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Introduction 

Since the U.S. deregulation of airlines in 1978, there has been extreme 

competition among the U.S. airlines for market share and, eventually, profitability 

(An, Chen, Park, & Subrahmanian, 2017). Under continuous liberalization and the 

expansion of the low-cost component of the global airline industry, and the 

volatility of fuel prices, airlines’ revenue and cost structure have become critical 

factors in yielding operating margins for airlines (Cronrath, 2017).  

Although growth in demand, increased efficiency, and reduced interest 

expenses helped the airline industry improve profitability in 2016 (International 

Air Transport Association, 2017), the industry faces longer-term challenges to 

financial performance with rising costs, fluctuating oil prices, and increasing cost 

competition. According to Cronrath (2017), while the aggregate net profit of the 

airline industry was almost zero between 1970 and 2010, the amplitude of the 

profit cycle has been increasing over time. The cycling period has become shorter 

and deeper after 2007, which calls for a careful approach in airline management 

decisions (Cronrath, 2017). Because the airline industry operates on small profit 

margins, profitability of the airline industry is sensitive to internal and external 

elements of operation, such as fuel, labor force, maintenance, passenger and cargo 

business, and other ancillary businesses (Miranda, 2015). 

 

Statement of the Problem 

It is of critical importance for the airline industry to comprehend the 

complex relationship among operations revenue, expenses, and profitability to 

tackle the challenges both with managerial processes and changing external 

environments that may influence profitability (Scotti & Volta, 2017). Although 

there has been considerable work completed analyzing the financial performance 

of the airline industry, the prediction of airline profitability is not adequately 

precise and the research conducted in the analysis of both operations revenue and 

expenses for predicting or improving airline profitability has been limited. 

The majority of previous research traditionally sought to identify factors 

that influence airline costs and productivity or has selected just a few key cost and 

revenue elements to determine a potential relationship with profitability (An et al., 

2017). Therefore, consideration of both airline revenue and cost profile in an 

integrative approach is of critical importance to examine the airline financial 

structure and profitability. 

 

Purpose Statement 

 Given the sophisticated financial situations within the airline industry, 

understanding the combined effect of operating revenue and cost on airline 

profitability is imperative. Our intent is to fill the gap in the literature regarding 

airline performance by providing insight into the impact of financial structure on 
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profitability of the airline industry. Using the accumulation of financial data 

generated by the U.S. airlines, data-mining tools can help achieve this goal. The 

purpose of the present study is to assess the impact of operating revenues and 

operating expenses on profitability of the U.S. major airlines and to develop a 

predictive model for airlines’ profit and loss structure. 

 

Research Question 

 This project sought to answer three research questions by developing 

predictive research models. The questions are as follows: 

RQ1: What is the most influential factor among airline operating revenues and 

expenses as reported in data from the U.S. Bureau of Transportation Statistics 

(BTS) in predicting an airline’s profitability, using monetary and percentage 

values as two scales of measure of input variables? 

RQ2: Between the decision tree and regression models, which provides the best 

model for predicting the profitability of a major U.S. airline, using monetary and 

percentage values as two scales of measure of input variables? 

RQ3: Between a monetary and percentage scale of input variables, which scale 

can better predict airline profitability? The term monetary and percentage values 

are defined in the methodology section of this paper. 

 

Significance of the Study 

In consideration of the increasing fluctuation in financial performance of 

the airline industry, the practical contribution of this study will determine the 

factors which can best predict profitability and assist airline management in 

making appropriate decisions to improve the financial structure of the airline. 

While most of the previous studies focused on key financial or operational factors 

in a selective approach, this study strives to examine the effect of all factors 

related to airport operation costs and revenues on airline profitability, and presents 

a profitability predictive model using decision tree and regression methods. 

 

Assumptions and Delimitations 

This study focuses on the major U.S. commercial airlines with annual 

operating revenues of $1 billion or more per airline. In this study, the primary 

focus is on the major airlines’ operating profit and loss distribution for the last 

decade, while fixed costs and non-operating income and expenses such as interest, 

taxes, and capital gains were not considered. Also, changes in the cost and 

revenue structure over time, business model of airlines such as charter airlines, 

low-cost carriers (LCC), and full-service carriers (FSC), and geographical aspects 

are not considered in the present study.  

 

 

2

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 6 [2019], Iss. 5, Art. 14

https://commons.erau.edu/ijaaa/vol6/iss5/14
DOI: https://doi.org/10.15394/ijaaa.2019.1373



 

Literature Review 

 Airline profitability was not as focused when state-owned carriers were 

supported by government subsidies, and seats and fares were regulated by inter-

governmental agreements (The Economist, 2014), which demotivated airlines’ 

voluntary efforts for cost reduction at the industry level. The air transport 

liberalization movement in 1980s in the U.S. and early 1990s in Europe 

dramatically changed the financial environment for the airlines and created 

competition and new business models (Scotti & Volta, 2017). This new wave, 

coupled with a structural vulnerability to outside shocks (Scotti & Volta, 2015), 

caused poor financial performance among the airlines (Brugnoli et al., 2015) and 

airline profitability became one of the major concerns within the industry. As a 

result, priority emphasis was placed on several different issues related to airline 

profitability: the relationship between profit fluctuations and industry demand, the 

cyclical performance of airline earnings, and the relationship between profitability 

and business models (Scotti & Volta, 2017). 

Since the 1980s, published literature on airline profitability has focused 

primarily on technical efficiency and total factor productivity (Yu, 2016). Studies 

have traditionally sought to establish the changes in technical efficiency and 

productivity over time, and to identify which factors have driven such changes 

(Scotti & Volta, 2017). Other studies have investigated airline productivity and 

cost competitiveness (Oum & Yu, 1998). However, Heshmati and Kim (2016) 

note the lack of profitability among airlines is not always due to poor performance 

alone, and understanding profitability requires an integrative approach with 

inclusion of all associated factors.  

