP FSPL Lp Lt La Gr

kTsysR
, (3.1)

where k is the Boltzmann constant.

It is important to consider that when doing this link budget, some parameters
are approximated, since one cannot exactly predict the environment interferences
at the working frequency band.

3.2.3 Feasibility of Existing HAB Systems

Considering the project requirements and the design constraints and considera-
tions from the previous sections, this section presents a feasibility analysis of the
HAB systems presented in Chapter 1.

Weather balloons are a good example of multi-point measurements systems, being
tracked and downloading data in real time, but they are not taking into account
the down-leg of the flight. The amount of data that they need to download does
not require high data rates to be able to ensure high resolution measurements,
and they do not get data during the descent part of their flights. However, the
capability of mass-producing them to be able to launch two of those systems per
day makes them a good system design example for this project.
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Even considering that one of the project requirements is to obtain a high data
rate communications link, the cost of the Loon LLC system and the working alti-
tude range exclude them from being considered in this project payload design.

In terms of transport systems, Zero2Infinity’s system maximum working altitude
is 22 km, which makes this system not compliant with our requirements. While
HiDRON is compliant with the altitude requirements, it requires a flight path
pre-programmed and even though it would be a good option for payload recov-
ery and high data rate downlink, it is still a premature idea that will increase
the cost and development time of this project. The impact in terms of cost to de-
velop platforms like those is out of the requirements and capabilities of this project.

Academic research systems, such as HASP and Idoodlelearning, present an afford-
able low cost for amateur groups and students. However, this project will require
multi-point measurements that cannot be ensured with this type of projects, where
the experiments are just exposed at a certain altitude for a certain amount of time
and they cannot be launched from anywhere. The high descent rates make the
systems not suitable for undisturbed measurements while descending.

Table 3.2 presents a summary of the feasibility of the previously presented sys-
tems, considering the requirements for this project. It can be concluded that a
completely new payload compliant with all the requirements needs to be designed.

Table 3.2: Existing HAB Systems - AFOSR MURI Project Feasibility

Characteristic Radiosonde ZeroToInfinity HASP Loon
/HiDRON /Idoodle

Cost X -/- X/X -
Altitude Range X -/X X/X -
Data Rate - X/X X/X X
Launch X -/- -/- -
Locations
Descent Rate - -/X -/- -

3.3 Ground Station

To track the payload and retrieve as much data as possible, a ground station that
combines high-gain antennas, a calibrated and configurable rotor controller and
an easy-to-deploy modular design is considered. This section presents this ground
station design, based on the Yaesu G-5500 rotor system [21].

3.3.1 System Overview

The Yaesu G-5500 is a rotor system that has both azimuth and elevation (Az/El)
controls. The azimuth of the rotor has a turning range of 0°-450°. The elevation of
the rotor has a rotation range of 0°-180°. This rotor system is used by many univer-
sities and amateur radio operators to point antennas for different uses, from HAB
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to satellite projects. Yaesu offers a computer interface for their rotor, however it
requires RS-232 connection, and the adapter to be able to use it, manufactured by
the same company, is more expensive than the rotor itself - approximately $850-.
A USB computer interface that has increased functionality was built, considering
a maximum cost of $200. This computer interface was designed in this project
scope, consisting on a microcontroller board based on the ATmega2560 -Elegoo
Mega-, as the main rotor box controller. The microcontroller is in charge of getting
the actual antenna pointing and being able to change it by considering actual and
desired Az/El parameters. A printed circuit board (PCB) shield was produced to
do the signal conditioning required to communicate with the rotor controller box.
More information is presented in the next sections and in Appendix A.

One of the distinctive points of this ground station is that it is completely modu-
lar. A modular design enables the possibility to transport the ground station and
to easily do launches in the field, being able to have a functional ground station
in approximately 45 minutes. If a permanent ground station is not a feasible op-
tion for a specific team due to space availability or permission, a modular ground
station is the best option to be considered.

The ERAU ground station consists of 5 modules: antenna module, rotor mod-
ule, mast, tripod, and base plates.

• Antenna: it should be a high-gain antenna to enable long range communi-
cations, as well as directive to avoid as much environment interferences as
possible. It also should present enough H-V beam-width to be able to afford
pointing errors without substantial signal power losses.

Figure 3.1: ERAU Ground Station Modules
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• Rotor: the rotor module includes the Yaesu G5500 rotor and controller
box, as well as the designed shield to control the rotor controller box au-
tomatically. As aforementioned, the algorithm and PCB design to be able
to analyze the actual position of the rotor and move it properly to point
towards the payload was developed in this thesis scope.

• Mast: it shall provide enough altitude to the rotor to be able to avoid
interferences due to multipath with the ground and the building structures,
and enough line of sight with the HAB payload at the beginning of the
launch.

• Tripod: the whole rotor and mast structure must be as secured as possible
to the ground to avoid north misalignments and pointing offsets during the
flight. A 3-legged tripod attached to heavy base plates is used for that
purpose.

• Base Plates: the whole rotor, mast and tripod structure shall be stabilize
in the ground using base plates and, possibly, adding some weights on top
of them.

Figure 3.1 presents a mobile ERAU ground station setup, with the different mod-
ules differentiated. More information about the ground station modules, their
production and configuration, as well as the overall ground station setup can be
seen in Appendix A.

3.3.2 Rotor Box Controller

The main part of the ground station design is the pointing control system. This
section presents the design of the automatic rotor box controller. Considering that
the rest of the modules are hardware parts commercially available or produced in
ERAU, only the pointing control system design and implementation is presented in
this section, while all the other modules information can be found on Appendices
A and C.

The rotor box controller is based on the Yaesu GS-232 interface and is divided
in two parts: the microcontroller and the PCB design.

3.3.2.1 PCB Design

The PCB design is based on the actual design of the rotor box controller provided
by the company itself. It includes 4 NPN transistors to isolate the G-5500 from
the microcontroller control signals used for both azimuth and elevation directions,
an operational amplifier to improve low-voltage characteristics when working with
the low voltage readings coming from the low Az/El ranges, and a set of 10KΩ and
1pF resistors and capacitors for signal conditioning purposes. This design includes
a 5 pin molex connector where a GNSS sensor can be connected in case real-time
ground station position tracking is required (i.e. the ground station position is
continuously changing).
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Figure 3.2: Rotor Box Controller - PCB Shield.

As it can be seen in the Figure 3.2, to connect the shield to the rotor controller,
a 10-pin female connector is included in the PCB. A cable with the 10-pin male
connector to the PCB in one side and a 8-pin male connector matching the rotor
box connection is required for the external control connection with the rotor con-
troller box. Figure 3.3 and Table 3.3 present the rotor box controller connections.

Figure 3.3: Rotor Box Controller - Connections between Shield and Rotor Box
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Table 3.3: Controller-Rotor Box Connections

Conn. 1 Pin# Conn. 2 Pin# Name/Description
1 - -
2 2 El Analog Reading
3 7 Az Analog Reading
4 4 Az-LEFT
5 5 Az-RIGHT
6 10 El-DOWN
7 9 El-UP
8 1 Ground

Figure 3.4 presents the aforementioned main components connections consid-
ered to automatically control the rotor.

Figure 3.4: Rotor Controller - Main Schematic PCB Design

3.3.2.2 Microcontroller

The microcontroller board considered for the rotor controller design is an Elegoo
Mega2560, based on the ATmega2560. This microcontroller includes more than 50
GPIO pins, some of them used to control the rotor Az/El movements while reading
the actual position of the rotor. Moreover, it has 4 serial-UART independent com-
munication ports, which can be used to communicate with the ground station user
interface, as well as to get the actual position of the ground station from the GNSS
receiver connected to a second UART without interruptions between both commu-
nications. The GNSS provided coordinates can be indispensable when launching
from the field or when the ground station is mobile -used on top of a vehicle, while
driving in the balloon direction-.
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Figures 3.5 and 3.6 present a complete pointing control system, including a GNSS
receiver and the connection to the rotor controller box.

Figure 3.5: Rotor Controller - Real-Time GS Position

Figure 3.6: Rotor Controller - Box Calibration Adjustments

Two algorithms are used to complete the GS rotor software: (1) to calibrate
the rotor signal levels and the gauges that can be seen in Figure 3.6, and (2) to
control the rotor movements. The G-5500 rotor control box has a 8 pin DIN ex-
ternal control connection (see Figure 3.6) that controls the different movements by
connecting them to the proper pins of the microcontroller shield (see Table 3.3).
There are two pins that supply a DC voltage from 2 to 4.5 V corresponding to
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actual Az/El rotor position. The microcontroller will read them as analog readings
that need to be converted using a rotor calibration procedure. Calibration infor-
mation can be found in Appendix A, including hardware and software procedures.

For the flight code, the microcontroller will enable the proper azimuth and ele-
vation signals (Up, Down, Left, Right, Off, presented in Table 3.4) based on the
actual rotor position read from the analog pins and the desired position to point
to. The connection of the ground pin to the respective control pin of the exter-
nal control rotor connector on the G-5500 is accomplished by supplying a 5V DC
signal -supplied by the microcontroller- to the proper NPN transistor. The tran-
sistor acts as a switch for each pin and/or movement, as it can be seen in Table
3.3. Only when the Az/El positions are at a certain margin (deadzone) from the
expected position, the microcontroller will stop enabling the rotor movement. The
“deadzone” is a buffer to prevent chattering of the rotor, since it cannot be con-
tinuously moving. Due to the movement limitation of the rotor and its duty-cycle,
a 2° deadzone was chosen. Figure 3.7 shows the block diagram of the control logic
for elevation movements. Azimuth movements are based on the same logic.

Figure 3.7: Rotor Controller - Control Logic

Table 3.4: Rotor Box Controller Cases

Case Pins ON Pins OFF
‘off’ - UP, DOWN, LEFT, RIGHT
‘up’ UP DOWN, LEFT, RIGHT
‘down’ DOWN UP, LEFT, RIGHT
‘right’ RIGHT LEFT, UP, DOWN
‘left; LEFT RIGHT, UP, DOWN
‘AZ off’ (UP, DOWN) LEFT, RIGHT
‘EL off’ (LEFT, RIGHT) UP, DOWN
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Table 3.5 presents the commands used in the control logic to get or set the
ground station pointing parameters:

Table 3.5: Rotor Box Controller Commands

Commands Results
setAzXXX Set Azimuth to XXX
setElXXX Set Elevation to XXX
AzElXXXYYY Set Azimuth to XXX and Elevation to YYY
getAz Return Azimuth Pointing Direction
getEl Return Elevation Pointing Direction
getLoc Retur LLA coordinates with the following format:

’%lat, %lon, %alt’
intCal Initiates the rotor calibration

In Appendix C, it can be seen how these commands are used by the MATLAB
GUI implementation to control the rotor and track the payload.

Using those commands, the payload coordinates are obtained and used with the
GS ones to compute and change the antenna pointing. As aforementioned, using a
GNSS receiver, the GS coordinates can be computed by reading and decoding the
proper NMEA messages. The same GNSS receiver is used for the payload design.

Figure 3.8 presents the permanent ground station control design used for the
ERAU ground station. The GNSS sensor is not included, since it is a perma-
nent ground station whose coordinates are static and known. More information
about the ground station tracking system and GUI can be seen in next sections
and Appendices B and C.

Figure 3.8: Rotor Controller - Arduino Shield and Rotor Controller Box
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3.3.3 GS Graphical User Interface

MATLAB is a powerful tool with many toolboxes that makes it ideal for a ground
station GUI. The Mapping Toolbox, the Aerospace Toolbox, and the App Designer
all have functionality that makes a simple to use but powerful app to track the
HAB and control the pointing of the ground station.

The ground station GUI designed and implemented for this project includes:

• Different modes to cover ground station pointing calibration and checks,
real-time flight tracking and past flight data reproduction.

• Ground station control including different antenna tracking modes, with op-
tional payload tracking using flight path predictions instead of position data
from the payload on-board GNSS receiver.

• Pointing accuracy tuning during the launch (Az/El offsets).

• Predicted and real-time received sensors data plots, and 3D-2D maps with
predicted path and real-time received payload position for tracking purposes.

• Payload tracking modes selection, from real-time sensors or using previously
predicted flight path data in case of GNSS receiver failure.

• Percentage of data losses specification, in order to control the antenna point-
ing offset and to detect other possible communication problems.

Figure 3.9 presents an example of the GUI reproducing data from a past launch.

Acceleration and temperature data are plotted based on time and altitude, re-
spectively. GNSS data is presented, as well as the GUI computed ascent/descent
rates.

Figure 3.9: GUI - Reproduced Flight Data.
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The communication link parameters are computed and presented in terms of
received packets, lost packets and total percentage of losses during the launch. The
gauges show the actual rotor pointing in case the user has no view of the ground
station (i.e. using ERAU permanent GS from inside a building).

3.3.3.1 Modes of Use

The GS GUI of this project has three independent modes of use:

• HAB Launch: mode used to track a HAB payload in real-time while plot-
ting the on-board sensors data to check the launch performance. For this
mode, both the GS rotor controller and the GS transceiver need to be con-
nected to the MATLAB interface using two different serial communication
ports. The data is automatically plotted once a hard-coded amount of data is
received and decoded. Not all the data from the packets received is plotted.
All the GS tracking modes are available, and in case of unexpected ascent or
descent rates, those differences can be afforded by uploading another flight
prediction file computed with the proper rates. The last prediction file loaded
to the GUI will be the one considered.

• Ground Station Check: mode used to check the GS pointing error and
the pointing during the predicted flight path to confirm that the antenna will
not be pointing to any structures around. For this mode, a prediction file
and the communication with the GS rotor controller are required. Google
maps can be used to find a land feature (tower, building, etc) within line
of sight and determine its exact LLA coordinates. The prediction file will
include the coordinates of those land features. Once the GS check mode
starts, the prediction file line can be manually selected. Based on the GS
LLA coordinates, the GUI will compute the Az/El for the antenna to point
to the land feature selected. The rotor is then pointed to that Az/El. By
editing the “Declination” field, an azimuth correction can be applied so that
the antenna points exactly at the land feature.

• Flight Reproduction: mode in which the data of a past launch can be
reproduced. In this mode, the same binary file that the GUI recorded during
a past flight can be used to reproduce the whole data again. The speed of
reproduction can be specified by adjusting the percentage of data samples
plotted from the whole flight (i.e 1 out of 200 samples).

3.3.3.2 Predicted Sensors Data

There are available online tools that can predict atmosphere parameters based on
altitude, such as temperature, pressure and wind speed. The implemented GS GUI
can take a previously created file with those parameters to use them as predic-
tions for the payload’s on-board sensors. This can be useful to monitor how well
the sensors are performing during the flight, and to analyse the sensors accuracy
during the post-processing of the recorded data.

For most of the HAB flights presented in this thesis, only temperature data profiles
are considered. Only during the first flights, pressure data was also considered.

CHAPTER 3. DESIGN AND IMPLEMENTATION 28



Due to the calibration difficulties of the pressure sensors and the cost of the ones
that work in the altitude range of interest, it was decided to stop using them.
More information about prediction data files can be found in Appendix C.

3.3.3.3 Tracking Modes

The GUI has a serial connection with the GS rotor controller previously presented.
The GUI will use the GS and the payload actual position to obtain the azimuth
and elevation coordinates that the antenna should point to at that moment. Con-
sidering the antenna tracking mode selected in that instant, the GUI will send the
proper command to the rotor:

• Az/El: the GUI sends a command with the azimuth and elevation coordi-
nates to point to.

• Az Only: the GUI sends a command with only the azimuth coordinates to
point to.

• El Only: the GUI sends a command with only the elevation coordinates to
point to.

• Manual: the GUI does not send a command to the rotor controller. The
rotor is moved manually.

The GS position can be a single input when starting the GUI or it can be decoded
to be updated in real-time during the flight, if the GS is continuously moving.
The payload position can be obtained from the on-board GNSS sensor or from a
previously made file with the flight path prediction:

• GNSS Tracking: when a data packet with information from the GNSS
information is received, the GUI decodes the payload’s latitude, longitude
and altitude (LLA) coordinates and plots them on the user view, converts
them to azimuth and elevation coordinates taking into account the actual
position of the ground station antenna, and sends the proper command to
the GS rotor controller, considering the selected antenna tracking mode at
that moment.

• Prediction File Tracking: the GUI will consider the prediction file pay-
load’s coordinates to compute the antenna pointing coordinates. This can
be done manually, by specifying the part of the flight and the altitude of
interest, or automatically, in which case the GUI will use the launch time to
compute the actual time of the flight and it will use the coordinates closest to
that time. In prediction file mode, the GUI will check and send new coordi-
nates to the rotor after a certain amount of time, controlled by a previously
programmed timer.

For the prediction file mode, the GUI will consider a previously loaded .csv file
with latitude, longitude, altitude and time of the flight parameters. In this case,
an online available tool is used to create these files. More information about how
to create them can be found in Appendix C.
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3.4 Payload

The HAB payload is the part of this project that was being updated the most
during the process of this thesis. The next sections will present the main design
stages that were considered when developing the payload to meet the project re-
quirements. In order to set the base of each design, the main considered subsystems
composing this HAB payload are summarized below.

3.4.1 System Overview

The designed HAB payload consists of the following parts or subsystems (see
Figure 3.10) :

• Payload Controller: in charge of controlling and performing all the tasks
from the payload and, if needed, the controlled descent system.

• Communications: module consisting of the transceiver and the antenna
used to send the data to the GS.

• Position Tracking: GNSS receiver used to get the payload coordinates
during the launch.

• Scientific Data: data gathered from the on-board sensors that does not
have another purpose inside the payload.

• Data Backup: SD card module to save each data packet of interest created
during the launch, in case a payload recovery is possible.

• Controlled Descent: payload module or independent system in charge of
ensuring a slow/controlled descent of the payload back to the ground, non
considering balloon bursts.

• Power System: battery or batteries used to power the payload and the
controlled descent system. It should supply enough power to support at least
a 5 hour launch (2 hours for the controlled descent system if it is external to
the payload).

Figure 3.10: HAB Payload - System Overview Block Diagram.
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3.5 Design Stage 1

3.5.1 Design Overview

From the first stage of the payload design, the following key parts should be
considered:

• ISM 900-928 MHz band chosen for the communication link between HAB
and GS using DNT900 transceivers.

• Dipole antenna - linear polarization in the payload.

• Redundancy in payload position tracking: multiple GNSS receivers used
to determine which model would work above 18 km -address the COCOM
limits[22]-.

• Controlled descent based on a double-balloon configuration and a cutting-
thread system included within the payload.

• Data of interest collected: internal and external temperatures, pressure data,
and acceleration and angular velocity of the payload.

• ATmega2560-based payload controller.

• SD card module included for data backup.

• Power budget and first launch analysis made.

Figure 3.11 presents the payload block diagram.

Figure 3.11: Design 1 Block Diagram - Arduino Mega and Internal Cutting System
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3.5.2 Payload Controller - ATmega2560

The Elegoo Mega2560[23] is a board based on the ATmega2560 chip. It was
selected due to the availability of more than one serial port for GNSS receivers
and transceiver communication, as well as for its relation of performance vs cost.

Figure 3.12: ATmega2560-based microcontroller board.

Figure 3.12 presents a sample of the selected microcontroller, which specifica-
tions can be found in Table 3.6:

Table 3.6: ATmega2560 board specifications.

Parameter/Specification Value
Operating Voltage 5V
Clock Speed 16 MHz
Digital I/O pins 54
Analog Inputs 16
UART/Serials 4
Flash Memory 256 KB
EEPROM 4 KB

In this payload design, the microcontroller is getting data from the sensors all
the time, while checking if there is data from the GPS available. Based on the
available data, a new data packet is created and sent to the radio buffer as well
as saved in the SD card for backup purposes. To save time, the data is actually
written to the SD card once/twice per hour. All the packets have a size of 100
bytes, with a 2 bytes packet ID to differentiate the packets with GNSS content
and identify them during post-processing. A packet counter ID to identify lost
packets or packets with errors is added too, as well as a time stamp created by the
microcontroller. The packet content can be changed in terms of type of data and
order. The length of the packet should be 100 bytes and the ground station has
to be changed according to the expected order of the data. If not, the transceiver
configuration needs to be changed accordingly.

The controller uses the position of the payload to check if a certain altitude has
been achieved and to activate the controlled descent system, if required. More
information about the code implementation used in this design can be seen on
Appendix H.
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3.5.3 Payload Position - uBlox NEO M8N and Trimble
Copernicus II

In this design stage, the COCOM limits for GPS technologies were analysed. The
COCOM limits refers to a limit placed on GPS tracking devices that disables
tracking when the device calculates that it is moving faster than 1,900 km/h at
an altitude higher than 18 km in order to prevent the use of GPS in interconti-
nental ballistic missile-like applications. Even though the speed is not a problem
that needs to be addressed in this project, there are several GNSS receivers whose
maximum working altitude is below 18 km due to these limits.

The GNSS receiver models tested for the payload position tracking were the uBlox
NEO M8N[24] and the Trimble Copernicus II[25] models. Both GNSS receivers
are versatile modules that provide high sensitivity, customizable configurations
and an altitude operational limit of 50 km, which makes them suitable to be used
in this project. The main specifications to consider when using the receivers that
are presented in Figure 3.13 and configuring them can be found in Table 3.7.

uBlox Center and Trimble Studio are available evaluation software to easily con-
figure these GNSS devices. Once the desired configuration is saved, the modules
include an extra battery to be able to maintain the same configuration for long
periods of time. More information about how to properly configure this receiver
for the HAB launches can be found on Appendix B.

Figure 3.13: Design 1 - (L) uBlox NEO M8N and (R) Trimble Copernicus II GNSS
Receivers.

Table 3.7: uBlox NEO M8N and Trimble GNSS receivers specifications.

Parameter/Specification NEO M8N Copernicus II
Horizontal Accuracy 2.5 m 50% 2.5 m 50%
Vertical Accuracy 5 m 90% 5 m 90%
Maximum Navigation Rate 5 Hz1 1 Hz
Configurable Constellations GPS, GLONASS, Galileo, Beidou
Power Supply 3.3 V 3.3 V
Max. Supply Current 20 mA 40 mA

1 10 Hz if only 1 constellation is considered.
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3.5.4 DNT900 Transceiver

The 900 MHz transceiver considered in this design was the DNT900 from mu-
Rata [26]. This transceiver module is a low-cost, high-power solution for wireless
data communications in the 900 MHz ISM band. The package selected of this
transceiver for both the payload and the GS was the development board that can
be seen in Figure 3.14.

The development board includes all the required pins to communicate and per-
fectly test the module, which makes easier its validation during the payload tests.
Among other things, the development board has LED indicators of signal strength
and RX/TX indicators. Using these indicators it could be checked if the board was
sending ACK signals or not, a key point for this communication link, considering
the high-gain antennas used in the GS segment. Table 3.8 summarizes the most
important specifications of this transceiver module.

Once configured, to maintain a communications link between GS and payload,
only 3 pins from the board are required: GND, RX and TX. Even though the
communication link used in this project scope is only used in one direction, from
the payload to the GS, it can be possible to send data from the GS to the payload.
To do that, specific RF conditioning is required so the GS is compliant with the
band regulations when transmitting data.

Figure 3.14: DNT900 (L) Development Board, (R) Transceiver Module

Table 3.8: DNT900 transceiver specifications.

Parameter/Specification Value
Operating Frequency Range 902.75-927.25 MHz
Modulation FSK, FHSS
RF Data Tx Rates 38.4, 115.2, 200 and 500 kbps
Sensitivity @200kbps -98 dBm
Max. RF Output Power @200kbps 1 W
Antenna Connector u.fl
Network Topology P2P, P2M, Peer-to-Peer, Tree-Routing
Power Supply Range 3.3-5.5 V
Peak Tx Mode Current 1.2 A
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3.5.5 Data Backup:

Since the microcontroller used in this design did not include a built-in SD card
slot, the external SD module with SPI communication presented in Figure 3.15
was selected.

Figure 3.15: (L) Industrial Range SD Card, (R) SD Card Module.

The SD card used was a Kingston of 8GB with an industrial temperature
range[27]. 8GB of capacity were chosen because they were enough for our data
link requirements, while the industrial temperature range was selected to assure a
complete data backup even if the internal temperature of the payload was colder
than expected.

3.5.6 On-board Sensors

3.5.6.1 Temperature Sensors

During the launches, the internal temperature was recorded for monitoring, while
the external one was used for science purposes to determine accurately the tem-
perature at different altitudes of the stratosphere and the path followed by the
payload. To measure them, the thermistor model PR103J2[28] was selected, a
NTC 10KΩ with a resistance @25◦C of 3892KΩ, with a temperature working range
between -55 and 80◦C and a maximum accuracy of 0.1 ◦C. A thermistor resistance
changes with temperature changes. Based on that, a voltage divider presented in
Figure 3.16 was created in order to be able to measure the resistance through those
thermistors at the temperature range of interest. To do that, the ADC specifica-
tions of the payload’s microcontroller need to be considered to accommodate the
temperature range to the voltage range of the ADC. More information about how
the voltage divider was designed and calibrated can be found on Appendix D.

Figure 3.16: Design 1 - (L) PR103J2 thermistor and (R) voltage divider circuit.
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3.5.6.2 Acceleration and Angular Velocity.

The movement of the payload was recorded and used to identify possible balloon
bursts and to analyze the performance of the controlled descent system. The
selected sensor to record acceleration and angular velocity was the LSM9DS1 [29],
a single chip that includes an accelerometer, a gyroscope and a magnetometer -nine
degrees of freedom (9DoF)-. Each sensor can be configured with a different range
and two different communication systems (I2C, SPI) can be used to obtain the
data. Section 5 presents how the data obtained during the launch was analysed.
Appendix G presents a system to understand the sensor readings and movements.

3.5.6.3 Pressure.

Pressure data at different altitudes in the stratosphere is scientific data of interest
for this project. For this design, a Honeywell ASDXACX015PAAA5[30] pressure
sensor was selected with a maximum pressure rating of 30PSI (206.84kPa) and
an accuracy of 2%. The sensor was calibrated in a vacuum chamber, showing
some limitations for low pressure ranges. Due to that, it was decided to add an
operational amplifier to amplify that range of measurements, always taking into
account the limitations of the ADC of the microcontroller. Using an available
online tool, the temperature and pressure profiles for the launch date and time
were predicted. That data was used during the flight to analyse if the sensors
were working as expected. More information about these predictions can be seen
in Appendix C.

3.5.7 Controlled Descent - Internal Cutting System

To lift the payload during the launch, the balloons are attached to the top face
of the payload. Considering that the payload box is made out of styrofoam, 3D
printed support pieces are used to avoid breaking the whole lid.

In this double-balloon configuration, the controlled descent is achieved by cut-
ting one of these balloons once a certain altitude is reached. To do that, the
support pieces of the balloons are separated, being the permanent balloon on the
center of the payload, and the balloon that is going to be cut in an outer position
for payload stability, as it can be seen in Figure 3.17.

Figure 3.17: Design 1 - Controlled Descent System Sample.
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Figure 3.18: Design 1 - Cutting System Logic.

To cut the balloon threads, a cutting system mechanism is implemented, based
on a SN745510NE[31] H-driver connected to the battery that once is enabled it
outputs enough current -approximately 1-1.5A- to extremely heat a nichrome wire
or a 10Ω low power rate resistor -0.25W- connected to the balloon thread. This
system is enabled by the payload controller after a certain altitude is achieved.
Figure 3.18 presents a block diagram of this cutting system.

Once the balloon is cut, the payload starts descending with the balloon left.
To be able to approximate the ascent and descent rates, a predictor for HAB
is used[32]. In this predictor, the type of balloon, the mass of the payload and
the expected ascent rate can be specified as inputs. The descent needs to be
approximated by the amount of payload weight the permanent balloon is not able
to lift, which would be as small as possible.

3.5.8 Power Budget

Table 3.9 presents the power budget of this design. Considering the heat pro-
duced by the power dissipation of the transceiver in transmitting mode 100% of
the time, the internal temperature of the payload is not considered a factor of neg-
ative impact in the performance of the battery used. For worst case scenarios, a
90% efficiency is considered, with a result of 5.36 hours of capacity for the payload.

Table 3.9: Design 1 - Power Budget.

Component Current Voltage %Use/Hour
Consumption Supply

Transceiver 900 3.3 100
Microcrontroller 20 5 100
GNSS Receiver 20 3.3 100
9DoF 4.6 3.3 100
Cutting System 1500 7.4 0.041
H-Bridges 25 5 100
SD Card Module 100 5 0.7
Pressure Sensor 2.5 5 100

Total Consumption/Hour - - 1040.807 mAh
Total Battery Capacity - - 6200 mAh
Total Capacity in Hours - - 5.96
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Figure 3.19: Design 1 - Fluoreon 7.4V 6200mAh.

The total battery capacity is specified by the battery selected for the system.
A rechargeable Fluoreon 7.4V 6200mAh battery[33] was chosen for the payload
design.

3.5.9 Design Performance Results

• The controlled descent design was not working. Based on the launches anal-
ysis, the cutting system was being activated when expected, but the two
balloons lines were entangled.

• Even configured in transparent mode, the DNT900 transceiver of the GS was
sending acknowledgment signals to the payload, making the communications
system not compliant with EIRP regulations for that band.

• The DNT900 transceiver was discontinued, so it needed to be changed.

• The GNSS receivers configuration was fully checked and the payload was
able to be followed during the whole launch duration without errors. Both
models were working at altitudes above 18 km (approximately 33 km).

• The pressure sensor data was too noisy for low pressure ranges due to its
limitations. Due to the cost of pressure sensors presenting high accuracy at
those ranges it was decided to stop working with that data.

• The external temperature data showed a profile similar to the predicted one.
The accuracy below -50◦C was too low.

• The achieved throughput was about 60 kbps, so the code efficiency needed to
be improved, considering that the radio was configured at maximum capacity.

• Some sensors were disconnected during the flights due to the movements of
the payload because the connections were not secured.

• The ground tests confirmed that the payload was able to work for 5 hours
with the chosen battery, and the longest launch with this design had a du-
ration of almost 6 hours, confirming the power budget results.
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Figures 3.20 and 3.21 present examples of payloads of this design stage.

Figure 3.20: Design 1 - Final payload design sample.

Figure 3.21: Design 1 - Double-balloon launch.
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3.6 Design Stage 2

3.6.1 Design Overview

The following items are the main updates and upgrades of this design stage.

• The 3D printed support pieces for the controlled descent system were mod-
ified. The outer V shape was maintained but in this case was used for the
permanent balloon, while the center piece was changed to a diamond shape
to get more support and be easier to connect both resistors to the same line.
Another design tested was connecting 3D support pieces at the bottom and
top faces of the payload (see Figure 3.27).

• Due to the broadcast problems detected when using the DNT900 transceiver
and the fact that it was being discontinued, it was changed for the next best
module for our design requirements: the XBee PRO SX from Digi [34].

• Considering that the payload position tracking performance was validated
and perfectly working for both GNSS receivers in previous launches, a single
GNSS receiver was used for next designs.

• Considering the cost difference and the maximum rate of the sensors, uBlox
NEO M8N was selected as the GNSS receiver for the MURI HAB payload
designs.

• To avoid components getting disconnected due to payload movements during
the launches, a microcontroller shield to solder all the main payload compo-
nents was included in the next design were every connection and sensor was
soldered and secured. (see Figure 3.26).

• The external temperature circuit design was changed to achieve a lower tem-
perature range -between -20 and -65 ◦C-, considering the Z curves of the
thermistor and the resistance value at room temperature (R25). For more
information, see Appendix D.

3.6.2 XBee PRO SX Transceiver

The transceiver model used for this high-altitude balloon project is the XBee PRO
SX. This transceiver is able to transmit up to 1W [30 dBm] of power at a through-
put up to 120 kbps using GFSK modulation and FHSS spreading technology [34].

XBee modules are a product from DIGI, which provides a free, multi-platform
application to configure their XBee/RF solutions: XCTU[35]. XBee PRO SX is
configured with XCTU with a transparent protocol, to be able to control the exact
amount of data sent at any moment, and to avoid the used of headers or extra
unnecessary information. Moreover, the payload module is configured with a point
to multipoint/broadcasting mode to be able to track the same payload with dif-
ferent ground stations sharing the same network.
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Figure 3.22: XBee PRO SX (L) Development Board, (R) Transceiver Module

The transceiver used can be found on different packages and modules. Even
though it can be found as an Arduino shield, these modules shall not be considered
because Arduino boards are not able to supply enough current to achieve the RF
power output of 1W. The packages considered for this project are the development
boards with external pin connections and the radio surface mount module with
U.FL antenna connector that can be seen in Figure 3.22.

A DIGI development kit was considered, including: (1) two development boards
with XBee PRO SX soldered (2) one extra chip from another XBee model (3)
an interface board where transceiver surface mount modules can be attached and
(4) antennas, cables, and power supplies for the boards that will be used for the
transceivers configuration and usage.

3.6.2.1 Ground Station Board

For the ground station segment, one of the development boards from the kit is
considered.

This module can be powered using the USB connection. The transceiver con-
sumes approximately 40 mA when operating only in receiving mode, which can be
supplied by a USB connection with the GS laptop. The development kit includes
a mini-B USB to USB cable, which can be extended with an active USB cable if
needed.

It should be noted that the antenna connector is a female RP-SMA. In most cases,
the commercially available RF cables will include SMA connections; therefore, a
proper adapter from SMA M/F to RP-SMA F is required.

If needed, the Tx/Rx lines of this board can be externally tested with a microcon-
troller using VCC, GND, DIN and DOUT pins. The board also includes indicator
LEDs for power [XBEE ON], TX [DOUT] and RX [DIN] checking, as well as a

CHAPTER 3. DESIGN AND IMPLEMENTATION 41



group of three LEDs that work as received signal strength indicator [RSSI]. Figure
3.23 presents the indicators of the board.

Figure 3.23: Ground Station Transceiver Module - Development Board.

The extra LEDs are GPIOs [DIO11/DIO1] and PWM [DIO12] indicators.

3.6.2.2 Payload Surface Mount Module

For the payload, in order to save weight and space, only the surface mount module
from Figure 3.24 is considered. The package of this module considered for the
payload includes a u.fl antenna connector.

