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ABSTRACT 

DEVELOPMENT OF A RESONANT HIGH POWER CHARGING 

STATION FOR FLEET VEHICLES 

 
by 

 

Robabeh Nasiri 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor Robert Cuzner 

 

onventional vehicles chargers are based on plugging the car battery using wire to 

the electricity grid through some conversion levels. In general, this system is an interface between 

the AC grid and the battery which requires DC voltages. 

 The focus of this research is on wireless power charging technology. The wireless 

configuration benefits the system by providing electric isolation between transmitter and receiver 

side, and by making the charging process more convenient for the users.  

One major drawback of the wireless charging systems in compare to the conventional 

system is the lower efficiency of these systems. The resonant high power charging configuration 

of this study is designed to tackle this problem by enabling soft switching to minimize the 

switching loss. 

In this research a resonant LLC configuration is used for the EV charging application. The 

configuration and the step by step design of the resonant circuit is illustrated and analyzed. Also, 

other different topologies of the wireless charging systems have been introduced and compared 
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with the proposed topology. The converter is modeled and simulated for different modes of 

operation. The optimal frequency selection which is dictated by the resonant circuit and magnetic 

design is obtained based on the mathematical model of the circuitry. The simulation results show 

that the designed converter improves the efficiency significantly using the resonant wireless 

charging configuration. 
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Introduction 

Wireless Power Transfer (WPT) or wireless charging is the technology of transferring 

power without wires and cables through the magnetic field. In compare to the conventional plug-

in power chargers, the WPT technology provides more convenient and safer way for feeding 

electricity to the electrical devices.  

Nowadays, people are using electronic devices in all of the aspects of their lives. The 

electronic devices are dependent on electricity and they need to be connected directly or indirectly 

to the electric grid. The conventional electricity grid is designed based on transferring energy using 

wires and direct plugging of the end user devices to the grid. This method is very efficient and 

well-known for feeding the electronic devices. However, for some types of applications, it is not 

very convenient and user friendly. Dealing with the wires and cables in plug-in electronic devices 

can be hard and time consuming. One of the alternative technologies is the magnetic wireless 

power transfer which eliminates the need for direct contact of the user with power charging plugs 

and conductors, and makes the whole charging process safer for the user. 

With the increasing interests in the electric vehicles, the electric vehicle charging has 

become a major area of research in the last decade. The wireless power transfer technology, 

provide major benefits which with properly to address some of the problems of the EV charging 

business. 

One of the highlighted benefits of the electric cars is the reduction of the greenhouse gases 

in the atmosphere in comparison with the Internal Combustion Engine (ICE) vehicles. The EVs 
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benefit the environment by decreasing the air pollution in the areas with large populations. Also, 

these cars bring some financial benefits, due to the supporting policies by governments. However, 

the limited range of travel distance and inconvenient charging technologies are the two major 

issues with the EVs.  For example, as shown in table 1, Porsche and Tesla motor’s charger that are 

conventional plug-in chargers, need to be charged for 19 and 50 minutes by efficiency of 93% and 

90% respectfully, and there is a limited range of using them before recharging the batteries (the 

numbers are for the year 2018). There have been some efforts on the other technologies like the 

wireless charging stations. Qualcomm offers a wireless charger that in this case, the efficiency is 

lower and charging time of the batteries is more than plug-in chargers [1]. 

 There are many researches going on about wireless charging applications to improve the 

relatively low efficiency problem of these technology.  

Table 1-1. Comparison of existing chargers. 

  Tesla Porsche Qualcomm 

Power 120kW 320kW 20kW 

Wireless No No Yes 

Charge Time 50 min 19 min 300 min 

Efficiency 90% 93% 87% 
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1.1  Different Type of Cars 

1.1.1 Internal Combustion Engine (ICE) Cars  

The cars we are using for many years are mainly internal combustion engine vehicles. 

These cars are fed with fossil fuel and their engines are directly connected to the wheels. 

Combustion of the liquid inside the cylinder produces a force that will be applied to a piston that 

results in moving the car. CIE cars have been preferred over steam engine and electric engine cars 

for years because of their ability and power to work hundreds of miles continuously.  

However, the amount of greenhouse gases in the atmosphere produced by the conventional 

cars is considerable. As the result of that, researchers are investigating the alternative types of cars 

that are more environment friendly. Hybrid cars that are a mixture of both Electric and ICE cars 

are a good choice to help decreasing the environmental damage. 

1.1.2 Hybrid Cars 

Hybrid Vehicles are getting more and more popular these years. These cars are using more 

than one form of energy and are a combination of an engine that is powered with gasoline 

(conventional ICE engine), and an electric motor and a battery which allow the gas engine to be 

smaller and more efficient. They primarily work with gasoline, but the electric engine is also being 

used. The change of operation between the two source happens based on the multiple conditions. 

Plug-in Electric Vehicle (PHEV) and full hybrid vehicle are the two types of hybrid cars. 

A. HEV (Hybrid Electric Vehicle) 

In an HEV you just use the gas engine, but when more power is needed you can move with 

electric engine. Both the electric motor and gas engine can send the power to wheels at the same 



 

4 

 

time. The batteries in full hybrid cars are not rechargeable from outside the car and the as motor 

will move the wheels directly. Using these cars is also more efficient and cost effective because 

when you stop the car, it shuts the engine off and when you push the brake, it turns on again. This 

help to save more gas when you are at stop light. The energy from braking charges the battery.  [2]  

B. PHEV (Plug-in Hybrid Electrical Vehicle) 

In the PHEV, the battery of the car is bigger, and you can use the electric engine until it 

gets discharged completely. International combustion engine can support the engine until the 

battery gets charged again. PHEVs are rechargeable and can be charged from the grid or gas engine 

to power the electric motors. PHEVs are cost effective beside being environment friendly. [2] 

1.1.3 Full Electric Cars 

A Full electric car is completely using electric motor that receives its power from the 

battery. The battery could be charges from the electrical grid, and also by regenerating the braking 

energy. Most of these cars can run a range between 80 to up to 250 miles. When the battery is 

discharged, it takes about 30 minutes (with the fastest charging technology in 2018) and a full day 

(with the level 1 charging) to get charged again. Using the full electric cars in comparison with the 

conventional combustion cars can significantly impact the environment and reduce the fuel costs. 

[2] Figure 1-1 shows a typical diagram of an electric vehicle. The battery is charged from the 

electric charger and it provides power for the motor, and the wheels. 
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Figure 1-1. Schematic diagram of a typical EV system. 

1.2 Different Charging Methods for EVs  

1.2.1 Conventional Chargers with Wire 

There are several types of chargers for electric vehicles varies. The chargers are classified 

based on the time of charging and charger’s power levels.    

Level 1 EV Chargers: This model that is the slowest and cheapest type of the chargers is mostly 

installed at home or garages. This charger receives AC power, and then converts it to the DC to 

charge the battery of the car. This type of charger is very convenient to use because users can 

charge their car by simply plug it into the low voltage household outlet (Figure 1-2). This charger 

can support 2 to 5 miles per hour of charging and uses 120 V AC (in the U.S.) power outlet with 

15 to 20 Amps of current. The maximum power produced by this charger will be 1.9 kW. However, 

it takes about 7 to 15 hours for the batteries to get fully charged. [3], [4] 
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Figure 1-2. Standard Household Outlet-Charging 

Level 2 EV Chargers: Figure 1-3 is a picture of charger level 2. The level 2 chargers could be used 

for charging stations at home or public places. This charger needs a 208/240 V AC for supporting 

10 to 20 miles per hour of charging with the power rating of 19.2kW while the single phase or 

three phase AC mains will not exceed 80 Amps. This type of charger needs 3 to 5 hours for full 

charging. Level 2 in comparison with the Level 1 needs more safety consideration for connecting 

to the grid and ar. Figure 1-4 shows a schematic of the level 2 chargers with the connector and 

control devices connected to the grid. it is very similar to the level 1 chargers [3], [4]. 
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Figure 1-3.  A picture of Level 2 charging station 

 

Level 3 EV Chargers: This type of chargers that is also known as DC Fast Charger requires 480 

V AC for supporting up to 50 kW in less than one hour for 60 to 80 miles. It is currently the fastest 

way of charging. DC fast chargers which are mostly used in public stations work with an off-board 

charger that will convert the AC voltage to DC using a rectifier. The battery in the car gets the DC 

power directly from the station. Tesla has its own DC fast charger that is called supercharger. 