 

Profitability of the Airline Industry 

Despite continuous traffic growth, the airline industry’s financial situation 

has not been regarded as healthy, and demonstrates that increases in traffic 

volume do not mirror increases in profit (Cronrath, 2017). The world airlines’ 

profit average for decades was almost zero. Precisely, the average net annual 

profit accumulated from 1978 to 2010 amounts to -$0.04 billion (Cronrath, 2017). 

Profitability of the airline industry can be expressed with a simple formula stated 

as (Vasigh, Fleming, & Tacker, 2018): 

 

Profit = OR – OC = (RPM × RRPM) – (ASM × CASM), where: 

 OR = Operating revenue 

OC = Operating costs 

RPM = Revenue passenger miles 

RRPM = Revenue per revenue passenger mile 

ASM = Available seat miles 

CASM = Cost per available seat mile 
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Since every airline’s operation and business model are unique, it is 

difficult to compare operating costs and revenues from airline to airline (Vasigh, 

Fleming, & Tacker, 2018). In general, airlines’ financial structures are largely 

dependent on the aircraft size, aircraft type, and the length of flights. For instance, 

while the operating costs of turboprops are much lower than for regional jets, 

especially on short-haul routes, long-haul routes using wide-body jets are the 

primary revenue source of major airlines. Therefore, airlines have sought to find 

an optimal financial structure to increase profits by reducing operating costs and 

improving the efficiency in the utilization of resources (Belobaba, 2009). 

 

Profitability of the U.S. Airline Industry between 2009 and 2018 

In the United States, the airline industry has undergone considerable 

restructuring for the last decade, primarily due to the recession between 2007 and 

2009, the advent of low-cost carriers, and the jet fuel price surge (Zarb, 2018). As 

a result, profits of the U.S. airline industry have been volatile and forced U.S. 

airlines to examine profitability of operations. Multiple factors including fuel 

prices, traffic demand, fare competition, ancillary charges, and exchange rates 

have been attributed as causes of profit volatility (Martin, 2018; Zarb, 2018). 

With the rapid growth of low-cost carriers in the U.S. domestic market, the 

traditional network legacy and regional carriers have experienced intense price 

competition. Under the severe cost competition and fluctuation of a volatile 

business environment, the U.S. airline industry has made substantial efforts to 

optimize cost and revenue structures as well as expand business portfolios for 

diversifying revenue sources (Claussen, Essling, & Peukert, 2018; Zarb, 2018). 

This effort has significantly contributed to improved financial performance and 

differentiated the pricing and cost management strategy of the U.S. airline sector 

from the previous decades (Luttmann, 2019). According to data from the U.S. 

BTS (2018a), the 23 largest U.S airlines reported collecting a record of nearly $25 

billion in profits in 2015, and have continued profitable operations.  

 

Methodology 

Dataset Description 

This research project uses secondary data from the U.S. BTS (2018b) 

Form 41 - Air Carrier Financial Data: Schedule P-1.2, which is published 

quarterly at publicly accessible United States Department of Transportation 

website (https://www.transtats.bts.gov/DL_SelectFields.asp). Although the Form 

41 requires a uniform system of accounts, each airline employs its own 

accounting methods and cost allocation schemes. Consequently, the collected cost 

profiles, or yearly cost trends, may have a difference in cost accounting standards 

as compared to real differences in operating cost performance (Belobaba, 2009). 

4

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 6 [2019], Iss. 5, Art. 14

https://commons.erau.edu/ijaaa/vol6/iss5/14
DOI: https://doi.org/10.15394/ijaaa.2019.1373

https://www.transtats.bts.gov/DL_SelectFields.asp


 

Among the different types of airline financial reports found within Form 

41, the Schedule P-1.2 reports filed quarterly profit and loss statements during 

2009 - 2018 contain 4,136 cases from 94 U.S. airlines which generate annual 

operating revenues of $20 million or more. The dataset is divided into four groups 

of airlines: major airlines, national airlines, regional airlines, and all-cargo airlines. 

Various financial performance indicators are provided, including: operating and 

non-operating revenues, operating and non-operating expenses, depreciation and 

amortization, operating profit, income tax, and net income. After careful 

examination of the dataset of 4,136 cases, the researchers narrowed the scope of 

the study to include only the major airline group, due to the highly disparate 

financial structure among the four airline groups. For instance, financial data of 

all-cargo carriers do not include passenger-related revenues and costs, and 

regional airlines have too many “zero” values with financial data, which could 

distort the outcome of the study.   

The major airline group consists of 26 large airlines in the U.S. with 

annual operating revenues of $1 billion or more per airline, representing 1,329 

cases in the dataset. While 392 cases indicate a loss, 937 cases indicate generation 

of a profit. Table 1 shows the major airline group’s data profile of the Schedule P-

1.2 reports for this study. 

 

Table 1 

Schedule P-1.2: Major Airline Group Data Profile between 2009 and 2018 
Year                     Profit                      Loss                    Total 

2009 85 86 171 

2010 99 45 144 

2011 83 49 132 

2012 73 40 113 

2013 102 36 138 

2014 105 35 140 

2015 114 20 134 

2016 106 26 132 

2017 106 26 132 

2018 (- Sep.) 64 29 93 

Total Cases 937 392 1329 

 

Variable Selection 

The dataset includes 52 data fields describing the participating airlines’ 

quarterly financial statistics data. Excluding non-operating incomes and expenses, 
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and aggregate sums for operating revenues and costs, 19 variables were selected 

for this study as shown in Table 2.  

 

Table 2 

Schedule P-1.2: U.S. Airline Operating Profit and Loss Statement Structure, 

Monetary Value 
Variables Name Measurement 

Level 

Model 

Role 

Mean 

(,000) 

Std. 

