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Introduction

What is self-hiding behavior (SHB) in an app?
◦ Self-hiding behavior occurs when an app 

deliberately conceals itself from the user
◦ Malicious apps hide from user to avoid detection
◦ Benign apps may exhibit SHBs
◦ This introduces a privacy risk to the user
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Background—
Android App 
Lifecycle

Installation

LaunchSettings

Deletion
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Tool Design
Research developed a set of three tools:
◦ AutoSHBHome – for detecting SHBs in the home app list
◦ AutoSHBInstalled – for detecting SHBs in the installed app list
◦ AutoSHBRunning – for detecting SHBs in the running app list
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AutoSHBHome
Algorithm

5
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AutoSHBInstalled
Algorithm
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AutoSHBRunning
Algorithm
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Install target APK file
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Evaulation – Accuracy of Analysis

Test # 
analyzed

# hiding # not 
hiding

False 
positives

False 
Negatives

Precision Recall F-
Measure

Errors

AutoSHB
Home

77 12 62 2 0 97.47% 100% 98.72% 3

AutoSHB
Installed

77 0 76 0 0 100% N/A 100% 1

AutoSHB
Running

63 3 40 0 0 100% 100% 100% 20
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Evaluation – Efficiency of Analysis
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Test Total Time Average time 
per app

Median time 
per app

Maximum time 
per app

Minimum time 
per app

AutoSHBHome 8569 sec (2.4 h) 85.9 sec 84 sec 139 sec 30 sec

AutoSHBInstalled 14712 sec (4.1 h) 149.3 sec 156 sec 188 sec 76 sec

AutoSHBRunning 10982 sec (3.0 h) 111 sec 96 sec 1373 sec 5 sec



Evaluation – Limitations
◦ Highly UI-dependent
◦ Only implemented for Android
◦ Apps only analyzed if compilation for x86 available
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Conclusions & 
Future Work
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Conclusions
◦ Tools demonstrate effective and efficient 

technique for finding SHBs

Future Work
◦ Develop tools for iOS platform
◦ Research methods to make implementation less 

UI-dependent
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Questions?
LUKE BAIRD: BAIRDL1@MY.ERAU.EDU

ZHIYONG SHAN: ZHIYONG.SHAN@WICHITA.EDU
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Backup Slides
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Script 
Interfacing
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Driver
(UiAutomator2)

Interaction
ADB

Android Debug Bridge

Script

Rest API



Home 
Application 
Appium 
Parameters

Desired capabilities JSON parameters:
◦ platformName: Android
◦ platformVersion: 8.1
◦ automationName: uiautomator2
◦ deviceName: Android Emulator
◦ appPackage: com.google.android.apps.nexuslauncher
◦ appActivity: .NexusLauncherActivity

16



Settings 
Application 
Appium 
Parameters

Desired capabilities JSON parameters:
◦ platformName: Android
◦ platformVersion: 8.1
◦ automationName: uiautomator2
◦ deviceName: Android Emulator
◦ appPackage: com.android.settings
◦ appActivity: .Settings
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