Figure 1-5 is a picture of the DC fast charger [3]. 
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Figure 1-4. Schematic of an electric vehicle charging system. 

 
Figure 1-5. A picture of a DC fast charger. 

1.2.2 Wireless Chargers: 

In this type of chargers, there is no need for connector and cord between the charging 

station and vehicle while the power is being transferred. The charging happens through an electro-

magnetic field. The charging system as t is shown in figure 1-6 includes two pads, transmitter that 

is a part of the charging station and receiver that is installed in the EV. The transmitter and receiver 

coils are inside these two pads. Although wireless chargers are safer and more convenient in 
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compare to the wired chargers, low efficiency and long charging time of these chargers, make the 

users uninterested. However, with increasing researches on improvement of this type of power 

transfer, wireless chargers are improving to become a better choice in the future. Many companies 

such as Qualcomm, Toyota, and GM have been working on the wireless charging technology for 

EVs and many researchers are pursuing this topic to address the drawbacks of the Wireless Power 

Transfer (WPT) applications.  

 

Figure 1-6. A picture of wireless charging system 

1.3 Plug-in Charger VS. Wireless Charger 

Currently, the most common and practical way of charging are plug-in chargers. The electric 

power transfers through the wires between the plug and battery of the car after some conversion 

levels. However, there are some disadvantages with the wired chargers.  For instance, there is a 

chance of electrocution with the plugs especially in the wet environment, and the long wire may 

cause safety issue. In addition, during the bad weather condition with snow and ice, the plug and 
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cables may get frozen. However, wireless power charging can be a solution for these problems 

that wired chargers may encounter. Wireless charging that allows the batteries to get charge 

through the magnetic field are safer because of the galvanic isolation between the battery in the 

car and the charger. Wireless chargers are also more practical in bad weather condition. 

Wireless charging can be built in large the scales for public transportation like public buses. 

Buses can get charged while parked in the parking area and this availability of excessive charging 

places during the working hours can practically reduce the battery packs. Vehicles can get charged 

whenever they are stopped which could result in reducing the car’s weight and volume [5]. 

1.4 Thesis Outlines 

The researches in the area of wireless EV chargers are focused on improve the efficiency 

of the system which is a significant problem in the wireless charging [6-8]. In general the tong 

charging time of the batteries that is an important case in EV chargers (wired and wireless) can be 

solved by lowering the loss of the whole charging system and increasing the efficiency. The 

efficiency is a more significant challenge for the wireless technology do to the loss of power in the 

power transfer between transmitter and receiver. 

The goal of this research is to design and simulate an efficient topology for the wireless 

high-power EV charging station that is capable of generating 330kW power to the output in a 

reasonable amount of time. Table. 1-2 shows the parameter specification of this system. In order 

to get a better efficiency and reduce the size of the system, a 330-kW resonant LLC converter is 

proposed. This soft switching can decrease the switching loss and improve efficiency significantly. 

In addition, high frequency design of the magnetic part that is a part of the LLC resonant converter 
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is smaller than the regular low frequency designs which reduces the overall size of the charging 

system.  

Table 1-2. System parameters specification 

Item Rating Unit 

Input Voltage 600-800 V 

Output Voltage 350 V 

Output Power 330 kW 

Resonant Frequency 30 kHz 

 

Combining the grid connected system with energy storage, the systems can feed the output 

during heavy loads and when the system load is lighter, the energy storage can get charged during 

the light or no load conditions. This thesis will discuss most of the significant points that are 

necessary to model and design an LLC resonant converter. 

Chapter 1 includes the literature review and an introduction of the different existing 

charger’s levels. A comparison of wireless power charger and plug-in charger is also included in 

this chapter.  

Chapter 2 is providing an overview of the different wireless power transfer technologies 

and their power level. At the end of the chapter, the existing wireless chargers and researches are 

reviewed.  

Chapter 3 is an introduction of the conventional resonant converters and their advantages 

and disadvantages. The component selection of the LLC resonant converter is also illustrated in 
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this part. In addition, the mathematical model and different modes of operation of the selected 

converter is discussed in this chapter. 

In chapter 4, the discussion is on the control of the different parts of the circuit. A  

Chapter 5 includes the simulation results and their analysis. The voltage and current 

waveforms of the LLC resonant converter and their behavior in different modes of operation have 

been discussed. 

Finally, chapter 6 is a summary of the thesis and the work performed on the different parts 

of the project.  
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Wireless Charging System Topologies 

The battery charger is an essential component of an electric vehicles. The AC power from 

the grid is converted to DC, and then gets adjusted to the proper voltage of the car battery. Normal 

plug-in chargers are using a cord to get connected to the car. Generally, transferring power with 

the cables in short distance is very efficient. On the other hand the wireless power transfer system 

has more conversion levels including electromagnetic conversion which reduces the efficiency. 

This efficiency in the new developed wireless technologies for the short distance is still in an 

acceptable range.  

Charging time and effect on the battery life time are two of the most important factors in 

the popularity of EV chargers. High efficiency, high power, low volume, low weight and being 

safe for the user are the other important requirements.  In this section, different type of wireless 

power transfer, their characteristics, and their suitability for EV chargers is discussed. 

2.1 Wireless Power Transfer 

Wireless power transfer is defined as transferring power between transmitting coil to the 

receiving coil through the magnetic field without any cables or wires involved. Wireless power 

transfer is used in some applications like portable devices, some medical devices. The focus of this 

research is on studying the WPT for the EV chargers. Figure 2-1 shows the general structure of 
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the wireless power transfer systems. The receiver is placed in the secondary side and is connected 

to the load. The transmitter is in the primary side of the system. The transmitter is fed by the main 

component of the system that are connected to the grid or power sources. The transmitter and 

receiver are electrically isolated. Each of  the transmitter and receiver sides have an AC/DC power 

converter [1].  

There are several configurations of WPT technology. Different types of WPT, their 

advantages and disadvantages, and most importantly their suitability for wireless battery charger 

for electric vehicles is discussed in the following section.  

 

Figure 2-1. Wireless power transfer structure. 

2.2 Classification of Wireless Power Transfer 

Figure 2-2 categorizes the various types of WPT and their applications. This technology 

can be divided into three big categories; electromagnetic field, magnetic gear, and capacitive 

power transfer. 
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Wireless Power Transfer

Electromagnetic FieldCapacitive Magnetic Gear

Far FieldNear-Field

Traditional 

IPT

Coupled 

Magnetic 

Resonance

Laser 

Microwave
Radio Wave

 

Figure 2-2. Classification of wireless power charging technologies [9]. 

2.3 Comparison of Different Types of Wireless Power Transfer  

Table 2-1 shows the comparison between different types of wireless power transfer 

technologies. Capacitive wireless Power transfer(CWPT), Magnetic gear wireless power 

transfer(MGWPT), Inductive power transfer (IPT), and Resonant inductive power transfer(RIPT). 

The last two categories are two different types of electromagnetic fields WPT. The last row of the 

table discusses the suitability of each group for the wireless electrical vehicle’s charger application. 
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Table 2-1. Comparison between different types of wireless power transfer technologies [10]. 