Deviation 

Profit/Loss     

Profitability (1: Profit / 0: Loss) Binary Target 0.71 0.456 

Profit/Loss Value Interval Rejected 61715 264329 

Operating Revenue     

Scheduled Passenger Revenue (SPR) 

Mail Revenue (MR) 

Property Revenue-Freight (PRF) 

Property Revenue-Baggage Fee (PRBF) 

Charter Revenue-Passenger (CRPG) 

Charter Revenue-Property (CRPT) 

Reservation Cancellation Fee (RCF) 

Miscellaneous Operating Revenue (MOR) 

Public Service Revenue (PSR) 

Transport Related Revenue (TRR) 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

825320 

2614 

19513 

26028 

3971 

4.2 

19417 

29951 

320 

193075 

1103041 

4429 

24705 

44442 

12690 

24 

30607 

75579 

1791 

454952 

Operating Expenses     

Flight Operation Cost (FOC) 

Maintenance Cost (MC) 

Passenger Service (PGS) 

Aircraft and Traffic Service (ATS) 

Promotion and Sales (PRS) 

General Administration Expense (GAE) 

Depreciation and Amortization (DA) 

Transport Related Expenses (TRE) 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Interval 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

372542 

97498 

76649 

146923 

58997 

76898 

49978 

142466 

469661 

126284 

107281 

215600 

86624 

119039 

71563 

344938 

Note. For descriptive analysis of the Percentage Value dataset, see Appendix 1. 

 

In this dataset, as shown in Appendix A, examination of the data 

distribution revealed most of independent variables do not meet a normality 

assumption. This is due to the seasonal fluctuation of airline financial 

performance, the gap between 26 airlines’ profit or loss scale, disparate financial 

structure, and the numerous business factors affecting these values. For instance, 

while American Airlines shows a wide spectrum business portfolio for most of the 

revenue fields, American Eagle Airlines’ business structure is heavily 

concentrated on passenger transportation revenue. In this case, the Profit/Loss 

Value variable cannot be used as a target variable because interval values using a 

linear regression model require meeting the normality assumption. In this regard, 
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the profitability variable (1: Profit / 0: Loss) is chosen as a target variable because 

the binary variable runs the logistic regression model, which does not have any 

required assumptions such as normality or linearity. 

In this study, to answer RQ3, the unit of the operating revenue and 

expenses was reviewed using two different scales of measurement: monetary and 

percentage values, creating two separate datasets. While the monetary values were 

used for operating revenue and expense variables in the original dataset, duplicate 

datasets were created by converting the monetary values into percentage values: 

dividing each monetary value either by total sum of operating revenue (Monetary 

Value) or operating expenses respectively and multiplying the decimal by 100 

(Percentage Value). 

 

Data Analysis Method and Justification  

Due to the large scale of the database and the number of variables, data 

mining techniques were used for analysis of airline financial data to develop 

predictive models for estimating the U.S. airlines’ operating profit and loss 

structure. A large number of modeling techniques are labeled “data mining” 

techniques (Kim, 2008). Predictive modeling is the process of applying a data 

mining algorithm or statistical model to data in order to predict future 

observations (Shmueli, 2010). Model performance can be assessed through the 

use of cumulative lift charts and receiver operating characteristic charts. 

Among various data mining techniques, regression analysis and decision 

tree analysis have many applications for development of a predictive model in a 

wide spectrum of industries (Halili & Rustemi, 2016). While an artificial neural 

network method can also be used to construct prediction models, this method was 

not considered for this study. The artificial neural network method performs better 

compared to regression and decision tree methods with a larger number of 

categorical variables than used in this study (Kim, 2008). Logistic regression 

provides generality, interpretability and robustness, and reliability can be 

monitored using statistical indicators (Tuffery, 2011). This method of analysis is 

utilized as the dependent variable of profitability is binary, is not correlated with 

the independent variables, and the model has no required assumptions for 

normality or linearity. Therefore, decision tree and logistic regression methods 

were selected to predict the major U.S. airline group’s profitability and identify 

key influential factors for profitable operations of the major airline group. After 

analyzing these factors, the best model for predicting the major airline group’s 

future operation profitability was selected. 

 

Data Analysis Process 

Data preparation. In this study, SAS Enterprise Miner v. 14.3 (SAS EM) 

was used to analyze the datasets. Only variables which represent revenue or 
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expenses were included in the analyses; Net Income, Carrier, Carrier Group, 

Carrier Name, Quarter, Year, and Region were excluded.  Depending on airlines’ 

operation structure and accounting practices, any specific revenue or cost item 

could have been intentionally left blank. After careful examination of the 

individual cases within the dataset, input variables with missing cost values such 

as operating revenue or expenses were found as non-financial gain/loss so were 

treated as a “0” value instead of a missing value. 

As the first step of the analysis, using SAS EM’s Explore function, visual 

investigation of the dataset was conducted by reviewing individual histograms for 

each of the interval variables. Information presented in SAS Explore displays the 

mean values, maximum/minimum for the interval variables, and the number of 

class levels, missing values, and modal value for class variables. Further 

examination of distributions of the 18 interval variables found that 10 variables 

have skewed distributions greater than 3.0, which are listed in Appendix A. As 

both logistic regression and decision trees methods do not strictly require the 

assumptions for normality or linearity, these variables are not transformed. 

Neither dataset displayed missing values. 

Data mining: SEMMA process. Data mining is an iterative process 

where answers to initial questions can lead to more interesting and specific 

questions (SAS Institute, 1998). To provide an effective methodology for the 

process operations, SAS Institute presented the SEMMA process which divides 

data mining into five stages: sample, explore, modify, model and assess. Based on 

the SEMMA process, the SAS Enterprise Miner software is configured to provide 

an end-to-end business solution for data mining (SAS Institute, 1998). 

This study followed the SEMMA process, as shown in Figure 1. First, in 

the “sample” stage, the dataset was reviewed and divided into two equal-sized 

partitions: a training group (50%) and a validation group (50%). In the “explore” 

stage, each variable was reviewed using the StatExplore function of SAS EM to 

examine missing values, distribution, and statistical profiles. In the “modify” 

stage, the dataset was not imputed or transformed as there was no assumption 

requirement for normality or linearity, and no missing values. 

In the “model” stage, three decision trees and logistic regression models 

were developed to predict the probability that a profit or loss would be observed.  

