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ABSTRACT 
 

UNRAVELING PLAGUE ECOLOGY THROUGH VECTOR AND HOST GENOMICS 

by 

Rachael M Giglio 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Emily Latch 

 
 

The transmission of vector-borne diseases involves complex interactions between vectors and 

their host species. These complex host-parasite interactions can be difficult to study with 

traditional, field-based methods. My dissertation aims to use a population genomics approach to 

elucidate transmission pathways of plague among prairie dog colonies. Plague is a flea-borne, 

zoonotic disease caused by the bacterium Yersinia pestis. It is infamous for causing the Black 

Death (1347-1353), one of the most devastating pandemics in human history. Since its 

emergence in North America around 1900, plague has spread to native rodents, thus creating a 

sylvatic cycle. Prairie dogs (Cynomys spp.) are highly susceptible to the disease, experiencing 

>90% mortality during outbreaks. Further, prairie dogs exacerbate the spread of plague by acting 

as an amplifying host, initiating epizootic events. In the first chapter of my dissertation, I 

examine how the landscape influences the connectivity of black-tailed prairie dog colonies in 

order to better understand the role of prairie dogs in plague transmission. I found that slope and 

bodies of water explain effective dispersal better than geographic distance alone. My second 

chapter describes patterns of connectivity for Oropsylla hirsuta, the main flea species found on 

prairie dogs and a known vector for plague. I compare those patterns of vector-mediated plague 

transmission to the host (prairie dogs) and potential alternative hosts [Northern grasshopper mice 

(Onychomys leucogaster) and deer mice (Peromyscus maniculatus)] to uncover alternative 
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modes of transmission. I found that the best performing model used patterns of connectivity for 

prairie dogs and deer mice to explain patterns of connectivity for O. hirsuta. My third chapter 

uses both neutral and putatively adaptive loci to characterize patterns of genetic variation for the 

threatened Utah prairie dog in order to improve recovery efforts for this threatened species. I 

found low species-wide genetic variation and high population divergence among sampling sites, 

which suggests that this species is highly vulnerable to the effects of genetic drift. Overall, this 

dissertation not only improves the conservation and management of prairie dogs in light of 

devastating plague outbreaks, but also provides a more general population genomics framework 

suitable for elucidating transmission pathways of wildlife diseases. 
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Abstract 

The degree of connectivity among wildlife populations influences the retention of genetic 

diversity and has implications for the spread of disease. Connectivity is determined not only by 

the distance among populations, but also by characteristics of the landscape that an animal has to 

traverse during dispersal events. To quantify how the landscape influences connectivity of black-

tailed prairie dog populations, we generated a population genomic dataset of 3,416 single 

nucleotide polymorphisms (SNPs) from 300 individuals from 10 sites within the Charles M. 

Russell National Wildlife Refuge in northern Montana. Prairie dogs suffer from severe 

population declines (typically killing >90% of a colony) during plague outbreaks. These 

outbreaks drive metapopulation dynamics, which are characterized by local extirpation followed 

by recolonization. Recolonization events are crucial to population viability, yet we lack 

information about how the landscape influences connectivity among colonies. We used a circuit 

theory-based approach to characterize the influence of the landscape on prairie dog dispersal. We 

determined that landscape features are better predictors of prairie dog dispersal than distance 

alone. The best performing model suggests that high slopes and bodies of water impede prairie 

dog dispersal, potentially shielding populations with such intervening habitat from plague 

exposure. Incorporating landscape features improves our predictions of prairie dog movement, 

advancing our understanding of recolonization dynamics and enhance our ability to predict 

where and why plague outbreaks occur. 
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Introduction 

Wildlife populations often occur in a mosaic of heterogenous habitat across the landscape with 

differing degrees of connectivity. Different landscape features have diverse impacts on 

connectivity. The field of landscape genetics aims to quantify these differences by determining 

their effect on spatial genetic structure (Manel et al. 2003; Storfer et al. 2007). The ability to use 

landscape data to predict population connectivity is important for conservation planning. The 

success of conservation programs is often dependent on accurately characterizing and 

encouraging connectivity among small populations. These small and isolated populations are 

often characterized by low genetic variation, making them vulnerable to extinction and limiting 

their potential to adapt to future environmental change (Frankham 1996; Barrett and Schluter 

2008; Savolainen et al. 2013; Tigano and Friesen 2016). By promoting or re-establishing 

connectivity among these vulnerable populations, we can mitigate the loss of genetic variation 

and maintain long-term viability.  