Figure 3.24: Payload Surface Mount Module with u.fl antenna connector.

The only pins to be considered in this chip are VIN, GND, DIN, DOUT and
CTS. Table 3.10 present the usage of those pins:

Table 3.10: XBee SM module pin specifications.

Pin Usage/Considerations
VIN 3.3-3.6V (battery voltage regulated - LM317A)
GND All the GND pins
DIN Data to transmit
DOUT Data received
CTS (Clear to Send) Data Control Flow
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To be able to configure this chip, the module shall be connected to a laptop.
To do that, the configuration/interface board from the same company presented
in Figure 3.25 can be used:

Figure 3.25: Digi Configuration/Interface Board for Surface Mount Chips.

More information about how to use this board and configure the chip can be
found in Appendix E.

3.6.3 Design Performance Results

• The XBee PRO SX transceiver was able to broadcast the data when config-
ured in transparent mode and a higher data throughput was achieved (∼80
kbps).

• The tracking system worked with a single receiver, but for some launches the
prediction file mode of the GS was used and confirmed to work as expected
in case of GNSS receiver failure.

• The percentage of losses was acceptable and fairly low, but it was concluded
that in some positions between the payload and the GS, the beam pattern
of the antenna was causing more packet losses. The linear polarization and
position of the dipole antenna used presented a high percentage of losses
when the balloon was ascending in a position on top of the GS antenna (i.e.
elevation angle close to 90 degrees).

• A processor with Floating Point Unit (FPU) and higher clock speed became
one of the other universities requirements in order to properly work with
their sensors. The Atmega2560-based microcontroller needed to be changed.

• The cutting system was not always working, even using different mechanism
to avoid entanglements.
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Figures 3.26 and 3.27 present examples of a payload and a controlled descent unit
of this design stage.

Figure 3.26: Design 2 - Final Payload Design Sample.

Figure 3.27: Design 2 - Controlled Descent System Mechanism Samples.
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3.7 Design Stage 3

3.7.1 Design Overview

The following items are the main updates and upgrades of this design stage:

• The dipole antenna was changed for a cloverleaf antenna with circular polar-
ization to afford payload movements and polarization mismatches with the
GS linear polarization used. A ground plane was added to the bottom face
of the payload to improve the directivity of the new antenna in the direction
of interest.

• An external and independent controlled descent unit close to the neck of the
balloon was designed for a single balloon configuration to avoid entangle-
ments, base on a cap released mechanism.

• The payload controller was changed for a Teensy 3.5 ARM Cortex M4 board
with FPU. This change will suppose the need of a board where all the com-
ponents can be soldered, since the board is too small and there are not
available shields, as well as another battery voltage regulation to supply the
board with 3.6-6 V.

Figure 3.28 presents the block diagram of the payload and the controlled descent
unit for this design stage.

Figure 3.28: Design 3 Block Diagram - (A) Teensy 3.5-based main payload and
(B) Atmega328P-based independent/external controlled descent unit.
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3.7.2 Teensy 3.5 ARM Cortex

Figure 3.29: Design 3 - Payload Controller: Teensy 3.5 ARM Cortex M4 MCU.

Table 3.11 presents the main characteristics of this board:

Table 3.11: Design 3- Teensy 3.5 board specifications.

Parameter/Specification Value
Operating Voltage 3.3V
Clock Speed Up to 120 MHz
Floating Point Unit Included
Digital I/O pins 62
Analog Inputs 25 (13 bit resolution)
UART/Serials 6 (2 with FIFO and Fast Baud Rates)
Flash Memory 512 KB
RAM 256KB
EEPROM 4 KB
SD Card Port Included

In this design, the payload’s controller was changed for a Teensy 3.5[36][37]
development board. Teensy comes pre-flashed with a bootloader, so it can be
programmed using the on-board USB connection: no external programmer is
needed. With the Teensyduino add-on for the Arduino IDE, Arduino sketches
can be adapted to be used on this board, which made easier the adaptation from
the previous payload controller to this one presented in Figure 3.29.

For approximately $10 more, the payload controller can be upgraded consider-
ably to Teensy 3.5. To power this module, a preliminary board with the battery
voltage regulated to approximately 4.5 V for Teensy and 3.5V for the XBee mod-
ule was made. In that board, all the required payload’s connections are included,
since the microcontroller shield was not an option anymore.

3.7.3 Payload Antenna - Cloverleaf

From movement data and link performance results obtained from previous launches,
it was concluded that a circular polarization in either the GS or the payload was
required to improve the overall launch results. To have circular polarization on the
ground station, a second Yagi antenna was required, one for vertical and another
for horizontal polarization, with a perfectly 90◦ phase between the antennas, be-
cause a circularly polarized antenna working at 900 MHz with similar specifications
was not commercially available.
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Figure 3.30: Design 3 - Payload Antenna: Cloverleaf Antenna 3 and 4 leaves.

On the other hand, it was easier to add circular polarization to the payload
without compromising the previous antenna gain (dipole antenna - 0 dB). Clover-
leaf antennas were concluded to be the best commercially available option. For
a similar or even cheaper cost than the previously used payload antennas, a cir-
cularly polarized cloverleaf antenna with 5 dB of gain from Hobby King[38] was
perfect to fit in our payload design. Figure 3.30 presents the selected antenna.

Both antennas designs -with 3 or 4 lobes- are suitable for the payload design
in terms of total radiated power compliance and have similar characteristics. 3
lobe antennas usually are a better matched to the 50Ω transmitter which means
less reflected power, while 4-lobe antennas have better polarization characteristics.
In terms of transmission, both of them can have its pros and cons, but both of
them were tested during actual HAB launches and no difference was appreciated
when used with the linearly polarized Yagi antenna of the GS.

Considering that the radiation pattern of these antennas is similar to the dipole
antenna one (see Figure 3.31), a ground plane was added to the bottom face of
the payload in order to improve the directivity in the direction of interest [39].

Figure 3.31: Design 3 - Payload Antenna: Cloverleaf Antenna Pattern[40].
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As it can be seen in Figure 3.32, the radiation pattern changes depend on the
distance between the antenna and the ground plane:

Figure 3.32: Design 3 - Ground plane effects on dipole antenna pattern[41].

Taking into account the cloverleaf position in the payload, the antenna pattern
will be affected horizontally and the quality of the ground plane -dirt, imperfections-
will be a key point to take into consideration, as it can be seen in Figure 3.33:

Figure 3.33: Design 3 - Ground plane quality effects on radiation pattern [42].

Considering the previously described effects, a distance of approximately 0.2λ
was maintained between the ground plane and the payload antenna using a 3D
printed support.

3.7.4 Controlled Descent - Independent Cap System

Considering the entanglements suffered when using the previous cutting system
designs, a system independent and external from the payload was designed. This
independent unit was based on the previous cutting-thread system with a dedi-
cated ATmega328P-based[43] microcontroller, as it can be seen in Figure 3.28. It
still uses the same logic, monitoring time and altitude to decide when it is the
right moment to activate the cutting-thread system, but for a different purpose.

Since single balloon launch configurations were also something to consider due
to the reduction of the overall launch cost, this independent system was designed
to be used with only one balloon. To do that, and considering that the goal was
to achieve a slow descent, instead of cutting the actual balloon line, the system
was cutting the only thread holding in place a cap attached to a pipe that was
connected to the balloon neck (see Figures 3.34 and 3.36).
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Figure 3.34: Design 3 - Controlled descent unit design. (L) The thread connected
to the pipe system passes through (R) the hook at the bottom of the cap and it is
attached to the screw of the pipe. Once cut, the cap is released with the force of
a spring included inside.

The system required its own power supply for at least 2 hours and being able
to supply enough current to cut the thread after that time. Fluoreon batteries
were considered for this unit too, due to their excellent performance during the
previous HAB launches. A 7.4 V and 1500 mAh rechargeable Fluoreon battery
[33] was chosen for this unit. The power budget computed for this unit is presented
in Table 3.12:

Table 3.12: Independent Controlled Descent System - Power Budget.

Component Current Voltage %Use/Hour
Consumption Supply

Microcontroller 20 5 100
GNSS Receiver 20 3.3 100
Cutting System 1500 7.4 0.041
H-Drivers 25 5 100
Total Consumption/Hour - - 65.61 mA
Total Battery Capacity - - 1500 mAh
Total Capacity in Hours - - 22.86

Considering that this is an external system that will have to handle extremely
low temperatures, the battery efficiency/performance will decrease. However, even
considering an efficiency of 50%, the total capacity would be 11.43 hours, more
than enough for the maximum expected launch duration.

3.7.5 Design Performance Results

• The payload design was completely adapted to the new microcontroller,
achieving high data throughputs of approximately 100 kbps.

• The communications link was maintained up to slant ranges of 150 km with
at least a total throughput of 90 kbps.
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• The cutting system design presented design problems. Since the system was
completely independent, it was fully tested in a temperature chamber to
confirm its correct performance. Based on the cold temperatures achieved
on those tests, it was decided to include hand warmers inside the system,
but they were never tested at low pressure levels. It was concluded that they
were not performing as expected and the system was possibly too cold to
work at the expected altitude.

Figures 3.35 and 3.36 present examples of a payload and a controlled descent unit
of this design stage.

Figure 3.35: Design 3 - Final Payload Design Sample.

Figure 3.36: Design 3 - Final Controlled Descent Unit Sample.
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3.8 Design Stage 4

3.8.1 Design Overview

The following items are the main updates and upgrades of this design stage.

• Adding temperature control system to the controlled descent unit - heating
pads and temperature sensor.

• Designing and manufacturing printed circuit boards for the payload and the
controlled descent unit designs.

• Payload code upgraded to be able to do data retransmissions out of the
altitude range of interest.

• Multiple GS tracking (SIMO systems) being implemented and analysed.

Figures 3.37 presents the block diagrams of the payload and the controlled descent
unit of this design stage.

Figure 3.37: Design 4 Block Diagram - (A) Teensy 3.5 Payload with Retransmis-
sions, (B) Independent/External Controlled Descent System with Heating Mech-
anism.
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3.8.2 Payload Re-design

3.8.2.1 Printed Circuit Board

Figure 3.38: Design 4 - Payload Printed Circuit Board: (L) Top and (R) Bottom
Face.

Considering that the payload design was closed in terms of microcontroller and
transceiver selection, a printed circuit board was designed and manufactured to
decrease the amount of time required to make a new payload, using National In-
struments Multisim[44] and Ultiboard[45] programs.

The PCB includes two voltage regulator stages for the Teensy 3.5 (∼4.5V) and
the XBee PRO SX transceiver (∼3.5V). It also includes the voltage dividers for
three thermistors (one internal and two externals -for higher and lower external
temperature ranges-) and the battery level monitor. It includes the transceiver
footprint required to directly solder it on top of the board, as well as header pins
to attach the microcontroller in the same board, where all the required compo-
nents connections are made. Finally, the board includes pins to connect the wires
coming from the GNSS receiver and the 9DoF sensor, which have specific positions
in the payload and are kept outside of the board module.

As it can be seen in Figure 3.38, the width of the traces depends on the amount of
current that they will need to supply to the respective board components -traces
from the battery to the voltage regulators, and from the voltage regulator to the
transceiver Vin-. The voltage regulators are LM317A [46], a three-terminal ad-
justable regulator model, and their recommended circuit design is followed, adding
0.1µF and 1µF capacitors to remove power line noise and to improve the transient
response. Moreover, long traces and traces corners of 90◦ angles are avoided to
reduce noise and avoid signal reflections, respectively. Finally, the bottom face of
the PCB is a ground plane that simplifies the circuit layout allowing for grounding
the components directly with a single via in the required ground connections. The
final PCB design can be seen in Appendix F.

CHAPTER 3. DESIGN AND IMPLEMENTATION 52



3.8.2.2 Data Retransmissions

In previous launches it could be seen how the data losses were increasing signifi-
cantly after a certain range or if the payload path followed specific directions -due
to environment interferences-. When doing long launches under wind conditions,
the payload achieved slant ranges of more than 150 km before even starting the
descent. In those conditions, even if the data is valid due to the slow descent rate,
it can possibly not be enough to extract conclusions after being analysed due to
the percentage of losses at that altitude/slant range. Considering that the altitude
range of interest is between 20km and +35km, the payload code was updated to
be able to detect that the system was descending, consider the next data packets
until an altitude below 20km was reached, and start the retransmission of that
part of the flight. The data being retransmitted does not consider past GNSS
data, but new data coming from the GNSS sensors is transmitted during that
time to keep tracking the payload. The data considered for the retransmissions is
being sent infinitely until the end of the launch. More information about the code
implementation and logic of this system can be found in Appendix H.

3.8.3 Controlled Descent - External Units with Heating
System

3.8.3.1 Double Balloon Configuration - Cutting Thread System

Even though the malfunction of the last controlled descent unit was attributed
to the cap/temperature system and not the electrical part of the design, it was
concluded that a system to maintain the internal temperature of the box as hot
as possible was required to confirm that the components temperature will not be
affecting the system performance. A TMP102 [47] temperature sensor from Texas
Instruments with an accuracy of 0.5°C (between –25°C to +85°C) to monitor the
internal temperature of the box and a heating pad to be activated when that
temperature is between 0 and 10◦C were added to the system. The power budget
of this system can be seen in Table 3.13.

Table 3.13: Controlled Descent Unit with Cutting System - Power Budget.

Component Current Voltage %Use/Hour
Consumption Supply

Microcrontroller 20 5 100
GNSS Receiver 20 3.3 100
Cutting System 1500 7.4 0.041
H-Bridges 25 5 100
Heating Pads 700 7.4 50
Temperature Sensor 0.085 3.3 100
Total Consumption/Hour - - 415.7 mA
Total Battery Capacity - - 1500 mAh
Total Capacity in Hours - - 3.61

Considering an efficiency of 80% due to minimum internal temperature im-
provements, the total capacity would be at least 2.9 hours.
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Figure 3.39: Design 4 - Controlled Descent System Printed Circuit Board: (L)
Top and (R) Bottom Face.

In this design, once all the connections were confirmed, a PCB was produced as
well to decrease the controlled descent unit production process. The same consid-
erations taken into account for the payload’s PCB were considered, excluding the
ground plane, since some of the traces were routed in the bottom face of the board.
The differences from the previous system were the connections for the temperature
sensor and another output from one of the H-driver was routed to be used for the
heating pads. Since only two out of four outputs of the H-bridge drivers were used
for redundancy purposes, one of the non used ones were designated for the heating
pads system. Figure 3.39 present this PCB design.

A commercially available styrofoam box was used for this design. A cutting-
thread system was implemented to cut the line of the balloon that would fly away
once the required altitude was achieved. As it can be seen, this system was a
combination of the system seen in the first design stage and on the third one -
independent/external system for a double-balloon launch configuration-. Figure
3.40 presents a 3D model of this system.

Figure 3.40: Design 3 - Cutting System 3D Model

The final PCB design can be seen in Appendix F.
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3.8.3.2 Single Balloon Configuration - Valve System

In order to reduce the total cost per launch, a controlled descent unit based on
the previous PCB design for single balloon configuration was implemented.

In this case, the unit design is similar to the cap system presented in the pay-
load design stage 2, but instead of a cap it includes a 2-pieces 3D printed valve
that can be open and/or closed by a micro servo motor. The servo motor arm
has a thread connected to the valve and it is pre-programmed with two positions:
to maintain the valve open and to close it. The cap of the valve is attached to a
spring that creates tension to keep the valve open. This way, the motor position
controls when the valve is completely open or completely closed. To avoid gas
leaking problems, a grease is applied to the edges of the valve when is closed and
prepared for the launch. This way, the aperture of the system is sealed. The grease
was tested at cold temperatures in a temperature chamber to ensure that it was
not frozen at the activation altitude.

For this design it was decided to include a communications link between the pay-
load and the controlled descent unit. To do that, a HC-05 [48] Bluetooth module
was selected to be able to command the valve system from the payload. These
modules are configured to be paired with each other once they are powered and
at a maximum range of about 25 meters from each other, automatically recover-
ing the connection if the link is lost at any moment. These modules can be fully
configured and paired via AT commands [49].

Figure 3.41 presents the Bluetooth module selected for this communication link,
and its main parameters are presented in Table 3.14.

Figure 3.41: Controlled Descent Unit - Bluetooth HC-05 Module.

Table 3.14: Design 4 - Bluetooth Module specifications.

Parameter/Specification Value
Operating Voltage 3.6 - 6V
Operating Current 30 mA
Antenna PCB Trace
Power Output < 4 dBm
Range <100 m
Interface USART/TTL
Mode Master, Slave
Max. Baud Rate 460k8 bps
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The payload is programmed to send a series of 2-byte commands that the con-
trolled descent unit interprets and answers with a specific action. The controlled
descent unit is also sending back data about the code received and the internal
temperature read by the temperature sensor used for the heating system. That
data is included in the data packets that the payload sends to the GS, which al-
lows the monitoring of the controlled descent unit with the GS GUI. The following
commands are considered for this communication:

• Open: command used to open the valve indefinitely until a new position is
commanded.

• Close: command used to close the valve indefinitely until a new position is
commanded.

• Open/Close: command used to open and close the valve several times in a
short period of time. Used to avoid possible problems if the grease is partially
frozen.

• Check: command used to check the status/internal temperature of the sys-
tem and that the communications link is still maintained.

• Cut: command used to activate a cutting-thread system to terminate the
flight - cuts the balloon attached to the system, which descents under a
parachute for the last 200-300 meters of altitude from the ground-.

The power budget for this system can approximately support a 3-hour launch,
considering that it does not include a GNSS receiver, but the Bluetooth module
consumes approximately the same amount of current. The added micro servo mo-
tor is only used a few times during the launch.

The payload sends check codes every 3-5 seconds to monitor the unit from the
GS. Once a certain altitude is reached, the payload sends open/close commands
for 1 minute. After that, it keeps sending open commands until a descent rate be-
tween 2.5 and 3.5 ms−1 is reached, and then close commands are sent indefinitely
to terminate the controlled descent part of the launch. The payload can send a
cut command when, during the descent part of the launch, the altitude is below
200-300 meters to be able to approximate the final location of the payload. More
information about the software used for this system can be found in Appendix H.

3.8.4 Design Performance Results

• The payload design presented data losses due to the heating regulators shut-
ting partially or completely due to payload heating dissipation problems. It
was realized that if the payload was opened when the percentage of packet
losses was increasing, the packet losses were suddenly solved. Bigger heating
sinks were used and temperature chamber tests were performed to identify in
which configuration the payload was only suffering packet losses for a short
period of time, until the internal temperature was cooling.

• The retransmissions system worked successfully, decreasing considerably the
total percentage of packet losses at from 35 to 20 km. In launches where
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the payload presented the aforementioned heating problems, the total % of
packet losses was reduced from almost 50% to 4% with only two retransmis-
sions.

• The heating system of the controlled descent unit was tested in the tem-
perature chamber and it worked successfully during several intervals of time
at the expected temperature ranges. By the time the cutting system was
activated, the threads were successfully burnt.

• The cutting system successfully worked in all the launches. However, in
one of them the altitude was too low (23-24km) because the ascent rate
was slower than expected and the system was activated by the timer at an
altitude of approximately 23 km. On other cases, a premature balloon burst
happened before the cutting system was activated. In that case, the 9DoF
data was used to conclude that the system was activated during the descent
with the other balloon attached to the payload.

• The controlled descent unit for a single balloon configuration was able to be
commanded from the payload, based on altitude and descent rate. The GS
GUI was able to receive data from the controlled descent unit and to present
it for monitor purposes. This unit was not able to be tested during a launch.

Figures 3.42, 3.43 and 3.44 present examples of the payload and the controlled
descent units for this design stage.

Figure 3.42: Design 4 - Double Balloon Controlled Descent Cutting-Thread System
Sample.
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Figure 3.43: Design 4 - Final Payload Design Sample.

Figure 3.44: Design 4 - Single Balloon Controlled Descent Valve System Sample.
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Chapter 4

Results and Analysis

This section present a set of results to analyse the payload and controlled descent
unit performance. All the graphics in this section were generated with the data
gathered from different launches, except from temperature chamber results. With
them, the payload design specifications and requirements of the project will be
presented and confirmed.

4.1 Throughput

4.1.1 Design Stage 1

In this stage, the DNT900 transceiver with an ATmega2560-based microcontroller
was used. As it can be seen in Figure 4.1, in this flight the maximum slant range
achieved was 178km, but only with a data throughput of 20 kbps. However, the
data link was maintained with low percentage of packet losses until the slant range
between the payload and the GS was higher than 130 km.
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Figure 4.1: (L) Range and elevation data and (R) data throughput data for a
6-hour launch using the stage 1 of the payload design. Maximum slant range: 178
km, maximum data throughput: 65 kbps.
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4.1.2 Design Stage 2

For the second stage of the payload design, the DNT900 transceiver was substituted
by the XBee PRO SX one. Figure 4.2 presents an improvement in terms of data
throughput, which was maintained at 80 kbps for the entire launch. However,
during this 3-hour launch, the maximum slant range between the payload and the
GS was only 40km.
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Figure 4.2: (L) Range and elevation data and (R) data throughput data for a
3-hour launch using the stage 2 of the payload design. Maximum slant range: 40
km, maximum data throughput: 82 kbps.

4.1.3 Design Stage 3-4

In the last two designs, Teensy 3.5 was the controller board of the payload. The
higher clock speed of this board allowed an increment in the data throughput of
the communications link.
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Figure 4.3: (L) Range and elevation data and (R) data throughput data for a
3.5-hour launch using the stage 4 of the payload design. Maximum slant range:
55 km, maximum data throughput: 105 kbps.

As it can be seen in Figure 4.3, a data throughput of approximately 105 kbps
was maintained for the whole launch duration. It should be noted that for the last
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hour of the launch, the data was being retransmitted, which can result in a data
throughput a bit higher considering a sequential code implementation and that
the data packets are already created and saved in the SD card.

From Figure 4.4, it can be concluded that using retransmissions, a mean data
throughput of at least 100 kbps can be maintained up to a slant range of approx-
imately 150 km. For slant ranges below 100 km, a throughput between 105 and
110 kbps could be achieved.
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Figure 4.4: (L) Range and elevation data and (R) data throughput data for a
3-hour launch using the stage 4 of the payload design. Maximum slant range: 148
km, maximum data throughput: 108 kbps.

4.2 Measurements Resolution/Accuracy

In order to test the resolution of the measurements, the temperature sensors on
board were used to analyse the data at the altitude range of interest. The figures
below presents that altitude range, and the temperature data obtained with the
first and the final payload designs.

For the highest achieved data throughput, and considering at least 3 sensor read-
ings per packet, about 400 temperature measurements are taken per second. With
a mean ascent and descent rates of approximately 3.5 m/s, that would result in
a vertical resolution of 0.5 cm. Even though the GNSS receiver has a vertical
resolution of 1 cm, the highest accuracy achieved is around 5 m, so it should be
upgraded if that sub-cm scale precision needs to be achieved.
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Figure 4.5: Harsh Internal Temperatures to which the components are subjected
to (monitoring purposes) and the high resolution (0.1◦C) for external temperature
between 20 and 35 km (-60◦C, -20◦C) (scientific data analysis).

In Figure 4.5, it can be seen how the external temperature measurements are
noisier for temperatures lower than approximately -45◦C. In that case, only one
external temperature sensor was being used to cover a big temperature range.
Considering that, two sensors were used in next design iterations (stages 3 and
4), so one of them was covering an upper range of external temperatures and the
other one was covering the lower range. Figure 4.6 presents the temperature data
profile obtained by combining the data recorded from both sensors.
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Figure 4.6: External temperature range extended until approximately -75◦C with
a minimum accuracy of approximately 0.2◦C from -50◦C to 30◦C and 0.5◦C -75◦C
to -50◦C, respectively.

As it can be seen, the temperature range was extended until approximately
-75◦C with a considerable accuracy. These results were extracted from a HAB
launch with retransmissions, where the maximum achieved altitude was approxi-
mately 31.5km, so the data between that altitude and 20 km was retransmitted
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during the rest of the launch. That is why the temperature plot only considers
data until 20 km for the descent part of the launch.

While improving the accuracy of the external temperature measurements, it was
realized that Teensy 3.5 boards have noisier ADC than ATmega2560-based boards,
when tested together in the same temperature chamber profile. Therefore, it should
be considered than even though the previous results present an improvement in
external temperature data range in Figure 4.6, the accuracy is still not as good as
it could be with the board used to obtain Figure 4.5 results.

4.3 Controlled Descent Unit

4.3.1 Heating System

In order to validate the heating system added to the controlled descent unit, two
different temperature chamber tests were used. For these tests, temperature pro-
files based on data from the launches were considered.

Figure 4.7 presents the results from these tests. In one case, a heating system
was not used and the internal temperature of the CDU box reached minimum
temperatures close to -50◦C. In the other case, a heating system activated when
the internal temperature of the box was between -10 and 0 ◦C was used and the
minimum internal temperature was approximately -15◦C:
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Figure 4.7: CDU temperature chamber tests results: (L) not using an internal
heating system (R) activating a heating system when the internal temperature is
between -10 and 0 ◦C.

The first time that the heating system is activated it is able to increase the
internal temperature of the box until 0 ◦C and then it is deactivated. However, the
second time the heating system is activated, the external temperature -temperature
chamber- is too cold -about -60◦C- for the heating pads to heat the box until 0 ◦C
again and the system is permanently on until approximately the end of the test,
when the temperature of the chamber is higher than -40◦C again.
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4.3.2 9DoF Data

The 9DoF sensor data was mainly used when understanding the experienced prob-
lems during the different launches as well as the actual flight movement profile that
was followed in each case. The data allows to identify unexpected balloon bursts
and cutting system entanglements, among other features.

Figure 4.8: 9DoF Data during two different parts of the flight - Two different
behaviors of the payload while flying can be distinguished: (L) semi-periodic spikes
while two balloons are lifting the payload, (R) and a continuous acceleration while
the payload is descending.

The data presented in Figure 4.8 allow for an analysis in case of communication
losses or failure of the controlled descent system.

4.3.3 Descent Rates

Figures 4.9 and 4.10 are data plots from two different launches:
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Figure 4.9: Fast Descent with Only a 1m Parachute Case: (L) range and elevation
decreasing rapidly because the payload is descending at a fast rate, (R) descending
approximately 34km in less than 30 minutes, with descent rates between 10 and
50 m/s.
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Figure 4.10: Slow Descent with One Balloon Case: (L) elevation decreasing slowly
and slant range increasing progressively because the payload is descending at a slow
rate and going away from the GS until the last hour of the launch, (R) descending
approximately 31km in 2 hours, with descent rates between 2 and 6 m/s.

From the previous plots, it can be concluded that the controlled descent unit
enables long duration launches and, therefore, higher resolution measurements
during the descent part of the flight. For long launches, the slant range from the
payload to the GS can be too much to maintain a high data throughput, but the
flight path predictors can be used to choose the best time window for these type of
launches, adjusting the ascent and descent rates, as well as considering the weather
predictions.

Figure 4.11 presents the results from the controlled descent unit of the stage 4
of the design, in which one of the two balloons being used in that launch configu-
ration was being cut either when a certain altitude or a specific launch time was
reached.

Figure 4.11: Cutting system activation at 23.5 km and slow descent at 3.5-4 m/s.

For the launch that provided the data from Figure 4.11, the controlled descent
unit was configured with a timer of 1.5h and an altitude of 30km. Using the flight

CHAPTER 4. RESULTS AND ANALYSIS 65



path prediction tool, it was determined that with an ascent rate of 5m/s, it would
take 1h40min to the system to reach 30 km; due to that, the timer considered
a few minutes less in case of overfilling the balloon and GNSS receiver failures.
The ascent rate was lower than the one considered, resulting in a cutting system
activation based on time at only 23.5 km of altitude.

Even though the controlled descent system was activated prematurely, it can be
seen how the descent rate was instantaneously slow, between 3.5 and 4 m/s for
the rest of the launch.

4.4 Data Retransmissions

As it can be seen in Figure 4.12, the retransmitted data and the new payload
coordinates were being received at the same time. It has to be considered that the
temperature data is plotted based on the payload altitude in the GUI; thus, it can
be seen how the temperature values were periodically repeated, but the altitude
is decreasing because the balloon is descending (see Ascent/Descent Rate label).

Using this plot, it can be seen in real-time if both the descent and retransmission
modules worked by checking the data plots and the GNSS receiver data labels part
of the GS GUI design.

Figure 4.12: GS GUI - Data retransmissions during the descent.

Considering that SAIL owns two ground stations that can be used for HAB
launches -a permanent and a mobile one-, two different cases were considered for
retransmissions analysis: considering only one ground station tracking the payload
(SISO system) and combining the data from two ground stations tracking the same
payload (SIMO system). Both cases were analysed for a launch in which the pay-
load was having heating problems. The communication link was completely lost
when the voltage regulator supplying the transceiver was shutting down, resulting
in several data packets being created with new data but not being sent.
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Tables 4.1 and 4.2 present the improvement in total percentage of losses when
combining the retransmitted data with the first transmission from 35 to 20 km.

• Case 1 - 1 Ground Station (SISO System):

Table 4.1: Retransmissions %Losses - Case 1

Stage %Losses Total %Losses
1st Tx 49.95% 49.95%
1st RT 51.14% 23.81%
2nd RT 24.73% 5.89%
3rd RT 19.34% 1.16%

In Table 4.1, with only one retransmission, more than 25% of the data was
recovered, achieving less than 1.5% of total packet losses after 3 retransmis-
sions.

• Case 2 - 2 Ground Stations (SIMO System):

Table 4.2: Retransmissions %Losses - Case 2

Stage %Losses Total %Losses
1st Tx GS 1 49.95% 49.95%
1st Tx GS 2 42.43% 46.23%
1st RT GS 1 51.14% 21.73%
1st RT GS 2 57.57% 17.27%
2nd RT GS 1 24.73% 4.17%
2nd RT GS 2 27.72% 2.52%

In Table 4.2, the data from two ground stations were merged and considered
to analyze the data recovered during the retransmissions. As it can be seen, after
1 retransmission from each GS, about 28% of the data was recovered. With 2
retransmissions, only 2.5% of total packet losses was achieved.

This second case launch configuration was achieved by configuring the payload
transceiver in broadcast mode with a certain network ID that was shared by the
two ground stations as well.

For a MIMO configuration, with multiple payloads and ground stations, each
payload is configured with the same network ID as the ground station tracking
that system. However, in order to avoid data packets interferences, each pair of
payload and ground station is configured in a different network ID.
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Chapter 5

Budget and Resources

In this chapter, the project costs for both segments are detailed, as well as the
facilities available for testing and calibration. The costs presented are the ones
for the final ground station and payload hardware designs, the used software and
the launch materials. A summary of all the costs is presented, indicating the
average total cost of a single launch for the most expensive scenario -double launch
configuration. Finally, the facilities available to develop, calibrate and test those
designs is indicated.

5.1 Hardware and Software Cost

5.1.1 Ground Station

Table 5.1: Ground Station Cost Summary

Components1 Quantity Cost ($) Total cost($)
900MHz Yagi Antenna 1 88.95 88.95
Elegoo Mega2560 1 14.99 14.99
Yaesu G-5500 1 336 336
Tripod 1 34.99 34.99
Mast 1 25 25
Plates 3 10 30
Handles 3 3 9
PCB - Controller Shield 1 25 25
Long Power Cords 1 25 25
XBee PRO SX Board 1 100 100
Active USB Cable 1 28.19 28.19
Waterproof Box - Rotor 1 12.99 12.99
Waterproof Box - Transceiver 1 25.99 25.99
N Male - SMA Male Cable 1 15.85 15.85
SMA Male - RP SMA Male Cable 1 2 2
Tank Regulator 1 63.99 63.99
Tarp 1 6 6
Total - - 843.94

∗1 All the items can be considered one-time purchases.
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5.1.2 Payload Costs

Table 5.2: Payload Cost Summary

Components Quantity Cost ($) Total cost($)
Measurements System
XBee PRO SX Chip 1 100 100
Teensy 3.5 1 24.95 24.95
Thermistors 3 4.5 13.5
Industrial 8GB SD Card 1 10.99 10.99
Cloverleaf Antenna 1 1.50 1,50
uBlox NEO-M8N 1 26.99 26.99
LSM9DS1 9DoF 1 15.95 15.95
PCB 1 20 20
Styrofoam Box 1 10 10
Floureon 7400mAh Battery 1 30 30
Waterproof Switch 1 2 2
Heatsink 2 2 4
Cables and Misc. 1 5 5
Subtotal 1 - - 264.88
Controlled Descent System
Elegoo UNO 1 11.86 11.86
SN754410NE Driver 2 2.5 5
ublox NEO-M8N 1 26.99 26.99
Temperature Sensor 1 5 5
Heating Pad 2 2.5 5
PCB 1 10 10
Floureon 1500mAh Battery 1 11 11
Waterproof Switch 1 2 2
Styrofoam Box 1 5 5
Cables and Misc. 1 3 3
Subtotal 2 - - 84.85
Total - - 349.73

5.1.3 Launch Setup Costs

Table 5.3: Launch Setup Cost Summary

Components Quantity Cost ($) Total cost($)
1500gr Balloon 1 150 150
1000gr Balloon 1 100 100
1m parachute - 35 35
Helium Tank (200ft3) 0.75 220 165
Total - - 450
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5.1.4 Software Costs

All the software used in this project is available for ERAU students at no cost or
they are open source programs. Therefore, the are no software cost related to this
part of the MURI project. The programs used are presented in the following list:

• MATLAB + App Designer Package.

• Arduino IDE.

• Digi XCTU.

• u-center (uBlox Software Center).

• National Instruments Multisim/Ultiboard.

5.2 Summary

• Ground Station cost: $843.94 (one time purchase).

• Payload costs: $349.73

• Launch Setup costs: $450

• Software cost: $0

Once the design is finished and a ground station is completely prepared, each
balloon launch results in the sum of the payload cost and the launch setup cost,
which would be approximately $800 per launch.

5.3 Facilities

• Space and Atmospheric Instrumentation Laboratory (SAIL)

SAIL is part of the Center for Space and Atmospheric Research (CSAR)
and it is located within the Physical Sciences Department in the College of
Arts and Sciences building. This laboratory includes mechanical hardware
building capabilities, desks and workstations and an ESD safe zone for SMT
assembly and testing that will be useful for this project development.