In order to compare the various options that separate the individuals of each class, 

three different trees with 2, 3, and 5 branch options were built using an automatic 

pruning and average squared error (ASE) method. The three decision tree models 

were then compared with the outcome of the regression model in the “assess” 

stage. The ASE was chosen for the decision tree model because of the binary 

target variable and estimate predictions for this model. 
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Model

Assess

Explore

Sample

Sample

 
Figure 1. The SEMMA process map. A Modify step was not conducted in this 

study. 

 

Results 

Decision Tree Models 

 Three decision tree models were built for both the Percentage and 

Monetary Value datasets with 2-, 3-, and 5-branch options using the Decision 

Tree nodes in SAS EM. The appropriate number of branches were selected in the 

Splitting Rule option, and the average square error (ASE) was selected as the 

subtree assessment measure. Outcomes from these models are summarized in 

Table 3 and the detailed tree maps can be found in Appendix B. The Percentage 

Value 2-branch model has the lowest ASE value, and is the best model among the 

six decision tree models.  
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Table 3 

Comparison of the Six Decision Tree Structures and Hierarchy 

Dataset Decision 

Tree Model 
 Predictor Factors  

Level-1 Level-2 Level-3 

Percentage 

Value 
2 Branches Freight 

Revenue 
Misc. Operation Revenue Public Service Revenue 
 

General Admin. 

Expenses 

Transport-related 

Expenses 
Flying Operation Costs 

3 Branches Freight 

Revenue 
Misc. Operation Revenue Passenger Service Costs 

Transport-related 

Expenses 
Mail Revenue 

 
Charter Revenue 

(Passenger)  
Property Revenue 

(Baggage) 

5 Branches Freight 

Revenue 
Promotion and Sales Costs Transportation Revenue 
 

Transportation Expenses 

Misc. Operation Revenue Passenger Service Costs 

Monetary 

Value 
2 Branches Transportation 

Expenses 
Property Revenue 

(Baggage) 
Public Service Revenue 

Transportation Expenses 

3 Branches Transportation 

Revenue 
Transport-related 

Expenses 
Depreciation & 

Amortization  
Transportation Revenue 

Freight Revenue 
 

5 Branches Transportation 

Revenue 
Transport-related 

Expenses 
Depreciation & 

Amortization  
Promotion and Sales 

Costs 

Freight Revenue 
 

 

The tree map and windows display two different views of the decision tree 

(SAS Institute, 2013). While the tree window presents a standard decision tree, 

the tree map window uses the width bands to illustrate the proportion of 

observations in each node in the row. The root node of the 2-branch decision tree 

for the Percentage Value dataset indicates 70.5% of the cases in the dataset for 

major airlines reported a profit, while 29.5% reported a loss. Under the top level, 

the factors are listed in order of importance. These factors contributed to the 

prediction of profit or loss in the following order: 

1. The most important variable is PRF, it further differentiates between cases 

which reported profits and those which reported losses. Among cases that 
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have had PRF less than 5.4%, 74.9% will turn a profit: Among cases equal 

or greater than 5.4%, only 40.7% will turn a profit. 

2. The second most important variable is MOR. Among cases which showed 

equal or greater than 5.7% in MOR, 92.7% showed a profit, while among 

cases with less than 5.7% in MOR or had missing values, only 72.6% 

showed a profit. 

3. Among cases with equal or greater than 5.7% in MOR, GAE was the next 

most important variable. Among cases with less than 21% in these 

expenses, 93.9% earned profits. PSR was the most influential variable 

among cases which showed less than 5.7% in MOR. For cases with equal 

or greater than 0.16% revenue from public services, 94.9% showed a 

profit. 

Among the Monetary Value decision tree models, the 3-branch decision  

tree has the lowest ASE value. As shown in Appendix B, the root node indicates 

70.4% of the cases in the Monetary Value dataset for major airlines reported a 

profit, while 29.5% reported a loss. Under the top level, the factors are listed in 

order of importance. These factors contributed to the prediction of profit or loss in 

the following order: 

1.  The most important variable is TRR, which further differentiates between 

cases which reported profits and those which reported losses. Among 

cases that showed TRR less than $424,926,500, 69.8% will earn a profit: 

Among cases with TRR between $424,926,500 and $622,897,700, only 

33.3% of those cases earned a profit, while among airlines with TRR 

equal to or greater than $622,897,500, 85% earned profits.  

2.   The second most important variable among the cases with TRR between 

$424,926,500 and $622,897,700 is PRF. Cases with less than 

$32,298,500 or missing values for PRF showed only 20% earning a profit, 

while among cases with $32,296,600 or greater values of PRF, 100% 

earned a profit.  

3.    The second most important variable among the cases with TRR less than 

$424,926,500 is TRE. 71.5% of cases with less than $84,706,000 or with 

missing values for TRE were observed to earn a profit, while only 37.9% 

of cases with TRE between $84,706,000 and $115,542,000 showed a 

profit. For cases with TRE greater or equal to $$115,542,000, 70.8% 

earned a profit. 

The six decision tree models show different tree structures and hierarchy 

of decision factors, as compared in Table 3. While the Freight Revenue variable 

was chosen in the Percentage Value dataset as the most important predictor factor 

for airline profitability, the decision tree models with the Monetary Value dataset 

indicated Transportation Related Revenue and Expenses as the most influential to 

predict profitability. 
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The Leaf Statistics window in SAS EM presents the classification rates of 

training and validation samples for each leaf node in the tree model. The leaf 

statistics indicate the frequency percentages for each target class level within each 

leaf from the training and validation data. Leaf statistics charts for selected 

models’ decision trees are found in Appendix C.   

 Cumulative lift charts indicate the percentile on the x-axis and the lift on 

the y-axis, where the default (no model) is a horizontal line intersecting the y-axis 

at 1. The higher the lift index, the better the model. Cumulative lift charts for 

selected models in this study are shown in Appendix D. The Percentage Value 2-

branch decision tree cumulative lift chart appears to indicate the highest lift index 

of the models developed in this study, as shown in Figure 2. Using this chart, 

predicted probability of profit can be calculated by multiplying the lift value and 

depth as percentage value. The chart in Figure 2 indicates that at 20% of depth, 

the lift value is approximately 1.3, which means that if a random 20% of the cases 

are observed, there is a 26% chance the case will show a profit. Generally, lift 

value decreases as the selected proportion of the data increases (SAS Institute, 

2013) and holds true for this model.  