WPT methods Inductive  Capacitive Resonant 

inductive 

Permanent 

Magnet 

Efficiency Medium/High Low/Medium Medium/High Low/Medium 

EMI Medium Medium Low High 

Frequency 

range(kHz) 

10-50 100-600 10-150 0.05-0.500 

Price Medium/High Low Medium/High High 

Size/Volume Medium Low Medium High 

Complexity of 

design 

Medium Medium Medium High 

Power level Medium/High Low Medium/Low Medium/Low 

Suitability for 

WEVCS 

High Low/Medium High Low/Medium 

 

2.4 Capacitive Wireless Power Transfer (CWPT) 

Capacitive wireless power transfer is suitable for the low power applications such as 

portable devices and cellular phone chargers because of its low cost and simplicity. This 

technology can transfer power through the AC electric field. Figure 2-3 shows the schematic of 

CWPT. In the CWPT, instead of using magnet or coil, coupling capacitors are transferring the 

power from the transmitter to the receiver. The high frequency AC power that is produced by the 

H-bridge will go through the coupling capacitors, and then to the receiver side. The inductor in 
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series with the coupling capacitor between the transmitter and receiver will lower the impedance 

and enable soft switching. The battery pack at the end receives the DC power converted by the 

rectifier as it is shown in the figure.  

The power transfer rating of the converter depends on the air gap between two plates and 

the size of coupling capacitance. Because of the small size of coupling capacitance, CWPT 

technology might face practical problem in real application. CWPT works better when the distance 

between the plates is small. Any air gap between two plates and any displacement of coupling 

plates will decrease the capacitance. As a result, CWPT is impractical for Wireless EV charging 

with 150-200 mm air gap or higher, or for the situation with potential large displacement, and for 

the high power level WPT systems [10], [11]. 

Receiver SideTransmitter Side

Co

S1

DC

S3

D1 D3

D2 D4

S2 S4

 

Figure 2-3. Schematic of capacitive wireless power transfer [10] 

2.5 Magnetic Gear Wireless Power Transfer (MGWPT) 

Magnetic gear wireless power transfer uses mechanical forces to transfer power through 

the system. Magnetic gear, is used in some applications such as EV motors and wind power 

generators instead of conventional contacted gear. It has also been used in low power medical 

implants such as cardiac pacemaker, and high power application of vehicles and electronics. Figure 

2-4 shows the general schematic of the MGWPT. 
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 In this technology, two synchronized permanent magnets are used as the main coupling 

mechanism that is positioned side by side rather than coaxial in contrast to the other common 

applications in EV and wind generators. The input of the transmitter winding is a current source 

which produces an electro- mechanical torque on the primary side. The PM in the primary side 

rotates, and causes the rotation in the secondary side with the same speed as the transmitter PM. 

In this process, the battery gets charged by a rectifier which is shown in the figure. Primary side 

PM works at the generating mode and sends power to the secondary PM and then to the car battery 

[10]. 
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Figure 2-4. Schematic of magnetic gear wireless power transfer [10]. 

2.6 Electromagnetic Field WPT 

Wireless power transfer is classified into two types of near field and far field based on the air gap 

between transformer and receiver.   

2.6.1 Near-Field and Far-Field 

In the near field that is also called non-radiative power transfer, the distance should be less 

than one wavelength. One important example of the near field is inductive power transfer that is 

used in the induction motors. Charging technology of electronic devices such as toothbrush and 

cell phones are other examples of the near field power technology. Efficiency and power transfer 
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in the near field are highly affected by the air gap, and as the distance increases the power transfer 

decreases (1/r3). As the result in this method keeping the operating range below several centimeters 

is crucial. This operating range and the efficiency of the system can be extended in the coupled 

magnetic resonance technology because of the resonance circuit [12]. 

In contrast, in the radiative or far field power transfer, the power can be transferred from 

the length as big as the wavelength to infinity. Laser, microwave, RF, and photoelectric are 

examples of the far field technology. The operating range of far field is more than several 

kilometers with the very high frequency range (kHz-MHz). Far field charging is not applicable for 

the EV charging [12].  

2.7  Inductive Power Transfer (IPT) 

Figure 2-5 shows the block diagram of the induction power transfer. IPT was first improved 

by Nikola Tesla in 1914 [12]. In this technology the power is transferred between the transmitter 

and receiver that are two coils coupled in a magnetic field. The first coil gets excited with the AC 

voltage and makes the second coil excited by generating magnetic field. Then, the power is sent 

to the battery by the receiver after rectification [3]. This technology offers a convenient, and low 

cost solution with an adjustable range of power transfer with the flexible inductive coupling design. 

Even though the inductive wireless power transfer is an efficient power transfer technology in 

small distances, the losses over the coil resistance are considerable. 

    Some challenges are important to be considered in this technology that has a wide range of 

power transfer from mWatt to kiloWatt. Charging control strategy, coil design, magnetic structure 

and alignment of the windings are the parts that should be considered and controlled in order to 

meet an efficient and safe power transfer [13], [14]. 



 

20 

 

Co

S1

DC

S3

D1 D3

D2 D4

S2 S4

Transmitter Side Transmitter Side
Transmitter 

pad

 

Figure 2-5. Traditional inductive wire power transfer [10]. 

2.8 Resonant Inductive Wireless Power Transfer (RIWPT) 

Resonant inductive power transfer is the improved version of the inductive wireless power 

transfer and a kind of Near-field WPT technology.  In this technology, one capacitor is added to 

the primary and secondary side of the coupling coil in traditional IPT in order to increase the 

efficiency of the system and increasing the power transfer distance (Figure 2-7). Also, high 

frequency AC voltage in the first part goes to the winding, and then to the secondary winding 

through the magnetic field. The battery bank of the EV at the end receives the DC power converted 

by the rectifier and filter circuitry. 

 The capacitor is charged by the current produced in the magnetic field over the inductor 

winding. Then the capacitor discharges and generates current to produce magnetic field over the 

inductor again. This causes power transfer between the capacitor and inductor. [10] 

The capacitors also can affect the transmitter side by decreasing the reactive power and 

increasing power transfer to the load in the receiving side of the system. Equation (2-1) shows how 

the resonant case is created in this topology. Fr is the resonant frequency on the primary and the 

secondary side. The self-inductance L and resonant capacitor C in the primary and secondary side 
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resonate and when the resonant frequency in the two sides are matched the efficient power transfer 

happens. The frequency range in this model is between tens of kilohertz to several hundreds of 

kilohertz.  

Coupling coefficient in the EV system is a small value like 0.2 or 0.3 duo to the height 

limitation of the transformer parameters. Coupling coefficient can be calculated using the equation 

(2-2) [10]. 

 ��(�,�) = 	
��
�,���,�          (2-1)  

� = 
��
�
�           (2-2) 

 

Lm is the magnetizing inductance of the two coils. Larger values of Lm are the results of 

the coupling coils that are strongly coupled together. Lp and Ls are the self-inductance of the 

primary and secondary coils. [4] 
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Figure 2-7 Resonant inductive wire power transfer [10]. 

2.9 Compensation Network 

Large leakage inductance and small mutual inductances on the transformer’s coils will 

reduce the power transfer capacity of the inductive wireless power transfer technology. In order to 

compensate the coil’s leakage inductances to create bigger mutual inductance, compensation 
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capacitors are needed. Compensation capacitors can be added to the primary and secondary part 

of the coupling coils in series and parallel combinations to get a higher power transfer and lower 

loss. Four different topologies can be derived from these combinations as it is shown in the figure 

2-6 that are series-series (SS), series-parallel(SP), parallel-series(PS) and parallel-parallel(PP) 

[15], [16].   

 When the primary side is in series, it can help reducing the power source voltage while the 

parallel-compensated primary can support more supply current. The series–compensated 

secondary is better for constant voltage applications and parallel-compensated topology is suitable 

for the constant current circuits. As a result, the secondary side compensation is required to 

maximize the load power transfer and efficiency while the transmitter side compensation network 

is required to minimize the reactive power in the source.  Different compensation topologies have 

their advantages and disadvantages and choosing the good topology is depending on the 

application that has been discussed in the table (2-2). 

 The SS topology in figure 2-6 that is similar to the circuit of the resonant inductive wireless 

power transfer, has been discussed in the previous section. This topology has been considered in 

researches as the best topology for the EVs application because of the independency of the 

capacitors in the first and second side of the transformer to the load condition and mutual 

inductance. In addition, these topologies can keep the unity power factor by drawing active power 

at the resonant frequency [10], [15], [16]. 