• Plasma Lab

This laboratory is where the temperature and pressure calibrations are per-
formed. It also includes machinery required for the ground station develop-
ment, such as a hydraulic press for the base plates holes.
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Chapter 6

Conclusions

This thesis premise was the implementation of a communications bus and tracking
and ascent/descent controlled systems for a high-altitude balloon platform. It cen-
ters mostly on the payload and the controlled descent unit design, implementation
and configuration, as well as the concepts and techniques used to achieved the
project requirements.

Taking this into account, in addition of the preliminary goals and the final re-
sults of this thesis, these are the conclusions that can be established:

• Altitudes higher than 30 km were achieved, with a controlled descent unit
able to slow the descent rates and to obtain valid data even during that leg
of the flight.

• A throughput higher than 100 kbps has been validated to be working until
slant ranges of approximately 150 km, which allows centimeter scale turbu-
lence measurements when combined with slow descent rates.

• A logic including retransmissions of data of interest below 20 km was vali-
dated and it allows to receive almost 100% of the scientific data gathered in
the regions of interest.

• The ground station system was validated to be working and easy to be du-
plicated by our and other universities. This design was shared with the
other universities participating in this project, which they used in a perma-
nent position or on top of a mobile vehicle to follow the balloon during the
launch.

• Multi-point launches were accomplished thanks to the transceiver configura-
tion. SISO and SIMO configurations were tested and proved to be working,
where one payload was tracked by one or two ground stations at different
locations. A SIMO system can be useful for long launches, when deploying
the second one for being used as a relay system.

• The mass-production of this design is possible thanks to the printed circuit
boards produced, which speed up the production and testing process, and
its affordable cost of 800$ per double-balloon launch.
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Chapter 7

Future Development

As a future approach, the integration of this design with the other universities sys-
tems, the final tests of the new controlled descent design, as well as the redesign of
the payload PCB to add the other universities sensors and to solve the observed
heating problems are considered:

• Payload PCB Re-design.

In order to avoid future communication losses due to heating problems, the
payload PCB can be re-designed to increase the distance between the volt-
age regulators and the transceiver module. Since it has been proven in past
launches that this design can work, it can be a possible solution to ensure
that the shut down problems will not appear if a styrofoam box with not
enough ventilation is used.

If a double stage voltage regulation is considered, the design could include an
intermediate state going from 7.4V to 5V and then from 5V to 3.3V. Doing
this, the power dissipated in the voltage regulator will be decrease and it will
help with the heating problems.

Finally, a specific heatsink design to cool the voltage regulator used could
be proposed. Using the low external temperatures, the heatsink could be
helping dissipating the extremely high temperatures that the chip achieves.

• Systems Integration.

Once the system covered by this thesis is fully tested and proved to be per-
fectly working, it will have to be integrated in the final HAB design, where
the other universities that are involved in this project will be adding the re-
quired sensors to be launched during the scientific campaign to collect data
of AFOSR interest. The collected data during those launches will allow the
analysis and model characterization of stratospheric turbulence that will be
considered for the hypersonic vehicles design.
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• Controlled Descent Unit for a Single-Balloon Configuration.

A double-balloon configuration system has been proved to be successfully
working for a controlled descent system. However, the design for a single
balloon configuration based on a valve system commanded from the payload
using a Bluetooth communications link was not able to be tested during a
HAB launch.

When writing this document, this system is waiting to be launched to anal-
yse its performance, which will finally confirm that the communications link
can be maintained for the whole launch duration and that, therefore, the
controlled descent unit can be commanded from the payload.

• Ground Station Upgrade.

The ERAU permanent ground station can be upgraded to improve the com-
munications link results. RF signal conditioning can be added to reduce the
received noise and improved the signal-to-noise ratio, such as a low noise am-
plifier. Moreover, some signal filtering can be added to avoid interferences.
Doing this, the percentage of packet losses or errors over a certain slant range
can be improved.

If required, uplink capabilities can be added to the ground station design. To
do that, the band regulations shall be taken into account, since the maximum
EIRP allowed is 4W. One possible solution is to configure the GS transceiver
with a maximum output of 19-20 dBm, or even add a secondary RF chain
for the uplink considering the required signal attenuation.

• Academic Purpose.

Although this design will be modified to be able to include the sensors re-
quired for the experiments that will be conducted for the AFOSR, it could
also be modified to include a different scientific purpose. As long as the mi-
crocontroller has pins available, a series of different sensors could be added.
It will only require to change the payload packet format/communication with
the sensor or system, and to use the same format in the ground station GUI
to be able to successfully monitor the whole system.
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Appendix A

Ground Station Design

The ERAU ground station consists of 5 modules: antenna module, rotor, mast,
tripod, base plates.

A.1 Base Plates

A.1.1 Materials List

For the base plates, the following list of materials was used:

• 12’ x 12’ x ½’ Steel Plate.

• 8-32 x 1 Flat Phillips Machine Screw.

• 10-24 x 1-½ Flat Phillips Machine Screw.

• 4 3/4 in. Screen Door Pull Handle.

• 8-32 Nylon Insert Lock Nuts.

• 8 Flat Washers.

• 10-24 Wing Nut.

• 10 Lock Washers.

• ½ in. 82 Metal Countersink Drill Bit.

Those materials were all obtained via standard home improvement store lo-
cations and are all commercially available products. They are all required to
complete the base assembly outlined in the next subsection. Any changes made
to this assembly process may alter the above material list.

A.1.2 Assembly and Disassembly

Step 1. With all materials listed in Materials section obtained, the three 12in
x 12in x ½in steel base plates must be properly drilled. This includes seven 82°
countersink holes at the locations specified in Figure A.1.
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It is recommended that the drilling be done with a machine drill to maintain
dimensional accuracy and due to the duration, it may take to drill the steel plates.
Once each plate was drilled with a machine drill, the in. 82° countersink drill bit
was then used on each drill hole. With the completion of this, the steel plates are
ready for further assembly.

Figure A.1: Design template for steel base plate drilling configuration. Each drilled
hole is identical in diameter and countersink. Note that the two holes on either
side are symmetrical and are constrained to the same dimensions, not displayed.

Step 2. With the countersink portion of the steel plate facing down, feed
four 8-32 x 1 screws through the side holes as displayed below.

Step 3. Place a 4 ¾ in. door pull handle over each of the two screw pairs.
Over the handle, slide a 8 washer onto each screw, followed by an 8-32 nylon insert
lock nut for each. Tighten the lock nut with a wrench until all parts are securely
fastened. The completed configuration is shown in the following depiction.

Figure A.2: Completed view of Assembly Steps 2 and 3.

Step 4. Feed three 10-24 x 1-½ screws facing up through the top three holes of
each base plate. Note - these screws should line up nearly flush with the bottom,
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as they are a larger screw size than the 8-32 screws.

Step 5. Place the three open sockets of the L-bracket of an antenna leg
over the three open screws. Make sure that the base plate is facing away from
the structure to allow for ease of use following assembly. On each screw, place a
10 lock washer, and secure the base plate with a 10-24 wing nut for each screw.
Tighten each wing nut until the screw is secured and all parts are flush to each
other. The configuration should look as follows.

Figure A.3: Completed assembly of steps 4 and 5, with base plate attached to the
leg of the antenna tripod.

Step 6. If not done so already, repeat Steps 1-5 for each of the remaining
base plate assemblies. Make sure to have each base plate facing outward of the
antenna so that it is more accessible for weights or for disassembly.

The disassembly process does not contain as many steps as assembly. Simply
undo the wing nuts from each leg and pull the L-bracket up from the screw con-
figuration. Make sure to house the wing nuts and screws in a secure location for
repeated use and assembly.

A.2 Tripod

The tripod considered in this design is a 3 feet commercially available tripod. A
pack of this tripod with a 2-inch OD mast is commercially available.

The tripod needs to be completely extended for maximum stability, as well as
to be secured with the base plates.

Adding enough weights on the base plates, the ground station demonstrated to
handle winds up to 40 mph.
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Figure A.4: ERAU Ground Station Tripod

A.3 Mast

The mast considered in this design is a 2-inch OD mast.

Figure A.5: ERAU Ground Station Mast

Two different sizes are used for indoor tests and actual launch setups. Both are
commercially available products in home improvement store locations, and their
price is about $4/ft.

The mast needs to be completely secured by the tripod screws. After the ground
station is north aligned, the tripod shall be able to avoid the mast movements. If
not, the antenna pointing offset can be a problem during the launch.

A.4 Rotor

The Yaesu G-5500 is a rotor system that has both azimuth and elevation controls.
The azimuth of the rotor has a turning range of 0°- 450°. The elevation of the
rotor has a rotation range of 0° - 180°. Table A.1 presents the main specifications
of the selected rotor.
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Table A.1: Yaesu G-5500 Rotor Specifications.

Voltage Requirement 110-120 or 200-240 VAC
Motor Voltage 24 VAC
Rotation Time (@60Hz) Elevation(180◦) : 67secs
Maximum Continuous Operation 5 minutes
Rotation Torque Elevation: 14 kg-m (101ft-lbs)

Azimuth: 6 kg-m (44 ft-lbs)
Braking Torque Elevation: 40 kg-m (289 ft-lbs)

Azimuth: 40 kg-m (289 ft-lbs)
Vertical Load 200 kg (440 lbs)
Pointing accuracy ±4 percent
Wind Surface Area 1 m2

Control Cables 2x6 conductors = 20 AWG or larger
Mast Diameter 38-63mm (1-1/2 to 2-1/2 inches)
Boom Diameter 32-43 mm(1-1/4 to 1-5/8 inches)
Weight Rotators: 9 kg (20 lbs)

Controller: 3 kg (6.6lbs)

Figure A.6: ERAU Ground Station Rotor

A.5 Control

A.5.1 Components - Parts

The list of components used for the electronics design of the ground station control
part is presented below:

• Arduino Mega2560

• uBlox NEO M8N GNSS Sensor

• 7 conductor cable (Digikey part # T1348-5-ND)

APPENDIX A. GROUND STATION DESIGN 81



• Female crimp pins (Digikey part # A25969CT-ND)

• TE 10 pin connector housing (Digikey part # A25901-ND)

• 4 NPN BC337 transistors (Digikey part # BC33740TACT-ND)

• 2 channel LMC6483 OPerational Amplifier (Digikey part # LMC6482IN/NOPB-
ND)

• 5 qty (1x8) header pins (Digikey part # 609-3301-ND)

• 1 qty (2x16) header pins (Digikey part # 732-5309-ND)

• 4 qty 10K resistors

• TE Male 10 pin connector (Digikey part # A33179-ND)

• 5 pin Molex Picoblade connector (Mouser part # 538-53048-0510)

• PCB shield

Figure A.7: ERAU Ground Station Rotor Control Arduino Mega2560 Shield

A.5.2 Calibration

First of all, the rotor gauges need to be calibrated. To do that, there are two screws
on the back of the rotor that can be adjusted after the rotor is in the minimum
azimuth and elevation positions. Once the gauges are calibrated, an algorithm to
calibrate the analog signals of the Arduino for each rotor position is considered. In
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order to use this code, there are two screws on the rotor box that must be adjusted
to be able to cover the expected azimuth and elevation range with the available
Arduino analog signal range. The G-5500 rotor control box has a 8 pin DIN ex-
ternal control connection that controls the different movements by connecting the
respective pin to the Az/El positions of the rotor. There are two pins that supply
a DC voltage from 2 to 4.5 V corresponding to azimuth and elevation positions
from the rotor. To calibrate these positions, the rotor can be manually moved
to Azimuth: 360 degrees and Elevation: 120 degrees. Then, the rotor calibration
algorithm is used to read the analog values for those azimuth and elevation po-
sitions. For both of them, we expect the analog values to be approximately at
95% of the maximum expected value, to ensure enough resolution and to avoid
possible rotor errors. To do that, the screws of the rotor box are used to reduce
the signal level send to the Arduino in that position. Once the maximum value
is adjusted, the rotor is manually moved to different positions, while the arduino
analog readings are being considered. With those equivalences, a polynomial fit is
used to be able to translate the analog readings to actual rotor positions for both
azimuth and elevation coordinates.

The aforementioned calibration should be performed when a new G-5500 is as-
sembled, or anytime there is reason to believe the OUT VOL ADJ set screws may
have been adjusted. If the microcontroller of the operational amplifier have been
replaced, but the G-5500 OUT VOL ADJ screws have NOT been adjusted, then
the steps before step 14 can be omitted. Follow the next steps for a full rotor
calibration process:

• Use the G-5500 Control to rotate the azimuth and elevation of the G-5500
fully left and down using the respective rocker switches until the limit of
movement is reached. The G-5500 has limit switched internal to the rotor.

• If the gauges above the Elevation and Azimuth do not read 0, use the small
0 adjust set screw on the bottom of the respective gauges to zero the gauges.

• Attach a voltmeter to measure the voltage between pin 1 and pin 6.

• Mark the position of the Azimuth housing across the rotating section. There
is a small raised vertical line on the upper portion of the Azimuth rotator
that makes a good reference to align a mark for the lower portion.

• Rotate the azimuth rotor clockwise 1 complete revolution until the marks
are realigned using the RIGHT rocker switch.

• Use the FULL SCALE ADJ set screw above the AZIMUTH connection on
the back of the Rotor Control to adjust the reading of the azimuth gauge
until the gauge reads 360°.

• Rotate the azimuth rotor clockwise to the end-stop using the RIGHT rocker
switch.

• Use the OUT VOL ADJ set screw above the AZIMUTH connection on the
back of the Rotor Control to adjust the voltage reading on the voltmeter to
2.5V.
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• Attach a voltmeter to measure the voltage between pin 1 and pin 8.

• Notice the markings on the elevation rotor. There is an indication line and
the raised portion on the housing will indicate 0°, 90°, and 180°.

• Rotate the elevation rotor clockwise 1 the indicator and the 180° mark are
realigned using the UP rocker switch.

• Use the FULL SCALE ADJ set screw above the Elevation connection on the
back of the Rotor Control to adjust the reading of the azimuth gauge until
the gauge reads 180°.

• Use the OUT VOL ADJ set screw above the ELEVATION connection on
the back of the Rotor Control to adjust the voltage reading on the voltmeter
to 2V.

• Connect the USB Rotor Control to the G-5500 control. If the controller
software has not been flashed, do so now.

• Open a hyper terminal and connect to the USB Rotor Control.

• Rotate the Azimuth and Elevation to 0° using their respective switches.

• Use the intCal command to start the calibration routine

• Open an Excel spreadsheet and record the displayed counts that correspond
with the rotor position. Rotate the rotor to the indicated lines on the gauges
starting with the Azimuth. The lines are in 15° increments on the Azimuth
and 7.5° increments for the elevation.

• Using the average of a minimum of 3 runs for each. Fit a trendline to
determine the conversion between ADC counts and degrees.

• Edit the source code of the getAzDegrees() and the getElDegrees() functions
to match the results of step 19.

• Flash the new source code to the Arduino.

A.6 Antenna Module

For the antenna module, a boom to connect the antenna to the rotor is required.
The size of the boom will depend on the size and the number of antennas used
for communication purposes, while the diameter will be limited by the rotor. The
antenna will depend on the frequency band selected for the communications be-
tween the HAB payload and the ground station. The antenna considered for the
ERAU ground station is a 900MHz – 17dBi Yagi antenna. For this antenna, a
boom of approximately 6ft long and 1-inch OD is used. A 6ft by 1-inch OD boom
is commercially available for $8-10. If you are interested in using the same fre-
quency band and antenna, the model used on the ERAU ground station is the
“MSQ-90217” from DXEngineering/M2inc with a cost of $88.95.
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Figure A.8: Ground Station antenna: 900MHz-17 dBi Yagi antenna.

Figure A.9: Ground Station antenna: (A) H and (B) E planes radiation patterns.
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Appendix B

Tracking System

This appendix contains design process to develop and use the payload tracking
system, from the payload perspective to the antenna pointing calibration.

B.1 GNSS Sensor

In this section, the configuration and decoding of the data from the GNSS receiver
of the payload is presented. The receiver is used to obtain the payload 3D position
in order to point the antenna towards it.

The sensor used for the presented payload designs was uBlox M8N. This GNSS
module provides high sensitivity, customizable configurations and an altitude op-
erational limit of 50.000 meters, which makes it compliance with the project re-
quirements. Moreover, the low power consumption of these devices make them
easy to operate with hobby boards, such as Arduino or Teensy.

Figure B.1: GPS Module

B.1.1 Sensor Configuration

uBlox provides GNSS evaluation software for their devices, including configuration
and control features, as well as real-time displays for the received data: the uBlox
Center or uCenter.

Connecting the uBlox device to a computer (FTDI-UART USB cable) and
opening a connection on the u-center, several real-time displays for the data re-
ceived from the device can be seen once the device is properly configured.
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Figure B.2: Ublox USB Connection

Figure B.3: uBlox Center - Information View

The following steps presents how to configure the devices using uCenter.
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• uCenter View: Configuration View.

Figure B.4: Ublox Center View for Configuration

• Reference Datum: ‘WGS 84’.

Figure B.5: uBlox Datum Configuration

• Message Configuration: GGA, GSA, GSV, GNS.

Figure B.6: uBlox Message Configuration. Output NMEA Sentences.
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Figure B.7: uBlox Message Configuration. NMEA Message Selection.

Figure B.8: uBlox Message Configuration. Configured NMEA Message - Commu-
nication Protocol Selected.

Figure B.9: uBlox Message Configuration. Not configured NMEA Message.
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• Navigation Mode Configuration: Dynamic Model - Airborne 1g, Fix Mode
- 3D fix type only.

Figure B.10: uBlox Navigation Mode Configuration

• Ports Configuration: UART, NMEA Protocol, 9600 bps 8N1.

Figure B.11: uBlox Ports Configuration
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• Measurement Period/Frequency: 1000 - 200 ms (1 – 5 Hz).

Figure B.12: uBlox Measurement Period/Frequency Configuration

The LLA parameters are also used to analyse the sensors data at each po-
sition. Therefore, in order to obtain cm-scale accuracy, the sampling rate of
the receiver shall be as high as possible, always ensuring a minimum number
of satellites in view to be able to track the payload properly.

The selected model, uBlox M8N, can work at 10 Hz if only GPS satellites
are considered. However, using any other combination of satellites constel-
lations, 5 Hz is the maximum achievable sampling rate. In the previously
presented designs, the maximum configured sampling rate was 5 Hz, using
normally GPS and GLONASS as the main satellite constellations being used
to obtain the payload LLA parameters.

• Save Configuration: EEPROM, FLASH.

Figure B.13: uBlox Saving Configuration

There are different view options for the actual NMEA messages and informa-
tion being received. If the Message View option is selected, the directly parsed
information from the NMEA sentences can be examined. By using this, the uBlox
decoded information by the u-center can be compared with the Arduino library
that is used in the final application to decode these sentences.
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B.1.2 Raw Output - NMEA Sentences

For position and accuracy purposes, NMEA -GxGGA and NMEA -GxGSA sen-
tences are considered, as it can be seen in the following figures:

Figure B.14: NMEA - GxGGA Sentences Format

Figure B.15: NMEA -GxGGA uBlox Center View

Figure B.16: NMEA - GxGSA Sentences Format

Figure B.17: NMEA -GxGSA uBlox Center View

In Figure B.14, GGA sentences has a “quality” field. On the other hand, in
Figure B.16 GSA messages contains a “navMode” field. Considering both fields,
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one can draw conclusions about the quality of the information that it is being
received. Specially in terms of altitude, that a “3D fix” should be considered.

Figure B.18: Status, Quality, Navigation Mode NMEA Messages Parameters

To clarify some of the quality values, the following descriptions should be con-
sidered:

• Differential GNSS fix provides a higher accuracy than Autonomous GNSS
fix. This technique uses a network of fixed ground reference stations to broad-
cast the difference between the positions indicated by the satellite systems
and the known fixed positions.

• Real Time Kinematic (RTK) fixed satellite navigation is a technique
used in land survey based on the use of carrier phase measurements of the
GPS, GLONASS and/or Galileo signals where a single reference station pro-
vides the real-time corrections of even to a centimeter level of accuracy.

• Float Real Time Kinematic (RTK Float) is very similar to the fixed
RTK method of calculating location, but is not as precise, typically around
20 cm to 1-meter accuracy range

• Estimated Fix or Dead Reckoning is the determination of a location
based on computations of position given an accurately known point of origin
and measurements of speed, heading and elapsed time. Dead reckoning can
be used to “fill in the gaps” when there is insufficient satellite signal strength
to obtain an accurate position.

In the next section, it can be seen how the considered Arduino library is
merging both fields to extract the status information of the received data.
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B.1.3 NEOGPS Library

Figure B.19: uBlox Sensors Serial Output: NMEA Messages

In the previous figure, an example of the NMEA sentences that the uBlox is sending
once per second can be seen. Among others, the GxGGA and GxGSA sentences
can be detected.

NEOGPS is the Arduino library that Elegoo Mega2560 is using to parse the uBlox
outputs and to create the structs with the most important information easily ac-
cessible. Moreover, this library can and should be properly prepared and analyzed
for the project application.

The following header files are considered when using this library:

• GPSport.h: used to declare your own GPS port variable, GPS port name
string, and debug print port (radio-Arduino main serial) variable. It can
be really useful to avoid possible errors/confusions if more than one GNSS
sensor are used for the same payload.

• NMEAGPS cfg.h: used to enable/disable the parsing of specific sentences.

• GPSfix.h: used to check the expected output from the available functions to
have access to the latitude, longitude, altitude and fix status information.

B.1.4 Microcrontroller Parsing - Encoding

In order to study the access to the uBlox NEO M8N and Copernicus II sensors and
their output parsing with the Arduino library, a sample code was implemented.
The Arduino loop checks if there are available bytes on the Arduino buffers for
both serial connections. If there are available bytes with the expected NMEA sen-
tences, the gps fix variable is filled with the latest values sent to the serial. After
that, the code checks if a valid location was received and only in that case the
parameters of interest are considered and printed on the Arduino Serial Console
for monitoring purposes.

To check if the updated frequency is configured as expected and how much time
the Arduino needs is using to parse the data, the Arduino code includes time ref-
erences before and after reading from the uBlox serial port and after parsing the
data.
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Figure B.20: Arduino Library Program Time References.

As it can be seen in Figure B.20, there are available bytes from the uBlox
sensors approximately every second. Moreover, it takes only about 1 ms to read,
validate and parse the data. These type of checks can be performed using the
uCenter in packet view.

The microcontroller of the payload will be in charge of the data packets cre-
ation -information encoding-. Before sending any information to the on-board
transceiver, it will check if there is data available from the GPS and it will parse
it using the following code, and encode it in using a specific format.

1 while (uBloxEX.available( gpsuBloxExt ))
2 {
3 uBloxEXFix = uBloxEX.read();
4 if (uBloxEXFix.valid.location) {
5 lat1 = uBloxEXFix.latitudeL ();
6 lon = uBloxEXFix.longitudeL ();
7 alt = uBloxEXFix.altitude_cm ();
8 stat = uBloxEXFix.status;
9 numSats = uBloxEX.sat_count;

10 utcHour = uBloxEXFix.dateTime.hours;
11 utcMin = uBloxEXFix.dateTime.minutes;
12 utcSec = uBloxEXFix.dateTime.seconds;
13
14 send_packet (3);
15 }
16 }
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B.1.5 GS GUI

B.1.5.1 Coordinates Conversion and Presentation

On the ground station segment, when a GPS data packet is successfully received,
the data is decoded, prepared to be directly printed on the MATLAB GUI.

1. Packet Decoding: the packet format considered in MATLAB matches the
one considered by the payload during its creation. In this case, the packet identifier
specifies that the packet contains GNSS data and the information of interest is
decoded as it can be seen in Figure B.21.

Figure B.21: MATLAB Code Decoding Sample.

2. Pre-conversion – GUI Data Presentation: the data decoded is presented in
the GUI for monitoring purposes. Part of the data is considered for additional
parameters computation and presentation, such as ascent/descent rates.

Figure B.22: MATLAB GUI Position Sample.

While the GUI is showing the latest received data, the latitude, longitude and
altitude values are converted to azimuth, elevation and range.

The range will be plotted on the GUI and it will be used as one of the thresholds
to determine how many GPS packets per second will be evaluated to move the
ground station antennas.

The azimuth and elevation values will be sent to the ground station rotor box
controller for antenna pointing purposes to track the payload.

B.1.5.2 Rotor Communication

The next step is to send the Az/El coordinates to the rotor to point the antennas
to the payload position. To do that, there are different available modes:
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1.- Manual: the rotor is not moving based on the received data.

2.- Az/El: the rotor is moving completely based on the received data.

3.- Only AZ: the rotor is only moving horizontally considering the received data
and the ground station user should control the vertical pointing.

4.- Only EL: the rotor is moving only vertically considering the received data
and the ground station user should control the horizontal pointing.

Please consider that the “Elevation Tuning” value specified in the GUI field
will be added to the elevation value computed, as well as the “Declination” value
will be added to the azimuth computed. If during the flight, some pointing offsets
are detected, these fields can be changed in real-time to compensate the pointing
errors.

B.2 Rotor Controller

In this section, the rotor controller codes for calibration and tracking are presented.

B.2.1 Calibration Code

The code used to calibrate the rotor controller of the ground station is the one
that can be seen below:

1 // Pin definitions
2 const int _elSensePin = A2;
3 const int _azSensePin = A0;
4
5 void setup() {
6 Serial.begin (230400);
7 while (! Serial) {}; // Wait for serial to connect for native USB connection
8 pinMode( _elSensePin , INPUT); // Elevation ADC input
9 pinMode( _azSensePin , INPUT); // Azimuth ADC input

10 }
11 /* ****************************************************************
12 * A continuous 16 count average of the Azimuth counts
13 * are sent to the Serial object. When the integer ’1’ is sent to arduino , the source becomes the elevation
14 * counts until the integer ’2’ is sent to the *arduino. Then the loop will restart.
15 */
16 void loop() {
17 int ans = 0;
18 while (ans != 1){
19 int sum = 0;
20 for (int k = 1; k<17; k++){
21 sum += analogRead(_azSensePin);
22 }
23 Serial.print("Az count: ");
24 int total = sum /16;
25 Serial.println(total);
26 while (Serial.available ()) {
27 ans = Serial.parseInt ();
28 }
29 }
30 while (ans != 2){
31 int sum = 0;
32 for (int k = 1; k<=16; k++){
33 sum += analogRead(_elSensePin);
34 }
35 Serial.print("El count: ");
36 Serial.println(sum /16);
37 while (Serial.available ()) {
38 ans = Serial.parseInt ();
39 }
40 }
41 }
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B.2.2 Tracking Code

The code used to track the payload of to point the rotor to a desired position can
be seen below:
1 /* ***************************************************************
2 * NAME: GSRotor_v2.ino
3 * AUTHOR: Nick Purvis , Noemi Miguelez Gomez (miguelen.my.erau.edu)
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON.
5 *
6 * DEVELOPMENT HISTORY:
7 * Date Author Version Description Of Change
8 * -------- ------ ------- ------------------------------------
9 * 06/12/2018 NP 1 Rotor Controller Logic

10 * 26/05/2019 NMG 2 Linear Fit Az/El Calibration and Real -Time GS Position
11 ************************************************************** */
12
13
14 #include <NMEAGPS.h>
15 static NMEAGPS uBloxEX; //uBlox GPS
16 static gps_fix uBloxEXFix;
17 int id;
18
19 int32_t lati; // Latitude
20 int32_t lon; // Longitude
21 int32_t alt; // Altitude
22
23 int validFlag;
24
25 /* ***********************************************************
26
27 Global values and Definitions
28
29 *********************************************************** */
30 // constant pin variables
31 const int _upPin = 10;
32 const int _downPin = 11;
33 const int _ccwPin = 8;
34 const int _cwPin = 9;
35 const int _elSensePin = A2;
36 const int _azSensePin = A0;
37 const int _minAzPoint =0;
38 const int _minElPoint =0;
39
40
41 // enumeration for movement switch case
42 enum rotor {off , UP, DOWN , CW, CCW , azOff , elOff};
43
44 // Flags
45 bool position_flag = false;
46 bool cmdFlag = false;
47 bool elFlag = false;
48 bool azFlag = false;
49
50 // String for serial command decoding
51 String cmdString = "";
52
53 // Constants for the position adc calculations and movement ranges
54 volatile float globalAz = 0;
55 volatile float globalEl = 0;
56 const int _maxAzPoint = 450;
57 const int _maxElPoint = 180;
58
59 //Set for ˜2 deg dead zones to avoid chattering the motors
60 const int _azDeadZone = 1.5;
61 const int _elDeadZone = 2;
62
63 /* *************************************************************
64
65 SETUP
66
67 ************************************************************* */
68
69 void setup() {
70 Serial.begin (230400); // Set Baud rate to 230400
71 Serial2.begin (9600);
72
73 while (! Serial) {}; // Wait for serial to connect for native USB connection
74 //Set each of the respective pins to IO type
75 pinMode(_upPin , OUTPUT);
76 pinMode(_downPin , OUTPUT);
77 pinMode(_ccwPin , OUTPUT);
78 pinMode(_cwPin , OUTPUT);
79 pinMode( _elSensePin , INPUT);
80 pinMode( _azSensePin , INPUT);
81
82 //Write a low logic voltage value to each of the pins centered around up, down ,
83 // cw, and ccw
84 digitalWrite(_upPin , LOW);
85 digitalWrite(_downPin , LOW);
86 digitalWrite(_ccwPin , LOW);
87 digitalWrite(_cwPin , LOW);
88
89 cmdString = "";
90 // handShaking is the act of controling the data transmission between two systems
91 //or devices
92 Serial.println(’1’);
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93 analogReference(INTERNAL2V56);
94 }
95
96
97
98 /* ***************************************************************
99

100 Main Function
101
102 *************************************************************** */
103
104 void loop() {
105 if (Serial.available ()) {
106 cmdString = Serial.readString ();
107 cmdFlag = true;
108 }
109 if (cmdFlag == true) {
110 serialParse ();
111 }
112 if (position_flag == true) {
113 setPosition ();
114 position_flag = false;
115 }
116 }
117
118 /* **************************************************************
119
120 Sensing functions for the Rotor
121
122 ************************************************************** */
123 // Function to return the azimuth based on voltage from pin and number of counts
124 float getAzDegrees ()
125 {
126 int azInd = analogRead(_azSensePin);
127 for (int i=0; i<15; i++) {
128 azInd += analogRead(_azSensePin);
129 }
130 azInd = azInd /16;
131 // Edit below to convert from counts to degrees from measurement tredline
132 float azimuth = float (0.40545 * azInd - 3.35577 ); // Linear fit Rotor 1
133
134 if (azimuth < 0) azimuth = 0;
135 else if (azimuth > 450) azimuth = 450;
136 return azimuth;
137 }
138
139 // Function to return the elevation degrees based on voltage from pin and number
140 //of counts
141 float getElDegrees ()
142 {
143 int elInd = analogRead(_elSensePin);
144 for (int i=0; i<15; i++) {
145 elInd += analogRead(_elSensePin);
146 }
147 elInd = elInd /16;
148 // Edit below to convert from counts to degrees from measurement tredline
149 float elevation = float (0.19925* elInd - -0.960655223701884); // Linear fit Rotor 1
150
151 //the coeffs from matlab calibration are inputted
152 if (elevation < 0)
153 elevation = 0;
154 else if (elevation > 180)
155 elevation = 180;
156 return elevation;
157 }
158
159 /* ****************************************************************
160
161 Rotor pointing function
162
163 **************************************************************** */
164
165 void setPosition () {
166 // The comanded poistion ( globalAz and globalEl ) are checked against the max and min range of the rotor.
167 // If not within the range , the commanded postion become the max or min based on whether over or under
168 // operating range.
169 if (globalAz > _maxAzPoint) globalAz = _maxAzPoint;
170 if (globalAz < _minAzPoint) globalAz = _minAzPoint;
171 if (globalEl < _minElPoint) globalEl = _minElPoint;
172 if (globalEl > _maxElPoint) globalEl = _maxElPoint;
173
174 // Current position is read from the respective adc and converted to degrees.
175 float azInd = getAzDegrees ();
176 float elInd = getElDegrees ();
177
178 // If rotor position is within the deadzone for both Az and El then all movement stops.
179 // Solved error when changing commanded postion in the middle of a movement.
180 // Prevents rotor from trying to move further than allowed or desired.
181 if ((abs(globalAz - azInd) <= _azDeadZone) && (abs(globalEl - elInd) <= _elDeadZone))
182 pointRotor(off);
183
184 // While either rotor is not at the desired position , loop to move rotor begins.
185 while ((abs(azInd - globalAz) >= _azDeadZone) || (abs(globalEl - elInd) >= _elDeadZone)) {
186
187 // Accepts new commands while in the process of moving.
188 while (Serial.available ()) {
189 cmdString = Serial.readString ();
190 cmdFlag = true;
191 }
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192
193 // Parses command string and allows position flag to set.
194 if (cmdFlag == true) {
195 serialParse ();
196 position_flag = false;
197 }
198
199 // The comanded poistion ( globalAz and globalEl ) are checked against the max and min range of the rotor.
200 //If not within the range , the commanded postion become the max or min based on whether over or under
201 // operating range. Needed again incase new position entered by receieved command.
202
203 if (globalAz > _maxAzPoint) globalAz = _maxAzPoint;
204 if (globalAz < _minAzPoint) globalAz = _minAzPoint;
205 if (globalEl < _minElPoint) globalEl = _minElPoint;
206 if (globalEl > _maxElPoint) globalEl = _maxElPoint;
207
208 // If indicated az is withing the deadzone centered on commanded az, stop moving Az.
209 if (abs(globalAz - azInd) <= _azDeadZone){
210 pointRotor(azOff);
211 azFlag = false;
212 }
213
214 // move towards commanded position.
215 else if ((azInd < globalAz) && azFlag) pointRotor(CW); // Go CW
216 else if ((azInd > globalAz) && azFlag) pointRotor(CCW); // GO CCW
217
218 // If indicated El is withing the deadzone centered on commanded El, stop moving El.
219 if (abs(globalEl - elInd) <= _elDeadZone) {
220 pointRotor(elOff);
221 elFlag = false;}
222
223 // Move towards commanded El
224 else if ((elInd < globalEl) && elFlag) pointRotor(UP); // Go UP
225 else if ((elInd > globalEl) && elFlag)pointRotor(DOWN); // Go DOWN
226
227 // Check current positions
228 elInd = getElDegrees ();
229 azInd = getAzDegrees ();
230 }
231 // Turn rotors off if outside of while.
232 pointRotor(off);
233 }
234
235
236
237 /* ********************************************************
238 * pointRotor () is the funtion to move the rotor. Directions are UP, DOWN , CW, CCW defind as an ENUM.
239 * A High is sent to a group of transitor switches that closes a circuit of the corresponding control wire
240 * and the ground of the extenal control of the YAESU GS -5500. HIGH moves in direction indicated.
241 * All LOW stops. HIGH on opposing directions can damage equipment.
242 */
243
244
245 void pointRotor(rotor x) {
246 // Swtich/Case to control rotor direction. HIGH moves in direction indicated. All LOW stops.
247 //HIGH on opposing directions can damage equipment.
248
249 switch (x)
250 {
251 case off:
252 digitalWrite(_upPin , LOW);
253 digitalWrite(_downPin , LOW);
254 digitalWrite(_ccwPin , LOW);
255 digitalWrite(_cwPin , LOW);
256 break;
257
258 case UP:
259 digitalWrite(_upPin , HIGH);
260 digitalWrite(_downPin , LOW);
261 break;
262
263 case DOWN:
264 digitalWrite(_upPin , LOW);
265 digitalWrite(_downPin , HIGH);
266 break;
267
268 case CW:
269 digitalWrite(_ccwPin , LOW);
270 digitalWrite(_cwPin , HIGH);
271 break;
272
273 case CCW:
274 digitalWrite(_ccwPin , HIGH);
275 digitalWrite(_cwPin , LOW);
276 break;
277
278 case azOff:
279 digitalWrite(_ccwPin , LOW);
280 digitalWrite(_cwPin , LOW);
281 break;
282
283 case elOff:
284 digitalWrite(_upPin , LOW);
285 digitalWrite(_downPin , LOW);
286 break;
287
288 }
289 }
290