 

Figure 2. Percentage value 2-branch decision tree cumulative lift chart. 

 

Subtree assessment plots for all decision tree models were observed, and 

are found in Appendix E. These plots show the ASE of corresponding to each tree 

leaf in the sequence. The Percentage Value dataset showed trees with an optimal 

range between 11 to 19 leaves for the lowest ASE when viewing the validate 

results. The Monetary Value dataset showed optimal ranges of between 7 and 20 

leaves generating the lowest ASE values. All of the plots indicated the 

performance of the training sample becomes better as the tree becomes more 

complex. The performance of the validation sample only improves to a certain 

number of leaves and then performance decreases as the complexity of the model 

increases. 
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Variable importance for the Percentage Value dataset is found in the 

Output from SAS EM, and is displayed in Table 4. Variable importance is an 

indication of which predictors are most useful for predicting whether an airline 

will experience a profit or loss, the target variable. Results indicate the most 

important variables for the Percentage Value dataset decision trees are PRF, MOR, 

and PRS, with Property Freight appearing among the first four variables in all 

models. 

 

Table 4 

Variable Importance in 2-, 3-, and 5-Branch Decision Trees for Percentage Value 

Dataset 
   Dataset 

   Model 

Variable Name 

Number of 

Splitting 

Rules 

 

 

Importance 

 

Validation 

Importance 

Ratio of Validation 

to Training 

Importance 

   2-Branch Decision Tree     

 Prop_Freight 1 1.0000 1.0000 1.0000 

 Trans_Expenses 2 0.9909 0.5922 0.5977 

 Prop_Bag 1 0.7349 0.9856 1.3410 

 Misc_Op_Rev 1 0.6825 0.5174 0.7581 

 Promotion_Sales 1 0.6736 0.2111 0.3134 

 Pub_Svc_Revenue 1 0.6363 0.4823 0.7581 

 Trans_Revenue 1 0.6242 0.4064 0.6511 

 Flying_Ops 1 0.5603 0.6621 1.1817 

 General_Admin 1 0.4496 0.1994 0.4434 

   3-Branch Decision Tree     

 Misc_Op_Rev 2 1.0000 0.3549 0.3549 

 Prop_Freight 1 0.9329 1.0000 1.0719 

 Trans_Revenue 1 0.8692 0.7890 0.9078 

 Prop_Bag 1 0.8102 0.0000 0.0000 

 Trans_Expenses 1 0.8011 0.6448 0.8050 

 General_Admin 1 0.6530 0.4634 0.7097 

 Pax_Service 1 0.6243 0.2647 0.4240 

 Maintenance 1 0.5920 0.4464 0.7540 

 Charter_Pax 1 0.5240 0.0000 0.0000 

 Mail 1 0.4280 0.1198 0.2800 

   5-Branch Decision Tree     

 Promotion_Sales  1 1.0000 0.0000 0.0000 

 Prop_Freight 1 0.8257 1.0000 1.2111 

 Trans_Expenses 2 0.7812 0.8114 1.0387 

 Misc_Op_Revenue 1 0.7129 0.3549 0.4979 

 Pax_Service 1 0.5526 0.2647 0.4790 

 Trans_Revenue 1 0.4720 0.4651 0.9853 

 

Variable importance for the Monetary Value dataset is found in the Output 

from SAS EM, and is displayed in Table 5. Results indicate the three most 
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important variables for the Monetary Value dataset decision trees are Transport 

Related Expenses (TRE), Transportation Related Revenue (TRR), and PRBF. 

These variables are found in the top three influencing variables for models of 2-, 

3-, and 5-branches. 

 

Table 5 

Variable Importance in 2-, 3-, and 5-Branch Decision Trees for Monetary Value 

Dataset 
   Dataset 

   Model 

Variable Name 

Number of 

Splitting 

Rules 

 

 

Importance 

 

Validation 

Importance 

Ratio of Validation 

to Training 

Importance 

   2-Branch Decision Tree     

 Trans_Expenses 2 1.0000 0.7414 0.7414 

 Prop_Bag 1 0.9885 1.0000 1.0117 

 Trans_Rev_Pax 1 0.8886 0.5690 0.6403 

 Charter_Pax 1 0.7509 0.2794 0.3721 

 Pub_Svc_Revenue 1 0.7247 0.3350 0.4623 

   3-Branch Decision Tree     

 Trans_Revenue 2 1.0000 0.7923 0.7923 

 Trans_Expenses 2 0.8387 1.0000 1.1923 

 Prop_Bag 2 0.7758 0.7428 0.9574 

 Maintenance 1 0.5825 0.6652 1.1420 

 Deprec_Amort 1 0.5738 0.0000 0.0000 

 Promotion_Sales 1 0.4961 0.6422 1.2944 

 Trans_Rev_Pax 1 0.4608 0.1956 0.4246 

 Flying_Ops 1 0.3916 0.2399 0.6126 

 Prop_Freight 1 0.3058 0.3149 1.0300 

   5-Branch Decision Tree     

 Trans_Expenses 2 1.0000 1.0000 1.0000 

 Trans_Revenue 1 0.9230 0.5449 0.5903 

 Prop_Bag 1 0.7975 0.9287 1.1645 

 Promotion_Sales 2 0.6891 0.6065 0.8802 

 Deprec_Amort 1 0.6306 0.0000 0.0000 

 Flying_Ops 1 0.4897 0.4595 0.9382 

 Prop_Freight 1 0.3372 0.2974 0.8820 

 

Logistic Regression Model 

Logistic regression models were used to evaluate the Percentage and 

Monetary Value datasets using the Regression node in SAS EM. The entry and 

stay significance levels were changed from the default value of 0.05 to 0.1 to 

allow additional variables to be included in the model, and the maximum number 

of steps was changed to 20. 
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The Fit Statistics results for the logistic regression models are found in 

Table 6. Although the similarity in values between training and validation rates 

may indicate consistency and validity of results, the ASE values for the logistic 

regression models are higher than the values for the decision trees. The ASE 

values for the logistic regression model for the Value dataset are the highest 

among all ASE values. The lower average square error means the model performs 

better as a predictor because it is “wrong” less often (SAS, 2010). It appears 

neither regression model is an obvious better predictor. 