 

Species with limited to moderate dispersal are predicted to follow an isolation-by-distance (IBD) 

model, where genetic structure can be explained by geographic distance (Aguillon et al. 2017). 

However, the dispersal of organisms is also affected by variables such as behavior, physical 

barriers, and landscape configuration and heterogeneity (Vallinoto et al. 2006; Hollatz et al. 

2011). To test different hypotheses of connectivity, we can use a circuit theory approach to 

quantify the movement of individuals through the landscape (McRae 2006). In this approach, 

different landscapes features are assigned a resistance value based on the individual’s inability to 

move through that feature in what is called an isolation-by-resistance (IBR) model. By using a 

quantitative framework to investigate and compare these different models (IBD and IBR), we 
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can infer patterns of dispersal that can guide management decisions to encourage natural gene 

flow (Ma et al. 2018; Epps et al. 2007; Cleary et al. 2017; McRae et al. 2008). The inferences we 

can make depend on the level of resolution in our data; dense sampling across the landscape and 

across the genome, using high resolution markers such as single nucleotide polymorphisms 

(SNPs), permit fine-scale analysis and ultimately improve our predictions of connectivity 

pathways (Luikart et al. 2003; Morin et al. 2004). 

 

In this study, we used black-tailed prairie dogs (Cynomis ludovicianus) to test the competing 

hypotheses of IBD and IBR on population divergence in order to understand what drives patterns 

of connectivity – and thus population viability – in this species. Black-tailed prairie dogs are 

highly social burrowing mammals that are considered ecosystem engineers, as well as a keystone 

species of grassland ecosystems. Their burrows create habitat that benefits numerous species, 

including burrowing owls (Speotyto cuniculaira) and mountain plovers (Eupoda montana) 

(Tipton et al. 2008). Further, prairie dog declines have hindered the recovery of the endangered 

black-footed ferret (Mustela nigripes), which preys almost exclusively on prairie dogs, shelters 

in their burrows, and is susceptible to the diseases they carry (Matchett et al. 2010).  

 

Population connectivity of black-tailed prairie dogs is likely dependent on a mixture of factors 

such as disease, behavior, and landscape. Prairie dogs are highly susceptible to plague, a disease 

caused by the bacterium Yersinia pestis. Once plague enters a prairie dog colony, it moves from 

coterie (small family group of prairie dogs) to coterie until nearly the entire colony is extirpated 

(near 100% mortality rate; Cully and Williams 2001).  Further, these outbreaks (referred to as 

epizootics) drive metapopulation dynamics since they cause local extirpation events, which are 
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followed by recolonization events (Roach et al. 2001; Antolin et al. 2006; Augustine et al. 2007; 

Sackett et al. 2013). Dispersal events are rare because of the highly social nature of prairie dogs; 

when they do occur, dispersal to neighboring colonies is more likely to occur than long-distance 

dispersal (Hoogland 2013). These dispersal dynamics suggest that patterns of connectivity are 

driven primarily by geographic distance (IBD). However, prairie dogs are grassland specialists 

and may follow patterns of IBD in contiguous areas of grassland, but other landscape features 

may impede connectivity.  

 

Our main objective was to understand how the landscape influences connectivity in terms of 

population divergence in black-tailed prairie dogs. To address this objective, we had two core 

aims. The first aim was to characterize genetic variation and spatial genetic structure using a 

population genomics dataset, to quantify connectivity within and among prairie dog colonies. 

Second, we evaluated landscape features to determine their impact on connectivity, to identify 

the model that best predicts prairie dog population structure. By understanding how the 

landscape influences the connectivity of colonies, we may begin to predict its contribution to 

metapopulation dynamics, especially relevant in the context of plague-mediated extinctions. 

 

Methods 

Study Area 

To evaluate different models of connectivity, we sampled 10 sites of black-tailed prairie dogs 

within the Charles M. Russel Wildlife Refuge located in North-central Montana (Fig. 1.1). 

Sampling within the wildlife refuge encompassed roughly 110.2 hectares within an extent of 

106,966.8 ha of heterogeneous habitat with an elevation gradient of 700 m to 867 m. The refuge 
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also contained bodies of water, such as the Missouri River south of the sampling locations. The 

uplands of the Missouri River, where the study sites are located, are primarily composed of 

rolling prairies. The distance between sites varied with a maximum of 34 km and a minimum of 

0.86 km. 