APPENDIX B. TRACKING SYSTEM 100



291
292 /* **************************************************************
293
294 Read and Parse Serial Commands
295
296 ************************************************************** */
297
298 // azFlag and elFlag determine if new respective movement command has been recieved.
299 // position_flag tells the main loop() that new position has been recieved.
300
301 void serialParse ()
302 {
303 if (cmdString.substring(0, 4).equals("ElAz")) {
304 globalEl = cmdString.substring(4, 7).toInt();
305 globalAz = cmdString.substring(7, 10).toInt();
306 cmdString = "";
307 cmdFlag = false;
308 position_flag = true;
309 azFlag = true;
310 elFlag = true;
311 return;
312 }
313 if (cmdString.substring(0, 5).equals("setAz")) {
314 globalAz = cmdString.substring(5, 8).toInt();
315 cmdString = "";
316 cmdFlag = false;
317 position_flag = true;
318 azFlag = true;
319 return;
320
321 }
322 if (cmdString.substring(0, 5).equals("setEl")) {
323 globalEl = cmdString.substring(5, 8).toInt();
324 cmdString = "";
325 cmdFlag = false;
326 position_flag = true;
327 elFlag = true;
328 return;
329
330 }
331 if (cmdString.substring(0, 5).equals("getAz")) {
332 // int az = getAzDegrees ();
333 // Serial.println(az);
334 Serial.println(getAzDegrees ());
335 cmdString = "";
336 cmdFlag = false;
337 return;
338 }
339 if (cmdString.substring(0, 5).equals("getEl")) {
340 // int el = getElDegrees ();
341 // Serial.println(el);
342 Serial.println(getElDegrees ());
343 cmdString = "";
344 cmdFlag = false;
345 return;
346 }
347 if (cmdString.substring(0, 6).equals("getLoc")) {
348 while (! Serial2.available ());
349 send_GSCoords ();
350 cmdString = "";
351 cmdFlag = false;
352 return;
353 }
354 }
355
356
357 /* ***************************************************************
358
359 Get GS position from a GPS connected to the rotor controller shield.
360
361 *************************************************************** */
362 void send_GSCoords () {
363 while(validFlag == 0){
364 while(uBloxEX.available(Serial2)){
365 uBloxEXFix = uBloxEX.read();
366
367 if (uBloxEXFix.valid.location) {
368 lati = uBloxEXFix.latitudeL (); // Scaled by 10 ,000 ,000
369 lon = uBloxEXFix.longitudeL (); // Scaled by 10 ,000 ,000
370 alt = uBloxEXFix.altitude_cm ();
371 validFlag = 1;
372
373 Serial.print(lati); Serial.print(’,’);
374 Serial.print(lon); Serial.print(’,’);
375 Serial.println(alt);
376 }
377 }
378 }
379 }
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B.3 Antenna Pointing Calibration

In order to calibrate the antenna pointing, a set of steps needs to be followed:

First of all, the antenna is aligned with the magnetic north. To do that, the
tripod screws are loosen in order to be able to move the antenna towards the de-
sired position. A compass is placed on top of the Yagi antenna in three different
positions, confirming that it is pointing north. Once the antenna pointing is con-
firmed, the tripod screws are tighten to the antenna mast.

Once the antenna is aligned to the magnetic north, the pointing offset caused
by the other sources of error, such as the GNSS sensor accuracy, is analysed. To
do that, the GS test mode of the GS GUI is considered. A previously created
prediction file is used to artificially add the coordinates of three different known
points -i.e. a tall building that it is far away but in line of sight-. Using the ’Dec-
lination’ field of the GUI, the pointing precision to the selected testing locations
is adjusted, finishing the antenna pointing calibration.

Figure B.23: GS Pointing - (A) Double Antenna Design, (B) Single Antenna
Design.
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Appendix C

Ground Station GUI

This appendix presents the ground station GUI design and modes definition. The
different utilities of this app are explained, as well as the different steps to be
considered when using one of its modes: (1) ground station check, (2) balloon
launch, and (3) flight reproduction.

C.1 GUI Design Overview

As it can be seen in the next figure, the GUI used for this HAB project has several
buttons, labels and graphics. In order to have an overall idea of the different parts
of this app, the following specifications shall be considered:

Figure C.1: GUI - Design Overview.

1. 3D Position Map.
2. 2D Position Map.
3. On-board Sensors Data Graphs.
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4. Radio Communication Buttons.
5. Ground Station Buttons.
6. Antenna Tracking Mode.
7. Throughput Information.
8. Payload GPS Data.
9. Payload Tracking Mode.
10. Antenna Position/Pointing Tuning.
11. Load Position/Prediction.
12. Launch Time Info.
13. Reproduce Flight Mode.

The rest of labels and indicators are for extra information monitoring, such as
payload battery voltage, the Rx serial buffer of the MATLAB application, among
others.

C.2 Prediction Files

When planning a balloon launch, it is important to consider the path that it will
follow in order to confirm that it can be a good launch window. The path pre-
diction will help to see whether the payload is following the expected trajectory
or not, and it will help us tracking the payload in case the GPS sensor on-board
fails.

Even though the temperature and pressure sensors on board are calibrated, it
is important to see which profiles they are expecting to follow during a certain
launch. The temperatures and pressure predictions can be useful in order to accu-
rately calibrate them for the expected ranges. Moreover, these predictions are used
to confirm that the sensors on board are working as expected during the launch,
and that the internal temperature of the payload is not affecting the functionality
of any part of the hardware used for the payload development.

C.2.1 Path Prediction - CUSF Predictor

1) Go to http://habhub.org/.

2) First of all, the coordinates of the launch site shall be specified. They can
be saved for next launches, if needed. After that, the burst altitude shall be speci-
fied, as well as the expected ascent rate. Please be sure to create several prediction
files with different ascent rates, so in case it is lower or higher than expected, a
different prediction file can be used to track the payload.

APPENDIX C. GROUND STATION GUI 104



Figure C.2: CUSF Predictor - Input Parameters.

3) Once all the information is specified, “Run” the predictor and if the plotted
path is correct, click the “CSV” on the right top of the screen. This will download
the prediction information on a .csv format.

Figure C.3: CUSF Predictor - Export .csv File.

4) Open the downloaded file. This file will contain for columns: ‘Time of Week’,
‘Latitude’, ‘Longitude’, ‘Altitude’. Another column shall be added starting at 0
and adding 50 accumulatively to the next rows. This column will represent flight
time and it will be used in case a prediction file is used to track the payload
automatically.

C.2.2 Measurements Prediction - Wyoming Predictor

1) Go to http://weather.uwyo.edu/upperair/balloon traj.html.

2) First of all, the latest available time shall be selected. Note this can only
be done up to 6 hours before the launch due to the model options available.
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Figure C.4: Wyoming Predictor - Input Parameters.

3) Then, the launch site coordinates and the expected balloon ceiling shall be
specified. The output format would be ‘list’.

4) Once all the information is specified, submit it, and a list of information will
appear at the bottom of the page. That information shall be copied, ignoring the
headings.

Figure C.5: Wyoming Predictor - Output Data.

5) Open a new Excel spreadsheet and copy that information on the first column.
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Figure C.6: Wyoming Predictor - Copied Data.

6) On the ‘Data’ tab, select ‘Text to Columns’, and select ‘Delimited’ on the
next window. Click next.

Figure C.7: Wyoming Predictor – Text to Columns and Data Delimited.

7) Uncheck ‘Tab’ and select ‘Space’. Click next.

Figure C.8: Wyoming Predictor – Data Space Delimited.

8) Leave the data type as ‘General’ and select finish.

9) Save the file as a .csv.
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C.3 GUI Modes

C.3.1 GUI Setup

The following steps must be followed for all the GUI modes in order to prepare
the GUI environment.

First, the map/ground station position will be specified. For that, “Load Posi-
tion” will be pushed and a small window will appear asking if we want to get the
GS coordinates in real-time or not. Please consider that the ground station posi-
tion can be hard coded on the design view, if this position is expected to be always
the same. However, if a GPS sensor is connected to the GS controller shield, these
coordinates can be computed and uploaded to the GUI by clicking yes to that first
window. In this case, the GS needs to be connected beforehand.

Figure C.9: GUI - Load Position.

The computed coordinates will appear on the next window. In this window,
the coordinates can be changed by hand if required. Moreover, the desired map
radius will need to be introduced, considering the predicted path data.

For the Map Radius, the expected maximum range for that launch shall be taken
into account to achieve the proper map resolution while tracking the balloon path.
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Figure C.10: GUI - GS Coordinates, Map Position.

After that, the GUI will ask us if the antenna position is the same as the map
center, and if we want to upload a Map or download a new one. For the last
option, an internet connection is required.

Figure C.11: GUI - Antenna Location and Map Setup.

At this point, a flight data file can be reproduced, but it is more convenient
to fully prepared the GUI to contain the prediction files to be able to visualize all
the information available during that flight.

For the ground station checks and the flight modes, the prediction files will be
needed. So next step will be to load the prediction files that were created previ-
ously.
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Figure C.12: GUI - Load Prediction Files.

Please take into account that each prediction file it is used for different pur-
poses, so the GUI is expecting one format or the other, according to the pushed
button.

After that, the GUI is completely prepared for a launch or a ground station check.

Figure C.13: GUI - Loaded Prediction Files.
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C.3.2 Reproduce Flight

For this mode, only the data file from a previous flight is required.

The GUI code can be changed to allow more or less time between data points
being plotted.

Figure C.14: Minimum Messages to be Considering between Data plotted.

A window to choose which .bin file is going to be reproduced will appear after
pushing ‘Reproduce Flight’.

Figure C.15: GUI - Reproduce Flight Selection.

After a few seconds, the data will start being plotted automatically.

C.3.3 Ground Station Check

For this mode, there are several things to consider.

First of all, the GUI needs to be connected to the Ground Station controller.
To do that, select the proper ‘GS COM port’ drop down list/button and push the
‘Connect GS’ button. After a few seconds, the button ‘Disconnect GS’ will be ac-
tivated, meaning that the GUI and the GS controller connection was successfully
made.
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Figure C.16: Ground Station Check - GS Connection.

Once the GS connection is completed, the ‘Ground Station Test’ button can be
pushed. The tracking mode shall be changed to ‘Prediction File’. The ‘Prediction
Mode’ will define if the ascent or the descent part of the launch is going to be
checked. Finally, the ‘Prediction Mode’ will define if the GS check is going to be
performed manually of automatically.

Figure C.17: Ground Station Check - Prediction File Tracking Options.

If the prediction mode is manual, the altitude input label on the right side must
be changed accordingly. If the automatic mode is selected, the GS coordinates will
be automatically updated from the last altitude input until the end of the launch
predicted data.

By selecting ‘Manual’ and pushing ‘Ground Station Test’ again, the prediction
mode can be changed again.

The 3D and 2D position maps will show the corresponding data points during
the GS checks, and the GPS labels will show the predicted balloon LLA coordi-
nates:
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Figure C.18: Ground Station Check - Predicted Position Plotting.

C.3.4 HAB Launch

The first thing to do in this mode is the Radio connection. To do that, the ‘Rx
COM Port’ must be used to select the GS radio port before pushing the ‘Begin
Tracking’ button.

Figure C.19: HAB Launch Mode - GS Radio Connection.

Once the payload is launched, the ‘Launch Time’ button can be pushed in
order to keep track of the exact launch time. It can be useful, if some timer is
included on our cutting system design.
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The ‘Restart Rx Port’ button can be pushed if the serial connection with the
radio fails, in order to restart it.

During a launch, the antenna tracking mode can be changed to point the ground
station only considering elevation angles, azimuth angles, both of them and none
of them for a manually pointing.

The payload tracking mode can be changed as well from using the on-board GPS
coordinates to the prediction file information.

The ground station antenna is aligned to the magnetic North using a compass
during the antenna setup. As the magnetic north is different from true north,
there needs to be a declination correction. Furthermore, no matter how good a
compass is, there are always local stray fields that will affect the compass. The
magnetic alignment will be off by a few degrees in addition to declination. This
is where the tuning fields come in. By editing the “Declination” field, an azimuth
correction can be applied so that the antenna points exactly at the payload.

Similarly, the elevation can also end up having a few degrees of offset. The “EL
Tuning” field is included so that it can be altered to correct the pointing offsets.

Figure C.20: MATLAB GUI - Az/El tuning fields.

Once the final Az/El coordinates to point the antenna to are computed, the
GUI will update the Az/El indicators. They are only indicative of what the cal-
culated Az/El are, based on the received payload GPS location and the tuning
fields. These are the Az/El values sent to the Arduino shield that then controls
the rotor controller. The GUI does not show what the rotor is set to. This GUI’s
intention is to help the user by showing visually what is the calculated Az/El, and
then the user can visually check if the rotor is actually pointing there by looking
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at the rotor dials. Therefore, if the GS mode is set to manual, the GUI will not
show where the rotor is at.

Currently, the actual Az/El from the rotor is only read by the Arduino shield,
to determine how much it is required to be moved to point towards the expected
Az/El coordinates. The GUI is blind to the actual rotor position.

Additional communication between this GUI and the rotor controller can be added
to be able to plot the actual rotor position even in manual mode.

Figure C.21: MATLAB GUI - GS Az/El indicators.

While tuning the antenna pointing during a flight or when the antenna azimuth
value changes from 360 degrees to 0, a lot of packet losses can be experienced. If
these, or other possible, extra packet losses are desired to be subtracted from the
actual packet losses value in order to not considering then when computing the
total packet losses percentage, the ‘Extra Losses’ label can be used. The number
specified in that field will be subtracted from the “Lost Packets” field.

Finally, the ‘Serial Buffer’ label will present the status of the MATLAB Rx se-
rial buffer when the chunks of data are selected to be processed. This value should
be similar to the hardcoded number of available bytes that it is specified in the
GUI code:

Figure C.22: HAB Launch - Rx Serial Buffer Monitor.
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If MATLAB is not able to handle the amount of received data, while decoding
the sensors information and plotting them, it can be possible to experience a buffer
overflow. This problem can be detected with the ‘Serial Buffer’ label.

C.3.5 GUI Code

1 classdef MURI_HAB_GUI_v14PL2_Mobile_GS < matlab.apps.AppBase
2
3 % Properties that correspond to app components
4 properties (Access = public)
5 UIFigure matlab.ui.Figure
6 ConfigureMenu matlab.ui.container.Menu
7 RefreshCOMPortsMenu matlab.ui.container.Menu
8 LoadMapsMenu matlab.ui.container.Menu
9 LoadPredictionFileMenu matlab.ui.container.Menu

10 Location3D matlab.ui.control.UIAxes
11 Location2D matlab.ui.control.UIAxes
12 LoadPositionButton matlab.ui.control.Button
13 AltitudeEditFieldLabel matlab.ui.control.Label
14 GS_Altitude matlab.ui.control.EditField
15 LongitudeEditFieldLabel matlab.ui.control.Label
16 GS_Longitude matlab.ui.control.EditField
17 LatitudeEditFieldLabel matlab.ui.control.Label
18 GS_Latitude matlab.ui.control.EditField
19 BeginTrackingButton matlab.ui.control.Button
20 ElevationGauge matlab.ui.control.SemicircularGauge
21 AzGauge matlab.ui.control.LinearGauge
22 TempInt matlab.ui.control.UIAxes
23 sltRange matlab.ui.control.Label
24 RangekmLabel matlab.ui.control.Label
25 ConnectGSButton matlab.ui.control.Button
26 ConnectingLabel matlab.ui.control.Label
27 DisconnectGSButton matlab.ui.control.Button
28 DeclinationEditFieldLabel matlab.ui.control.Label
29 DeclinationEditField matlab.ui.control.EditField
30 LostPackets matlab.ui.control.Label
31 ReceivedPackets matlab.ui.control.Label
32 Voltage matlab.ui.control.UIAxes
33 GSCOMPortDropDownLabel matlab.ui.control.Label
34 GSCOMPortDropDown matlab.ui.control.DropDown
35 RxCOMPortDropDownLabel matlab.ui.control.Label
36 RxCOMPortDropDown matlab.ui.control.DropDown
37 SerialBufferLabel matlab.ui.control.Label
38 LoadPredictionfileButton matlab.ui.control.Button
39 TrackbyButtonGroup matlab.ui.container.ButtonGroup
40 GPSButton matlab.ui.control.RadioButton
41 PredictionFileButton matlab.ui.control.RadioButton
42 PredictionFileButtonGroup matlab.ui.container.ButtonGroup
43 AscentButton matlab.ui.control.RadioButton
44 DescentButton matlab.ui.control.RadioButton
45 PredictionMode matlab.ui.container.ButtonGroup
46 ManualButton2 matlab.ui.control.RadioButton
47 AutomaticButton matlab.ui.control.RadioButton
48 AltmSpinnerLabel matlab.ui.control.Label
49 AltmSpinner matlab.ui.control.Spinner
50 MapRadiusLabel matlab.ui.control.Label
51 radius matlab.ui.control.Label
52 kmLabel matlab.ui.control.Label
53 BatteryVoltageLabel matlab.ui.control.Label
54 gpsLAT matlab.ui.control.Label
55 gpsLONG matlab.ui.control.Label
56 gpsALT matlab.ui.control.Label
57 gpsFIX matlab.ui.control.Label
58 LatitudeLabel matlab.ui.control.Label
59 LongitudeLabel matlab.ui.control.Label
60 AltitudeLabel matlab.ui.control.Label
61 FixQLabel matlab.ui.control.Label
62 gpsSATS matlab.ui.control.Label
63 gpsHOUR matlab.ui.control.Label
64 gpsMIN matlab.ui.control.Label
65 gpsSEC matlab.ui.control.Label
66 SatsLabel matlab.ui.control.Label
67 GPSUTCTimeLabel matlab.ui.control.Label
68 ELTuningEditFieldLabel matlab.ui.control.Label
69 ELTuningEditField matlab.ui.control.EditField
70 AscentRate matlab.ui.control.Label
71 ADRateLabel matlab.ui.control.Label
72 LossesLabel matlab.ui.control.Label
73 AntenaTrakingModeButtonGroup_2 matlab.ui.container.ButtonGroup
74 AzElButton matlab.ui.control.RadioButton
75 AzOnlyButton matlab.ui.control.RadioButton
76 ElOnlyButton matlab.ui.control.RadioButton
77 ManualButton matlab.ui.control.RadioButton
78 GroundStationTestButton matlab.ui.control.Button
79 ReproduceFlightButton matlab.ui.control.Button
80 LaunchTimeButton matlab.ui.control.Button
81 LaunchTimeLabel matlab.ui.control.Label
82 PacketTimeLabel matlab.ui.control.Label
83 RestartRxPortButton matlab.ui.control.Button
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84 ExtraLossesEditFieldLabel matlab.ui.control.Label
85 ExtraLossesEditField matlab.ui.control.NumericEditField
86 end
87
88 properties (Access = private)
89 xdata % For plotting x data
90 ydata % For plotting y data
91 zdata % For plotting z data
92 wdata % For plotting w data
93 flag = 0;
94 flag_GS = 0;
95 hC = 0;
96 maxC =0;
97 myGSCoord;
98 WYpredicted;
99 spheroid = referenceEllipsoid(’WGS 84’);

100 CUSFpredicted;
101
102 startTime = 0;
103 newMapFlag = 0;
104 predFileFlag = 0;
105 predFileCol = [’k’, ’r’, ’b’, ’g’, ’c’];
106
107 end
108
109 properties (Access = public)
110 dataFile;
111 gpsData;
112 scientificData;
113 serial_GS;
114 A; B;
115 s;
116
117 end
118
119 methods (Access = private)
120
121 function [latlim , lonlim] = getMapLimits(app ,lat0 ,lon0 ,h0)
122 if lat0 <= 90 && lat0 >= -90 && lon0 <= 180 && lon0 >= -180 && isnumeric(h0) && isreal(h0)
123 az = [0 90 180 270];
124 slantRange = str2double(app.radius.Text)*1000;
125 elev = 0;
126 lat = [0 0 0 0];
127 lon = lat;
128 h=lat;
129 for f = 1:4
130 [lat(f),lon(f),h(f)] = aer2geodetic(az(f),elev ,slantRange ,lat0 ,lon0 ,h0,app.spheroid);
131 end
132 latlim = [lat(3) lat(1)];
133 lonlim = [lon(4) lon(2)];
134 else
135 errordlg(’Check your position and try again’);
136 end
137 end
138
139 function ZA = loadMaps(app ,latlim ,lonlim)
140 ZA=[];
141 prompt = {’Would you like to download new Map data?’; ’(Requires Internet Connection)’};
142 title = ’WMS Map Update ’;
143 answ = questdlg(prompt ,title ,’New Map’,’Load Map’,’Cancel ’,’Cancel ’);
144 switch answ
145 case ’New Map’
146 numberOfAttempts = 5;
147 attempt = 0;
148 info = [];
149 mundalisServer = ’http ://ows.mundialis.de/services/service?’;
150 OSM_WMS_Uni_Heidelberg = ’http ://129.206.228.72/ cached/osm?’;
151
152 serv2 = 0;
153 while(isempty(info))
154 try
155 if serv2 == 0
156 info = wmsinfo(mundalisServer);
157 orthoLayer = info.Layer (2);
158 elseif serv2 == 1
159 info = wmsinfo(OSM_WMS_Uni_Heidelberg);
160 orthoLayer = info.Layer (2);
161 end
162 catch
163
164 attempt = attempt + 1;
165 if attempt > numberOfAttempts && serv2 == 0
166 warning(’Server 1 is not available. Trying Server 2’);
167 serv2 = 1;
168 attempt = 0;
169 end
170 end
171 if serv2 == 1 && attempt > numberOfAttempts
172 warndlg ({’WMS servers are not available.’;’Please load an existing Map’});
173 return
174 end
175 end
176 [ZA, ˜] = wmsread(orthoLayer , ’Latlim ’, latlim , ’Lonlim ’, lonlim , ...
177 ’ImageFormat ’, ’image/png’);
178 app.newMapFlag = 1;
179 case ’Load Map’
180 [newfile ,path] = uigetfile(’*.map’,’Load Map File’,’map1.map’);
181 figure(app.UIFigure);
182 if newfile == 0
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183 return;
184 end
185 filename=fullfile(path ,newfile);
186 load(filename ,’ZA’,’-mat’);
187 app.newMapFlag = 0;
188 case ’Cancel ’
189
190 return
191 end
192
193 end
194
195 function results = DrawMaps(app ,ZA,latlim ,lonlim)
196 results = 0;
197 imagesc(app.Location2D ,lonlim ,latlim ,flipud(ZA));
198 imagesc(app.Location3D ,lonlim ,latlim ,flipud(ZA));
199
200 % demcmap(double(ZA))
201 % lat=linspace(latlim (2),latlim (1),size(ZA ,1));
202 % lon=linspace(lonlim (1),lonlim (2),size(ZA ,2));
203 %
204 % pcolor(app.Location3D ,lon ,lat ,ZA);
205 % pcolor(app.Location2D ,lon ,lat ,ZA);
206 % app.Location2D.DataAspectRatio= [abs(diff(lonlim)),abs(diff(latlim)) ,1];
207 % [cmap ,˜] = demcmap(ZA);
208 % colormap(app.Location3D ,cmap);
209 % shading(app.Location3D , ’interp ’);
210 % colormap(app.Location2D ,cmap);
211 % shading(app.Location2D , ’interp ’);
212 xlim(app.Location2D ,lonlim)
213 ylim(app.Location2D ,latlim)
214 xlim(app.Location3D ,lonlim)
215 ylim(app.Location3D ,latlim)
216 view(app.Location3D ,15 ,15)
217 zlim(app.Location3D ,[ -.001 ,40])
218 if app.newMapFlag == 1
219 q2 = questdlg(’Would you like to save the map data?’,’Save?’,’Yes’,’No’,’Yes’);
220 switch q2
221 case ’Yes’
222 [newfile ,path] = uiputfile(’*.map’,’Create Data File’,’map1.map’);
223 if newfile == 0
224 return;
225 end
226 filename=fullfile(path ,newfile);
227
228 save( filename , ’ZA’);
229
230 case ’No’
231 end
232 end
233 results = 1;
234
235 end
236
237 end
238
239
240 methods (Access = private)
241
242 % Code that executes after component creation
243 function startupFcn(app)
244 app.RxCOMPortDropDown.Items = cellstr(seriallist);
245 app.GSCOMPortDropDown.Items = app.RxCOMPortDropDown.Items;
246 hold(app.Voltage , ’on’);
247 hold(app.TempInt , ’on’);
248 datetick(app.Voltage ,’x’, ’HH:MM:SS’);
249 hold(app.Location3D ,’on’);
250 hold(app.Location2D ,’on’);
251 app.myGSCoord = [str2double(app.GS_Latitude.Value), ...
252 str2double(app.GS_Longitude.Value),str2double(app.GS_Altitude.Value)];
253 app.UIFigure.Position = [0 0 1280 700];
254 app.UIFigure.WindowState = ’maximized ’;
255
256 end
257
258 % Callback function: LoadMapsMenu , LoadPositionButton
259 function LoadPositionButtonPushed(app , event)
260 q1 = questdlg(’Do you want to get the GS coordinates from the GPS [GS Connection Required ]?’,’GS

GPS Coordinates ’,’Yes’,’No’,’Yes’);
261 switch q1
262 case ’Yes’
263 fprintf(app.serial_GS ,’%s\n’,’getLoc ’);
264 while (app.serial_GS.BytesAvailable == 0)
265 end
266
267 [coords] = fscanf(app.serial_GS ,’%d,%d,%d\n’);
268
269 app.GS_Latitude.Value = num2str(coords (1) /10000000);
270 app.GS_Longitude.Value = num2str(coords (2) /10000000);
271 app.GS_Altitude.Value = num2str(coords (3) /100);
272
273 end
274 prompt = {’Enter the decimal latitude of the center ’, ’Enter the decimal Longitude of the center ’,

...
275 ’Enter the Altitude in meters ’, ’Enter the desired Map Radius in km’};
276 title = ’Map Configuration ’;
277 dims = [1 ,35];
278 default = {app.GS_Latitude.Value , app.GS_Longitude.Value , app.GS_Altitude.Value , app.radius.Text};
279 answer = inputdlg(prompt ,title ,dims ,default);
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280 if ˜isempty(answer) && isreal(str2double(answer))
281 mapZ = str2num(answer {3});
282 mapLat = str2num(answer {1});
283 mapLon = str2num(answer {2});
284 app.radius.Text = answer {4};
285 else
286 errordlg(’Check the center position and try again’);
287 return
288 end
289
290 q2 = questdlg(’Is the antenna position the same as the map center?’,’Antenna Position ’,’Yes’,’No’,’

Yes’);
291 switch q2
292 case ’Yes’
293 h0 = mapZ;
294 lat0 = mapLat;
295 lon0 = mapLon;
296 app.GS_Latitude.Value = num2str(lat0);
297 app.GS_Longitude.Value = num2str(lon0);
298 app.GS_Altitude.Value = num2str(h0);
299 case ’No’
300 prompt = {’Enter the decimal latitude ’, ’Enter the decimal Longitude ’, ...
301 ’Enter the Altitude in meters ’};
302 title = ’Antenna Position ’;
303 dims = [1 ,35];
304 default = {app.GS_Latitude.Value , app.GS_Longitude.Value , app.GS_Altitude.Value , app.radius

.Text};
305 answer = inputdlg(prompt ,title ,dims ,default);
306 if ˜isempty(answer) && isreal(str2double(answer))
307 h0 = str2num(answer {3});
308 lat0 = str2num(answer {1});
309 lon0 = str2num(answer {2});
310 app.GS_Latitude.Value = answer {1};
311 app.GS_Longitude.Value = answer {2};
312 app.GS_Altitude.Value = answer {3};
313 app.radius.Text = answer {4};
314 else
315 errordlg(’Check your position and try again’);
316 return
317 end
318 end
319
320 [latlim , lonlim] = getMapLimits(app ,mapLat ,mapLon ,mapZ);
321
322 ZA = loadMaps(app ,latlim ,lonlim);
323 success =0;
324 if ˜isempty(ZA)
325 success = DrawMaps(app ,ZA,latlim ,lonlim);
326 end
327 if success == 1
328 [y,m,d,˜,˜,˜]= datevec(datetime(’now’));
329 dec=decyear(y,m,d);
330 [˜,˜,declination ,˜,˜] = wrldmagm(h0,lat0 ,lon0 ,dec);
331 app.DeclinationEditField.Value=string(declination);
332
333 plot3(app.Location3D , lon0 , lat0 , h0/1000, ’r*’, ’LineWidth ’ ,2)
334 plot(app.Location2D , lon0 , lat0 , ’r*’)
335 app.LoadPredictionfileButton.Enable = ’on’;
336 app.LoadPredictionFileMenu.Enable = ’on’;
337 app.ReproduceFlightButton.Enable=’on’;
338 app.LaunchTimeButton.Enable=’on’;
339 app.BeginTrackingButton.Enable=’on’;
340 app.GroundStationTestButton.Enable = ’on’;
341
342 end
343 figure(app.UIFigure);
344
345 end
346
347 % Button pushed function: BeginTrackingButton
348 function BeginTrackingButtonPushed(app , event)
349
350 [newfile ,path] = uiputfile(’*.bin’,’Create Data File’,’data.bin’);
351 figure(app.UIFigure);
352 if newfile == 0
353 return;
354 end
355 filename=fullfile(path ,newfile);
356 app.dataFile=fopen(filename ,’w+’);
357
358
359 lat0=app.myGSCoord (1);
360 lon0=app.myGSCoord (2);
361 h0=app.myGSCoord (3);
362
363
364 %Serial for the radio communication or file
365 app.s = serial(app.RxCOMPortDropDown.Value);
366
367
368 %Set serial parameters
369 app.s.InputBufferSize = 15000000;
370 set(app.s, ’DataBits ’, 8);
371 set(app.s, ’StopBits ’, 1);
372 set(app.s, ’BaudRate ’, 230400);
373 set(app.s, ’Parity ’, ’none’);
374
375 %Open the serial port
376 try
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377 fopen(app.s);
378 catch err
379 fclose(app.s);
380 warndlg(’Make sure you select the correct Radio COM Port.’);
381 end
382
383 id_scient =[160 ,177]’;
384 id_gps =[192 ,209]’;
385 binary_file = app.dataFile;
386 messages=zeros (1 ,100);
387 rcvd_packets = 0;
388 packets_sci = 0;
389 packets_gps = 0;
390 min_gps = 1;
391 lost_packets = 0;
392 lost_total = 0;
393 packet_num = 0;
394 new_packet_number = 0;
395 range = 0;
396 timer_1 = tic;
397 timer_3 = tic;
398 timer_5 = tic;
399
400
401 %External High Thermistor Coefficients:
402 p1_ex = 0.1522;
403 p2_ex = 0.8645;
404 p3_ex = 0.7656;
405 p4_ex = 12.9;
406 p5_ex = -6.172;
407 mean_ex = 533.5;
408 std_ex = 179.3;
409
410 %Extra External Low Thermistor Coefficients:
411 p1_ex2 = 0.5933;
412 p2_ex2 = 1.197;
413 p3_ex2 = 0.4364;
414 p4_ex2 = 11.58;
415 p5_ex2 = -48.05;
416 mean_ex2 = 587.5;
417 std_ex2 = 211.6;
418
419 %Internal Thermistor Coefficients:
420 p1_in = -0.4915;
421 p2_in = -1.88;
422 p3_in = -2.712;
423 p4_in = -16.71;
424 p5_in = 15.28;
425
426 mean_in = 770.3;
427 std_in = 152.1;
428
429
430 %Voltage ADC Coefficients:
431 p1_v = -0.003031;
432 p2_v = 1.093;
433 p3_v = 1.661;
434 mean_v = 510.4;
435 std_v = 338;
436
437
438 %Initial Position
439 lat = lat0;
440 lon = lon0;
441 h = h0;
442
443 %Initial time and threshold of the timer (time between GS checks)
444 timerIni = tic;
445 timeThreshold = 5;
446
447
448 %Ascent Rate Monitor Variables
449 prevAlt = 35;
450 prevTime = 0;
451
452 ascentRate = 0;
453
454 %Read and Process Data
455 while(true)
456 if(app.s.BytesAvailable >13000)
457
458 app.SerialBufferLabel.Text = [’Serial Buffer: ’,num2str(app.s.BytesAvailable)];
459
460 %Save data with timestamp
461 read_Byte = fread(app.s ,13000);
462
463 fwrite(binary_file , read_Byte);
464
465 for i=1:( length(read_Byte) -102)
466 %Loof for the start of a scientific or GPS packet.
467 if(( read_Byte(i:i+1)== id_scient)|( read_Byte(i:i+1)== id_gps))
468 %Check if the packet has been completely received.
469 if (( read_Byte(i+100:i+101)== id_scient)|( read_Byte(i+100:i+101)== id_gps))
470 rcvd_packets = rcvd_packets +1;
471 messages (1:100)=read_Byte(i:i+99);
472
473 %Check if it is a Scientific Packet and parse it
474 if (read_Byte(i:i+1)== id_scient (1:end))
475 packet_num = typecast(uint8(messages (3:4)),’uint16 ’);
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476 packet_time = typecast(uint8(messages (27:30)),’uint32 ’);
477 packet_time = double(packet_time)/1000;
478
479 packets_sci = packets_sci +1;
480 timer_2 = toc(timer_1);
481 if (( packets_sci ==190) ||( timer_2 >5))
482 packets_sci =0;
483 timer_1 = tic;
484 %External Temperature Conversion
485 temp = typecast(uint8(messages (5:6)),’uint16 ’);
486 temp = double(temp);
487 temp = (temp -mean_ex)/std_ex;
488 temp_ex = p1_ex*tempˆ4 + p2_ex*tempˆ3 + p3_ex*tempˆ2 + p4_ex*temp + p5_ex;
489
490
491 %Internal Temperature Conversion
492 temp = typecast(uint8(messages (7:8)),’uint16 ’);
493 temp = double(temp);
494 temp = (temp -mean_in)/std_in;
495 temp_in = p1_in*tempˆ4 + p2_in*tempˆ3 + p3_in*tempˆ2 + p4_in*temp + p5_in;
496
497
498 %Extra External Temperature Conversion
499 temp = typecast(uint8(messages (9:10)),’uint16 ’);
500 temp = double(temp);
501 temp = (temp -mean_ex2)/std_ex2;
502 temp_ex2 = p1_ex2*tempˆ4 + p2_ex2*tempˆ3 + p3_ex2*tempˆ2 + p4_ex2*temp + p5_ex2