 

Table 6  

ASE Values for the Target Variable Profit_Loss from SAS EM Fit Statitistics 

Output: 
Model Data Group 

 Train Validation 

Percentage Value   

     Decision Tree – 2 Branches 0.157112 0.161899 

     Decision Tree – 3 Branches 0.139775 0.179158 

     Decision Tree – 5 Branches 0.155727 0.182018 

     Logistic Regression 0.18565 0.175882 

Monetary Value   

     Decision Tree – 2 Branches 0.176161 0.178845 

     Decision Tree – 3 Branches 0.124499 0.171524 

     Decision Tree – 5 Branches 0.138679 0.174849 

     Logistic Rgression 0.202155 0.200348 

 

The cumulative lift chart for logistic regression also indicates the 

percentile on the x-axis and the lift on the y-axis, where the default (no model is a 

horizontal line intersecting the y-axis at 1. The cumulative lift charts for the linear 

regression models are found in Appendix D, and are interpreted similarly to the 

cumulative lift charts for the decision tree models.  

The Analysis of Maximum Likelihood Estimates table in the Output 

indicates the variables included in the final model selected by SAS EM. These 

variables are displayed in Table 7. The estimate, or correlation coefficient shows 

the sign of the effect of each predictor, and if it has a positive or a negative effect 

on the outcome. In the Percentage Value model, both PRF and TRE variables 

have negative effects on the profitability of an airline. In the Monetary Value 

model, both Charter Revenue Property revenue and MOR have positive effects on 

the profitability of an airline. 

15

Choi et al.: A Predictive Model for Profitability of the Major U.S. Airlines

Published by Scholarly Commons, 2019



 

The exponential value indicates magnitude of the effect. For example, the 

exponential value for the PSR in the Percentage Value dataset has the largest 

effect with an exponential value of 2.781. Thus, if the value of this variable is 

increased by two units, the probability that a case will indicate a profit increases 

by 78%.  

Iteration plots, as found in Appendix F, display the value of a model 

assessment measure on the vertical axis for different steps in the stepwise process. 

The plots indicate the optimal number of iterations for the logistic regression 

models, and confirm findings in Table 7, which suggest 8 steps are the optimal 

number for the Percentage Value model and 2 steps are optimal for the Monetary 

Value model. 

 

Table 7 

Analysis of Maximum Likelihood Estimates  
 

Parameter  

 

DF 

 

Estimate 

 

Std. 

Error 

Wald 

Chi-

Square 

 

Pr > 

ChiSq 

 

Standardized 

Estimate 

 

Exp 

(Est) 

Percentage Value 1       

   Intercept 1 -2.0836 0.8396           6.16         0.0131  0.124 

   Deprec_Amort 1 0.1098       0.0447 6.03 0.0141 0.1443 1.116 

   Flying_Ops 1 0.0342 0.0134 6.49 0.0109 0.1774 1.035 

    

Misc_Op_Revenue 

1 0.1184 0.0323 13.41 0.0003 0.3034 1.126 

   Pax_Service 1 0.1228 0.0470 6.82 0.0090 0.1710 1.131 

   Prop_Freight 1 -0.2360 0.0460 26.35 <.0001 -0.3049 0.790 

   Pub_Svc_Revenue 1 1.0227 0.6380 2.57 0.1089 0.1937 2.781 

   Trans_Expenses 1 -0.0494 0.0209 5.58 0.0182 -0.2669 0.952 

   Trans_Revenue 1 0.0645 0.0187 11.94 0.0006 3.895 1.067 

Monetary Value 1       

   Intercept 1 0.6896 0.0933 54.63 <.0001  1.993 

   Charter_Prop 1 0.0395 0.0297 1.77 0.1832 0.5591 1.040 

   Misc_Op_Revenue 1 4.42E-6 1.516E-6 8.51 0.0035 0.2062 1.000 

 

Model Comparison 

The Model Comparison node in SAS EM was used to compare the three 

decision tree models and the logistic regression model for each of the datasets. 

ASE was chosen as the Selection Statistic, and comparison results are based on 

validation data. The Fit Statistics window displays several computed statistics for 
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all partitions of the training and validation data in the decision tree models (SAS 

Institute, 2013). The ASE values for training and validation samples for each of 

the each of the models are found in Table 6. The lowest validation values for ASE 

were observed in the 2-branch decision tree model for the Percentage Value 

dataset and the 3-branch decision tree model for the Monetary Value dataset, 

while the lowest training values were observed in the 3-branch decision trees for 

both models. The discrepancy in values between the training and the validation 

samples calls into question the consistency and validity of these models, and as 

such neither were determined to be indicative of an ideal model. The cumulative 

lift charts and receiver operating characteristic charts and indices were examined 

to identify a better assessment method to select the best prediction model.  

The comparative cumulative lift charts for the decision trees and the 

logistic regression models are found in Appendix G. For both datasets, the 3-

branch decision tree models appear to be the superior models, as they show the 

higher lift indexes overall. The indications from the cumulative lift charts are 

inconclusive when compared other tests. 

The receiver operating characteristic (ROC) chart displays values of the 

true positive fraction on the vertical axis, and the false positive fraction on the 

horizontal axis; it displays the tradeoff between sensitivity and specificity. The 

straight diagonal line is the baseline; the larger the area between the ROC chart of 

the model and the diagonal line, the better the model. A perfect test has an area or 

ROC index of 1, thus the higher the value, the more accurate the model (Statistics 

How To, 2019). 