Misalignment between coils can interrupt the power transfer to the output. While the PS 

and PP topologies provide a safe environment during the power transfer. Since the primary coil 
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does not operate in the absence of the secondary coil, higher power level might not be achievable 

at the output when the misalignment happens between two coils. [3].  
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Figure 2-6. Different topology of compensation network [10], [15]. 
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Table 2-2. Comparison of different compensation network [10] 

Features Series-

Series(SS) 

Series-

Parallel(SP) 

Parallel-

Series(PS) 

Parallel-Parallel(PP) 

Power Transfer 

Capability 

High 

 

High Low Low 

Sensitive of Power 

Factor Over Distance 

Less Less Moderate Moderate 

Alignment Tolerance High High Moderate Low 

Impedance at 

Resonant State 

Low Low High High 

Frequency Tolerance 

on Efficiency 

Low High High Low High 

Suitable for EV 

application 

 High Moderate Moderate 

Primary Capacitor 	��
�  1
�
(�� − �
�� ) 

1
�
(�� + �
�����
�� ) 

1
�
(�� − �
�� + �
��� �
�� 


�
(�� − �
��
Secondary Capacitor 	��
�  1�
�� 

1�
�� 
1�
�� 

Load �
�!�   ���"� �
�!�   ���"� 
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2.10 Wireless Battery Chargers 

The basic structure of a magnetic wireless battery charger is an AC/DC converter which is 

directly connected to the grid. The first section of the converter converts AC to DC. Then using a 

DC/AC converter to feed the transmitter. The compensation network in the two sides of the system 

are helping to achieve a better efficiency from the system. The magnetic flux will go through the 

coils from transmitter to receiver that is placed in the electrical car and is a part of the whole battery 

chagrin system. The battery receives the DC power and is charged from an AC/DC converter that 

is connected to the receiver at the end of the line [16]. 

The power control, communications, and battery management system (BMS) are also 

necessary, to avoid any health and safety issues and to ensure the stable operation [15]. 

2.11 Applications of Wireless Battery Charger 

Figure 2-7 shows a general stationary wireless EV Charging System. The vehicle gets 

charged through the primary and secondary pads while it is parked in a parking. The first pad that 

is installed underground which includes the transmitter and power converters. However, the 

receiver is a part of the vehicle that will be installed in the front, center or back of the car. The 

system includes a power control logic to avoid any problem.  
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 Figure 2-7.General diagram of the static wireless power charging of EVs [10].  

Efficiency, maximum charging distance, vehicle’s weight and charger’s power level are the 

main characteristics that are considered in the design of EV chargers.  

There are several researches on optimizing the design and developing an efficient inductive 

wireless power transfer topology. These efforts help the designer to achieve lower loss and lower 

charging time. 

One of the most famous existing wireless chargers belongs to QUALCOMM. “Qualcomm 

Halo WEVC” technology uses resonant magnetic induction to transfer energy between a ground-

based pad and a charging pad on the electric vehicle. The Base pad and the vehicle pad are 

magnetically coupled and tuned, and energy is transferred efficiently between the pads. Power is 

converted to DC using an on-board converter to charge the vehicle’s batteries. The charging power 

level are 3.3kW, 6.6kW and 20 kW with the efficiency of 87% [18]. 
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There is also a famous product which is introduced by WiTricy Corporation. This family 

of wireless charger systems offer the power rating of 3.6-11 kW with the interesting efficiency of 

greater than 90 %.  

 There is also a developed product from Siemens and BMW jointly which claims the 

efficiency of more than %90 for transferring 3.6 kW of power.  

These products are developed mainly for the application of charging small passenger cars. 

The physical distance between the transmitter and receiver of these introduced examples are 

between 80 to 250 mm. Several other efforts by industries are almost in the same range of 

efficiency and power ratings [13]. 

Some companies like conductive dynamic are working on the WPT for E-Bus for 

transferring around 30 kW of power, and higher coil’s distance of around 300 mm. 

 In the scale of university and research centers, the developed prototype by KAIST 

university and university of Michigan Dearborn have reached the claimed efficiency of almost 95-

96 present [17]. 

2.12 The Illustrated Topology of This Project 

The studied topology of this research is a part of a grid connected charging station for EVs. 

As it is shown in figure 2-8 the system is rated for 330 kWh power rating. The first DC bus after 

the grid connected inverter is considered as the bus for connecting a battery system with 110 kWh 

capacity to support the grid for supporting the system in the peak time.  

The input rectifier is designed as a bi-directional active converter that can support the grid 

by providing the active and reactive power from the DC busbar at the grid side. However, the HF 
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resonant converter of the core of this system is a one directional converter with a diode rectifier 

stage. The design, modeling and control of the converters of this system and the resonant tank will 

be illustrated in detail in this thesis. 
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Figure 2-8. 330kW Wireless EV Charger (WEVC) Topology 
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Resonant High Power Wireless Charging Concept 

Due to the economic and environmental considerations, using electric vehicles is becoming 

more and more interesting for the costumers around the world. Using the electric vehicles for 

transportation in the cities, the fossil fuel burning for energy generation could be moved out of the 

cities and the places with human population. In general, the large scale fuel based power plants are 

more efficient and cost effective. Also, the air pollution which is caused by burning the fuels could 

be dealt with in a much effective way in the power plants in compare to the multiple vehicles which 

are distributed everywhere. Besides, the latest technology advancements in making the energy 

storage systems and renewable energy-based electricity more efficient and cost effective [19], 

which could ultimately be used to generate and store energy for the EVs with huge relative cost 

reduction. 

The electrical vehicle concept and technical studies are focused on three major areas; 

electrical engine and converters inside the car, energy storage systems (batteries) and the charging 

systems. The focus of this study is on the EV charging system and studying an innovative charging 

configuration for convenient, efficient and faster charging of the batteries. 

The topology of this research is a resonant high power wireless charger which eliminates 

any need for physical contact between the EV and charging station. It enables more convenient 

and safer charging; besides, using resonant power electronic conversion in this topology, soft 
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switching in the PE converters is enabled which improves the system efficiency and reduces the 

generated heat in the whole process. 

3.1 Resonant Converters 

Switch mode converters have the problem of high switching power loss and high switching 

stress, since they are required to turn on and turn off at full power during each switching cycle. 

This problem will be more highlighted by increasing the power and switching frequency of the 

switches. Therefore, for enabling the application of the high frequency that leads to the reduction 

of the converter’s size and weight, some techniques like application of resonance converters is 

necessary to help to keeping the efficiency and power rating high. In the resonance topology a 

form of LC resonance will be added to the converter in order to shape the waveforms of voltage 

and/or current during the switching transition when the voltage across it or the current through it 

is zero. A Zero Current Switching (ZCS) circuit shapes the current waveform, while a Zero Voltage 

Switching (ZVS) circuit shapes the voltage waveform that are the results of combination of 

switching strategies and converter topologies. 

Series- Loaded Resonant converter (SLR) and Parallel- Loaded Resonant converter (PLR) 

are two types of resonant converters that are classified based on their circuitry. In the SLR 

configuration the resonant tank capacitor is placed in series to the load while in PLR, the capacitor 

is in parallel to the load [8]. The SLR and PLR topologies are benefiting from a LC resonant tank 

to create conditions for lossless turn-on or turn-off of the switches and providing zero-voltage and 

zero-current switching.  
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3.2 Series-loaded Resonant DC-DC Converters 

Figure 3-1 shows the configuration of Series-loaded resonant converter. The name of this 

converter comes from the arrangement of the capacitor and inductor (Resonant Tank) that are in 

series with the output load.  The isolation transformer in this configuration also helps with the 

regulating of the output voltage. The output voltage can be affected by the filter capacitor C. 

Therefore, choosing a big capacitor can help in reducing the ripple of the voltage across it. The 

voltage at the secondary side of the transformer is fed to the rectifier. This magnitude of this 

voltage is V when the inductor current is positive and –V when the inductor current is negative. 