;
503
504 %Voltage Monitor
505 voltage = typecast(uint8(messages (13:14)),’uint16 ’);
506 voltage = double(voltage);
507 voltage = (voltage -mean_v)/std_v;
508 volt_supply = 3*( p1_v*voltage ˆ2 + p2_v*voltage + p3_v);
509 %volt_supply = 3*((3.3/1023)*voltage);
510 app.BatteryVoltageLabel.Text = [’Battery Voltage: ’, num2str(volt_supply)];
511
512 app.PacketTimeLabel.Text = [’Packet Time: ’, num2str(packet_time)];
513
514
515 %9DoF Monitor
516 accel_Z = typecast(uint8(messages (19:20)),’int16’);
517 accel_z = double(accel_Z)/1000;
518
519 %app.AccelerometerLabel.Text = [’Accel. Z: ’, num2str(accel_z)];
520
521
522 %Plot Temperature Sensors Data
523 plot(app.TempInt , temp_ex , h/1000, ’b.’);
524 plot(app.TempInt , temp_in , h/1000, ’r.’);
525 plot(app.TempInt , temp_ex2 , h/1000, ’g.’);
526
527
528 %Plot Acceleromete Data
529 plot(app.Voltage , datetime , accel_z ,’Marker ’,’.’, ’Color’,’b’);
530
531 pause (0.00001);
532 end
533
534 %Check if it is a GPS Packet and parse it
535 elseif (( read_Byte(i:i+1)== id_gps (1:end)))
536 packets_gps = packets_gps +1;
537 timer_4 = toc(timer_3);
538 %gps_Time = typecast(uint8(messages (27:30)),’uint32 ’);
539 %gps_time = double(gps_Time)/1000;
540
541 min_gps = 10;
542 if (range >5000)
543 min_gps = 13;
544 end
545
546 if (( packets_gps == min_gps)||( timer_4 >3))
547 timer_3 = tic;
548 packets_gps =0;
549
550 lat = double(typecast(uint8(messages (5:8)),’int32’))/10000000;
551 lon = double(typecast(uint8(messages (9:12)),’int32’))/10000000;
552 h = double(typecast(uint8(messages (13:16)),’int32’))/100;
553 stat = messages (17);
554 numSats = messages (18);
555 utcHour = messages (19);
556 utcMin = messages (20);
557 utcSec = messages (21);
558 gps_time = typecast(uint8(messages (27:30)),’uint32 ’);
559
560
561 %Voltage Monitor
562 %voltage = typecast(uint8(messages (35:36)),’uint16 ’);
563 %voltage = double(voltage);
564 %volt_supply =3*((3.3/1023)*voltage);
565 %app.BatteryVoltageLabel.Text = [’Battery Voltage: ’, num2str(volt_supply)];
566
567 newAlt = h;
568 newTime = double(gps_time /1000);
569
570 ascentRate = double (( newAlt - prevAlt)/( newTime - prevTime));
571 %if ((ascentRate >0)&&( ascentRate <15))
572 app.AscentRate.Text = num2str(ascentRate);
573 %end
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574 prevAlt = h;
575 prevTime = double(gps_time /1000);
576
577 if app.PredictionFileButton.Value == 0
578 %Compute the AZ/EL parameters for the GS and range.
579 [az,el,range] = geodetic2aer(lat ,lon ,h,lat0 ,lon0 ,h0,app.spheroid);
580 end
581 %Plot GS Location.
582 plot3(app.Location3D , lon0 , lat0 , h0/1000, ’r*’, ’LineWidth ’ ,3)
583 plot(app.Location2D , lon0 , lat0 , ’r*’)
584
585 %Plot Ublox GPS Data
586 plot3(app.Location3D , lon , lat , h/1000,’b*’,’LineWidth ’ ,1)
587 plot(app.Location2D , lon , lat ,’b*’)
588
589 %Print Current GPS Data
590 app.gpsLAT.Text = num2str(lat);
591 app.gpsLONG.Text = num2str(lon);
592 app.gpsALT.Text = num2str(h);
593 app.gpsFIX.Text = num2str(stat);
594 app.gpsSATS.Text = num2str(numSats);
595 app.gpsHOUR.Text = [num2str(utcHour), ’:’];
596 app.gpsMIN.Text = [num2str(utcMin), ’:’];
597 app.gpsSEC.Text = num2str(utcSec);
598
599
600 app.ElevationGauge.Value=el+str2num(app.ELTuningEditField.Value);
601 app.AzGauge.Value = az-str2num(app.DeclinationEditField.Value);
602 app.sltRange.Text=num2str(range /1000);
603
604
605 pause (0.00001);
606
607 %Send desired pointing to Arduino -Rotor
608 if (app.flag_GS == 1)
609 app.ConnectingLabel.Text = ’Moving ’;
610 app.ConnectingLabel.Visible = ’on’;
611 if app.ManualButton.Value == 1
612 % no control
613 elseif app.AzElButton.Value == 1
614 fprintf(app.serial_GS ,’%s\n’,[’ElAz’,num2str(el+str2num(app.

ELTuningEditField.Value),’%03.0f’),num2str(az-str2num(app.
DeclinationEditField.Value), ’%03.0f’)]);

615 elseif app.AzOnlyButton.Value ==1
616 fprintf(app.serial_GS ,’%s\n’,[’setAz’,num2str(az-str2num(app.

DeclinationEditField.Value), ’%03.0f’)]);
617 elseif app.ElOnlyButton.Value ==1
618 fprintf(app.serial_GS ,’%s\n’,[’setEl’,num2str(el+str2num(app.

ELTuningEditField.Value),’%03.0f’)]);
619 end
620 end
621 end
622 end
623 %Compute the number of lost packets in this considered data block
624 if (rcvd_packets == 1)
625 prev_packet_number = double(packet_num);
626 else
627 new_packet_number = double(packet_num);
628 end
629
630 if ((( new_packet_number -prev_packet_number)˜=1) &&(( new_packet_number -prev_packet_number

)˜= -65535))
631 if (( new_packet_number -prev_packet_number) >1)
632 lost_packets = lost_packets + (new_packet_number - prev_packet_number - 1);
633
634 elseif ((( new_packet_number -prev_packet_number) <0)&&( rcvd_packets ˜= 1))
635 lost_packets = lost_packets + (65535 - prev_packet_number) + new_packet_number;
636 end
637 end
638
639 prev_packet_number = packet_num;
640 end
641 end
642 end
643 %Do not consider the first and last packet of the data block as packet losses
644 if (lost_packets <5)
645 lost_packets = 0;
646 else
647 %Do not consider GPS packets
648 lost_packets = lost_packets - 4;
649 end
650
651 %Print received and lost packets information
652 lost_total = lost_total + double(lost_packets);
653 app.ReceivedPackets.Text = [’Received Packets: ’,num2str(rcvd_packets)];
654 app.LostPackets.Text = [’Lost Packets: ’,num2str(lost_total -app.ExtraLossesEditField.Value)];
655 app.LossesLabel.Text = [’%Losses: ’,num2str (100*( lost_total -app.ExtraLossesEditField.Value)/((

lost_total -app.ExtraLossesEditField.Value)+rcvd_packets))];
656 lost_packets = 0;
657
658 pause (0.00001);
659 end
660 %---------------------------------
661
662 %Check timer
663 timerCheck = toc(timerIni);
664
665 if ((app.PredictionFileButton.Value == 1)&&( timerCheck >timeThreshold))
666 %Reset Timer
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667 timerIni = tic;
668
669 if (app.ManualButton2.Value == 1)
670 %Select altitude from GUI
671 alt = app.AltmSpinner.Value;
672
673 %Altitude during ascent or descent?
674 %Grab data accordingly
675 if (app.AscentButton.Value == 1)
676 hConC = app.hC(1:app.maxC);
677 distC = abs(hConC -alt);
678 rowC = find(distC == min(distC));
679
680 elseif (app.DescentButton.Value == 1)
681 hConC = app.hC(app.maxC:end);
682 distC = abs(hConC -alt);
683 rowC = find(distC == min(distC)) + (app.maxC -1);
684 end
685 end
686
687 if (app.AutomaticButton.Value == 1)
688 predTime = app.CUSFpredicted (:,5);
689
690 timeNow = datetime - app.startTime;
691 vecTime = datevec(timeNow);
692 totalSecs = (vecTime (4) *3600) + (vecTime (5) *60) + (vecTime (6));
693
694 distSecs = abs(totalSecs - predTime);
695 rowC = find(distSecs == min(distSecs));
696 end
697 %Grab the data from the selected row. Only for the selected pred. file
698 %Compute AZ/El for the rotor controller and range for the GUI
699
700 lat=app.CUSFpredicted(rowC (1) ,2); % lat
701 lon=app.CUSFpredicted(rowC (1) ,3); % lon
702 h=app.CUSFpredicted(rowC (1) ,4); % alt
703
704 [az,el,range] = geodetic2aer(lat ,lon ,h,lat0 ,lon0 ,h0,app.spheroid);
705
706
707
708 %Send desired pointing to Arduino -Rotor
709 if (app.flag_GS == 1) %If the ground station is connected
710 app.ConnectingLabel.Text = ’Moving ’;
711 app.ConnectingLabel.Visible = ’on’;
712 if app.ManualButton.Value == 1
713 % no control due to movement occuring via GS rotor controller
714 elseif app.AzElButton.Value == 1
715 fprintf(app.serial_GS ,’%s\n’,[’ElAz’,num2str(el+str2num(app.ELTuningEditField.Value),’%03.0

f’),num2str(az-str2num(app.DeclinationEditField.Value), ’%03.0f’)]);
716 elseif app.AzOnlyButton.Value ==1
717 fprintf(app.serial_GS ,’%s\n’,[’setAz’,num2str(az-str2num(app.DeclinationEditField.Value), ’

%03.0f’)]);
718 elseif app.ElOnlyButton.Value ==1
719 fprintf(app.serial_GS ,’%s\n’,[’setEl’,num2str(el+str2num(app.ELTuningEditField.Value),’

%03.0f’)]);
720 end
721 end
722
723 %Print Current Data from prediction file to the labels and gauges
724 app.gpsLAT.Text = num2str(lat);
725 app.gpsLONG.Text = num2str(lon);
726 app.gpsALT.Text = num2str(h);
727 app.gpsFIX.Text = "N/A";
728 app.gpsSATS.Text = "N/A";
729 app.gpsHOUR.Text = "N/A";
730 app.gpsMIN.Text = "N/A";
731 app.gpsSEC.Text = "N/A";
732 app.ElevationGauge.Value=el;
733 app.AzGauge.Value = az-str2num(app.DeclinationEditField.Value);
734 app.sltRange.Text=num2str(range /1000);
735
736 %Delete previous plots for A and B properties of GUI
737 delete(app.A);
738 delete(app.B);
739 %Set the data for the plots to be the values of LLA for that specific predition file
740 app.xdata = lon;
741 app.ydata = lat;
742 app.zdata = h/1000;
743 %Actually plot the prediction trajectory
744 app.A = plot(app.Location2D ,app.xdata ,app.ydata ,’b*’,’LineWidth ’ ,1);
745 app.B = plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ,’b*’,’LineWidth ’ ,1);
746 %pause (3);
747 end
748 pause (0.00002);
749 end
750 end
751
752 % Button pushed function: ConnectGSButton
753 function ConnectGSButtonPushed(app , event)
754 % Initialize Serial Communication with Arduino and MATLAB.
755 % The Arduino sends a Char and waits for MATLAB to respond with the proper
756 % Char. If no errors , setup ok indication is visible.
757
758 app.flag_GS = 1;
759
760 app.serial_GS = serial(app.GSCOMPortDropDown.Value);
761
762
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763 set(app.ConnectingLabel ,’Visible ’, ’on’);
764
765 %Set serial parameters
766 app.serial_GS.InputBufferSize = 300000;
767 set(app.serial_GS , ’DataBits ’, 8);
768 set(app.serial_GS , ’StopBits ’, 1);
769 set(app.serial_GS , ’BaudRate ’, 230400);
770 set(app.serial_GS , ’Parity ’, ’none’);
771
772 %Open the serial port
773 try
774 fopen(app.serial_GS);
775 catch err
776 fclose(app.serial_GS);
777 error(’Make sure you select the correct Arduino COM Port.’);
778 end
779
780 set(app.ConnectGSButton ,’Enable ’,’off’);
781 set(app.DisconnectGSButton ,’Enable ’,’on’);
782 while (app.serial_GS.BytesAvailable == 0)
783
784 end
785 a=fscanf(app.serial_GS ,’%e’);
786 fprintf(app.serial_GS ,’%s\n’,’getAz’);
787
788 while (app.serial_GS.BytesAvailable == 0)
789
790 end
791
792 app.AzGauge.Value = fscanf(app.serial_GS ,’%e’);
793
794 fprintf(app.serial_GS ,’%s\n’,’getEl’);
795 while (app.serial_GS.BytesAvailable == 0)
796 end
797
798 app.ElevationGauge.Value = fscanf(app.serial_GS ,’%e’);
799
800 set(app.ConnectingLabel ,’Visible ’, ’off’);
801
802 %After connection allow gps polling
803 %set(app.AutoButton ,’Enable ’,’on’);
804
805
806 app.GroundStationTestButton.Enable = ’on’;
807 app.BeginTrackingButton.Enable=’on’;
808
809
810 end
811
812 % Button pushed function: DisconnectGSButton
813 function DisconnectGSButtonPushed(app , event)
814
815
816 fclose(app.serial_GS);
817 delete(app.serial_GS);
818 clear app.serial_GS;
819 set(app.ConnectGSButton ,’Enable ’,’on’)
820 set(app.ConnectingLabel ,’Visible ’, ’off’);
821 set(app.DisconnectGSButton ,’Enable ’,’off’);
822 %set(app.OKLabel ,’Visible ’,’off’);
823 set(app.AutoButton ,’Visible ’,’off’);
824
825
826 end
827
828 % Callback function
829 function AutoButtonPushed(app , event)
830 % function to load current position to gs_lat ,lon and alt from gs gps
831 fprintf(app.serial_GS ,’getLoc ’);
832 location=fgetl(app.serial_GS);
833 M =strsplit(location ,’,’);
834 while length(M) ˜= 6
835 fprintf(app.serial_GS ,’getLoc ’);
836 location=fgetl(app.serial_GS);
837 M =strsplit(location ,’,’);
838 end
839 if string(M(1))==’lat’
840 app.GS_Latitude.Value=str2num(cell2mat(M(2)));
841 end
842 if string(M(3))==’lon’
843 app.GS_Longitude=str2num(cell2mat(M(4)));
844 end
845 if string(M(5))==’alt’
846 app.GS_Altitude=str2num(cell2mat(M(6)));
847 end
848 end
849
850 % Close request function: UIFigure
851 function UIFigureCloseRequest(app , event)
852 delete(instrfindall);
853 delete(app)
854
855 end
856
857 % Callback function
858 function GPS_Selection(app , event)
859 %disp("GPS CHANGED!");
860 end
861
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862 % Value changed function: GSCOMPortDropDown
863 function GSCOMPortDropDownValueChanged(app , event)
864 app.GSCOMPortDropDown.Items = cellstr(seriallist);
865 app.RxCOMPortDropDown.Items = app.GSCOMPortDropDown.Items;
866
867 end
868
869 % Value changed function: RxCOMPortDropDown
870 function RXCOMPortDropDownValueChanged(app , event)
871 app.RxCOMPortDropDown.Items = cellstr(seriallist);
872 app.GSCOMPortDropDown.Items = app.RxCOMPortDropDown.Items;
873 end
874
875 % Callback function
876 function CalibrateGSButtonPushed(app , event)
877 prompt = [’You are about to perform an initial calibration. Please set the GS -5500 to an azimuth of

180’,char (176), ’ then select Next’];
878 type = questdlg(prompt ,’Initial Calibration ’,’Next’,’Cancel ’);
879 switch type
880 case ’Next’
881 GSCal;
882 case ’Cancel ’
883 return
884 end
885
886 end
887
888 % Callback function: LoadPredictionFileMenu ,
889 % LoadPredictionfileButton
890 function LoadPredictionfileButtonPushed(app , event)
891
892 pAns = questdlg(’Which type of prediction path would you like to plot?’ ,...
893 ’Prediction Path Option ’ ,...
894 ’University of Wyoming ’,’CUSF’,’Cancel ’,’CUSF’);
895
896 switch pAns
897 case ’CUSF’
898 [newfile ,path] = uigetfile(’*.csv’,’Pediction Path File’,’flight_path.csv’);
899 figure(app.UIFigure);
900 if newfile ˜= 0
901 app.predFileFlag = app.predFileFlag + 1;
902
903 predFile=fullfile(path ,newfile);
904
905 % Predicted path plot from hab -hub.org predictor
906 % http:// predict.habhub.org
907 app.CUSFpredicted=csvread(predFile);
908 app.ydata=app.CUSFpredicted (:,2); % lat
909 app.xdata=app.CUSFpredicted (:,3); % lon
910 app.zdata=app.CUSFpredicted (:,4); % alt
911 app.wdata=app.CUSFpredicted (:,5); % time
912
913 plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ./1000 , app.predFileCol(app.

predFileFlag),’LineWidth ’ ,2)
914 plot(app.Location2D ,app.xdata ,app.ydata ,app.predFileCol(app.predFileFlag),’LineWidth ’

,2)
915
916
917 end
918 case ’Cancel ’
919
920 case ’University of Wyoming ’
921 [newfile ,path] = uigetfile(’*.csv’,’Pediction Path File’,’flight_path.csv’);
922 figure(app.UIFigure);
923 if newfile ˜= 0
924
925 predFile=fullfile(path ,newfile);
926
927 % Predicted path plot from hab -hub.org predictor
928 % http:// predict.habhub.org
929 app.WYpredicted=csvread(predFile ,3,1);
930 app.ydata=app.WYpredicted (:,1); % lat
931 app.xdata=app.WYpredicted (:,2); % lon
932 app.zdata=app.WYpredicted (:,3); % alt
933 %plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ./1000 ,’r’,’LineWidth ’ ,2)
934 %plot(app.Location2D ,app.xdata ,app.ydata ,’r’,’LineWidth ’ ,2)
935
936
937
938 app.xdata=app.WYpredicted (:,10); % Temperature
939 if min(app.xdata) < app.TempInt.XLim (1)+5
940 app.TempInt.XLim (1) = min(app.xdata) - 15;
941 end
942
943 plot(app.TempInt ,app.xdata ,app.zdata ./1000 ,’k’); % Plot temperature prediction
944
945
946 end
947
948
949 %Prediction File Parameters
950 app.hC = app.CUSFpredicted (:,4); % alt
951 app.maxC = find(app.hC==max(app.hC));
952 app.BeginTrackingButton.Enable=’on’;
953
954
955
956 % case ’Create New CUSF’
957 % web(’http :// predict.habhub.org’,’-new’,’-noaddressbox ’, ’-notoolbar ’)
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;
958 % uiwait(msgbox(’Opening HabHub.org Prediction tool. Save the file in

csv format. Then Press OK.’ ,...
959 % ’Get Prediction File’));
960 % [newfile ,path] = uigetfile(’*.csv’,’Pediction Path File’,’flight_path

.csv’);
961 % if newfile ˜= 0
962 %
963 %
964 % predFile=fullfile(path ,newfile);
965 %
966 % % Predicted path plot from hab -hub.org predictor
967 % % http:// predict.habhub.org
968 % predicted=csvread(predFile);
969 % app.ydata=predicted (:,2); % lat
970 % app.xdata=predicted (:,3); % lon
971 % app.zdata=predicted (:,4); % alt
972 % plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ./1000 ,’y’,’

LineWidth ’ ,2)
973 % plot(app.Location2D ,app.xdata ,app.ydata ,’y’,’LineWidth ’ ,2)
974 %
975 % plot3(app.Location3D , lon0 , lat0 , h0/1000, ’y*’, ’LineWidth ’ ,1)
976 % plot(app.Location2D , lon0 , lat0 , ’y*’)
977 % end
978
979 end
980 end
981
982 % Callback function
983 function PredictionFileDropDownValueChanged(app , event)
984 value = app.PredictionFileDropDown.Value;
985 if strcmp(value ,’CUSF’)
986 app.AltmSpinner.Limits (2) = max(app.CUSFpredicted (:,4));
987
988 elseif strcmp(value ,’Wyoming ’)
989 app.AltmSpinner.Limits (2) = max(app.WYpredicted (:,3));
990
991 end
992
993 end
994
995 % Menu selected function: RefreshCOMPortsMenu
996 function RefreshCOMPortsMenuSelected(app , event)
997 app.RxCOMPortDropDown.Items = cellstr(seriallist);
998 app.GSCOMPortDropDown.Items = app.RxCOMPortDropDown.Items;
999 end

1000
1001 % Button pushed function: LaunchTimeButton
1002 function LaunchTimeButtonPushed(app , event)
1003 app.startTime = datetime;
1004 app.LaunchTimeLabel.Text = [’Launch Time: ’,datestr(app.startTime , ’HH:MM:SS’)];
1005 end
1006
1007 % Button pushed function: GroundStationTestButton
1008 function GroundStationTestButtonPushed(app , event)
1009 while(true)
1010 pause (3);
1011
1012 lat0=app.myGSCoord (1);
1013 lon0=app.myGSCoord (2);
1014 h0=app.myGSCoord (3);
1015 %
1016 alt = app.AltmSpinner.Value;
1017
1018 if (app.AscentButton.Value == 1)
1019 hConC = app.hC(1:app.maxC);
1020 distC = abs(hConC -alt);
1021 rowC = find(distC == min(distC));
1022
1023 elseif (app.DescentButton.Value == 1)
1024 hConC = app.hC(app.maxC:end);
1025 distC = abs(hConC -alt);
1026 rowC = find(distC == min(distC)) + (app.maxC -1);
1027 end
1028
1029 if (app.ManualButton2.Value == 1)
1030 autoFlag = 0;
1031 %Grab the data from the selected row. Only for the selected pred. file
1032 %Compute AZ/El for the rotor controller and range for the GUI
1033
1034 lat=app.CUSFpredicted(rowC (1) ,2); % lat
1035 lon=app.CUSFpredicted(rowC (1) ,3); % lon
1036 h=app.CUSFpredicted(rowC (1) ,4); % alt
1037 [az,el,range] = geodetic2aer(lat ,lon ,h,lat0 ,lon0 ,h0,app.spheroid);
1038
1039 if (app.flag_GS == 1) %If the ground station is connected
1040 app.ConnectingLabel.Text = ’Moving ’;
1041 app.ConnectingLabel.Visible = ’on’;
1042 if app.ManualButton.Value == 1
1043 % no control due to movement occuring via GS rotor controller
1044 elseif app.AzElButton.Value == 1
1045 fprintf(app.serial_GS ,’%s\n’,[’ElAz’,num2str(el+str2num(app.ELTuningEditField.Value

),’%03.0f’),num2str(az-str2num(app.DeclinationEditField.Value), ’%03.0f’)]);
1046 elseif app.AzOnlyButton.Value ==1
1047 fprintf(app.serial_GS ,’%s\n’,[’setAz’,num2str(az-str2num(app.DeclinationEditField.

Value), ’%03.0f’)]);
1048 elseif app.ElOnlyButton.Value ==1
1049 fprintf(app.serial_GS ,’%s\n’,[’setEl’,num2str(el+str2num(app.ELTuningEditField.

Value),’%03.0f’)]);
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1050 end
1051 end
1052
1053 %Print Current Data from prediction file to the labels and gauges
1054 app.gpsLAT.Text = num2str(lat);
1055 app.gpsLONG.Text = num2str(lon);
1056 app.gpsALT.Text = num2str(h);
1057 app.gpsFIX.Text = "N/A";
1058 app.gpsSATS.Text = "N/A";
1059 app.gpsHOUR.Text = "N/A";
1060 app.gpsMIN.Text = "N/A";
1061 app.gpsSEC.Text = "N/A";
1062 app.ElevationGauge.Value=el;
1063 app.AzGauge.Value = az-str2num(app.DeclinationEditField.Value);
1064 app.sltRange.Text=num2str(range /1000);
1065
1066 %Delete previous plots for A and B properties of GUI
1067 delete(app.A);
1068 delete(app.B);
1069 %Set the data for the plots to be the values of LLA for that specific predition file
1070 app.xdata = lon;
1071 app.ydata = lat;
1072 app.zdata = h/1000;
1073 %Actually plot the prediction trajectory
1074 app.A = plot(app.Location2D ,app.xdata ,app.ydata ,’b*’,’LineWidth ’ ,1);
1075 app.B = plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ,’b*’,’LineWidth ’ ,1);
1076 end
1077
1078 if (app.AutomaticButton.Value == 1)
1079 if autoFlag == 0
1080 for i = rowC:length(app.wdata)
1081 pause (3);
1082 %Grab the data from the selected row. Only for the selected pred. fil
1083 %Compute AZ/El for the rotor controller and range for the GUI
1084 lat=app.CUSFpredicted(i,2); % lat
1085 lon=app.CUSFpredicted(i,3); % lon
1086 h=app.CUSFpredicted(i,4); % alt
1087 [az,el,range] = geodetic2aer(lat ,lon ,h,lat0 ,lon0 ,h0,app.spheroid);
1088
1089 if (app.flag_GS == 1) %If the ground station is connected
1090 app.ConnectingLabel.Text = ’Moving ’;
1091 app.ConnectingLabel.Visible = ’on’;
1092 if app.ManualButton.Value == 1
1093 % no control due to movement occuring via GS rotor controller
1094 elseif app.AzElButton.Value == 1
1095 fprintf(app.serial_GS ,’%s\n’,[’ElAz’,num2str(el+str2num(app.ELTuningEditField.

Value),’%03.0f’),num2str(az-str2num(app.DeclinationEditField.Value), ’
%03.0f’)]);

1096 elseif app.AzOnlyButton.Value ==1
1097 fprintf(app.serial_GS ,’%s\n’,[’setAz’,num2str(az-str2num(app.

DeclinationEditField.Value), ’%03.0f’)]);
1098 elseif app.ElOnlyButton.Value ==1
1099 fprintf(app.serial_GS ,’%s\n’,[’setEl’,num2str(el+str2num(app.ELTuningEditField.

Value),’%03.0f’)]);
1100 end
1101 end
1102
1103 %Print Current Data from prediction file to the labels and gauges
1104 app.gpsLAT.Text = num2str(lat);
1105 app.gpsLONG.Text = num2str(lon);
1106 app.gpsALT.Text = num2str(h);
1107 app.gpsFIX.Text = "N/A";
1108 app.gpsSATS.Text = "N/A";
1109 app.gpsHOUR.Text = "N/A";
1110 app.gpsMIN.Text = "N/A";
1111 app.gpsSEC.Text = "N/A";
1112 app.ElevationGauge.Value=el;
1113 app.AzGauge.Value = az-str2num(app.DeclinationEditField.Value);
1114 app.sltRange.Text=num2str(range /1000);
1115
1116 %Delete previous plots for A and B properties of GUI
1117 delete(app.A);
1118 delete(app.B);
1119 %Set the data for the plots to be the values of LLA for that specific predition file
1120 app.xdata = lon;
1121 app.ydata = lat;
1122 app.zdata = h/1000;
1123 %Actually plot the prediction trajectory
1124 app.A = plot(app.Location2D ,app.xdata ,app.ydata ,’b*’,’LineWidth ’ ,1);
1125 app.B = plot3(app.Location3D ,app.xdata ,app.ydata ,app.zdata ,’b*’,’LineWidth ’ ,1);
1126
1127 if (i== length(app.wdata))
1128 autoFlag = 1;
1129 end
1130 end
1131 end
1132 end
1133 end
1134 end
1135
1136 % Button pushed function: ReproduceFlightButton
1137 function ReproduceFlightButtonPushed(app , event)
1138 [newfile ,path] = uigetfile(’*.bin’,’Create Data File’,’data.bin’);
1139 if newfile == 0
1140 return;
1141 end
1142 filename=fullfile(path ,newfile);
1143
1144 s1=fopen(filename ,’r+’);
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1145
1146 lat0=app.myGSCoord (1);
1147 lon0=app.myGSCoord (2);
1148 h0=app.myGSCoord (3);
1149
1150
1151 id_scient =[160 ,177]’;
1152 id_gps =[192 ,209]’;
1153 messages=zeros (1 ,100);
1154 rcvd_packets = 0;
1155 packets_sci = 0;
1156 packets_gps = 0;
1157 lost_packets = 0;
1158 lost_total = 0;
1159 packet_num = 0;
1160 new_packet_number = 0;
1161 range = 0;
1162 timer_1 = tic;
1163
1164 %External Thermistor Coefficients:
1165 p1_ex = 13.6;
1166 p2_ex = -6.838;
1167 p3_ex = 20.3;
1168 p4_ex = -14.81;
1169
1170
1171 mean_ex = 423.8;
1172 std_ex = 358.5;
1173
1174 %Internal Thermistor Coefficients:
1175 p1_in = -5.2;
1176 p2_in = -9.875;
1177 p3_in = -24.22;
1178 p4_in = 19.94;
1179
1180 mean_in = 742.8;
1181 std_in = 224.8;
1182
1183
1184
1185 %Initial Position
1186 lat = lat0;
1187 lon = lon0;
1188 h = h0;
1189
1190 %Ascent Rate Monitor Variables
1191 prevAlt = 35;
1192 prevTime = 0;
1193
1194 ascentRate = 0;
1195
1196
1197 min_gps = 10*4;
1198 min_sci = 10*125;
1199
1200 read_Byte = fread(s1);
1201 for i=1:( length(read_Byte) -102)
1202 %Loof for the start of a scientific or GPS packet.
1203 if(( read_Byte(i:i+1)== id_scient)|( read_Byte(i:i+1)== id_gps))
1204 %Check if the packet has been completely received.
1205 if (( read_Byte(i+100:i+101)== id_scient)|( read_Byte(i+100:i+101)== id_gps))
1206 rcvd_packets = rcvd_packets +1;
1207 messages (1:100)=read_Byte(i:i+99);
1208 packet_num = typecast(uint8(messages (3:4)),’uint16 ’);
1209 packet_num = double(packet_num);
1210
1211 if (rcvd_packets == 1)
1212 prev_packet_number = packet_num;
1213 end
1214 %Check if it is a Scientific Packet and parse it
1215 if (read_Byte(i:i+1)== id_scient)
1216 packets_sci = packets_sci +1;
1217 timer_2 = toc(timer_1);
1218 if (packets_sci == min_sci)
1219 packets_sci =0;
1220 %External Temperature Conversion
1221 temp = typecast(uint8(messages (5:6)),’uint16 ’);
1222 temp = double(temp);
1223 temp = (temp -mean_ex)/std_ex;
1224 temp_ex = p1_ex*tempˆ3 + p2_ex*tempˆ2 + p3_ex*temp + p4_ex;
1225
1226
1227 %Internal Temperature Conversion
1228 temp = typecast(uint8(messages (7:8)),’uint16 ’);
1229 temp = double(temp);
1230 temp = (temp -mean_in)/std_in;
1231 temp_in = p1_in*tempˆ3 + p2_in*tempˆ2 + p3_in*temp + p4_in;
1232
1233
1234 %Voltage Monitor
1235 voltage = typecast(uint8(messages (13:14)),’uint16 ’);
1236 voltage = double(voltage);
1237 volt_supply =3*((3.3/1023)*voltage);
1238 app.BatteryVoltageLabel.Text = [’Battery Voltage: ’, num2str(

volt_supply)];
1239
1240 %9DoF Monitor
1241 accel_X = typecast(uint8(messages (37:38)),’int16’);
1242 accel_x = double(accel_X)/1000;
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1243 accel_Y = typecast(uint8(messages (39:40)),’int16’);
1244 accel_y = double(accel_Y)/1000;
1245 accel_Z = typecast(uint8(messages (41:42)),’int16’);
1246 accel_z = double(accel_Z)/1000;
1247
1248 %app.AccelerometerLabel.Text = [’Accel. Z: ’, num2str(accel_z)];
1249
1250
1251 %Plot Temperature Sensors Data
1252 plot(app.TempInt , temp_ex , h/1000, ’b.’);
1253 plot(app.TempInt , temp_in , h/1000, ’r.’);
1254
1255
1256 %Plot Acceleromete Data
1257 %plot(app.Voltage , datetime , volt_supply ,’Marker ’,’.’, ’Color’,’r’);
1258 %plot(app.Voltage , datetime , accel_x ,’Marker ’,’.’, ’Color’,’r’);
1259 %plot(app.Voltage , datetime , accel_y ,’Marker ’,’.’, ’Color’,’g’);
1260 plot(app.Voltage , datetime , accel_z , ’Marker ’,’.’, ’Color’,’b’);
1261
1262
1263 %Print received and lost packets information
1264 lost_total = lost_total + double(lost_packets);
1265 app.ReceivedPackets.Text = [’Received Packets: ’,num2str(rcvd_packets)