As seen in Figure 3, the ROC chart visually demonstrates the larger area 

under the logistic regression line (brown line) until approximately 0.3 on the x-

axis (specificity), after which the 2-branch decision tree line (the green line) 

demonstrates the larger area. The full ROC charts for training and validation 

samples for both datasets are found in Appendix H, the ROC indices are shown in 

Table 8. Based on ROC indices, the best model appears to be the 3-branch 

decision tree using the Monetary Value dataset, followed by the 3-branch decision 

tree using the Percentage Value dataset, and then the 5-branch decision tree using 

the Monetary Value dataset.  
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Figure 3. ROC chart comparing decision tree models and logistic regression 

model for percentage value dataset. 

 

Table 8 

ROC Index values from SAS EM Model Comparison Node Output: 
Ananlsys Models ROC Index 

Percentage Value  

     Decision Tree – 2 Branches 0.79 

     Decision Tree – 3 Branches 0.84 

     Decision Tree – 5 Branches 0.79 

     Logistic Regression 0.76 

Monetary Value  

     Decision Tree – 2 Branches 0.68 

     Decision Tree – 3 Branches 0.85 

     Decision Tree – 5 Branches 0.82 

     Logistic Regression 0.55 
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The model selected by the SAS EM Model Comparison node for the 

Percentage Value dataset is the 2-branch decision tree, then the logistic regression, 

then the 3-branch decision tree, then the 5-branch model. Among the Monetary 

Value dataset, SAS EM selected the best model as the 3-branch decision tree, then 

the 5-branch decision tree, then the 2-branch decision tree, then the logistic 

regression model. These models are ranked by ASE based on the results of the 

validation data. 

In summary, comparing the eight presented models using two interrelated 

datasets, it appears the decision tree models are better predictors of profitability 

for major airlines. Based on ASE values, the 2-branch decision tree using the 

Percentage Value dataset was identified as the best prediction model, followed by 

the 3-branch Monetary Value dataset decision tree model. In the 2-branch 

Percentage Value decision model, PRF is indicated to be the most influential 

factor, followed by TRE and PRBF. For the 3-branch Monetary Value dataset 

decision tree model, TRR is indicated to be the most influential factor to predict 

an airline’s profitability, followed by TRE, and then PRBF. 

 

Discussion, Conclusions, and Recommendations 

Three decision tree models and one logistic regression model were 

developed for two datasets to predict potential profit and loss for major airlines 

using data from the BTS. Decision trees are popular tools due to their relative 

power, ease of use, robustness with a variety of data and levels of measurement, 

and ease of interpretability (deVille & Neville, 2013), however decision trees 

have several limitations. The primary disadvantage is that they can be subject to 

overfitting and underfitting, especially when using a small dataset, which can 

limit the generalizability and robustness of the models (Song & Lu, 2015).  

This study answered the following research questions:  

RQ1: What is the most influential factor among airline revenue and 

expense in predicting an airline’s profitability, using monetary and percentage 

values as two scales of measure of input variables?  

The TRR and TRE were found to be the two most influential factors in 

predicting the U. S. airlines’ profitability. The TRR and TRE are incidentals to the 

air transportation services performed by airlines (BTS, 2018b). Examples are 

ancillary passenger services such as Wi-Fi, duty-free, and food and beverage sales 

and, revenues and expenses from associated ground businesses like ramp 

operations, aircraft maintenance, refueling, catering, etc. Today, under extreme 

cost competition and increasing operation costs, the growth of ancillary revenue 

has positive ramifications that significantly benefit airlines’ financial performance 

and yielding operation margin (Warnock-Smith, O'Connell, & Maleki, 2017). In 

this regard, the result of this study highlights and supports the importance of the 
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Transportation Related Revenue and Expenses for profitability of the U.S. major 

airlines. 

RQ2: Between the decision tree and regression models, which provides 

the best model for predicting the profitability of a major U.S. airline, using 

monetary and percentage values as two scales of measure of input variables? 

Generally, the decision trees yielded better models than the regression 

models although no one model indicated obvious superior predictive ability based 

on the assessments. Based on ASE values, the best predictive model was the 2-

branch Percentage Value decision tree, followed by the 3-branch decision tree 

using the Monetary Value dataset, followed by the 5-barnch decision tree using 

the Monetary Value dataset, and then the logistic regression model using the 

Percentage Value dataset. 

RQ3: Between a monetary and percentage scale of input variables, which 

scale can better predict airline profitability? 

Neither the monetary or the percentage scale yielded a clear and consistent 

champion model for predictive modeling. Depending on the assessment method 

utilized, either the monetary or percentage scale resulted in a better model. The 

decision tree approach should be more fully explored to exhaust all possibilities of 

finding a better predictor model. Adjusting the pruning settings to find the number 

of leaves which provide the best result, changing the assessment measures, or 

other adjustments may be made to find a better predictive model. Exploring other 

assessment options may also provide evidence of a better predictive model. 

A final assessment of the model should be conducted on a separate dataset, 

such as BTS data from different years in order to determine the appropriateness of 

fit. Similar models could be tested by airlines to determine additional variables to 

be included in the analysis, and the most appropriate model could be used by 

airlines to predict profit or loss under conditions similar to those tested in the 

algorithms. In the present study, geographical location and airline business model 

were not considered as influential predictive factors in airlines’ profitability. 