Lr

Lm

Cdc

S1

VDC

S3

D1

D2 D4

S2 S4

Cr HF Tr.

Cin

VO

iriin

is

D3

 

Figure 3-1. Series Loaded Resonant converter [24]. 

The voltage across the LC tank is dependent on the inductor current condition and the 

switches. When iL is positive and the switches Q1 and Q4 are on, the inductor current flow through 

the Q1 and Q2. However, when the switches are off, the current conducts through the diodes D2 

and D3. On the other hand, when iL is negative, it flows into the switches Q2 and Q3 if they are 

conducting, otherwise it goes through the diodes D1 and D4. Figure 3-2 is the equivalent circuit of 

the Series-Loaded Resonant Converter. 
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Figure 3-2. Equivalent circuit of series-loaded resonant converter 

This topology has three modes of operation that are determined by the ratio of the switching 

frequency fs= ωs/2π to the resonant tank frequency f0= ω0/2π. The three modes of operation have 

their advantages. When the ωs<1/2ω we can have the natural zero current switching. In mode 2, 

when 1/2ω0<ωs<ω0, we can achieve both ZVS and ZCS switching. The third mode ωs>ω0, gives us 

the chance of having natural zero voltage switching. This can help the converter to reduce turn on 

loss and turn off loss during the switching transitions [24]. 

3.3 Parallel Loaded Resonant Converter 

The main difference in the configuration of the Parallel-Loaded Resonant Converter (PLR) 

with the SLR is that in the PLR, the resonant tank consists of a capacitor and inductor while the 

capacitor is in parallel with the output load. This topology that is working as a voltage source can 

step up or step down the voltage and it is a proper configuration for the converters with variable 

output voltages.  

The configurations below show the Parallel-Load Resonant converter and its equivalent 

circuit. PLR has an inductor before the output capacitor. The voltage across the load is filtered by 
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the capacitor and the current through the filter inductor can be assumed as a ripple free current 

because of the high switching frequency and the large inductor filter. 
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Figure 3-3. Parallel-Loaded resonant DC-DC converter [24]. 

 

Figure 3-4. Series resonant converter with Parallel-Load equivalent circuit 
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3.4 LLC Resonant Converter 

 LLC converter is a part of the resonant converter family that consists of a series capacitor (Cr), 

a series inductor (Lr) and a parallel Magnetizing inductor (Lm) in the resonant tank part. The 

configuration below shows a full bridge LLC converter with a full bridge rectifier.  The resonant 

tank gets receives a square waveform generated by switching bridge. The current in resonant tank 

is sinusoidal. The voltage is finally rectified in the rectifier and builds the output DC voltage [26]. 
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Figure 3-5. LLC resonant converter [24]. 

 

There are two resonant frequencies for the whole operation that are important to notice. 

One frequency that is the result of the resonant LC tank (series resonant frequency). The second 

on is the fundamental resonant frequency that is determined by all of the resonant tank components. 

The peak gain can be obtained from the system in the resonant frequency between series resonant 

frequency and fundamental resonant frequency. One of the advantages of the LLC converter is 

that we can get ZVS even with the light load while the converter works like a PLR and during the 

heavy loads it acts like a SLR. The LLC resonant converter performs like a SLR in switching 

frequency above resonant frequency in CCM. Therefore, the resonant converter can achieve ZVS 

and ZCS and decrease the switching losses. 
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3.5 LLC Resonant Converter for Wireless EV charger 

The LLC converter is an attractive choice for the design of the wireless EV battery charger 

because of its high power rating, high efficiency, low electromagnetic interference emission and a 

wide operation range. These features are aligned with the needs of the wireless EV charger. 

As it was discussed before, series loaded resonant (SLR) circuit is selected as the resonant 

configuration of our design. If the load resistance is transferred to the HF side of the diode rectifier 

and then to the primary of the transformer, the equivalent circuit of the system (Figure 3-6) could 

be shown with a voltage source, the resonant tank and the transferred load [25]. 

Lr
Source Lm RoACCr

 

Figure 3-6. The equivalent circuit of the resonant tank 

The gain of the resonant tank circuit in the Figure 4-8 is defined as the ratio between V 

output over RAC and V source, the gain could be calculated using the following equation. 

#$%& = '()�*+,'()�-*+,'()�*+,'()�-*+,./�
0. 1'(,0
       (3-1) 

#$%& = (/�
�2+,)∗/��0(/�
�2+,4��
�
0./�
02+,)∗/��0./�
�.2+,    (3-2) 
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#$%& = 
��5��
��02+,
��5��
��02+,./�
�( 6�601)�.2+,7 6�60184/�
�42+,   (3-3) 

Assuming: 

Normalized switching frequency is �9 = 5�501: 

#$%& = )�)0 (5:)�
)�)0 (5:)�./� )�*+,(5:)�.5:�4/� )�*+,4	     (3-4) 

Then considering Quality Factor as: " = ;)0,02+, 

The gain is defined as: 

#$%& = )�)0 (5:)�
)�)0 (5:)�.5:�4	./(5:<45:)!)�)0

      (3-5) 

While:  

Reflected load resistance to the AC side equals to (3-6). 

�=� = >�� ?��
?�� ��         (3-6) 

And resonant frequency fr1 is calculated using (3-7) 

�� = 	
��
0�0          (3-7) 
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The gain equation is plotted in Figure 3-9 for different values of �9 and Q factor. In this 

figure ��	is the first resonant frequency which is calculated using only �� and@�. Then ��
 is the 

calculated resonant frequency considering the whole inductance in the circuit (including the 

magnetizing inductance). The resonant frequencies are related to the design of the components of 

the system and they are fixed for all variables. However, changing the load which results in 

variable Q factors affects the peak value of the curve at ��
. 

 

Figure 3-7. Gain vs normalized frequency of the resonant tank based on different Q. 

When the load goes up, the curves will be higher and light loads results in having lower Q 

curves. However the curves for all of the Q factors cross the resonant frequency line at  fnormalized= 

1 or fs=fr1 and will have a unit gain. The peak of each curve is representing the boundary between 
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capacitive and inductive region. Keeping the operation in the inductive region, ZVS mode of 

operation is achievable, since it only happens in the inductive region [26]. 

As it is shown in the Q curves, lighter loads and small Q values result in having higher gain 

in the system. Even though the curves are not sensitive to the frequency range and work in the 

switching frequency range higher than the resonant frequency, smaller Q values can cause more 

switching loss. On the other hand, heavier load and larger Q values can cause a lower gain, and a 

lower loss. As a result of these design trade of, the Q value should be selected appropriately for 

achieving an optimal point of the converter gain and   high frequency efficiency. In our design Q 

=0.55 is selected for to calculate the parameters of resonant tank. Another parameter that is 

important for the design of the resonant circuit parameters is m value. We can calculate m value 

using equation 3-8. 

B = 
0.
�
0           (3-8) 

Generally, the m value is selected between 3-10. Lower m values enable reaching to the 

higher boost gain, and more room for control and voltage regulation. However, low values of m 

cause having a small magnetizing inductance and higher circulating energy and conduction loss. 

In the trade off between gain and magnetizing inductance, the value of m in our design is selected 

to be 4. 