];
1266 app.LostPackets.Text = [’Lost Packets: ’,num2str(lost_total)];
1267 app.LossesLabel.Text = [’%Losses: ’,num2str (100*( lost_total /( lost_total

+rcvd_packets)))];
1268 lost_packets = 0;
1269
1270
1271 pause (0.001);
1272 end
1273
1274 %Check if it is a GPS Packet and parse it
1275 elseif (( read_Byte(i:i+1)== id_gps))
1276 packets_gps = packets_gps +1;
1277
1278 if (packets_gps == min_gps)
1279 packets_gps =0;
1280
1281 lat = double(typecast(uint8(messages (5:8)),’int32’))/10000000;
1282 lon = double(typecast(uint8(messages (9:12)),’int32’))/10000000;
1283 h = double(typecast(uint8(messages (13:16)),’int32’));
1284 stat = messages (17);
1285 numSats = messages (18);
1286 utcHour = messages (19);
1287 utcMin = messages (20);
1288 utcSec = messages (21);
1289 packetTime = double(typecast(uint8(messages (27:30)),’uint32 ’));
1290
1291 newAlt = h;
1292 newTime = double(packetTime /1000);
1293
1294 ascentRate = double (( newAlt - prevAlt)/( newTime - prevTime));
1295 app.AscentRate.Text = num2str(ascentRate);
1296
1297 prevAlt = h;
1298 prevTime = double(packetTime /1000);
1299
1300
1301 %Compute the AZ/EL parameters for the GS and range.
1302 [az,el,range] = geodetic2aer(lat ,lon ,h,lat0 ,lon0 ,h0,app.spheroid);
1303
1304 %Plot GS Location.
1305 plot3(app.Location3D , lon0 , lat0 , h0/1000, ’r*’, ’LineWidth ’ ,3)
1306 plot(app.Location2D , lon0 , lat0 , ’r*’)
1307
1308 %Plot Ublox GPS Data
1309 plot3(app.Location3D , lon , lat , h/1000,’b*’,’LineWidth ’ ,1)
1310 plot(app.Location2D , lon , lat ,’b*’)
1311
1312 %Print Current GPS Data
1313 app.gpsLAT.Text = num2str(lat);
1314 app.gpsLONG.Text = num2str(lon);
1315 app.gpsALT.Text = num2str(h);
1316 app.gpsFIX.Text = num2str(stat);
1317 app.gpsSATS.Text = num2str(numSats);
1318 app.gpsHOUR.Text = [num2str(utcHour), ’:’];
1319 app.gpsMIN.Text = [num2str(utcMin), ’:’];
1320 app.gpsSEC.Text = num2str(utcSec);
1321
1322
1323 app.ElevationGauge.Value=el+str2num(app.ELTuningEditField.Value);
1324 app.AzGauge.Value = az-str2num(app.DeclinationEditField.Value);
1325 app.sltRange.Text=num2str(range /1000);
1326
1327 pause (0.001);
1328
1329 end
1330 end
1331
1332 %Compute the number of lost packets in this considered data block
1333
1334 new_packet_number = packet_num;
1335
1336 if ((( new_packet_number -prev_packet_number)˜=1) &&(( new_packet_number -

prev_packet_number)˜= -65535))
1337 if (( new_packet_number -prev_packet_number) >1)
1338 lost_packets = lost_packets + (new_packet_number - prev_packet_number -
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1);
1339 end
1340
1341 if (( new_packet_number -prev_packet_number) <0)
1342 lost_packets = lost_packets + (65535 - prev_packet_number) +

new_packet_number;
1343 end
1344 end
1345 prev_packet_number = packet_num;
1346 end
1347
1348 end
1349 end
1350 end
1351
1352 % Button pushed function: RestartRxPortButton
1353 function RestartRxPortButtonPushed(app , event)
1354 %Serial for the radio communication or file
1355 fclose(app.s);
1356
1357 app.s = serial(app.RxCOMPortDropDown.Value);
1358
1359 %Set serial parameters
1360 app.s.InputBufferSize = 1000000;
1361 set(app.s, ’DataBits ’, 8);
1362 set(app.s, ’StopBits ’, 1);
1363 set(app.s, ’BaudRate ’, 230400);
1364 set(app.s, ’Parity ’, ’none’);
1365
1366 %Open the serial port
1367 try
1368 fopen(app.s);
1369 catch err
1370 fclose(app.s);
1371 warndlg(’Make sure you select the correct Radio COM Port.’);
1372 end
1373 end
1374 end
1375
1376 % App initialization and construction
1377 [...]
1378 methods (Access = public)
1379 % Construct app
1380 function app = MURI_HAB_GUI_v14PL2_Mobile_GS
1381
1382 % Create and configure components
1383 createComponents(app)
1384
1385 % Register the app with App Designer
1386 registerApp(app , app.UIFigure)
1387
1388 % Execute the startup function
1389 runStartupFcn(app , startupFcn)
1390
1391 if nargout == 0
1392 clear app
1393 end
1394 end
1395 % Code that executes before app deletion
1396 function delete(app)
1397 % Delete UIFigure when app is deleted
1398 delete(app.UIFigure)
1399 end
1400 end
1401 end
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Appendix D

Thermistors Calibration

The thermistors calibration is mainly based on two different parts: the temperature
range adjustment and the ADC-temperature fitting.

D.1 Temperature Range Adjustment

The thermistor needs power to get a ”temperature” reading. The temperature
reading is actually a voltage value that the ADC of the microcontroller used will
read. The voltage will decrease or increase, depending on how the voltage divider
is built and the temperature change.

Figure D.1: Thermistor Calibration - Voltage Divider

The previous figure shows a simple voltage divider used to measure the change
in resistance of the thermistor, T2. Considering that the same current flows
through R1 and T2, the voltage V2 can be computed as:

V 2 =
T2 ∗ Vs
R1 + T2

(D.1)

The thermistors considered for the payloads are Negative Temperature Coefficient
(NTC) thermistors, which means that the resulting resistance will decrease while
the temperature increases, and therefore the voltage will decrease increase as well,
if the thermistor position in the voltage divider is the one considered in Figure
D.1. The resistance at room temperature -normally defined as R25-, is a key point
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to calibrate them, because the resistors considered for the voltage divider will have
to consider this parameter for a better temperature range fit. For a 5KOhm R25

thermistor, a 5KOhm resistor for the voltage divider would be enough for room
temperatures of payload internal temperature [0 ◦C, 50 ◦C ]. However, consider-
ing the Z curves characteristics, for lower temperature ranges -payload external
temperature- a multiple of 5KOhm would be needed. For this design, a set of
resistors of a total 50KOhm resistance is considered.

The voltage V2 is used to fit/calibrate the real temperature around the thermistors
and the ADC counts (voltage) from the voltage divider.

Figure D.2: Thermistor Calibration - Z Curves

Figure D.3: Thermistor Calibration - Voltage Divider Sensibility
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D.2 ADC-Temperature Fitting

To do the fitting between the ADC and the actual temperature, the temperature
chamber is used. A temperature profile of 2 hours is used to simulate the tem-
perature changes that the thermistors will be experiencing during the flight. The
profile will start at around 55-60◦C in order to calibrate the internal one, and the
temperature inside the chamber will decrease in 1.5h to -70◦C. After that, it will
increase again to -55◦C and then come back to room temperature.

To calibrate all the thermistors at the same time, the temperature of the chamber
is recorded at the same time that the ADC counts for each thermistors are recorded
as well. To do that, the microcontroller is programmed to output the ADC read-
ings at a certain rate. The microcontroller is connected via USB to the same
laptop that the temperature chamber will be connected as well. With a MATLAB
program, whenever the microcontroller outputs ADC readings, the temperature of
the chamber is read and all the results are printed in the MATLAB workspace for
monitoring purposes, and they are saved in a .TXT file using a pre-defined format.

Figure D.4: Temperature chamber calibration controls and thermistors being cal-
ibrated.
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These are the microcontroller and MATLAB codes used for the calibration
process:

- Microcontroller Code

1 #include <ADC.h>
2
3 // ANALOG PINS DEFINITION
4 #define TEMP_EXT_H A9
5 #define TEMP_INT A8
6 #define TEMP_EXT_L A7
7 #define VOLTAGE A6
8
9 int tempExt_h; //Upper Range External Temperature sensor.

10 int tempExt_l; //Lower Range External Temperature sensor.
11 int tempInt; // Internal Temperature sensor.
12
13 byte temp [6];
14 ADC *adc = new ADC();
15
16 void setup() {
17 Serial.begin (9600);
18 analogReadResolution (10);
19 adc ->setReference(ADC_REFERENCE ::REF_3V3 , ADC_0);
20 adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: LOW_SPEED); // change the conversion speed
21 }
22
23 void loop() {
24 delay (2000);
25
26 tempExt_h = analogRead(TEMP_EXT_H);
27 tempExt_l = analogRead(TEMP_EXT_L);
28 tempInt = analogRead(TEMP_INT);
29
30 temp [0] = tempExt_h;
31 temp [1] = tempExt_h >> 8;
32
33 temp [2] = tempExt_l;
34 temp [3] = tempExt_l >> 8;
35
36 temp [4] = tempExt_l;
37 temp [5] = tempExt_l >> 8;
38
39 Serial.write(temp , 6);
40
41 Serial.print("External Temperature High: "); Serial.println(tempExt_h);
42 Serial.print("External Temperature Low: "); Serial.println(tempExt_l);
43 Serial5.print("Internal Temperature: "); Serial.println(tempInt); Serial.println(" ");
44 }
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- MATLAB Code
1 % Temperature chamber and Arduino Boards - Thermistors readings
2 % Noemi Miguelez , 2019
3
4 %% Setup
5 clc;
6 clear all;
7 close all;
8 fclose(’all’);
9 delete(instrfind);

10
11 % Measurement duration
12 duration = 2; %hours
13
14 % Time between measurements defined by the boards (keep same time step between them).
15
16 %% Configure File
17
18 % Generate dated file name
19 date_time=fix(clock);
20 date_time_str=sprintf(’%04d%02d%02d_%02d%02d’,date_time (1),date_time (2),date_time (3),date_time (4),date_time (5))

;
21 file_str=sprintf(’%s’,mfilename);
22 text_str=sprintf(’%s_%s.txt’,file_str ,date_time_str);
23
24 % Open file for recording data
25 record_file=fopen(text_str ,’w’);
26
27 %% Create objects and establish connections
28 TemperatureChamber=modbus(’serialrtu ’,’COM24’);
29
30 %-----------------------------------------------------
31 %TEENSY/ARDUINO BOARD #1
32 %Serial for the radio communication or file
33 board1 = serial(’COM29’);
34
35 %Set serial parameters
36 board1.InputBufferSize = 20;
37 set(board1 , ’DataBits ’, 8);
38 set(board1 , ’StopBits ’, 1);
39 set(board1 , ’BaudRate ’, 9600);
40 set(board1 , ’Parity ’, ’none’);
41
42 %Open the serial port
43 try
44 fopen(board1);
45 catch err
46 fclose(board1);
47 warndlg(’Connection error with board 1.’);
48 end
49
50 tic;
51
52 %% Monitor temperature profile
53 while toc <( duration *3600)
54 %Consider the measurements when both boards have data available.
55 if (board1.BytesAvailable > 0 )
56 readData1 = fread(board1 ,6);
57 temp_ext_h = typecast(uint8(readData1 (1:2)),’uint16 ’);
58 temp_ext_h = double(temp_ext_h);
59
60 temp_int = typecast(uint8(readData1 (3:4)),’uint16 ’);
61 temp_int = double(temp_int);
62
63 temp_ext_l = typecast(uint8(readData1 (5:6)),’uint16 ’);
64 temp_ext_l = double(temp_ext_l);
65
66 % Reading chamber temperature
67 chamber_temp=read(TemperatureChamber ,’holdingregs ’ ,101) /10;
68 if chamber_temp >1000
69 chamber_temp=chamber_temp -6553.5;
70 end
71
72 % Writing data to file
73 fprintf(record_file ,’%s\t%s\t%s\t%s\t%s\r\n’,num2str(toc),num2str(chamber_temp),num2str(temp_ext_h),

num2str(temp_ext_l), num2str(temp_int));
74
75 % Printing temperatures to terminal for monitoring
76 disp([ num2str(toc),’: ’,num2str(chamber_temp),’ C, T.Ext_H #1: ’,num2str(temp_ext_h),’, T.Ext_L: ’,

num2str(temp_ext_l), ’. T.Int: ’, num2str(temp_int),’.’]);
77 end
78 end
79
80 %% Cleaning up
81 close all;
82 fclose(’all’);
83 delete(instrfind);

The data recorded from the ADC in counts is fitted to the actual temperature
chamber values. The resulting coefficients are used to convert from ADC counts
- sent from the payload- to actual temperature - used by the GUI to plot the
data for monitoring purposes, and during the data post-processing to analyze the
launch results-.
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To do that, the following MATLAB code can be used to configure the temper-
ature range for the calibration of each thermistor separately:

1 clc;
2 clear all;
3 close all;
4 fclose(’all’);
5 delete(instrfind);
6
7 [FileName ,PathName] = uigetfile ({’*.dat;*.mat’},’File Selector ’);
8 data = load(FileName);
9

10 %----------EXTERNAL THERMISTOR UPPER RANGE ------------
11 x_exH = data (:,3);
12 y_exH = data (:,2);
13 minTemp = -30;
14 maxTemp = 30;
15
16 range = find((y_exH >minTemp)&(y_exH <maxTemp));
17 x_exH = x_exH(range);
18 y_exH = y_exH(range);
19
20 f_extH = fit(x_exH , y_exH ,’poly5’,’Normalize ’,’on’,’Robust ’,’Bisquare ’)
21
22 figure;
23 plot(x_exH , y_exH ,’o’)
24 title("Teensy - Upper Range External Thermistor Fit");
25 hold on
26 plot(x_exH , f_extH(x_exH), ’x’);
27 xlabel(’Counts ’);
28 ylabel(’Temperature ’);
29
30
31 %--------EXTERNAL THERMISTOR LOWER RANGE ---------
32 x_exL = data (:,4);
33 y_exL = data (:,2);
34 minTemp = -65;
35 maxTemp = -20;
36
37 range = find((y_exL >minTemp)&(y_exL <maxTemp));
38 x_exL = x_exL(range);
39 y_exL = y_exL(range);
40
41 f_extL = fit(x_exL , y_exL ,’poly5’,’Normalize ’,’on’,’Robust ’,’Bisquare ’)
42
43 figure;
44 plot(x_exL , y_exL ,’o’)
45 title("Teensy - Lower Range External Thermistor Fit");
46 hold on
47 plot(x_exL , f_extL(x_exL), ’x’);
48 xlabel(’Counts ’);
49 ylabel(’Temperature ’);
50
51
52 %--------INTERNAL THERMISTOR ------
53 x_in = data (:,5);
54 y_in = data (:,2);
55 minTemp = -10;
56 maxTemp = 50;
57
58 range = find((y_in >minTemp)&(y_in <maxTemp));
59 x_in = x_in(range);
60 y_in = y_in(range);
61
62 f_inter = fit(x_in , y_in ,’poly5’,’Normalize ’,’on’,’Robust ’,’Bisquare ’)
63 figure;
64 plot(x_in , y_in ,’o’)
65 title("Teensy - Internal Thermistor Fit");
66 hold on
67 plot(x_in , f_inter(x_in), ’x’);
68 xlabel(’Counts ’);
69 ylabel(’Temperature ’);

The obtained calibration coefficients will be valid only for the thermistors used
with the same ADC pins of the microcontroller used for the calibration procedure.

It is important to introduce the new coefficients to the GUI and the post-processing
scripts used for that payload launch and analysis.
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Appendix E

Transceiver Configuration

This appendix presents the XBee PRO SX modules considered for each segment,
as well as the configuration of these modules for a multiple ground station tracking
scenario.

To configure these radios, the XCTU platform [6] is used. With this software,
both boards can be configured at the same time and some communication tests
can be performed to check the link.

The ground station and the payload transceivers have almost the same configu-
ration. Only the “Node Identifier” parameter is different in order to identify which
configuration is supposed to be used for the GS and which one for the payload. It
is prepared this way to distinguish payload and ground station transceivers con-
figuration, in case a different communications setup is preferred.

To be able to configure the payload surface mount chip, the following board
is used to connect it do a computer with the configuration software. As it can
be seen in Figure E.1, this board includes a USB 2.0 B connection that will be
used to communicate with the configuration software. If needed, the module also
includes external pins to test the communication between the ground station and
the payload modules, as well as indicator LEDs for power, TX and RX checking.
A group of three LEDs that work as received signal strength indicator [RSSI] is
also included in this board. The communication between GS and payload boards
can be tested with XCTU using this interface board; however, it is suggested to
run these tests with only 20 dBm output power, since this board cannot handle
the 30 dBm configuration.
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Figure E.1: Transceiver Interface Board for Surface Mount Modules Configuration.

Once the board is connected, it will be detected as a ’COM’ port.

Figure E.2: XCTU - Add a Radio Module.

If it is the first time that the radio module is added to the XCTU -sometimes
even after the first configuration-, XCTU will ask you to push the reset button
of the board to identify the module or it will inform you and do it automatically.
After that, the board-transceiver will be connected to XCTU as it can be seed in
Figure E.3.
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Figure E.3: XCTU - XBee Module Connected/Attached.

By clicking on top of the desired module, a list of all its configured parameters
will be presented on the right side of the XCTU panel.

Figure E.4: XCTU - Radio Configuration View.

Each parameter has either one or two blue buttons on their right side, to
read/refresh the parameter value from the transceiver or to read and write the
value of this parameter, respectively:

Figure E.5: XCTU - Read/Write Configuration Parameters.
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The left side of each parameters contains a button for information about them:

Figure E.6: XCTU - Parameters Information.

For both GS and payload, the following “MAC/PHY” parameters are used:

Figure E.7: XCTU - MAC/PHY Parameters Configuration.

- The preamble and network IDs shall match for the radios to be able to com-
municate with each other.

- In this case, it is specified that the radio should not do additional broadcast
retransmissions (to ensure that it is received).

- The RF data rate is configured to be the maximum possible [250 kbps], which
it is not the actual data throughput of the communications link.

- The TX power is set to 1W [30 dBm].

APPENDIX E. TRANSCEIVER CONFIGURATION 140



For both GS and payload configuration, the following “Network” parameters
are used:

Figure E.8: XCTU - Network Parameters Configuration.

- The number of broadcast and network hops is 1, which represents the maxi-
mum number of transmissions hops.

- The mesh unicast retries is 0, to ensure that no acknowledgements are ex-
pected if working in unicast mode.

For the GS, the “Addressing” configuration is the following one:

Figure E.9: XCTU - Ground Station Addressing Parameters Configuration.

- The destination address is set to 0x000000000000FFFF [DH: 0, DL: FFFF]
because it is the broadcasting address.

- The transmit option is set to 40, which represents the point-to-point/multipoint
configuration.

- The node identifier is specified as GROUND STATION.
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For the payload, the following “Addressing” parameters configuration is used:

Figure E.10: XCTU - Payload Addressing Parameters Configuration.

- The node identifier is specified as PAYLOAD.

For both GS and payload, the “Serial Interfacing” parameters configuration is
the following one:

Figure E.11: XCTU - Serial Interfacing Parameters Configuration.

-The baud rate is set to 230k4 bps, which will be used for interfacing between
the transceiver module and the microcontroller UART Tx/Rx lines or the USB
serial communications with the GS GUI.

-No parity is used in this serial interfacing.

-Only one stop bit is configured.

-The API Enable is set to Transparent Mode.
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-The Flow Control Threshold value is configured as default, but it can be
changed if CTS/RTS lines are used for flow control purposes. The CTS will be
de-asserted if FT bytes are in the UART receive buffer. It is important to config-
ure this value considering the size of the data packets of the payload. CTS should
be asserted with enough margin to put the next data packet in the transceiver
transmission buffer.

The rest of blocks of configuration parameters are not used for this communi-
cations link setup.

The configuration profiles can be saved for next modules configurations. To
apply a configuration profile to a new transceiver module, the “Profile – Apply
Configuration Profile” buttons shall be used:

Figure E.12: XCTU - Configuration Profile Application.

Once the radios are configured, the XCTU serial consoles can be used for test-
ing purposes:

1) Open the serial console view.

2) Open the connection with the selected radio.

3) In Tx mode, create the packet to be sent.

4) Specify the desired transmit interval. Specify the number of times that the
packet will be sent or transmit infinite number of packets (Loop Infinitely) and
start the transmission sequence.
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Figure E.13: XCTU - Serial Console View.

Once the transmission sequence is started, the number of Tx Bytes increases,
and the console log shows the transmitted packet in blue.

If a receiver radio is configured and attached to the serial console, the previ-
ously configured packets will be printed in their console log in red, and the number
of Rx Bytes will increase.
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Appendix F

Printed Circuit Board Designs

F.1 Payload
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F.2 Controlled Descent Unit
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F.3 Ground Station
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Appendix G

Payload Movement Simulator

The sensor used to get information about the payload movements was the LSM9DS1,
a nine degrees of freedom (9DoF) motion-sensing system in a single chip. It con-
tains a 3-axis accelerometer, 3-axis gyroscope, and a 3-axis magnetometer. The
data can be accessed through I2C or SPI communication, also used to configure
the different scales and ranges of the aforementioned sensors:

• Accelerometer: it measures the payload acceleration in g’s, with a scale
that can be set to ±2, 4, 8 or 16 g.

• Gyroscope: it measures the angular velocity in degrees per second (DPS)
of the payload with a scale that can be set to ± 245, 500 or 2000 DPS.

Figure G.1: 9 Degrees of Freedom - LSM8DS1 (L) Sparkfun, (R) Adafruit Modules

A system consisting of an Arduino UNO board and a LSM9DS1 sensor was
created to simulate and understand the payload movements during a HAB launch:

Figure G.2: LSM8DS1 Sensor: (L) Sparkfun, (R) Adafruit Modules
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As it can be seen in the previous figures, the hardware is placed inside a box
similar to the ones used during the HAB launches, with only one cable connection
required to get the data. For this simulator, the I2C connection to the sensor was
chosen, requiring only 4 connections to cover the system’s power supply and data
transfer.

The system box can be hanging from a certain altitude to be dropped to simulate
controlled descent unit cases, balloon bursts, double and single balloon configura-
tions lifting the payload, among others. On the other hand, the whole box can be
placed in a controlled environment, where the three axis are controlled with motors
moving with a certain acceleration and at different angles in order to calibrate the
sensors and to analyse the movements during the launch with more precision.

Figure G.3: Movement Simulator System Box

As aforementioned, only one cable connection to this system is required. The
Arduino serial cable is directly connected to a computer, where two different code
modes can be used to get and plot the sensor data in real-time:

• Arduino Mode: using the Arduino IDE, the embedded serial plotter can
be used to plot the desired signals in real-time with the specified data points
per second.

• MATLAB Mode: running a second MATLAB code, the accelerometer and
the gyroscope data can be plotted separately.
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The Arduino code used for both modes is presented below:

1 /* ****************************************************************
2 * NAME: 9DoF_plotter.ino
3 * AUTHOR: Noemi Miguelez Gomez
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Movement Plotter.
5 *
6 *
7 * DEVELOPMENT HISTORY:
8 * Date Author Version Description Of Change
9 * -------- ------ ------- ------------------------------------

10 * 07/17/2019 NMG 1.1 Code adapted to MATLAB/Arduino and
11 LSM9DS1.
12 ************************************************************** */
13
14 #include <Wire.h>
15 #include <SPI.h>
16 #include <Adafruit_LSM9DS1.h>
17 #include <Adafruit_Sensor.h> // not used in this demo but required!
18
19 // i2c
20 Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1 ();
21 byte imuPacket [12];
22 sensors_event_t a, m, g, temp;
23
24 int accel_x;
25 int accel_y;
26 int accel_z;
27 int gyro_x;
28 int gyro_y;
29 int gyro_z;
30
31 int measPS = 50; // Sensor sampling rate.
32
33
34 void setupSensor ()
35 {
36 // 1.) Set the accelerometer range
37 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G);
38 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G);
39 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G);
40 lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G);
41
42 // 3.) Setup the gyroscope
43 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
44 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
45 lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
46 }
47
48 void setup()
49 {
50 Serial.begin (115200);
51 while (! Serial) {
52 delay (1);
53 }
54 if (!lsm.begin())
55 {
56 while (1);
57 }
58 setupSensor ();
59 }
60
61 void loop()
62 {
63 lsm.getEvent (&a, &m, &g, &temp);
64
65 accel_x = a.acceleration.x;
66 accel_y = a.acceleration.y;
67 accel_z = a.acceleration.z;
68
69 gyro_x = g.gyro.x;
70 gyro_y = g.gyro.y;
71 gyro_z = g.gyro.z;
72
73 /* ********* ARDUINO MODE ********** */
74 // Select/Uncomment the signals to plot on the Serial Plotter.
75 Serial.print(float(accel_x)/1000); Serial.print(" ");
76
77 Serial.print(float(accel_y)/1000); Serial.print(" ");
78
79 Serial.println(float(accel_z)/1000); Serial.print(" ");
80
81 // Serial.print(float(gyro_x)/1000); Serial.print(" ");
82 //
83 // Serial.print(float(gyro_y)/1000); Serial.print(" ");
84 //
85 // Serial.print(float(gyro_z)/1000); Serial.print(" ");
86
87 Serial.println("uT");
88
89 /* ********** MATLAB MODE ********** */
90 // imuPacket [0] = accel_x;
91 // imuPacket [1] = accel_x >> 8;
92 //
93 // imuPacket [2] = accel_y;
94 // imuPacket [3] = accel_y >> 8;
95 //
96 // imuPacket [4] = accel_z;
97 // imuPacket [5] = accel_z >> 8;
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98 //
99 // imuPacket [6] = gyro_x;

100 // imuPacket [7] = gyro_x >> 8;
101 //
102 // imuPacket [8] = gyro_y;
103 // imuPacket [9] = gyro_y >> 8;
104 //
105 // imuPacket [10] = gyro_z;
106 // imuPacket [11] = gyro_z >> 8;
107 //
108 // Serial.write(imuPacket , 12);
109 /* ************************************ */
110
111 delay (1000/ measPS);
112 }

The expected results from the Arduino plotter mode can be seen in the next
figures:

Figure G.4: Arduino IDE - Movement Simulator Acceleration Data.

For the previous case, the box was moved vertically at the beginning, then
horizontally in Y direction, horizontally in X direction and not moving at all at
the end. The data plotted presents the expected values, were the colors are auto-
matically assigned by the IDE in order of printing: Blue=X, Red=Y, Green=Z.

Figure G.5: Arduino IDE - Movement Simulator Angular Velocity Data.
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To obtain the gyroscope data, the center of the payload was intended to be in
the same point, while it was rotated in the different axis. We can see in this case
a movement in Z, Y and X axis, in order, and no movement at the end.

For the MATLAB mode, the code used is the following one:

1 clear all;
2 close all;
3 fclose(’all’);
4 delete(instrfind);
5 %% Create objects and establish connections
6 duration = 10; %[mins]
7
8 %Serial for the board comms
9 board = serial(’COM61’);

10 %Set serial parameters
11 board.InputBufferSize = 500000;
12 set(board , ’DataBits ’, 8);
13 set(board , ’StopBits ’, 1);
14 set(board , ’BaudRate ’, 115200);
15 set(board , ’Parity ’, ’none’);
16
17 %Open the serial port
18 try
19 fopen(board);
20 catch err
21 fclose(board);
22 warndlg(’Board connection error.’);
23 end
24
25 figure
26 h1 = animatedline(’Color’, ’r’);
27 h2 = animatedline(’Color’, ’g’);
28 h3 = animatedline(’Color’, ’b’);
29 ax1 = gca;
30 ax1.YGrid = ’on’;
31 ax1.YLim = [-20 20];
32 xlabel(’Time’)
33 ylabel(’Acceleration [m/sˆ2]’)
34 legend(’X’, ’Y’, ’Z’);
35
36 figure
37 h4 = animatedline(’Color’, ’r’);
38 h5 = animatedline(’Color’, ’g’);
39 h6 = animatedline(’Color’, ’b’);
40 ax2 = gca;
41 ax2.YGrid = ’on’;
42 ax2.YLim = [-40 40];
43 startTime = datetime(’now’);
44 xlabel(’Time’)
45 ylabel(’Angular Speed [dps]’)
46 legend(’X’, ’Y’, ’Z’);
47
48 tic
49 pause (1);
50 while toc <( duration *60)
51 if (board.BytesAvailable >60)
52 readData = fread(board ,60);
53 %Accelerometer Monitor
54 accel_X = typecast(uint8(readData (1:2)),’int16’);
55 accel_x = double(accel_X)/1000;
56
57 accel_Y = typecast(uint8(readData (3:4)),’int16’);
58 accel_y = double(accel_Y)/1000;
59
60 accel_Z = typecast(uint8(readData (5:6)),’int16’);
61 accel_z = double(accel_Z)/1000;
62
63 %Gyroscope Monitor
64 gyro_X = typecast(uint8(readData (7:8)),’int16’);
65 gyro_x = double(gyro_X)/1000;
66
67 gyro_Y = typecast(uint8(readData (9:10)),’int16’);
68 gyro_y = double(gyro_Y)/1000;
69
70 gyro_Z = typecast(uint8(readData (11:12)),’int16’);
71 gyro_z = double(gyro_Z)/1000;
72
73
74 % Get current time
75 t = datetime(’now’) - startTime;
76 % Add points to animation
77 addpoints(h1,datenum(t),accel_x)
78 addpoints(h2,datenum(t),accel_y)
79 addpoints(h3,datenum(t),accel_z)
80 % Update axes
81 ax1.XLim = datenum ([t-seconds (30) t]);
82 datetick(’x’,’keeplimits ’)
83
84 % Get current time
85 t = datetime(’now’) - startTime;
86 % Add points to animation
87 addpoints(h4,datenum(t),gyro_x)
88 addpoints(h5,datenum(t),gyro_y)
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89 addpoints(h6,datenum(t),gyro_z)
90 % Update axes
91 ax2.XLim = datenum ([t-seconds (30) t]);
92 datetick(’x’,’keeplimits ’)
93 drawnow
94 end
95 end

The expected results from this mode are presented in the following figures:

Figure G.6: MATLAB - Movement Simulator Acceleration Data.

Figure G.7: MATLAB - Movement Simulator Angular Velocity Data.