Indeed, various distinctive business practices of FSC and LCC can play a key role 

to separate the profitability prediction model between two airline groups due to 

the disparate cost and revenue structure (Azadian & Vasigh, 2019). Repeat studies 

can be used to refine the models to provide better predictive analysis for 

profitability and the factors influencing it. With further improvement, models 

could potentially be used to predict profit or loss performance based on identified 

influencing variables. 
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Appendix A 

Interval Variable Summary Statistics from SAS Explore (Train)* 
                                       

Variable Role Mean Standard 

Deviatio

n 

Min. Median Max. Skewnes

s 

Kurtosis 

Percentage Value         

Aircrft_Services Input 13.8129 4.256863 -0.38358 13.91871     33.32241     0.102985     1.764876 

Charter_Pax Input 0.88754     6.223123     -0.06557  0 78.52746     10.12257     106.9473 

Charter_Prop Input 0.000756     0.003232     0 0 0.020446     4.232029     16.74639 

Deprec_Amort Input 4.985672 2.31975     -1.861     5.083964     18.30271 0.75226     2.612824 

Flying_Ops Input 41.73493  9.1982     19.39355     40.95688     74.89001     0.317901 -0.0576 

General_Admin Input 7.893132     4.118253     0 7.089036     54.74681     3.050945     25.42091 

Mail Input 0.206036     0.328721     -0.15974     0.011466     1.822397     1.918964     3.611999 

Maintenance Input 12.23226     7.632439     1.825764     9.916573     44.15967     2.108347     4.081153 

Misc_Op_Rev Input 2.56464 4.51298     -1.04736     0.777581     27.38849     3.193917 11.2518 

Pax_Service Input 7.328825     2.537886     0.506457     7.091891     15.09019     0.402961       -0.38394 

Promotion_Sales Input 5.325785     2.785099     -0.01765     5.878913 14.6952     -0.61206     0.081797 

Prop_Bag Input 2.783436     3.732256     -0.00444     2.130789     20.85931     2.681544     8.076867 

Prop_Freight Input 1.938613 2.65544     -0.48809     0.826041     33.48414     2.635332     17.11991 

Pub_Svc_Revenue Input 0.059317     0.327104     0 0 3.716797     7.070536     53.88385 

Res_Cancel_Fees Input 53.88385 1.514841     -0.13539 1.90206     5.617328     -0.26969     -0.80805 

Trans_Expenses Input 6.686196     9.528534     -0.04055     0.778207     37.12724     1.216252     0.042366 

Trans_Revenue Input 9.207313     10.62012     -1.1096     4.330472     57.90231     1.162911     0.327432 

Trans_Rev_Pax Input 80.83751     13.97299     16.47104     83.92677     100.0457     -0.83092     0.658153 

Monetary Value         

Aircrft_Services Input 146923.7     215599.6     -27 63696 1102324     2.300803 4.80847 

Charter_Pax Input 3970.792     12689.52     -395  0 130539 4.962053     29.10975 

Charter_Prop Input 4.204665     23.94475     0 0 186 6.060885     35.97252 

Deprec_Amort Input 49978.29     71563.15     -463   24008 438220 2.462265     6.301083 

Flying_Ops Input 372542.1     469660.6     51 199764 2819894 1.961089     3.362539 

General_Admin Input 76898.25     119039.3     0 31718 841454 3.059821 11.8463 

Mail Input 2614.391     4428.565     -1033 26 28986 2.210275     5.778444 

Maintenance Input 97497.56  126284   37 56778 624613 2.058989     3.672014 

Misc_Op_Rev Input 29950.97     75578.53     -9628    3578  518782 3.916551     16.33922 

Pax_Service Input 76649.29     107281.1     8 31020 631913 2.330208     5.876528 

Promotion_Sales Input 58996.83     86624.42     -52 26380 516884     2.489426     6.857585 

Prop_Bag Input 26027.51     44442.14     -12 7923 259421 2.791317     8.548951 

Prop_Freight Input 19512.9     24704.66     -1479    7167  146761 1.251317     0.919248 

Pub_Svc_Revenue Input 320.3394     1791.245     0 0 25390 8.032842     76.83812 

Res_Cancel_Fees Input 19417.02     30607.34     -110 6851 155378     2.421174     5.916754 

Trans_Expenses Input 142466.5     344938.7     -49 3694 1879880 3.129448     9.364083 

Trans_Revenue Input 193075.2     454952.1     -4625 23487 2291920     3.144126     9.154019 

Trans_Rev_Pax Input 825321 1103041 175 415399 5328614 2.156862     4.214202 

* Non-missing values = 1329, Missing values = 0, Monetary value = US$.000 
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Appendix B 

Decision Tree Outputs From Percentage Value and Monetary Value Datasets 

 
Figure B1. Percentage Value dataset 2-branch decision tree. 
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Figure B2. Monetary Value dataset 3-branch decision tree.

25

Choi et al.: A Predictive Model for Profitability of the Major U.S. Airlines

Published by Scholarly Commons, 2019



 

Appendix C 

Leaf Statistics Charts for Percentage Value and Monetary Value Datasets 

 

Figure C1. Percentage Value dataset 2-branch decision tree leaf statistics chart.  

 

Figure C2. Monetary Value dataset 3-branch decision tree leaf statistics chart.  
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Appendix D 

Cumulative Lift Charts for Percentage Value and Monetary Value Datasets 

 

 
Figure D1. Percentage Value dataset 2-branch decision tree cumulative lift chart.  

 

 
Figure D2. Percentage Value dataset regression model cumulative lift chart.  

 

 
Figure D3. Monetary Value dataset 3-branch decision tree cumulative lift chart.  

 

 
Figure D4. Monetary Value dataset regression model cumulative lift chart.  
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Appendix E 

Subtree Assessment Plots for Percentage and Monetary Value Dataset 

 

 
Figure E1. Percentage Value 2-branch decsion tree subtree assessment plot. 

 

 

 
Figure E2. Monetary Value 3-branch decision tree subtree assessment plot.  
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Appendix F 

Iteration Plots for Regression Models from SAS EM 

 

 
Figure F1. Iteration plot for Percentage Value dataset. 

 

 

 
Figure F2. Iteration plot for Monetary Value dataset. 
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Appendix G 

 

Comparative Cumulative Lift Charts from SAS EM 

 

 
Figure G1. Cumulative lift chart Percentage Value decision tree and regression 

model comparison. 

 

 

 

 
Figure G2. Cumulative lift chart Monetary Value decision tree and regression 

model comparison. 
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Appendix H 

ROC Charts from SAS EM 

Figure H1. ROC chart for Profit_Loss target variable in Percentage Value dataset. 

 

Figure H2. ROC chart for Profit_Loss target variable in Monetary Value dataset. 
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