After choosing the value of m and Q factor, we can calculate the parameters of resonant 

tank components using equations 3-1 to 3-7 [26]. Table 3-1 summarizes the design parameters. 
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Table 3-1. LLC resonant components parameters 

 Rating Unit 

Quality Factor(Q) 0.55  

  M 4  

Maximum gain 1.2  

Minimum gain 0.8  

Magnetizing 

Inductance(Lm) 

7.75 uH 

Resonant Capacitor(Cr) 11 uF 

Resonant Inductor(Lr) 2.5 uH 

Minimum frequency 15 kHz 

Maximum frequency 60 kHz 

Resonant Frequency(fr) 30 kHz 

 

3.6 Modes of Operation Based on Switching Cycles 

As it was discussed, the configuration of the HF inverter of this study is a H-Bridge with 

four sets of IGBT-Diode. In the H-Bridge of Figure 3-8 Switch-Diodes number 1 and 4 are the 

first pair and Switch Diode number 2 and 3 are the second pair. Based on the operation of this 

switches and the flow of current through these components eight modes of operation are defined 

for this converter. Half of the modes involve the first pair and the other modes involve the second 

pair. Also, two modes (one from each half) are for the dead times which is a rest time between 
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transferring the ON gate command between the first and second pair. Figure 3-9 to 3-16 shows 

these modes of operation and the path of the current flow in each mode with more details. 
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Figure 3-8. Single Phase H-Bridge inverter 

The first mode starts by turning on the first pair of switches. In this mode the current flows 

through S1 and S4. This mode involves the power supply, and transformer. In this mode the current 

of the Lr increases [8] 
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Figure 3-9. Switching mode #1 

The second mode starts by turning S4 off. The current in the Lr keeps flowing and feeding 

the input while it is decreasing. The return path for the current of S1 is provided by D3. This mode 

stops when the Lr current reaches the magnetizing current (the current of Lm). 
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Figure 3-10. Switching mode #2 

The involved switches in the third mode at the primary of the converter are similar to the 

second mode. However, there is no coupling between the primary and secondary of the transformer 

and load is fed only from the output side capacitor. 
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Figure 3-11. Switching mode #3 

The forth mode of operation is the dead time. In this mode none of the components in the 

primary side of the converter is involved in the power flow path. 
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Figure 3-12. Switching mode #4 

Modes #5-8 are very similar to the first four modes. The only difference is in the second half of 

these modes, S2 and S3 are the involved switches in the switching instead of S1 and S4.  
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Figure 3-13. Switching mode #5 
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Figure 3-14. Switching mode #6 
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Figure 3-15. Switching mode #7 

Lr

Lm
Co

S1

DC

S3

D1 D3

D2 D4

S2 S4

 

Figure 3-16.  Switching mode #8 

 

3.7 High Frequency Transformer 

In order to have an efficient resonant WPT system, it is necessary to have a well design 

efficient transformer in the core of this system. Even though design and hardware implementation 

of the transformer is out of the scope of this research, the important aspects of this task are studied 

and discussed in this section. 

Multiple factors are affecting the performance of the transformer in a WPT system. The 

general structure of the transformer includes two windings which are magnetically coupled 

through an air core. The main effective factors in the design of the transformer are distance 
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between the windings, leakage inductance, windings resistance and operation frequency of the 

system. 

The total efficiency of the system depends on the Q and k factors. The efficiency of the 

transformer is almost inversely proportional to the distance between the two coils, so it decreases 

exponential by increasing the distance. However, the transformer performance is proportional to 

the Q (quality factor) and k (coupling factor) of the transformer. 

The quality factor is defined as the ratio of the energy stored in the inductor versus the 

dissipated energy in the system. This factor is proportional to the frequency of the operation. As 

the result, the higher the operation frequency of the system, the higher the quality factor of the 

transformer. On the other hand, the coupling factor which is defined based on the ratio of the 

mutual inductance versus the self-inductance of the windings is determined based on the hardware 

design and physical position of the system. 

The high frequency operation of the system has some disadvantages for the system. For 

instance, it could potentially create EMI problems, it increases the switching loss, and it increases 

the transformer loss. The transformer loss increases for higher fs due to higher reactive impedance 

and higher skin effect. Litz wire is a common type of wire to tackle this effect in the HF converter 

applications. Litz wire decreases the skin effect by subdividing the conductor to very smaller 

insolated conductor strands with proper shields. Each of the very tiny strands in the wire is 

insulated from the other strands around it. Several hundreds of the strands form a larger wire size 

needed for the rated current. The other option to avoid the drawback of the high frequency is to 

use copper tube which is preferred from the point of better thermal conductivity [20-23]. 
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Converter Circuitry and Control Strategy Power  

It is necessary to have an accurate model of the system in order to properly control the 

parameters of all components of the system. A proper mathematical model of the system gives a 

high level idea about the whole system and helps in understanding the relationship between the 

system parameters for optimization and computer analysis. 
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Figure 4-1. General architecture of the System components 

The subject of this study includes multiple levels of power electronic converters, one resonant 

tank and two coupled windings. The different parts of the system are shown in this Figure 4.1.  

Following is the analysis of the subsystems (1) to (6). 

4.1 Part 1 

This first subsystem is the input three phase active rectifier. The defined task of this part is 

to convert the low frequency three phase input to a DC voltage. In this design the rectifier is bi-

directional to potentially be able to participate in supporting the grid. This PWM rectifier is 
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controlled using a conventional control method which is based on transferring measured values 

from ABC frame to direct-quadrature-zero (dq0) synchronous rotating coordinate frame [27].  

3 phase 
AC Input

50/60 Hz

Active 

Rectifier

 

1

 

Figure 4-2, 1st Part of the Circuit-3Ph Active rectifier 

In this method, three phases of the AC waveforms are transferred to dq coordinate system 

which is synchronous with the fundamental grid. A PLL captures the phase of the grid to be used 

in the control logic of the coordinate system. 

Equation (4-1) shows the transformation formula between ABC and dq0 frames. This conversion 

simplifies the calculations and control by converting the sinusoidal math into the simple math of 

the DC values. 
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    (4-1) 

Then, the transformed values are fed into a two-PI controller to regulate the expected output 

DC voltage. The first PI adjusts the error of the comparison of Vdc reference and Vdc measured 
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and generates a reference for id. This reference value is compared with the id and a second PI 

works to make it zero. On the other hand, the reference for the iq value is set to zero and a PI 

controller adjusts the error between this reference and iq value to zero. The output of the last PI is 

fed into a reverse transform block to generate values in ABC frame from the dq frame values. The 

output of this block is the reference for the PWM generators. 
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Figure 4-3. Control Structure of Three Phase Active Rectifier 

The maximum DC value which could be regulated using this rectifier is equal to 1.65 times of the 

input AC voltage [27]. 

4.2 Part 2 

The second part of the circuit is the HF inverter. This part converts the input side DC voltage 

to HF AC voltage to be fed to the resonant circuit and the transformer. The main part of the 

circuitry of this converter starts from this HF inverter, and finishes at the end of part 5. The main 
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focus of this study is on analyzing and control of this core section. The applied logic in the 

controller design of this section regulates the expected DC voltage at the output of part 5.  
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Figure 4-4. Input Side HF Inverter 

The configuration of this converter is a four switch H-Bridge inverter. This single-phase converter 

consists of two legs. The cross switches of the two legs are paired in switching to generate a 

controlled AC shape waveform. The operation frequency of this converter is selected based on the 

design of the resonant circuit. The resonant circuitry and the gain analysis of the system based on 

the effect of the different parameters and variable frequencies are described in the next section. 

The inverter controller uses a combination of phase shift control (PSC) and pulse frequency 

modulation to regulate the HF AC voltage at the output of the H-Bridge and ultimately the 

converter output.  
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Figure 4-5. Feedback and controller configuration of the inverter 

The phase shift controller is very common in the control of the converters with the similar 

topology. Here, in order to control the DC-DC converter between subsystems 2 to 5, there is only 

one active switch based converter. To apply PSC on this converter, the relative phase of the two 

pairs of switches is controlled to adjust the square shape output of the inverter and ultimately the 

DC voltage at the output of part five. This phase adjustment changes the duty cycle of the square 

shape AC voltage and affects the magnitude and harmonic content of the voltage which is fed to 

the primary of the inverter. 