In this case, the accelerometer and the gyroscope data can be plotted for the
same movement in two different plots, which can result more useful than a single
plot for the Arduino IDE with all the data on it.
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Appendix H

Payload Codes and Flow
Diagrams

H.1 Payload With Internal CDU

1 /* **************************************************************
2 * NAME: HAB_Transmitter.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Transmitter.
5 *
6 * DEVELOPMENT HISTORY:
7 * Date Author Version Description Of Change
8 * -------- ------ ------- ------------------------------------
9 * 02/23/2018 NMG 1.1 Scientific packets included and

10 sync.
11 * 03/02/2018 NMG 1.2 GPS sensors included.
12 * 03/20/2018 NMG 1.3 Cutting System Included.
13 * 06/04/2018 NMG 1.4 SD Card System Included.
14 * 06/08/2018 NMG 1.5 Watchdog Timer Included.
15 * 07/20/2018 NMG 2.1 Data Packet and SD File Changes.
16 * 08/09/2018 NMG 2.2 Scientific Packets With GPS Info.
17 * 10/10/2018 NMG 3 Packets Structure Changes.
18 * 01/12/2018 NMG 3.1 Cutting System I2C -SPI Changes.
19 * 01/15/2018 NMG 4 Code Adapted to Teensy 3.5.
20 * 01/15/2018 NMG 4.1 Code Restructured.
21 ************************************************************* */
22
23 #include <NMEAGPS.h>
24 #include <GPSport.h>
25 #include <Streamers.h>
26 #include <EEPROM.h>
27 #include <SPI.h>
28 #include <SD.h>
29 #include <Wire.h>
30 #include <avr/wdt.h>
31 #include <Adafruit_LSM9DS1.h>
32 #include <Adafruit_Sensor.h>
33
34
35 /* ******************* DATA BACKUP ************************* */
36 int32_t dataTimeTh [7] = {3600000 , 7200000 , 10800000 , 14400000 , 18000000 , 21600000 , 25200000};
37 int32_t dataAltTh [7] = {10000 , 20000, 30000, 40000, 30000, 20000, 10000};
38
39 int dataCount;
40
41 File flightData;
42 String fileN;
43 String fileName;
44 int sdFlag;
45 int32_t timeSD;
46 unsigned int fileNum;
47 unsigned int address;
48 int sdCount;
49
50 /* ************** CUTTING SYSTEM ****************** */
51 // ALTITUDE THRESHOLD FOR CUTTING SYSTEM
52 #define CUTTING_THRES 30000
53 #define CUTTING_TIME 12000
54 #define CUT_ENABLE 39
55 volatile int cutting_flag;
56 volatile int cutting_finished;
57 int altCnt;
58
59
60 /* ****************************** GPS SENSORS ********************************** */
61 /****** SERIAL DEFINITIONS *******
62 * RADIO_TX Serial_0 *
63 * GPS UBlox External Serial_3 *
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64 ******************************* */
65
66 static NMEAGPS uBloxEX; //uBlox GPS
67 static gps_fix uBloxEXFix;
68
69 /* **************** RADIO PACKETS AND SENSORS VARIABLES ************************* */
70 byte id_sci [2] = {0xA0 , 0xB1}; // Identifier for scientific data packet.
71 byte id_gps [2] = {0xC0 , 0xD1};
72
73 byte sciPacket [100]; // Scientific data packet byte array.
74 byte gpsPacket [100]; //GPS data packet byte array.
75 unsigned int packet_number; // Packet number/counter.
76
77 // ANALOG PINS DEFINITION
78 #define TEMP_EXT A9
79 #define TEMP_INT A8
80 #define VOLTAGE A12
81
82 int tempExt; // External Temperature.
83 int tempInt; // Internal Temperature.
84 int voltage; // Voltage Monitor (VBat).
85
86 //9DoF PINS DEFINITION
87 #define LSM9DS1_MISO 50
88 #define LSM9DS1_MOSI 51
89 #define LSM9DS1_SCK 52
90 #define LSM9DS1_XGCS 43
91 #define LSM9DS1_MCS 45
92
93 Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1(LSM9DS1_XGCS , LSM9DS1_MCS);
94 sensors_event_t a, m, g, temp;
95 int accel_x;
96 int accel_y;
97 int accel_z;
98
99 int gyro_x;

100 int gyro_y;
101 int gyro_z;
102
103 /* ******************* GPS DATA ********************* */
104 int32_t lat; // Latitude
105
106 int32_t lon; // Longitude
107
108 int32_t alt1; // Altitude x.0
109 int16_t alt2; // Altitude 0.x
110
111 byte stat; // Status
112
113 uint8_t numSats; // Number of Satellites in View
114 uint8_t utcHour; //UTC Time - Hour
115 uint8_t utcMin; //UTC Time - Minutes
116 uint8_t utcSec; //UTC Time - Seconds
117
118 /* **************** TIMERS ************************* */
119 unsigned long time_ref; // Reference Time (computed after a packet transmission)
120 unsigned long time_gps; //Last GPS Time (updated once a GPS packet is transmitted)
121
122 unsigned long time_cutting1;
123 unsigned long time_cutting2;
124
125 unsigned long time_packet;
126
127
128 void setupSensor ()
129 {
130 // 1.) Set the accelerometer range
131 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G);
132 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G);
133 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G);
134 lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G);
135
136 // 2.) Set the magnetometer sensitivity
137 //lsm.setupMag(lsm.LSM9DS1_MAGGAIN_4GAUSS);
138 //lsm.setupMag(lsm.LSM9DS1_MAGGAIN_8GAUSS);
139 //lsm.setupMag(lsm.LSM9DS1_MAGGAIN_12GAUSS);
140 lsm.setupMag(lsm.LSM9DS1_MAGGAIN_16GAUSS);
141
142 // 3.) Setup the gyroscope
143 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
144 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
145 lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
146 }
147
148 void setup() {
149 wdt_disable ();
150 /* *********** IMU SENSOR SETUP ********* */
151
152 lsm.begin();
153 setupSensor ();
154
155 /* *********** RADIO COMMS INI ********* */
156 Serial.begin (230400);
157
158 /* *********** SD CARD ************* */
159 sdCount = 0;
160 pinMode (41, OUTPUT);
161 digitalWrite (41, HIGH);
162 while ((!SD.begin (41))&&( sdCount < 3)){
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163 sdCount = sdCount + 1;
164 delay (1000);
165 }
166
167 address = 0;
168 fileNum = EEPROM.read(address);
169 fileNum = fileNum + 1;
170 EEPROM.write(address , fileNum);
171
172 fileN = "data";
173 String m = fileN + fileNum;
174 String ext = ".txt";
175 fileName = m + ext;
176
177 flightData = SD.open(fileName , FILE_WRITE);
178 timeSD = millis ();
179 dataCount = 0;
180
181 /* *********** GPS SERIALS ********* */
182 gpsuBloxExt.begin (9600);
183
184 /* ******** CUTTING SYSTEM ******** */
185 pinMode(CUT_ENABLE , OUTPUT);
186 digitalWrite(CUT_ENABLE , LOW);
187
188 time_cutting1 = 0;
189 time_cutting2 = 0;
190 cutting_flag = 0;
191 cutting_finished = 0;
192 packet_number =0;
193
194 /* ******** WATCHDOG TIMER ******** */
195 wdt_enable(WDTO_500MS);
196 }
197
198
199 void send_sci_packet(int id)
200 {
201 packet_number ++;
202 sciPacket [2] = packet_number;
203 sciPacket [3] = packet_number >> 8;
204
205 if (id==3){
206 // prepare_fix_packet (); // CUTTING SYSTEM
207
208 sciPacket [0] = id_gps [0];
209 sciPacket [1] = id_gps [1];
210
211 sciPacket [4] = lat;
212 sciPacket [5] = lat >> 8;
213 sciPacket [6] = lat >> 16;
214 sciPacket [7] = lat >> 24;
215
216 sciPacket [8] = lon;
217 sciPacket [9] = lon >> 8;
218 sciPacket [10] = lon >> 16;
219 sciPacket [11] = lon >> 24;
220
221 sciPacket [12] = alt1;
222 sciPacket [13] = alt1 >> 8;
223 sciPacket [14] = alt1 >> 16;
224 sciPacket [15] = alt1 >> 24;
225
226 sciPacket [16] = stat;
227
228 sciPacket [17] = numSats;
229
230 sciPacket [18] = utcHour;
231 sciPacket [19] = utcMin;
232 sciPacket [20] = utcSec;
233
234 sciPacket [21] = alt2;
235 sciPacket [22] = alt2 >> 8;
236
237 tempExt = analogRead(TEMP_EXT);
238 sciPacket [23] = tempExt;
239 sciPacket [24] = tempExt >> 8;
240
241 time_packet = millis ();
242 sciPacket [26] = time_packet;
243 sciPacket [27] = time_packet >> 8;
244 sciPacket [28] = time_packet >> 16;
245 sciPacket [29] = time_packet >> 24;
246 }
247 else {
248 sciPacket [0] = id_sci [0];
249 sciPacket [1] = id_sci [1];
250
251 tempExt = analogRead(TEMP_EXT);
252 sciPacket [4] = tempExt;
253 sciPacket [5] = tempExt >> 8;
254
255 tempInt = analogRead(TEMP_INT);
256 sciPacket [6] = tempInt;
257 sciPacket [7] = tempInt >> 8;
258
259 tempExt = analogRead(TEMP_EXT);
260 tempInt = analogRead(TEMP_INT);
261 sciPacket [8] = tempExt;
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262 sciPacket [9] = tempExt >> 8;
263 sciPacket [10] = tempInt;
264 sciPacket [11] = tempInt >> 8;
265
266 voltage = analogRead(VOLTAGE);
267 sciPacket [12] = voltage;
268 sciPacket [13] = voltage >> 8;
269
270
271 lsm.getEvent (&a, &m, &g, &temp);
272 accel_x = a.acceleration.x;
273
274 sciPacket [14] = accel_x;
275 sciPacket [15] = accel_x >> 8;
276
277 accel_y = a.acceleration.y;
278 sciPacket [16] = accel_y;
279 sciPacket [17] = accel_y >> 8;
280
281 accel_z = a.acceleration.z;
282 sciPacket [18] = accel_z;
283 sciPacket [19] = accel_z >> 8;
284
285 gyro_x = g.gyro.x;
286 sciPacket [20] = gyro_x;
287 sciPacket [21] = gyro_x >> 8;
288
289 gyro_y = g.gyro.y;
290 sciPacket [22] = gyro_y;
291 sciPacket [23] = gyro_y >> 8;
292
293 gyro_z = g.gyro.z;
294 sciPacket [24] = gyro_z;
295 sciPacket [25] = gyro_z >> 8;
296
297 time_packet = millis ();
298 sciPacket [26] = time_packet;
299 sciPacket [27] = time_packet >> 8;
300 sciPacket [28] = time_packet >> 16;
301 sciPacket [29] = time_packet >> 24;
302 }
303
304 for(int i=0; i<3; i++)
305 {
306 tempExt = analogRead(TEMP_EXT);
307 sciPacket [30+22*i] = tempExt;
308 sciPacket [30+22*i+1] = tempExt >> 8;
309
310 tempInt = analogRead(TEMP_EXT);
311 sciPacket [30+22*i+2] = tempInt;
312 sciPacket [30+22*i+3] = tempInt >> 8;
313
314 voltage = analogRead(VOLTAGE);
315 sciPacket [30+22*i+4] = voltage;
316 sciPacket [30+22*i+5] = voltage >> 8;
317
318 accel_x = a.acceleration.x;
319 sciPacket [30+22*i+6] = accel_x;
320 sciPacket [30+22*i+7] = accel_x >> 8;
321
322 accel_y = a.acceleration.y;
323 sciPacket [30+22*i+8] = accel_y;
324 sciPacket [30+22*i+9] = accel_y >> 8;
325
326 accel_z = a.acceleration.z;
327 sciPacket [30+22*i+10] = accel_z;
328 sciPacket [30+22*i+11] = accel_z >> 8;
329
330 gyro_x = g.gyro.x;
331 sciPacket [30+22*i+12] = gyro_x;
332 sciPacket [30+22*i+13] = gyro_x >> 8;
333
334 gyro_y = g.gyro.y;
335 sciPacket [30+22*i+14] = gyro_y;
336 sciPacket [30+22*i+15] = gyro_y >> 8;
337
338 gyro_z = g.gyro.z;
339 sciPacket [30+22*i+16] = gyro_z;
340 sciPacket [30+22*i+17] = gyro_z >> 8;
341
342 tempExt = analogRead(TEMP_EXT);
343 sciPacket [[30+22*i+18] = tempExt;
344 sciPacket [[30+22*i+19] = tempExt >> 8;
345
346 tempExt = analogRead(TEMP_EXT);
347 sciPacket [[30+22*i+20] = tempExt;
348 sciPacket [[30+22*i+21] = tempExt >> 8;
349 }
350
351 Serial.write(sciPacket , 100);
352 flightData.write(sciPacket , 30);
353 delay (2);
354 }
355
356
357 static void prepare_fix_packet (){
358 if (cutting_flag == 0){
359 if (alt1 > CUTTING_THRES){
360 digitalWrite(CUT_ENABLE , HIGH);
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361 time_cutting1 = millis ();
362 cutting_flag = 1;
363 }
364 }
365
366 if (( cutting_flag == 1)&&( cutting_finished == 0)){
367 time_cutting2 = millis ();
368 if (( time_cutting2 -time_cutting1)> CUTTING_TIME){
369 digitalWrite(CUT_ENABLE , LOW);
370 cutting_finished = 1;
371 }
372 }
373 }
374
375
376
377 void loop() {
378 int id = 0;
379 while (uBloxEX.available( gpsuBloxExt )) {
380 uBloxEXFix = uBloxEX.read();
381 if (uBloxEXFix.valid.location) {
382 lat = uBloxEXFix.latitudeL ();
383 lon = uBloxEXFix.longitudeL ();
384 alt1 = uBloxEXFix.alt.whole;
385 alt2 = uBloxEXFix.alt.frac;
386 stat = uBloxEXFix.status;
387 numSats = uBloxEXFix.satellites;
388 utcHour = uBloxEXFix.dateTime.hours;
389 utcMin = uBloxEXFix.dateTime.minutes;
390 utcSec = uBloxEXFix.dateTime.seconds;
391
392 id = 3;
393 }
394 }
395 send_sci_packet(id);
396 wdt_reset ();
397
398 if (flightData) {
399 if (sdFlag == 0){
400 if ((( millis () - timeSD) > dataTimeTh[dataCount ])||( alt1 > dataAltTh[dataCount ])){
401 dataCount = dataCount + 1;
402 flightData.flush();
403 }
404 if (dataCount == 7){
405 sdFlag = 1;
406 }
407 wdt_reset ();
408 }
409 if (sdFlag == 1){
410 flightData.close();
411 sdFlag = 2;
412 wdt_reset ();
413 }
414 }
415 }
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Figure H.1: Design 1-2 Software Flow Diagram - Payload with Internal Cutting
System for a Controlled Descent.
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H.2 Payload with Retransmissions

1 /* **************************************************************
2 * NAME: HAB_Transmitter.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Transmitter.
5 *
6 * DEVELOPMENT HISTORY:
7 * Date Author Version Description Of Change
8 * -------- ------ ------- ------------------------------------
9 * 02/23/2018 NMG 1.1 Scientific packets included and

10 sync.
11 * 03/02/2018 NMG 1.2 GPS sensors included.
12 * 03/20/2018 NMG 1.3 Cutting System Included.
13 * 06/04/2018 NMG 1.4 SD Card System Included.
14 * 06/08/2018 NMG 1.5 Watchdog Timer Included.
15 * 07/20/2018 NMG 2.1 Data Packet and SD File Changes.
16 * 08/09/2018 NMG 2.2 Scientific Packets With GPS Info.
17 * 10/10/2018 NMG 3 Packets Structure Changes.
18 * 01/12/2018 NMG 3.1 Cutting System I2C -SPI Changes.
19 * 01/15/2018 NMG 4 Code Adapted to Teensy 3.5.
20 * 01/15/2018 NMG 4.1 Code Restructured.
21 * 03/09/2018 NMG 4.2 Re-send data implementation.
22 * 03/13/2018 NMG 4.3 External Watchdog Timer Included.
23 * 05/10/2019 NMG 4.4 GPS packets not considered.
24 * 07/02/2019 NMG 4.5 Teensy ADC Reference - Flow Control.
25 ************************************************************* */
26
27 #include <NMEAGPS.h>
28 #include <GPSport.h>
29 #include <Streamers.h>
30 #include <EEPROM.h>
31 #include <SPI.h>
32 #include <SD.h>
33 #include <Wire.h>
34 #include <avr/wdt.h>
35 #include <Adafruit_LSM9DS1.h>
36 #include <Adafruit_Sensor.h>
37 #include <ADC.h>
38 ADC *adc = new ADC();
39
40 /****** SERIAL DEFINITIONS *******
41 * RADIO_TX Serial_0 *
42 * GPS UBlox External Serial_3 *
43 ******************************* */
44
45 /* *********************** DATA BACKUP *************************** */
46 File flightData;
47 String ext = ".bin";
48 String fileN;
49 String fileName1;
50 String fileName2;
51 int sdFlag;
52 int32_t timeSD;
53 unsigned int fileNum;
54 unsigned int address;
55 int sdCount;
56 const int chipSelect = BUILTIN_SDCARD;
57
58 /* ******************** CUTTING SYSTEM *************************** */
59 //// ALTITUDE THRESHOLD FOR CUTTING SYSTEM
60 //#define CUTTING_THRES 30000
61 //#define CUTTING_TIME 12000
62 // volatile int cutting_flag;
63 // volatile int cutting_finished;
64
65
66 /* ************************ GPS SENSORS ************************** */
67 static NMEAGPS uBloxEX; //uBlox GPS
68 static gps_fix uBloxEXFix;
69 int id;
70
71 int32_t lat1; // Latitude
72 int32_t lon; // Longitude
73 int32_t alt; // Altitude
74 int32_t highAlt;
75 byte stat; // Status
76 uint8_t numSats; // Number of Satellites in View
77 uint8_t utcHour; //UTC Time - Hour
78 uint8_t utcMin; //UTC Time - Minutes
79 uint8_t utcSec; //UTC Time - Seconds
80
81 /* ************* DATA PACKETS AND SENSORS VARIABLES ************** */
82 byte id_sci [2] = {0xA0 , 0xB1}; // Identifier for only scientific data packet.
83 byte id_gps [2] = {0xC0 , 0xD1}; // Identifier for packet with GPS data.
84
85 byte sciPacket [100]; // Scientific data packet byte array.
86 unsigned int packet_number; // Packet number/counter.
87 unsigned long time_packet; // Packet Timestamp.
88
89 // ANALOG PINS DEFINITION
90 // PAYLOAD PCB
91 //#define TEMP_EXT_H A9
92 //#define TEMP_EXT_L A8
93 //#define TEMP_INT A7
94 #define CTS_PIN 24
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95 // --------------------
96
97 //// PAYLOAD 2
98 #define TEMP_EXT_H A9
99 #define TEMP_INT A8

100 #define TEMP_EXT_L A7
101 // --------------------
102 #define VOLTAGE A6
103
104 int xbeePower;
105 int tempExt_l; // External Temperature.
106 int tempExt_h;
107 int tempInt; // Internal Temperature.
108 int voltage; // Voltage Monitor (VBat).
109
110 //9DoF PINS DEFINITION
111 #define LSM9DS1_XGCS 10
112 #define LSM9DS1_MCS 9
113
114 //9DoF VARIABLES DEFINITION
115 Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1(LSM9DS1_XGCS , LSM9DS1_MCS);
116 sensors_event_t a, m, g, temp;
117 int accel_x;
118 int accel_y;
119 int accel_z;
120
121 int gyro_x;
122 int gyro_y;
123 int gyro_z;
124
125
126 int altFlag;
127 int altCnt;
128 unsigned long altDscntCnt;
129 int kmPos;
130 int altTest;
131 int testFlag;
132 int altEEPROM;
133
134 void setupSensor ()
135 {
136 // 1.) Set the accelerometer range
137 lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G);
138 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G);
139 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G);
140 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G);
141
142 // 2.) Setup the gyroscope
143 lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
144 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
145 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
146 }
147
148 void setup() {
149 /* ******************* IMU SENSOR SETUP ***************** */
150
151 lsm.begin();
152 setupSensor ();
153
154 analogReadResolution (10);
155 //adc ->setAveraging (8);
156 adc ->setReference(ADC_REFERENCE ::REF_3V3 , ADC_0);
157 //adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: LOW_SPEED);
158 Serial5.attachCts (24);
159 pinMode (24, INPUT);
160
161 /* ******************* RADIO COMMS INI ****************** */
162 Serial5.begin (230400);
163 id = 0;
164 /* ********************** SD CARD ********************** */
165 sdCount = 0;
166 while ((!SD.begin(chipSelect)) && (sdCount < 3)) {
167 sdCount = sdCount + 1;
168 delay (1000);
169 }
170 //Read and set file number and name
171 address = 0;
172 fileNum = EEPROM.read(address);
173 fileNum = fileNum + 1;
174 EEPROM.write(address , fileNum);
175 fileN = "data";
176 String m1 = fileN + fileNum;
177 fileName1 = m1 + ext;
178
179 //Open file
180 flightData = SD.open(fileName1.c_str(), FILE_WRITE);
181 timeSD = millis ();
182
183 // Prepare the next file for the descent
184 fileN = "dscnt";
185 String m2 = fileN + fileNum;
186 fileName2 = m2 + ext;
187
188
189 /* ******************* GPS SERIALS ******************* */
190 gpsuBloxExt.begin (9600);
191 packet_number = 0;
192 highAlt = 0;
193 altFlag = 0;
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194 altTest = 0;
195 altCnt = 0;
196 altDscntCnt = 0;
197 testFlag = 0;
198 alt = 0;
199
200 /* ******************** WATCHDOG TIMER ***************** */
201 noInterrupts ();
202 WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
203 WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
204 delayMicroseconds (1);
205
206
207 WDOG_TOVALH = 0x006d;
208 WDOG_TOVALL = 0xdd00;
209
210 WDOG_PRESC = 0x400;
211
212 WDOG_STCTRLH |= WDOG_STCTRLH_ALLOWUPDATE |
213 WDOG_STCTRLH_WDOGEN | WDOG_STCTRLH_WAITEN |
214 WDOG_STCTRLH_STOPEN | WDOG_STCTRLH_CLKSRC;
215 interrupts ();
216 }
217
218
219 void send_sci_packet(int id)
220 {
221 if (id==3){
222
223 sciPacket [0] = id_gps [0];
224 sciPacket [1] = id_gps [1];
225
226 sciPacket [2] = packet_number;
227 sciPacket [3] = packet_number >> 8;
228
229 sciPacket [4] = lat1;
230 sciPacket [5] = lat1 >> 8;
231 sciPacket [6] = lat1 >> 16;
232 sciPacket [7] = lat1 >> 24;
233
234 sciPacket [8] = lon;
235 sciPacket [9] = lon >> 8;
236 sciPacket [10] = lon >> 16;
237 sciPacket [11] = lon >> 24;
238
239 sciPacket [12] = alt;
240 sciPacket [13] = alt >> 8;
241 sciPacket [14] = alt >> 16;
242 sciPacket [15] = alt >> 24;
243
244 sciPacket [16] = stat;
245
246 sciPacket [17] = numSats;
247
248 sciPacket [18] = utcHour;
249 sciPacket [19] = utcMin;
250 sciPacket [20] = utcSec;
251
252 /* ****** EXTRA TEMP DATA ****** */
253 tempExt_h = analogRead(TEMP_EXT_H);
254 sciPacket [21] = tempExt_h;
255 sciPacket [22] = tempExt_h >> 8;
256
257 tempExt_l = analogRead(TEMP_EXT_L);
258 sciPacket [23] = tempExt_l;
259 sciPacket [24] = tempExt_l >> 8;
260
261 }
262 else {
263 sciPacket [0] = id_sci [0];
264 sciPacket [1] = id_sci [1];
265
266 packet_number ++;
267 sciPacket [2] = packet_number;
268 sciPacket [3] = packet_number >> 8;
269
270 adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: LOW_SPEED);
271 tempExt_h = analogRead(TEMP_EXT_H);
272 sciPacket [4] = tempExt_h;
273 sciPacket [5] = tempExt_h >> 8;
274
275 tempInt = analogRead(TEMP_INT);
276 sciPacket [6] = tempInt;
277 sciPacket [7] = tempInt >> 8;
278
279
280 tempExt_l = analogRead(TEMP_EXT_L);
281 sciPacket [8] = tempExt_l;
282 sciPacket [9] = tempExt_l >> 8;
283
284 adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: MED_SPEED);
285 tempExt_h = analogRead(TEMP_EXT_H);
286 sciPacket [10] = tempExt_h;
287 sciPacket [11] = tempExt_h >> 8;
288
289 voltage = analogRead(VOLTAGE);
290 sciPacket [12] = voltage;
291 sciPacket [13] = voltage >> 8;
292
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293
294 lsm.getEvent (&a, &m, &g, &temp);
295
296 accel_x = a.acceleration.x;
297 sciPacket [14] = accel_x;
298 sciPacket [15] = accel_x >> 8;
299
300 accel_y = a.acceleration.y;
301 sciPacket [16] = accel_y;
302 sciPacket [17] = accel_y >> 8;
303
304 accel_z = a.acceleration.z;
305 sciPacket [18] = accel_z;
306 sciPacket [19] = accel_z >> 8;
307
308 gyro_x = g.gyro.x;
309 sciPacket [20] = gyro_x;
310 sciPacket [21] = gyro_x >> 8;
311
312 gyro_y = g.gyro.y;
313 sciPacket [22] = gyro_y;
314 sciPacket [23] = gyro_y >> 8;
315
316 gyro_z = g.gyro.z;
317 sciPacket [24] = gyro_z;
318 sciPacket [25] = gyro_z >> 8;
319 }
320
321 for(int i=0; i<3; i++)
322 {
323 tempExt_h = analogRead(TEMP_EXT_H);
324 sciPacket [30+22*i] = tempExt_h;
325 sciPacket [30+22*i+1] = tempExt_h >> 8;
326
327 tempExt_l = analogRead(TEMP_EXT_L);
328 sciPacket [30+22*i+2] = tempExt_l;
329 sciPacket [30+22*i+3] = tempExt_l >> 8;
330
331 voltage = analogRead(VOLTAGE);
332 sciPacket [30+22*i+4] = voltage;
333 sciPacket [30+22*i+5] = voltage >> 8;
334
335 accel_x = a.acceleration.x;
336 sciPacket [30+22*i+6] = accel_x;
337 sciPacket [30+22*i+7] = accel_x >> 8;
338
339 accel_y = a.acceleration.y;
340 sciPacket [30+22*i+8] = accel_y;
341 sciPacket [30+22*i+9] = accel_y >> 8;
342
343 accel_z = a.acceleration.z;
344 sciPacket [30+22*i+10] = accel_z;
345 sciPacket [30+22*i+11] = accel_z >> 8;
346
347 gyro_x = g.gyro.x;
348 sciPacket [30+22*i+12] = gyro_x;
349 sciPacket [30+22*i+13] = gyro_x >> 8;
350
351 gyro_y = g.gyro.y;
352 sciPacket [30+22*i+14] = gyro_y;
353 sciPacket [30+22*i+15] = gyro_y >> 8;
354
355 gyro_z = g.gyro.z;
356 sciPacket [30+22*i+16] = gyro_z;
357 sciPacket [30+22*i+17] = gyro_z >> 8;
358
359 /**EXTRA EXTERNAL TEMP READINGS**/
360 tempExt_h = analogRead(TEMP_EXT_H);
361 sciPacket [30+22*i+18] = tempExt_h;
362 sciPacket [30+22*i+19] = tempExt_h >> 8;
363
364 tempExt_l = analogRead(TEMP_EXT_L);
365 sciPacket [30+22*i+20] = tempExt_l;
366 sciPacket [30+22*i+21] = tempExt_l >> 8;
367 }
368 /**EXTRA TEMP READINGS**/
369 tempExt_h = analogRead(TEMP_EXT_H);
370 sciPacket [96] = tempExt_h;
371 sciPacket [97] = tempExt_h >> 8;
372
373 tempInt = analogRead(TEMP_INT);
374 sciPacket [98] = tempInt;
375 sciPacket [99] = tempInt >> 8;
376
377 while (digitalRead(CTS_PIN)==1){
378 delayMicroseconds (1);
379 }
380 /**** PACKET TIMESTAMP ****/
381 time_packet = millis ();
382 sciPacket [26] = time_packet;
383 sciPacket [27] = time_packet >> 8;
384 sciPacket [28] = time_packet >> 16;
385 sciPacket [29] = time_packet >> 24;
386 Serial5.write(sciPacket , 100);
387 //delay (3);
388 }
389
390
391 void loop() {
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392 while (uBloxEX.available( gpsuBloxExt )) {
393 uBloxEXFix = uBloxEX.read();
394 if (uBloxEXFix.valid.location) {
395 lat1 = uBloxEXFix.latitudeL (); // Scaled by 10 ,000 ,000
396 lon = uBloxEXFix.longitudeL (); // Scaled by 10 ,000 ,000
397 alt = uBloxEXFix.altitude_cm ();
398 stat = uBloxEXFix.status;
399 numSats = uBloxEX.sat_count;
400 utcHour = uBloxEXFix.dateTime.hours;
401 utcMin = uBloxEXFix.dateTime.minutes;
402 utcSec = uBloxEXFix.dateTime.seconds;
403
404 send_sci_packet (3);
405 }
406 }
407 if (altFlag < 2){
408 send_sci_packet (0);
409 flightData.write(sciPacket , 100);
410
411 if (alt > highAlt){
412 highAlt = alt;
413 altDscntCnt = millis ();
414 }
415 else if (( altFlag == 0)&&(( highAlt -10000 - alt) > 0)){ // Change to 10000 after lab tests!
416 if (( millis () - altDscntCnt) > 120000) {
417 flightData.close();
418 flightData = SD.open(fileName2.c_str(), FILE_WRITE);
419 timeSD = millis ();
420 kmPos = flightData.position ();
421 altFlag = 1;
422 }
423 }
424 else if (( altFlag == 1)&&(alt < 2000000)){ // ALTITUDE IN CM!
425 altFlag = 2;
426 }
427 }
428
429 else if (altFlag == 2){
430 flightData.seek(kmPos);
431 altFlag = 3;
432 }
433 else if(altFlag == 3){
434 if (flightData.available () >= 100){
435 flightData.read(sciPacket , 100);
436 while (digitalRead(CTS_PIN)==1){
437 delayMicroseconds (1);
438 }
439 Serial5.write(sciPacket , 100);
440 //delay (5);
441 }
442 else {
443 altFlag = 2;
444 }
445
446 if (! flightData){
447 altFlag = -1;
448 }
449 }
450
451 /* **************** FLUSH SD CARD IF REQUIRED ************ */
452 if (( flightData)&&( altFlag != 3)&&(( millis () - timeSD) > 60000)){
453 timeSD = millis ();
454 flightData.flush();
455 }
456
457 noInterrupts ();
458 WDOG_REFRESH = 0xA602;
459 WDOG_REFRESH = 0xB480;
460 interrupts ();
461 }
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Figure H.2: Design 4 Software Flow Diagram - Payload with Retransmissions.
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H.3 Payload - Bluetooth Commands to CDU

1 /* **************************************************************
2 * NAME: HAB_Transmitter.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Transmitter.
5 *
6 * DEVELOPMENT HISTORY:
7 * Date Author Version Description Of Change
8 * -------- ------ ------- --------------------------------------
9 * 02/23/2018 NMG 1.1 Scientific packets included and sync.