 

Generating the SNP Dataset 

The hair and whiskers used for this study were collected from black-tailed prairie dogs during an 

oral sylvatic plague vaccine field trial as described in Rocke et al. (2017). DNA was extracted 

from hair and whisker follicles using a spin-column based method using the Zymo Research 

Universal Quick-DNA miniprep kit (Zymo Research) following the manufacturer’s feather 

extraction protocol. The quantity of DNA was measured using a Qubit (Invitrogen) with the high 

sensitivity kit for double-stranded DNA. We used double digest restriction-site associated DNA 

(ddRAD) sequencing (Peterson et al. 2012) to identify genotypes for a total of 300 individuals 

(mean per site=30). DNA was sheared using HindIII and NlaIII restriction enzymes followed by 

a 300-600bp size selection step (Pippin Prep, Sage Sciences). Raw sequences were aligned to a 

Gunnison’s prairie dog (Cynomys gunnisoni) genome (Sackett pers comm) using the BWA short-

read aligner with default parameters using the BWA-MEM alignment algorithm (Li and Durbin 

2009). Contigs were then assembled and filtered using the program STACKS v1.48 (Catchen et 

al. 2011) following the protocol outlined in Rochette and Catchen (2017). 

 

Single nucleotide polymorphisms (SNPs) were identified after a series of filtering steps. First, in 

order the reduce linkage disequilibrium, we only used one SNP per contig. If more than one SNP 

was identified in a contig, only the first in the contig (5’ most SNP) was retained for downstream 
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analyses. Second, we filtered loci with minor allele frequencies <0.05, as they may represent 

PCR errors. Third, to reduce the presence of multi-copy loci and paralogs, which can affect 

population genetic analyses, we removed loci with an observed heterozygosity above 0.70 and an 

average depth greater than twice the mode (90.93) (Willis et al. 2017; O’Leary et al. 2018). 

Fourth, only loci that were present in all sites in at least 80% of individuals per site were retained 

for analyses. Fifth, individuals with greater than 30% of missing data were removed from 

analyses. Filters to keep only a single SNP per contig, remove loci with minor alleles, remove 

loci with excess heterozygosity, and keep only loci found in all sampled sites in at least 80% of 

individuals were executed in the populations module of STACKS. The average depth of 

coverage for each locus and the amount of missing data per individual were calculated using 

VCFtools (v.0.1.16; Danecek et al. 2011) and removed using the R package adegenet v.2.1.1 

(Jombart and Ahmed 2011). 

 

Characterizing Genetic Variation 

We characterized genetic variation in terms of observed and expected heterozygosity (HO and 

HE), allelic richness (AR), number of private alleles (PA), and inbreeding (FIS). Heterozygosity 

(both HO and HE) were calculated using the R package adegenet (Jombart and Ahmed 2011). 

Allelic richness, or the average number of alleles per locus, was calculated using the R package 

hierfstat v.0.04-22 with rarefaction to account for uneven sample sizes (Goudet and Jombart 

2015). The number of private alleles, or alleles unique to that sampling site, was calculated using 

the R package poppr v.2.8.2 (Kamvar et al. 2014). We calculated FIS (a measure of 

heterozygosity excess) to characterize the level of inbreeding within each sampling site. We 
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generated a 95% confidence interval of FIS using the R package diveRsity with 1,000 bootstraps 

(Keenan et al. 2013).  

 

Characterizing Genetic Structure, Patterns of Gene Flow, and IBD 

First, we used a principal component analysis (PCA) to visualize patterns of genetic variation 

using the R package ade4 v.1.7-13 (Chessel et al. 2004; Dray & Dufour 2007). Individuals were 

assigned to genetic clusters using an ordination-based method (discriminant analysis of principal 

components; DAPC) performed in the R package adegenet (Jombart et al. 2010, Jombart and 

Ahmed 2011) and a Bayesian program (STRUCTURE) (Pritchard et al. 2000). For 

STRUCTURE we ran 10 iterations of 100,000 burn-in iterations followed by 100,000 MCMC 

repetitions for each value of K (the number of genetic clusters) from 1 to 7. We ran 

STRUCTURE using the admixture model with correlated allele frequencies. We used 

STRUCTURE HARVESTER (Earl and Vonholdt 2012) to choose the optimal K, assessing both 

the mean LnP(K) and the ∆K methods (Evanno et al. 2005). Individuals were assigned to genetic 

clusters using the program CLUMPP 1.1.2 (Jakobsson and Rosenberg 2007) based on the 

proportional assignments (q values) generated from STRUCTURE. We performed the DAPC 

unsupervised (which is based on K-means) and supervised (based on the Bayesian information 

criterion (BIC)) to identify the optimal K. 