The gate signals (Fig. 4-6) are four repeating square shape pulses with the frequency of 

switching. There are two parameters in these pulses that could be used in order to control the output 

of the converter. The phase shift between the paired switches which determines the duty cycle of 

the pulses and the operation frequency of the converter. The operation frequency is also used in 

the control of this system to cover a wider range of load. It also helps achieving zero voltage 

switching (ZVS) which is limited for the whole load range in the systems with only PSC. 
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Figure 4-6. Gating of the Phase Shift Controller 

4.3 Part 3 

Figure (4-7) is the third part of the circuitry that is the resonant tank. The resonant thank is 

a passive component of the circuitry of converter. The components of this section are designed to 

achieve a range of resonant frequency. Type of the PE switches, magnetic design of the 

transformer, and expected power rating of the system are the effective parameters in the design of 

the resonant tank.  
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Figure 4-7. General Configuration of the Series Resonant Tank 

The design of this circuit affects the controller design, operation frequency, soft switching 

strategy and loss and efficiency of the system. It generally consists of a capacitor and an inductor. 

As it was discussed before, the resonant circuitry of this converter is selected to be series loaded 

resonant (SLR) circuit. In this configuration one resonant capacitor (Cr), one resonant inductor 

(Lr), and the magnetizing inductance of the transformer form a LLC resonant system. 

4.4 Part 4 

The forth part of the system configuration is the transformer. In a wireless charging system, 

the transformer structure basically includes two windings and an air core as shown in figure (4-8). 
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Figure 4-8 High Frequency Transformer 

4.5 Part 5 

Part five of this circuit is the output rectifier. This part is a diode bridge rectifier which is a 

passive component and does not need any direct control. The figure (4-9) shows the schematic of 

the output rectifier. 

Rectifier

5

 

Figure 4-9 Output Side Rectifier 
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Simulation and Result Analysis 

5.1 Simulation of the System 

The system is simulated using MATLAB/Simulink software (Figure 5-1). A 100 kW PFC 

rectifier is connected to the 208- 480 VAC input. It converts AC voltage to generate the input side 

DC voltage. The 330 kW LLC resonant dc-dc converter in the next step will regulate and control 

the output DC voltage for charging the car battery. The nominal power, output voltage, and 

maximum current of the converter are considered to be 330kW, 350V, and 950 A, respectively. 

The simulation is performed for different load conditions and switching frequency of 30 kHz. 

Table 5-1 shows the parameters that are used in the simulation. 

Table 5-1.simulation parameters 

Item Rating Unit 

Input voltage 600-800 V 

Output Voltage 350 V 

Output Power 330 kW 

Maximum Current 950 A 

Resonant Frequency(fr) 30 kHz 

Minimum Frequency(f2) 15 kHz 

Maximum Frequency(f1) 60 kHz 
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5.2 Output Voltage, Current, and Power for Different Loads  

A controller using a combination of frequency control and phase shift control is developed 

and used for this system, in order to adjust current and regulate the output voltage of the system. 

Figure 5-2 shows the output voltage, current, and power waveforms for the system in the different 

conditions. It also shows how the controller regulates the reference values. Frequency and phase 

shift controller are a working together to meet the requirements. Each scope is divided into three 

parts, in order to simplify the explanation of the details which will be discussed in the following 

sections. The frequency and phase shift changes for meeting the target voltage and power is shown 

in 5-3. 

Figure 5-1. Simulated circuit in MATLAB/Simulink environment  



 

55 

 

 

Figure 5-2. Waveforms of output voltage, current and power between 0-1second. 

 

 

Figure 5-3.Waveforms of output power, switching frequency and phase shift between 0-1 s. 
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The waveforms in figure 5-4 show the output voltage, current and power of the system 

between the time 0-0.3 second. The voltage reference for the output voltage is the red color 

waveform in the first scope which starts from 300V with the upper limit of 350V. The blue 

waveform, is the actual output voltage which starts from zero and goes up to 300V in the first step. 

It stays constant until the reference voltage changes to 350V at 0.1 second. The second change will 

happen for the system at 0.2 second. The simulation results show that the system can properly 

regulate the output voltage based on the reference values. However, the reference current which is 

set as the maximum current limit is constant and equal to 950A during this time interval.  

The output current waveform starts from zero and increases to 800A until the time 0.1 

second, and then increases to 950A by increasing the output voltage. The output power of the 

system is shown with the red color in figure 5-4. The output power changes as the result of the 

changes in the current and voltage levels. Power of the system will reach its maximum peak of 330 

kW between the times 0.1-0.2 second.  

 

Figure 5-4. Waveforms of output voltage, output current, and output power between 0-0.3 s. 
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Figure 5-5 shows the changes in the switching frequency and phase shift value between the 

time 0-0.3 second. The output voltage in some levels could be regulated using only frequency 

control and there is no need for the phase shift changes. However, when the operation frequency 

is limited between 20 kHz to 60 kHz, the phase shift control helps the controller to meet the 

requirements. 

 

Figure 5-5. Waveforms of switching frequency and phase shif between 0-0.3 s. 

 Figures 5-6 and 5-7 are the simulation results of the output parameters between the of 0.3-

0.7 second. The reference output voltage which is 250 is reduced close to zero between the time 

0.4 -0.5 second. The output voltage could be regulated to this reference value by frequency control. 

However, at the time 0.44 second, frequency of the inverter is at its maximum point, and cannot 

go higher to reduce the output voltage more. Then, the controller’s response is to increase the phase 

shift to decrease the effective duty cycle. This reduces the output voltage to follow the output 

reference. The phase shift could reach 180 degrees which is zero duty cycle and the converter is 

not converting any voltage at the AC side in this phase.   
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Then, in the time between 0.5-0.6 second, the output reference increases to the voltage of 250V 

again. In this situation, frequency and phase shift control are still working together until a certain 

value of output voltage. After that, when the frequency is in the range between upper and lower 

limit of the frequency for the system, frequency control can regulate the output voltage without 

phase shift controller.  

 

Figure 5-6. Waveforms of output voltage, output current, and output power between 0.3-0.7 s. 
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Figure 5-7. Waveforms of switching frequency and phase shif between 0.3-0.7 s. 

At the time between 0.7 to 1 second, another load is increased. The effect of the load change 

in the system is shown in the waveforms of the figures 5-8 and 5-9. The system is working in its 

maximum voltage, current and power until the time 0.8 second that an extra load was added to the 

output. In this condition, the output current will go up arbitrary, but the current of the system was 

at its maximum of the 950 A. In order to prevent current from increasing higher than the desired 

value, the voltage decrease from its maximum while the reference voltage is still 350 V. As a 

result, the current stay at its peak while the voltage and the output power will decrease. The phase 

shift control is not working at this time, but the frequency control is working to manage the system 

based on the output feedbacks. Figures 5-8 and 5- are the waveforms of output parameters in the 

time between 0.7 and 1 second. 
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Figure 5-8. The waveforms of output voltage, current and power between 0.7-1 s. 

 

Figure 5-9. Waveforms of switchig frequency and phase shift between 0.7-1 S. 



 

61 

 

5.3 Modes of Operation 

As it was explained in chapter 3, there are three modes of operation for the converter based 

on different loads, and input voltage conditions. The three modes of operation are below the 

resonance, at the resonance and above the resonance frequency.  

In each of these three modes, the converter has two possible operations within the switching 

cycle that are power delivery operation and freewheeling operation. Each mode may include one 

or both of these operations.  

The power delivery operation happens twice in a switching cycle; when the resonant tank 

is excited with the positive and negative voltages. Positive voltage causes positive direction for 

the current of resonant tank in the first half of the switching cycle while negative voltage causes 

the current to resonate in the negative direction. The negative and positive output voltage reflect 

on the magnetizing inductor and the magnetizing current are charged and discharged respectively. 

The difference between the resonant current and the magnetizing current goes to the secondary 

side of the transformer through the rectifier and power delivers to the load [26]. 

The freewheeling operation happens when the switching frequency is below the resonant 

frequency(fs<fr) when the magnetizing current is equal to the resonant current, and the current in 

the secondary side reaches zero while no power transfers to the secondary side. 

The simulation results clearly show the two operations in the three modes of frequency. 