10 * 03/02/2018 NMG 1.2 GPS sensors included.
11 * 03/20/2018 NMG 1.3 Cutting System Included.
12 * 06/04/2018 NMG 1.4 SD Card System Included.
13 * 06/08/2018 NMG 1.5 Watchdog Timer Included.
14 * 07/20/2018 NMG 2.1 Data Packet and SD File Changes.
15 * 08/09/2018 NMG 2.2 Scientific Packets With GPS Info.
16 * 10/10/2018 NMG 3 Packets Structure Changes.
17 * 01/12/2018 NMG 3.1 Cutting System I2C -SPI Changes.
18 * 01/15/2018 NMG 4 Code Adapted to Teensy 3.5.
19 * 01/15/2018 NMG 4.1 Code Restructured.
20 * 03/09/2018 NMG 4.2 Re-send data implementation.
21 * 03/13/2018 NMG 4.3 External Watchdog Timer Included.
22 * 05/10/2019 NMG 4.4 GPS packets not considered.
23 * 07/02/2019 NMG 4.5 Teensy ADC Reference - Flow Control.
24 * 10/11/2019 NMG 5 Bluetooth Communication with CDU.
25 **************************************************************** */
26 /****** SERIAL DEFINITIONS *******
27 * RADIO_TX Serial5 *
28 * GPS UBlox Serial3 *
29 * Bluetooth Serial1 *
30 ******************************* */
31
32 #include <NMEAGPS.h>
33 #include <GPSport.h>
34 #include <Streamers.h>
35 #include <EEPROM.h>
36 #include <SPI.h>
37 #include <SD.h>
38 #include <Wire.h>
39 #include <avr/wdt.h>
40 #include <Adafruit_LSM9DS1.h>
41 #include <Adafruit_Sensor.h>
42 #include <ADC.h>
43
44 /* ************* DATA BACKUP ****************** */
45 File flightData;
46 String ext = ".bin";
47 String fileN;
48 String fileName1;
49 String fileName2;
50 int sdFlag;
51 int32_t timeSD;
52 unsigned int fileNum;
53 unsigned int address;
54 int sdCount;
55 const int chipSelect = BUILTIN_SDCARD;
56
57 /* ************* GPS SENSORS ****************** */
58 static NMEAGPS uBloxEX; //uBlox GPS
59 static gps_fix uBloxEXFix;
60 int id;
61
62 int32_t lat1; // Latitude
63 int32_t lon; // Longitude
64 int32_t alt; // Altitude
65 int32_t highAlt;
66 byte stat; // Status
67 uint8_t numSats; // Number of Satellites in View
68 uint8_t utcHour; //UTC Time - Hour
69 uint8_t utcMin; //UTC Time - Minutes
70 uint8_t utcSec; //UTC Time - Seconds
71
72 /* ******** DATA PACKETS AND SENSORS VARIABLES ********* */
73 ADC *adc = new ADC();
74
75 byte id_sci [2] = {0xA0 , 0xB1}; // Identifier for only scientific data packet.
76 byte id_gps [2] = {0xC0 , 0xD1}; // Identifier for packet with GPS data.
77
78 byte sciPacket [100]; // Scientific data packet byte array.
79 unsigned int packet_number; // Packet number/counter.
80 unsigned long time_packet; // Packet Timestamp.
81
82 // ANALOG PINS DEFINITION
83 #define TEMP_EXT_H A9
84 #define TEMP_EXT_L A8
85 #define TEMP_INT A7
86 #define VOLTAGE A6
87
88 int tempExt_l; // External Temperature - Low Range.
89 int tempExt_h; // External Temperature - High Range.
90 int tempInt; // Internal Temperature.
91 int voltage; // Voltage Monitor (VBat).
92
93 //9DoF PINS DEFINITION
94 #define LSM9DS1_XGCS 10
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95 #define LSM9DS1_MCS 9
96
97 //9DoF VARIABLES DEFINITION
98 Adafruit_LSM9DS1 lsm = Adafruit_LSM9DS1(LSM9DS1_XGCS , LSM9DS1_MCS);
99 sensors_event_t a, m, g, temp;

100 int accel_x;
101 int accel_y;
102 int accel_z;
103
104 int gyro_x;
105 int gyro_y;
106 int gyro_z;
107
108
109 /* ************* CONTROLLED DESCENT *********** */
110 /* ******* TEST ********** */
111 int altTest;
112 int testFlag;
113 int top;
114 int topFlag;
115
116 /* ******* CODES ******* */
117 byte OPCLcode = 0xAA;
118 byte OPENcode = 0xBB;
119 byte CLOSEcode = 0xCC;
120 byte CUTcode = 0xDD;
121 byte CHECKcode = 0xEE;
122 /* ******************* */
123
124 #define ALT_THRES 2500000 //CM! - Altitude threshold to open the valve.
125 #define DSCNT_THRES_MIN -3.5 // Descent rate at which the valve will be closed - Min value.
126 #define DSCNT_THRES_MAX -2 // Descent rate at which the valve will be closed - Max value.
127 #define DSCNT_MEAN 60 // Seconds considered to compute the average descent rate (/[Nav.Rate]).
128
129
130 byte code , temp1 , temp2;
131 int16_t temperature;
132
133 int altFlag;
134 int altCnt;
135 unsigned long altDscntCnt;
136 int kmPos;
137 int descentFlag;
138 unsigned long timeFin;
139 unsigned long timePrev;
140 unsigned long timeAlt;
141 int dscntCnt;
142 double descentRate;
143 double descentSum;
144 double descentAverage;
145 int32_t prevAlt;
146 int opclFlag;
147 int valveStatus;
148
149
150 void setupSensor ()
151 {
152 // 1.) Set the accelerometer range
153 lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_2G);
154 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_4G);
155 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_8G);
156 //lsm.setupAccel(lsm.LSM9DS1_ACCELRANGE_16G);
157
158 // 2.) Setup the gyroscope
159 lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_245DPS);
160 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_500DPS);
161 //lsm.setupGyro(lsm.LSM9DS1_GYROSCALE_2000DPS);
162 }
163
164 void setup() {
165 // Serial.begin (230400); // Serial Monitor
166
167 /* *********** IMU SENSOR SETUP ********* */
168 lsm.begin();
169 setupSensor ();
170
171 analogReadResolution (10);
172 //adc ->setAveraging (8);
173 adc ->setReference(ADC_REFERENCE ::REF_3V3 , ADC_0);
174 //adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: LOW_SPEED);
175
176 /* *********** RADIO COMMS INI ********* */
177 Serial5.begin (230400);
178 id = 0;
179
180 /* *********** SD CARD ************* */
181 sdCount = 0;
182 while (!SD.begin(chipSelect)) {
183 delay (200);
184 }
185 //Read and set file number and name
186 address = 0;
187 fileNum = EEPROM.read(address);
188 fileNum = fileNum + 1;
189 EEPROM.write(address , fileNum);
190 fileN = "data";
191 String m1 = fileN + fileNum;
192 fileName1 = m1 + ext;
193
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194 //Open file
195 flightData = SD.open(fileName1.c_str(), FILE_WRITE);
196 timeSD = millis ();
197
198 // Prepare the next file for the descent
199 fileN = "dscnt";
200 String m2 = fileN + fileNum;
201 fileName2 = m2 + ext;
202
203
204 /* *********** GPS SERIALS ********* */
205 gpsuBloxExt.begin (9600);
206 packet_number = 0;
207 highAlt = 0;
208 altFlag = 0;
209 altTest = 0;
210 altCnt = 0;
211 altDscntCnt = 0;
212 testFlag = 0;
213 alt = 0;
214 descentFlag = 0;
215
216 /* *********** BLUETOOTH SETUP ********* */
217 Serial1.begin (38400);
218 timeFin = millis ();
219
220 /* ******** WATCHDOG TIMER ******** */
221 noInterrupts ();
222 WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
223 WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
224 delayMicroseconds (1);
225
226 WDOG_TOVALH = 0x006d;
227 WDOG_TOVALL = 0xdd00;
228 WDOG_PRESC = 0x400;
229
230 WDOG_STCTRLH |= WDOG_STCTRLH_ALLOWUPDATE |
231 WDOG_STCTRLH_WDOGEN | WDOG_STCTRLH_WAITEN |
232 WDOG_STCTRLH_STOPEN | WDOG_STCTRLH_CLKSRC;
233 interrupts ();
234 }
235
236
237 void send_sci_packet(int id)
238 {
239 if (id==3){
240
241 sciPacket [0] = id_gps [0];
242 sciPacket [1] = id_gps [1];
243
244 sciPacket [2] = packet_number;
245 sciPacket [3] = packet_number >> 8;
246
247 sciPacket [4] = lat1;
248 sciPacket [5] = lat1 >> 8;
249 sciPacket [6] = lat1 >> 16;
250 sciPacket [7] = lat1 >> 24;
251
252 sciPacket [8] = lon;
253 sciPacket [9] = lon >> 8;
254 sciPacket [10] = lon >> 16;
255 sciPacket [11] = lon >> 24;
256
257 sciPacket [12] = alt;
258 sciPacket [13] = alt >> 8;
259 sciPacket [14] = alt >> 16;
260 sciPacket [15] = alt >> 24;
261
262 sciPacket [16] = stat;
263
264 sciPacket [17] = numSats;
265
266 sciPacket [18] = utcHour;
267 sciPacket [19] = utcMin;
268 sciPacket [20] = utcSec;
269
270 /* ****** CDU DATA ****** */
271 sciPacket [21] = temp1;
272 sciPacket [22] = temp2;
273 sciPacket [23] = code;
274 sciPacket [24] = valveStatus;
275
276 }
277 else {
278 sciPacket [0] = id_sci [0];
279 sciPacket [1] = id_sci [1];
280
281 packet_number ++;
282 sciPacket [2] = packet_number;
283 sciPacket [3] = packet_number >> 8;
284
285 adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: LOW_SPEED);
286 tempExt_h = analogRead(TEMP_EXT_H);
287 sciPacket [4] = tempExt_h;
288 sciPacket [5] = tempExt_h >> 8;
289
290 tempInt = analogRead(TEMP_INT);
291 sciPacket [6] = tempInt;
292 sciPacket [7] = tempInt >> 8;
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293
294 tempExt_l = analogRead(TEMP_EXT_L);
295 sciPacket [8] = tempExt_l;
296 sciPacket [9] = tempExt_l >> 8;
297
298 adc ->setConversionSpeed(ADC_CONVERSION_SPEED :: MED_SPEED);
299 tempExt_h = analogRead(TEMP_EXT_H);
300 sciPacket [10] = tempExt_h;
301 sciPacket [11] = tempExt_h >> 8;
302
303 voltage = analogRead(VOLTAGE);
304 sciPacket [12] = voltage;
305 sciPacket [13] = voltage >> 8;
306
307
308 lsm.getEvent (&a, &m, &g, &temp);
309
310 accel_x = a.acceleration.x;
311 sciPacket [14] = accel_x;
312 sciPacket [15] = accel_x >> 8;
313
314 accel_y = a.acceleration.y;
315 sciPacket [16] = accel_y;
316 sciPacket [17] = accel_y >> 8;
317
318 accel_z = a.acceleration.z;
319 sciPacket [18] = accel_z;
320 sciPacket [19] = accel_z >> 8;
321
322 gyro_x = g.gyro.x;
323 sciPacket [20] = gyro_x;
324 sciPacket [21] = gyro_x >> 8;
325
326 gyro_y = g.gyro.y;
327 sciPacket [22] = gyro_y;
328 sciPacket [23] = gyro_y >> 8;
329
330 gyro_z = g.gyro.z;
331 sciPacket [24] = gyro_z;
332 sciPacket [25] = gyro_z >> 8;
333 }
334
335 for(int i=0; i<3; i++)
336 {
337 tempExt_h = analogRead(TEMP_EXT_H);
338 sciPacket [30+22*i] = tempExt_h;
339 sciPacket [30+22*i+1] = tempExt_h >> 8;
340
341 tempExt_l = analogRead(TEMP_EXT_L);
342 sciPacket [30+22*i+2] = tempExt_l;
343 sciPacket [30+22*i+3] = tempExt_l >> 8;
344
345 voltage = analogRead(VOLTAGE);
346 sciPacket [30+22*i+4] = voltage;
347 sciPacket [30+22*i+5] = voltage >> 8;
348
349 accel_x = a.acceleration.x;
350 sciPacket [30+22*i+6] = accel_x;
351 sciPacket [30+22*i+7] = accel_x >> 8;
352
353 accel_y = a.acceleration.y;
354 sciPacket [30+22*i+8] = accel_y;
355 sciPacket [30+22*i+9] = accel_y >> 8;
356
357 accel_z = a.acceleration.z;
358 sciPacket [30+22*i+10] = accel_z;
359 sciPacket [30+22*i+11] = accel_z >> 8;
360
361 gyro_x = g.gyro.x;
362 sciPacket [30+22*i+12] = gyro_x;
363 sciPacket [30+22*i+13] = gyro_x >> 8;
364
365 gyro_y = g.gyro.y;
366 sciPacket [30+22*i+14] = gyro_y;
367 sciPacket [30+22*i+15] = gyro_y >> 8;
368
369 gyro_z = g.gyro.z;
370 sciPacket [30+22*i+16] = gyro_z;
371 sciPacket [30+22*i+17] = gyro_z >> 8;
372
373 /**EXTRA EXTERNAL TEMP READINGS**/
374 tempExt_h = analogRead(TEMP_EXT_H);
375 sciPacket [30+22*i+18] = tempExt_h;
376 sciPacket [30+22*i+19] = tempExt_h >> 8;
377
378 tempExt_l = analogRead(TEMP_EXT_L);
379 sciPacket [30+22*i+20] = tempExt_l;
380 sciPacket [30+22*i+21] = tempExt_l >> 8;
381 }
382 /**EXTRA TEMP READINGS**/
383 tempExt_h = analogRead(TEMP_EXT_H);
384 sciPacket [96] = tempExt_h;
385 sciPacket [97] = tempExt_h >> 8;
386
387 tempInt = analogRead(TEMP_INT);
388 sciPacket [98] = tempInt;
389 sciPacket [99] = tempInt >> 8;
390
391 /**** PACKET TIMESTAMP ****/
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392 time_packet = millis ();
393 sciPacket [26] = time_packet;
394 sciPacket [27] = time_packet >> 8;
395 sciPacket [28] = time_packet >> 16;
396 sciPacket [29] = time_packet >> 24;
397
398 /* ****** CDU DATA ****** */
399 sciPacket [30] = temp1;
400 sciPacket [31] = temp2;
401 sciPacket [32] = code;
402 sciPacket [33] = valveStatus;
403
404 Serial5.write(sciPacket , 100);
405 delay (3);
406 }
407
408
409
410 static void descentSystem ()
411 {
412 if (descentFlag == 1)
413 {
414 if (dscntCnt < (DSCNT_MEAN))
415 {
416 descentSum += descentRate;
417 dscntCnt +=1;
418 }
419 else
420 {
421 descentAverage = descentSum /( DSCNT_MEAN);
422 // Serial.print(" Average Descent Rate: "); Serial.println(descentAverage);
423 dscntCnt = 0;
424 descentSum = 0;
425 if(( descentAverage < DSCNT_THRES_MAX)&&( descentAverage > DSCNT_THRES_MIN))
426 {
427 descentFlag = 2;
428 }
429 }
430 }
431 }
432
433
434 void CDUSystem ()
435 {
436 if ((alt <ALT_THRES)&&( descentFlag != 2))
437 {
438 Serial1.write(CHECKcode);
439 // Serial.print(" Sending Check Code .");
440 }
441
442 else if((alt >ALT_THRES)&&( opclFlag <15)){
443 Serial1.write(OPCLcode);
444 // Serial.print(" Sending Open/Close Code .");
445 opclFlag +=1;
446 }
447
448 else if(( descentFlag != 2)&&( opclFlag ==15)){
449 Serial1.write(OPENcode);
450 // Serial.print(" Sending Open Code .");
451 }
452
453 else if(descentFlag == 2){
454 Serial1.write(CLOSEcode);
455 // Serial.print(" Sending Close Code .");
456 }
457 noInterrupts ();
458 WDOG_REFRESH = 0xA602;
459 WDOG_REFRESH = 0xB480;
460 interrupts ();
461 }
462
463
464 void loop()
465 {
466 while (uBloxEX.available( gpsuBloxExt )) {
467 uBloxEXFix = uBloxEX.read();
468 if (uBloxEXFix.valid.location) {
469 lat1 = uBloxEXFix.latitudeL (); // Scaled by 10 ,000 ,000
470 lon = uBloxEXFix.longitudeL (); // Scaled by 10 ,000 ,000
471 alt = uBloxEXFix.altitude_cm ();
472 stat = uBloxEXFix.status;
473 numSats = uBloxEX.sat_count;
474 utcHour = uBloxEXFix.dateTime.hours;
475 utcMin = uBloxEXFix.dateTime.minutes;
476 utcSec = uBloxEXFix.dateTime.seconds;
477
478 /* ********************** TEST ************************
479 // if (altFlag < 4)
480 // {
481 // if((alt <3000000) &&( topFlag == 0)){
482 // alt = alt + 50000;
483 // }
484 // else{
485 // topFlag = 1;
486 // }
487 //
488 // if(topFlag == 1){
489 // alt = alt - 300;
490 // }
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491 *************************************************** */
492
493 timeAlt = millis ();
494
495 float timeLast = float ((timeAlt -timePrev))/1000;
496 float altLast = float ((alt -prevAlt))/100;
497
498 // Serial.print("Time Diff: "); Serial.println(timeLast);
499 // Serial.print(" Altitude Diff: "); Serial.println(altLast);
500 descentRate = altLast/timeLast;
501 // Serial.print(" Altitude: "); Serial.print(alt); Serial.print(", Ascent/Descent Rate: "); Serial.

println(descentRate);
502
503
504 prevAlt = alt;
505 timePrev = timeAlt;
506
507 descentSystem ();
508 send_sci_packet (3);
509 }
510 }
511
512 if (altFlag < 2)
513 {
514 send_sci_packet (0);
515 flightData.write(sciPacket , 100);
516
517 if (alt > highAlt){
518 highAlt = alt;
519 altDscntCnt = millis ();
520 }
521 else if (( altFlag == 0)&&(( highAlt -10000 - alt) > 0)){
522 if (( millis () - altDscntCnt) > 120000) {
523 flightData.close();
524 flightData = SD.open(fileName2.c_str(), FILE_WRITE);
525 timeSD = millis ();
526 kmPos = flightData.position ();
527 altFlag = 1;
528 descentFlag = 1;
529 }
530 }
531 else if (( altFlag == 1)&&(alt < 2000000)){ // ALTITUDE IN CM!
532 altFlag = 2;
533 }
534 }
535
536 else if (altFlag == 2){
537 flightData.seek(kmPos);
538 altFlag = 3;
539 }
540 else if(altFlag == 3){
541 if (flightData.available () >= 100){
542 flightData.read(sciPacket , 100);
543 Serial5.write(sciPacket , 100);
544 delay (5);
545 }
546 else {
547 altFlag = 2;
548 }
549
550 if (! flightData){
551 altFlag = -1;
552 }
553 }
554
555 /* ******* FLUSH SD CARD IF REQUIRED ******* */
556 if (( flightData)&&( altFlag != 3)&&(( millis () - timeSD) > 60000)){
557 timeSD = millis ();
558 flightData.flush();
559 }
560
561 /* ******* CDU CHECKS -ACTIONS ******* */
562 if (( millis ()-timeFin) >3000)
563 {
564 CDUSystem ();
565 while(Serial1.available () > 0)
566 {
567 byte c2 = Serial1.read();
568 if((c2== CHECKcode)||(c2== OPCLcode)||(c2== OPENcode)||(c2== CLOSEcode))
569 {
570 code = c2;
571 temp1 = Serial1.read();
572 temp2 = Serial1.read();
573 // Serial.print(temp1); Serial.print(" "); Serial.println(temp2);
574 temperature = (int16_t) (temp1 + (temp2 <<8));
575 // Serial.print(" Received Code: "); Serial.print(c2,HEX);
576 // Serial.print(", Temperature: "); Serial.println(temperature);
577 }
578 }
579 timeFin = millis ();
580 }
581 noInterrupts ();
582 WDOG_REFRESH = 0xA602;
583 WDOG_REFRESH = 0xB480;
584 interrupts ();
585 }
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H.4 External CDU - Cutting Thread

1 /* *************************************************************
2 * NAME: controlledDescentUnit_v1 .4.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Controlled Descent Unit.
5 *
6 * DEVELOPMENT HISTORY:
7 * Date Author Version Description Of Change
8 * -------- ------ ------- -----------------------------------------------
9 * 11/20/2018 NMG 1.1 Controlled descent implementation based on time

10 * and altitude.
11 * 03/27/2019 NMG 1.2 Time threshold - Resets Consideration.
12 * 04/07/2019 NMG 1.3 Heating Pad - Temperature Sensor Addition.
13 * 06/27/2019 NMG 1.4 Heating Pad - Temperature Range
14 Calibrated/Adjusted.
15 ************************************************************ */
16
17 #include <NMEAGPS.h>
18 #include <GPSport.h>
19 #include <math.h>
20 #include <EEPROM.h>
21 #include <Wire.h>
22 #include "SparkFunTMP102.h"
23
24 //const int ALERT_PIN = A3;
25
26 TMP102 sensor0 (0x48);
27 float temperature;
28 boolean alertPinState , alertRegisterState;
29
30 /* ******************* GPS SENSOR ****************** */
31 // Altitude
32 int32_t alt;
33 int32_t altIni;
34 int32_t altFini;
35
36 // Library Variables Declaration
37 static NMEAGPS uBlox; //uBlox Sensor
38 static gps_fix uBloxFix; //Fix/Sentence to be parsed
39
40
41
42 /* ************** CUTTING SYSTEM ****************** */
43 #define ALT_THRES 33000
44 #define CUTTING_TIME 12000 //Time that the system will be activated [ms].
45 #define TIME_THRES 8000000 // Initial time threshold [ms].
46 #define CUT_ENABLE 13
47 #define PAD_ENABLE 4
48 volatile int cuttingOn;
49 volatile int cuttingDone;
50 unsigned long timeCutStart;
51 unsigned long timeCutting;
52 unsigned long flightTime;
53 unsigned long timeThreshold;
54 unsigned long timerEEPROM;
55 unsigned long timeEEPROM;
56 int ascentRate;
57 int address;
58 int n;
59
60 void setup()
61 {
62 Serial.begin (9600);
63 /* ************** CUTTING SYSTEM ****************** */
64 pinMode(CUT_ENABLE , OUTPUT);
65 digitalWrite(CUT_ENABLE , LOW);
66
67 pinMode(PAD_ENABLE , OUTPUT);
68 digitalWrite(PAD_ENABLE , LOW);
69
70 pinMode(ALERT_PIN ,INPUT);
71 sensor0.begin();
72
73 // set the number of consecutive faults before triggering alarm.
74 // 0-3: 0:1 fault , 1:2 faults , 2:4 faults , 3:6 faults.
75 sensor0.setFault (2); // Trigger alarm immediately
76
77 // set the polarity of the Alarm. (0: Active LOW , 1: Active HIGH).
78 sensor0.setAlertPolarity (0); // Active Low
79
80 // set the sensor in Comparator Mode (0) or Interrupt Mode (1).
81 sensor0.setAlertMode (0); // Comparator Mode.
82
83 // set the Conversion Rate (how quickly the sensor gets a new reading)
84 //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz
85 sensor0.setConversionRate (1);
86
87 //set Extended Mode.
88 //0:12-bit Temperature (-55C to +128C) 1:13-bit Temperature (-55C to +150C)
89 sensor0.setExtendedMode (0);
90
91 //set T_HIGH , the upper limit to trigger the alert on
92 sensor0.setHighTempC (0); // set T_HIGH in C
93
94 //set T_LOW , the lower limit to shut turn off the alert
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95 sensor0.setLowTempC (-10); // set T_LOW in C
96
97 timeCutStart = 0;
98 timeCutting = 0;
99 cuttingOn = 0;

100 cuttingDone = 0;
101 n = 0;
102 timeEEPROM = 0;
103 timeThreshold = TIME_THRES;
104
105 address = 4;
106 timeEEPROM = EEPROM.read(address); //[mins]
107 // Serial.println(timeEEPROM);
108 timeThreshold = timeThreshold - (60000* timeEEPROM);//[ms]
109 // Serial.println(timeThreshold);
110
111 delay (2000);
112 timerEEPROM = millis ();
113 // Serial.println(timerEEPROM);
114 }
115
116
117 static void cuttingSystem ()
118 {
119 flightTime = millis ();
120 if (cuttingOn == 0)
121 {
122 if (( flightTime > timeThreshold)||(alt > ALT_THRES))
123 {
124 // Serial.println (" CUTTING !!");
125 digitalWrite(ENABLE , HIGH);
126 delay (12000);
127 cuttingOn = 1;
128 }
129 }
130 else if (cuttingOn == 1)
131 {
132 while(true){
133 digitalWrite(ENABLE , LOW);
134 delay (30000);
135 digitalWrite(ENABLE , HIGH);
136 delay (12000);
137 }
138 }
139 }
140
141
142 void loop()
143 {
144 while (uBlox.available( Serial ))
145 {
146 uBloxFix = uBlox.read();
147 if (uBloxFix.valid.location)
148 {
149 alt = uBloxFix.alt.whole;
150 // Serial.println(alt);
151 }
152 }
153 flightTime = millis ();
154 if ((flightTime -timerEEPROM) > 60000) {
155 timerEEPROM = millis ();
156 timeEEPROM = timeEEPROM + 1;
157 EEPROM.write(address , (timeEEPROM));
158 }
159 sensor0.wakeup ();
160 temperature = sensor0.readTempC ();
161 // Serial.println(temperature);
162
163 // Check for Alert
164 alertRegisterState = sensor0.alert(); // read the Alert from register
165
166 Serial.print("Temperature: ");
167 Serial.print(temperature);
168 Serial.print("\tAlert Pin: ");
169 Serial.println(alertPinState);
170
171 digitalWrite(PAD_ENABLE , alertRegisterState);
172 cuttingSystem ();
173 //delay (2000);
174 }
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Figure H.3: Design 3 Software Flow Diagram - External Controlled Descent Unit
Block Diagram (Cap and Cutting Thread Systems).
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H.5 External CDU - Valve System

1 /* *******************************************************
2 * NAME: controlledDescentUnit.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Controlled Descent Unit.
5 *
6 * AUTHORS: Noemi Miguelez Gomez , Julio Cesar Guardado
7 *
8 * DEVELOPMENT HISTORY:
9 * Date Author Version Description Of Change

10 * -------- ------ ------- -----------------------------------------------
11 * 11/20/2018 NMG 1.1 Controlled descent implementation based on time
12 * and altitude.
13 * 03/27/2019 NMG 1.2 Time threshold - Resets Consideration.
14 * 04/07/2019 NMG 1.3 Heating Pad - Temperature Sensor Addition.
15 * 06/27/2019 NMG 1.4 Heating Pad - Temperature Range Adjusted.
16 * 07/29/2019 JCG 2.0 Valve System - Servo Motor Calibration
17 * 07/31/2019 NMG 2.1 Valve System - Altitude/Ascent Rate Logic
18 ******************************************************* */
19
20 #include <NMEAGPS.h>
21 #include <GPSport.h>
22 #include <math.h>
23 #include <EEPROM.h>
24 #include <Wire.h>
25 #include <Servo.h>
26 #include "SparkFunTMP102.h"
27
28 TMP102 sensor0 (0x48);
29 Servo myservo;
30 float temperature;
31 boolean alertPinState , alertRegisterState;
32
33 /* ******************* GPS SENSOR ****************** */
34 // Altitude
35 int32_t alt;
36 int32_t altIni;
37 int32_t altFini;
38
39 // Library Variables Declaration
40 static NMEAGPS uBlox; //uBlox Sensor
41 static gps_fix uBloxFix; //Fix/Sentence to be parsed
42
43 /* ************** VALVE SYSTEM ****************** */
44 #define ALT_THRES 2500000 //CM! - Altitude threshold to open the valve.
45 #define POS_OPEN 180 //angle where valve is open [deg]
46 #define POS_CLOSED 0 //angle where valve is closed [deg]
47 #define PAD_ENABLE 4
48 #define DSCNT_THRES_MIN -3 //CM! - Descent rate at which the valve will be closed - Min value.
49 #define DSCNT_THRES_MAX -1.5 //CM! - Descent rate at which the valve will be closed - Max value.
50 #define MAX_ALT_THRES 30 // Seconds after reaching altitude threshold to consider it valid [for GPS

errors ].
51 #define DSCNT_MEAN 30 // Seconds considered to compute the average descent rate.
52
53 volatile int valveFlag;
54 unsigned long posOpen;
55 unsigned long posClosed;
56 unsigned long altDscntCnt;
57 unsigned long altMax;
58 int altCnt;
59 unsigned long timePrev;
60 unsigned long timeAlt;
61 int dscntCnt;
62 double descentRate;
63 double descentSum;
64 double descentAverage;
65 int prevAlt;
66 int address;
67 int n;
68 int top;
69
70 void setup()
71 {
72 Serial.begin (9600);
73 /* ******** VALVE SYSTEM ******** */
74 myservo.attach (9); //Set servo PWM pin to pin 9
75
76 pinMode(PAD_ENABLE , OUTPUT);
77 digitalWrite(PAD_ENABLE , LOW);
78
79 // pinMode(ALERT_PIN ,INPUT);
80 sensor0.begin();
81
82 // Set the number of consecutive faults before activate pin.
83 // 0-3: 0:1 fault , 1:2 faults , 2:4 faults , 3:6 faults.
84 sensor0.setFault (2);
85
86 // Set the polarity of the Alarm. (0: Active LOW , 1: Active HIGH).
87 sensor0.setAlertPolarity (0); // Active Low
88
89 // Set the sensor in Comparator Mode (0) or Interrupt Mode (1).
90 sensor0.setAlertMode (0); // Comparator Mode.
91
92 // Set the Conversion Rate (how quickly the sensor gets a new reading)
93 //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz
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94 sensor0.setConversionRate (1);
95
96 //Set Mode.
97 //0:12-bit Temperature (-55C to +128C) 1:13-bit Temperature (-55C to +150C)
98 sensor0.setExtendedMode (0);
99

100 //Set the upper limit to turn off the alert
101 sensor0.setHighTempC (0); // set T_HIGH in C
102
103 //Set the lower limit to turn on the alert
104 sensor0.setLowTempC (-10); // set T_LOW in C
105
106 valveFlag = -1;
107 posOpen = POS_OPEN;
108 posClosed = POS_CLOSED;
109 n = 0;
110 myservo.write(posClosed);
111 delay (2000);
112 }
113
114 static void valveSystem ()
115 {
116 if (valveFlag < 2)
117 {
118 if (valveFlag == 0)
119 {
120 // Serial.println (" Opening valve ...");
121 myservo.write(posOpen);
122 valveFlag = 1;
123 prevAlt = alt;
124 timePrev = millis ();
125 }
126 else if (valveFlag == 1)
127 {
128 float timeLast = float ((timeAlt -timePrev))/1000;
129 descentRate = ((alt -prevAlt)/( timeLast))/100;
130 prevAlt = alt;
131 timePrev = timeAlt;
132
133 if (dscntCnt < (DSCNT_MEAN *2)) //2Hz
134 {
135 descentSum += descentRate;
136 dscntCnt +=1;
137 }
138 else
139 {
140 descentAverage = descentSum /( DSCNT_MEAN *2);
141 // Serial.print(" Average Descent Rate: "); Serial.println(descentAverage);
142 dscntCnt = 0;
143 descentSum = 0;
144 if(( descentAverage < DSCNT_THRES_MAX)&&( descentAverage > DSCNT_THRES_MIN))
145 {
146 // Serial.println (" Closing valve ...");
147 myservo.write(posClosed);
148 valveFlag = 2;
149 }
150 }
151 }
152 }
153 }
154
155 void loop()
156 {
157 while (uBlox.available( Serial ))
158 {
159 uBloxFix = uBlox.read();
160 if (uBloxFix.valid.location)
161 {
162 alt = uBloxFix.altitude_cm ();
163 // Serial.println(alt);
164 timeAlt = millis ();
165 }
166 }
167
168 if ((alt >ALT_THRES)&&( valveFlag ==-1))
169 {
170 altCnt +=1;
171 if ((altCnt >MAX_ALT_THRES *2))
172 {
173 valveFlag = 0;
174 }
175 }
176 else
177 {
178 altCnt = 0;
179 }
180
181 sensor0.wakeup ();
182 temperature = sensor0.readTempC ();
183
184
185 alertRegisterState = sensor0.alert(); // read the Alert from register
186
187 digitalWrite(PAD_ENABLE , alertRegisterState);
188 valveSystem ();
189
190 }
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Figure H.4: Design 4 Software Flow Diagram - CDU Only Valve System
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H.6 External CDU - Valve System - Bluetooth

1 /* ************************************************************
2 * NAME: controlledDescentUnit.ino
3 *
4 * PURPOSE: AFOSR -MURI HIGH ALTITUDE BALLOON - Controlled Descent Unit.
5 *
6 * AUTHORS: Noemi Miguelez Gomez , Julio Cesar Guardado
7 *
8 * DEVELOPMENT HISTORY:
9 * Date Author Version Description Of Change

10 * -------- ------ ------- --------------------------------
11 * 11/20/2018 NMG 1.1 Controlled descent implementation based on time and altitude.
12 * 03/27/2019 NMG 1.2 Time threshold - Resets Consideration.
13 * 04/07/2019 NMG 1.3 Heating Pad - Temperature Sensor Addition.
14 * 06/27/2019 NMG 1.4 Heating Pad - Temperature Range Adjusted.
15 * 07/29/2019 JCG 2.0 Valve System - Servo Motor Calibration
16 * 07/31/2019 NMG 2.1 Valve System - Altitude/Ascent Rate Logic
17 * 08/26/2019 NMG 2.2 Valve Open/Close System - Grease Problems
18 * 09/18/2019 NMG 2.3 Valve System - Timer for GNSS Errors
19 * 09/20/2019 NMG 3.0 Valve + Cutting System
20 * 10/08/2019 NMG 4.0 Valve + Bluetooth System
21 *********************************************************************
22
23 #include <EEPROM.h>
24 #include <Wire.h>
25 #include <Servo.h>
26 #include <SoftwareSerial.h>
27 #include <SparkFunTMP102.h>
28
29
30 TMP102 sensor0 (0x48);
31 Servo myservo;
32 float temperature;
33 int16_t intTemp;
34 boolean alertPinState , alertRegisterState;
35
36
37 /*************** VALVE SYSTEM ****************** */
38 #define POS_OPEN 0 //angle where valve is open [deg]
39 #define POS_CLOSED 180 //angle where valve is closed [deg]
40 #define PAD_ENABLE 4
41
42 unsigned long posOpen;
43 unsigned long posClosed;
44 unsigned long timeData;
45
46
47 SoftwareSerial BTserial (10, 11); // RX | TX
48 byte OPCLcode = 0xAA;
49 byte OPENcode = 0xBB;
50 byte CLOSEcode = 0xCC;
51 byte CUTcode = 0xDD;
52 byte CHECKcode = 0xEE;
53 byte c2;
54 byte msg [4];
55 int code;
56
57 byte output [4];
58 int valveStatus;
59
60 void setup()
61 {
62 Serial.begin (9600);
63 Serial.println("Arduino with HC -05 is ready");
64
65 // start communication with the HC -05 using 38400
66 BTserial.begin (38400);
67 Serial.println("BTserial started at 38400");
68
69
70 /* ******** VALVE SYSTEM ******** */
71 myservo.attach (9); //Set servo PWM pin to pin 9
72
73 pinMode(PAD_ENABLE , OUTPUT);
74 digitalWrite(PAD_ENABLE , LOW);
75
76 // pinMode(ALERT_PIN ,INPUT);
77 sensor0.begin();
78
79 // Set the number of consecutive faults before activate pin.
80 // 0-3: 0:1 fault , 1:2 faults , 2:4 faults , 3:6 faults.
81 sensor0.setFault (2);
82
83 // Set the polarity of the Alarm. (0: Active LOW , 1: Active HIGH).
84 sensor0.setAlertPolarity (0); // Active Low
85
86 // Set the sensor in Comparator Mode (0) or Interrupt Mode (1).
87 sensor0.setAlertMode (0); // Comparator Mode.
88
89 // Set the Conversion Rate (how quickly the sensor gets a new reading)
90 //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz
91 sensor0.setConversionRate (1);
92
93 //Set Mode.
94 //0:12-bit Temperature (-55C to +128C) 1:13-bit Temperature (-55C to +150C)
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95 sensor0.setExtendedMode (0);
96
97 //Set the upper limit to turn off the alert
98 sensor0.setHighTempC (10); // set T_HIGH in C
99

100 //Set the lower limit to turn on the alert
101 sensor0.setLowTempC (0); // set T_LOW in C
102
103 posOpen = POS_OPEN;
104 posClosed = POS_CLOSED;
105
106 myservo.write(posClosed);
107 delay (2000);
108
109 timeData = millis ();
110 valveStatus =0;
111 }
112
113
114 void loop()
115 {
116 if (BTserial.available ())
117 {
118 while(BTserial.available () >0){
119 byte rec = BTserial.read();
120 if((rec== CHECKcode)||( rec== OPCLcode)||(rec== OPENcode)||(rec== CLOSEcode))
121 {
122 c2=rec;
123 Serial.print("Received Code: "); Serial.print(c2,HEX);
124 Serial.print(", Temperature: "); Serial.println(temperature);
125 if(c2== CHECKcode)
126 {
127 msg[0] = CHECKcode;
128 // BTserial.write(CHECKcode);
129 BTserial.write(msg ,3);
130 }
131 else if(c2== OPCLcode)
132 {
133 msg[0] = OPCLcode;
134 // BTserial.write(OPCLcode);
135 BTserial.write(msg ,3);
136 for (int i=0; i<3; i++)
137 {
138 Serial.println("Opening valve ...");
139 myservo.write(posOpen);
140 delay (5000);
141 Serial.println("Closing valve ...");
142 myservo.write(posClosed);
143 delay (2000);
144 }
145 valveStatus =1;
146 }
147 else if(c2== OPENcode)
148 {
149 Serial.println("Opening valve ...");
150 myservo.write(posOpen);
151 msg[0] = OPENcode;
152 // BTserial.write(OPENcode);
153 BTserial.write(msg ,3);
154 delay (5000);
155 valveStatus =2;
156 }
157 else if(c2== CLOSEcode)
158 {
159 Serial.println("Closing valve ...");
160 myservo.write(posClosed);
161 msg[0] = CLOSEcode;
162 // BTserial.write(CLOSEcode);
163 BTserial.write(msg ,3);
164 delay (2000);
165 valveStatus =3;
166 }
167 }
168 }
169 }
170 sensor0.wakeup ();
171 temperature = sensor0.readTempC ();
172 intTemp = (int16_t)(temperature *100);
173 msg[1] = intTemp;
174 msg[2] = intTemp >>8;
175 msg[3] = valveStatus;
176 delay (100);
177
178 alertRegisterState = sensor0.alert(); // read the Alert from register
179 digitalWrite(PAD_ENABLE , alertRegisterState);
180 }
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