
Student Works

11-4-2019

Automated Dynamic Detection of Self-Hiding Behaviors Automated Dynamic Detection of Self-Hiding Behaviors

Luke Baird
Embry-Riddle Aeronautical University, bairdl1@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/student-works

 Part of the Digital Communications and Networking Commons, and the Other Computer Engineering

Commons

Scholarly Commons Citation Scholarly Commons Citation
Baird, L. (2019). Automated Dynamic Detection of Self-Hiding Behaviors. , (). Retrieved from
https://commons.erau.edu/student-works/149

This Presentation is brought to you for free and open access by Scholarly Commons. It has been accepted for
inclusion in Student Works by an authorized administrator of Scholarly Commons. For more information, please
contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/student-works
https://commons.erau.edu/student-works?utm_source=commons.erau.edu%2Fstudent-works%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=commons.erau.edu%2Fstudent-works%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=commons.erau.edu%2Fstudent-works%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=commons.erau.edu%2Fstudent-works%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/student-works/149?utm_source=commons.erau.edu%2Fstudent-works%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Automated
Dynamic Detection
of Self-Hiding
Behaviors
LUKE BAIRD, DR. ZHIYONG SHAN,
DR. VINOD NAMBOODIRI

1

Introduction

What is self-hiding behavior (SHB) in an app?
◦ Self-hiding behavior occurs when an app

deliberately conceals itself from the user
◦ Malicious apps hide from user to avoid detection
◦ Benign apps may exhibit SHBs
◦ This introduces a privacy risk to the user

2

Background—
Android App
Lifecycle

Installation

LaunchSettings

Deletion

3

Tool Design
Research developed a set of three tools:
◦ AutoSHBHome – for detecting SHBs in the home app list
◦ AutoSHBInstalled – for detecting SHBs in the installed app list
◦ AutoSHBRunning – for detecting SHBs in the running app list

4

AutoSHBHome
Algorithm

5

Get old list of apps Install target APK file

Get new list of apps

App is hiding.

Start Script for
AutoSHBHome

Are the new
and old lists
different?

Yes

No

Is installation
successful?

App is not hiding.

No

Unknown if app is
hiding.

Yes

AutoSHBInstalled
Algorithm

6

Get old list of apps Install target APK file

Get new list of apps

App is hiding.

Start Script for
AutoSHBInstalled

Are the new
and old lists
different?

Yes

No

Is installation
successful?

App is not hiding.

No

Unknown if app is
hiding.

Yes

AutoSHBRunning
Algorithm

7

Install target APK file

Search for app label
in running app list

App is hiding.

Start Script for
AutoSHBRunning

Is the app
label found?

Yes

Is installation
successful?

App is not hiding.

No

Unknown if app is
hiding.

Yes
Launch app from

home list

App
launched

successfully?

No

Yes

No

Evaulation – Accuracy of Analysis

Test #
analyzed

hiding # not
hiding

False
positives

False
Negatives

Precision Recall F-
Measure

Errors

AutoSHB
Home

77 12 62 2 0 97.47% 100% 98.72% 3

AutoSHB
Installed

77 0 76 0 0 100% N/A 100% 1

AutoSHB
Running

63 3 40 0 0 100% 100% 100% 20

8

Evaluation – Efficiency of Analysis

9

Test Total Time Average time
per app

Median time
per app

Maximum time
per app

Minimum time
per app

AutoSHBHome 8569 sec (2.4 h) 85.9 sec 84 sec 139 sec 30 sec

AutoSHBInstalled 14712 sec (4.1 h) 149.3 sec 156 sec 188 sec 76 sec

AutoSHBRunning 10982 sec (3.0 h) 111 sec 96 sec 1373 sec 5 sec

Evaluation – Limitations
◦ Highly UI-dependent
◦ Only implemented for Android
◦ Apps only analyzed if compilation for x86 available

10

Conclusions &
Future Work

11

Conclusions
◦ Tools demonstrate effective and efficient

technique for finding SHBs

Future Work
◦ Develop tools for iOS platform
◦ Research methods to make implementation less

UI-dependent

Acknowledgements
◦ NSF Grant #1659396

◦ Wichita State University for hosting REU site
◦ Embry-Riddle Aeronautical University for Travel Funding

12

Questions?
LUKE BAIRD: BAIRDL1@MY.ERAU.EDU

ZHIYONG SHAN: ZHIYONG.SHAN@WICHITA.EDU

13

Backup Slides

14

Script
Interfacing

15

Driver
(UiAutomator2)

Interaction
ADB

Android Debug Bridge

Script

Rest API

Home
Application
Appium
Parameters

Desired capabilities JSON parameters:
◦ platformName: Android
◦ platformVersion: 8.1
◦ automationName: uiautomator2
◦ deviceName: Android Emulator
◦ appPackage: com.google.android.apps.nexuslauncher
◦ appActivity: .NexusLauncherActivity

16

Settings
Application
Appium
Parameters

Desired capabilities JSON parameters:
◦ platformName: Android
◦ platformVersion: 8.1
◦ automationName: uiautomator2
◦ deviceName: Android Emulator
◦ appPackage: com.android.settings
◦ appActivity: .Settings

17

References
[1] “Adware plagues google play store,” Apr 2019. [Online]. Available: https://blog.avast.com/adware-plagues-google-play

[2] Z. Shan, I. Neamtiu, and R. Samuel, “Self-hiding behavior in android apps: detection and characterization,” in 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 2018, pp. 728–739.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin: Effective and explainable detection of android malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[4] G. Shah, P. Shah, and R. Muchhala, “Software testing automation using appium,” International Journal of Current Engineering and Technology, vol. 4, no. 5, pp. 3528–3531, 2014.

[5] S. Singh, R. Gadgil, and A. Chudgor, “Automated testing of mobile applications using scripting technique: A study on appium,” International Journal of Current Engineering and Technology
(IJCET), vol. 4, no. 5, pp. 3627–3630, 2014.

[6] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,” in Proceedings of the 16th ACM conference on Computer and communications security. ACM,
2009, pp. 235–245.

[7] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,” in 2012 IEEE symposium on security and privacy. IEEE, 2012, pp. 95–109.

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable and accurate zero-day android malware detection,” in Proceedings of the 10th international conference on Mobile
systems, applications, and services. ACM, 2012, pp. 281–294.

[9] J.-F. Lalande and S. Wendzel, “Hiding privacy leaks in android applications using low-attention raising covert channels,” in 2013 International Conference on Availability, Reliability and
Security. IEEE, 2013, pp. 701–710.

[10] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an informationflow tracking system for realtime privacy monitoring on
smartphones,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[11] Z. Aung and W. Zaw, “Permission-based android malware detection,” International Journal of Scientific & Technology Research, vol. 2, no. 3, pp. 228–234, 2013

18

	Automated Dynamic Detection of Self-Hiding Behaviors
	Scholarly Commons Citation

	Automated Dynamic Detection of Self-Hiding Behaviors
	Introduction
	Background—Android App Lifecycle
	Tool Design
	AutoSHBHome Algorithm
	AutoSHBInstalled Algorithm
	AutoSHBRunning Algorithm
	Evaulation – Accuracy of Analysis
	Evaluation – Efficiency of Analysis
	Evaluation – Limitations
	Conclusions & Future Work
	Acknowledgements
	Questions?
	Backup Slides
	Script Interfacing
	Home Application Appium Parameters
	Settings Application Appium Parameters
	References