When the switching frequency of the converter is equal to the resonant frequency that is 30 kHz 

in this system, the resonant half cycle is completed during the switching half cycle and each of the 

half switching cycle has a complete power delivery operation [26]. The waveform in the figure 5-

10 shows the input voltage, and resonant current and voltage when fs=fr. 
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Figure 5-10. Waveforms of input voltage, inverter’s current and voltage when fs=30kHZ 

 The input DC voltage is 600V in this frequency, and the converter operates at its nominal 

input and output voltages. The magnetizing current is equal to the resonant current, and the current 

of the secondary side reaches zero at the end of each half cycle. 

The simulation results are also shown when the switching frequency is above resonant 

frequency that is fs>30kHz. In this case, the resonant half cycle is interrupted by the starting of the 

other switching half cycle. As a result, a partial power delivery happens in each switching half 

cycle, and the turn off loss on the primary MOSFET increases. Figure 5-11 is the waveform of the 

input voltage, inverter’s voltage and current in this mode. 
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Figure 5-11. Waveform of input voltage, inverter’s current and voltage when fs> 30kHZ 

The maximum switching frequency of the converter is 60kHZ. the waveform in the figure 

5-12 shows the waveform of input voltage, inverter’s voltage and current in this frequency. 

 

Figure 5-12. The waveforms of input voltage, resonant voltage and current when fs=60kHz 
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 The third mode of operation in this system happens when the switching frequency is below 

the resonant frequency, fs<30kHZ.  In this mode we have both power delivery operation and 

freewheeling operation in each switching half cycle. When the power delivery is completed in the 

first resonant half cycle, and magnetizing current reaches to the resonant current, the rectifier’s 

current decreases to zero, and the freewheeling operation starts until to the end of switching half 

cycle. The resonant current changes slightly in the freewheeling interval. Figure 5-13 shows the 

waveforms of input current, inverter’s voltage and current when fs<30 kHz. 

 

Figure 5-13.Waveforms of input voltage and inverter’s voltage and current when fs<fr 

5.4 Efficiency 

The energy efficiency of the wireless charger system depends on the loss in the different 

components of the system. This includes the efficiency and loss in three phase rectifier, and LLC 

resonant converter (switching loss, and the transformer loss).  
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The converter is designed based on the wideband gap devices. The preferred PE switch for 

the selected range of frequency is SiC based MOSFET and diodes. Diode conduction has a 

significant loss relatively, In the industrial applications, choosing a low loss diode can improve the 

efficiency of the system. for the diode bridge rectifier part, the efficiency is the ratio of the output 

DC power to the total amount of AC power from the transformer. 

The expected efficiency of this topology based on the illustrated design and component 

selection is shown in the following table. Based on the literate review and simulation results the 

efficiency of this system is around 95%. 

Table 5-2. Itemized efficiency of the system 

Item Part description  Efficiency % 

Part#1 Three phase grid connected active rectifier  95 

Part#2 HF single phase H-Bridge inverter based on SiC Mosfet 98 

Part#3  Single Phase Diode Bridge Rectifier 96 

Part#4 Transformer 99 

Total The whole system 95 

 

 

5.5 Power Loss Calculation 

An approximation of power loss of the system can be calculated by finding three major 

components of the loss that are wiring loss (Pw), switching loss of the system(Ps), and core loss 

of the transformer (Pc).  These parameters can be found by using the equations (5-1) -(5-7).  Wiring 

loss is the combination of the loss of MOSFETs, the copper loss of the transformer, and the 
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conduction loss of the diodes. Power loss of the system is the summation of all the major loss 

components. Rt in the equation (5-2) is the resistance on the MOSFETs, diodes, and the 

transformer wires altogether. In order to find the switch loss, a CREE MOSFET is chosen for this 

application and a second order polynomial is fitted over HI? and HIJJ. The ON+OFF energy is 

multiplied by the switching frequency. 

Resonant current of the system, and output power of the system also can be calculated by 

using equations (5-6), and (5-7). 

       (5-1) 

         (5-2) 

       (5-3) 

        (5-4) 

        (5-5) 

    (5-6) 

        (5-7) 
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The core loss of the transformer is related to the switching frequency, ��K, and the flux 

density, L. A ferrite core is chosen, and the coefficients of the loss function are fitted based on the 

data sheet. 

The charger’s power can be controlled by the phase shift (duty cycle) or the switching 

frequency (gain , �). The power regulation approach in this project is as follow: 

When the power is low, the switching frequency is kept constant at 60 �PQ and  the power 

is regulated by adjusting the phase shift. 

However, for higher power when the duty cycle is saturated, the power is being regulated 

by adjusting the switching frequency. Lower switching frequency corresponds to higher gain 

which increases the power transfer. Waveforms of the calculated loss, and efficiency of the system 

are shown in figures (5-14)- (5-16). 

                 

       (a)       (b) 

Figure 5-14. Different loss parameters: (a) Wiring loss, (b) core loss of the transformer. 
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(a)       (b) 

Figure 5-15. Different power components: (a) Switching loss, (b) Output power. 

               

(a)       (b) 

Figure 5-16 . Total power parameters: (a) Total loss of the system, (b) Efficiency of the system 

The wiring loss always has the same pattern as output power in this system and is at its maximum 

when fsw = 30kHz. Navy blue color in the waveforms is the minimum power, and dark red shows 

the maximum power. Core loss of the system also will be higher at this frequency which is the 

resonant frequency of the converter as shown in the figure 5-14. (b). However, switching loss of 

the system will be higher at the maximum switching frequency of the system which is 60 kHz. 

When the three loss parameter of the system are calculated, the total power loss of the system can 

be found easily.  As shown in figure 5-15. (b), the maximum output power of the system can be 
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achieved when the switching frequency is equal to resonant frequency of the system, and also 

power loss of the system will be at its maximum in this point. As a result, the maximum efficiency 

of the system will be achieved when the system is working at its resonant frequency.  
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Conclusion 

The focus of this research is on modeling, analyzing, and simulation of a resonant topology 

for Wireless Power Transfer for the application of charging electrical vehicles. Development of 

this technology is attracting a lot of attentions in the car industry to provide safer and more 

convenience charging experience for the EV car drivers. In addition, with the increasing number 

of EVs, the WPT chargers enables some other features like charging while the car is moving, and 

charge share between vehicles in the near future. 

The latest technology developments in the field of power electronics, which allow compact 

design of the high power and high frequency design of the power electronics converters, is a major 

enabler factor for this technology.  

The illustrated topology of this research is a grid connected charging station with an 

integrated energy storage on the primary side converter for supporting the high demand in the peak 

time periods. This energy storage station is sized as one third of the nominal power of the power 

electronic stations after it. It is also defined with the capability of supporting the grid in the event 

of the demand for active or reactive power. 

Different components of the converter are illustrated, and mathematically analyzed in this 

research. It starts with a grid tied three-phase active rectifier. The control and simulation of this 

topology is described based the classic method of converting the signals from the ABC frame to 

the dq0 frame. However, the main focus of the design and control development in this work is on 
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parts after the input side DC busbar. This section of the circuitry includes a HF inverter, a resonant 

tank, a HF transformer and a HF diode bridge rectifier. 

The resonant design of the converter helps achieving soft switching in the converter. The 

configuration of the LLC resonant circuit is analyzed, mathematically modeled and simulated to 

help the design of the whole system. This detail analysis helps the designers in selecting optimal 

frequency of operation and sizing the components of the resonant tank. These factors directly affect 

the design of the transformer and highest achievable efficiency level for the converter. 

The technologies of electrical cars, hybrid and hybrid plug-in cars is introduced briefly. 

Then the different known topologies of WPT technologies are categorized, introduced and 

illustrated in this study. 

A mix of phase shift and variable control method is selected to control the flow of current 

and regulate to voltage at the charging port. The controller varies the frequency between 30 kHz 

to 60 kHz. The modes of operation of DC/DC part of the circuit is analyzed based on the path of 

current through switches and diodes. 

Finally, the modeled system is simulated. The simulation results show the effectiveness of 

the proposed design and control method for delivering a regulated voltage, and regulated level of 

power to the output port and to achieve soft switching. The system is evaluated with different 

reference command. The controller properly meets the target and achieves the soft switching which 

reduces the switching loss dramatically. 
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