 

We used two pairwise statistics to measure gene flow among sites, FST (calculated in the R 

package hierfstat; Goudet and Jombart 2015) and the proportion of shared alleles (DPS, 

calculated in the R package PopGenReport v.3.0.4; Adamack and Gruber 2014).  The 

significance of pairwise gene flow measurements was assessed by randomly reassigning a 
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population to each individual for 1,000 bootstraps. We used the false discovery rate (FDR) to 

correct p-values for multiple comparisons (conducted in R; R Core Team 2018; Benjamini and 

Hochberg 1995). Further, we measured the degree of migration (NM) among sites using the 

divMigrate function in the diveRsity v1.9.89 package in R (Keenan et al. 2013; Alcala et al. 

2014) and generated 95% confidence intervals for 1,000 bootstraps. Migration networks were 

created using the R program qgraph (Epskamp et al. 2012). To detect patterns of IBD, we 

performed a mantel test in the R package ecodist (Goslee and Urban 2007) using DPS and 

geographic distance, calculated using the R core function dist (R Core Team 2018). 

  

Isolation by Resistance 

In order to elucidate the role of different landscape features in shaping population genetic 

structure in black-tailed prairie dogs, we used 8 landcover types from the National Landcover 

Database (NLCD; Jin et al. 2013) that were found within the geographic extent of the study (Fig. 

1.2). The landcover types included barren land, cultivated cropland, evergreen forests, 

grassland/herbaceous, emergent herbaceous wetland, shrubland/scrubland, open bodies of water, 

and woody wetland at a resolution of 30 meters × 30 meters. Each of the 8 landcover types were 

assigned a range of resistance values (0.01, 0.1, 10, 100) to assess whether it hinders 

(resistance>1) or promotes (resistance<1) connectivity while all other features within each 

resistance surface (rs) were given a uniform value of 1 to represent the cost of distance. 

Resistance values were evaluated based on their ability to explain population divergence. 

Additionally, we assessed the influence of elevation and slope on genetic structure. Elevation 

data was obtained from the National Elevation Database (NED; Archuleta et al. 2017) at a 

resolution of 1 arc-second (approximately 30 meters). Slope was assessed by converting the 
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elevation raster to slope using the R package raster v2.8-19 following the 8-neighbor rule 

(Hijmans 2019). All IBR models were compared to a null hypothesis of IBD by generating a 

resistance surface with uniform resistance (resistance=1) for all pixels. 

 

To compare IBD and IBR models, we used the program CIRCUITSCAPE v.4.0 (McRae and 

Shah 2011) to calculate the effective resistance for each landcover feature, distance, elevation, 

and slope. The effective resistance for each landcover feature was scaled and compared to 

genetic distance (calculated as the shared proportion of alleles) using linear mixed effect models 

with the R package lme4 (Bates et al. 2015). In order to correct for dependency among sites, we 

used a maximum-likelihood population-effect (MLPE) method (Clarke et al. 2002; van Strien et 

al. 2012), in which sampling sites were introduced as random effect terms and explanatory 

variables as fixed effect terms. Further, parameters within the MLPE model were fitted with the 

restricted maximum-likelihood (REML). The best univariate models were selected based on 

Akaike Information Criteria (AIC) and whether they performed better than the null (IBD) model. 

We also calculated the marginal coefficient of determination for each model (R2M) using the R 

package MuMIn v.1.43.6 (Bartoń 2019). To calculate R2M, models with fixed and random effects 

were compared to a null model (we used the IBD model). We determined the optimal resistance 

value of each landscape feature based on their model performance. In order to understand how 

complex landscapes influence gene flow, we used the top performing model (optimal resistance 

value) for each landscape feature to build multivariate models. Explanatory variables were 

evaluated for collinearity using their variance inflation factors (VIF) using the R package usdm 

v.1.1-18 (Naimi et al. 2014). Explanatory variables with high VIF (multicollinearity was 

assumed if VIF >4) were excluded in reduced models. 
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Results 

Generating the SNP Dataset 

After filtering using the populations module of STACKS, 3,771 SNPs were identified for 300 

individuals from 10 sampling sites. An additional 355 loci were removed due to high depth of 

coverage (greater than two times the mode=90.93), leaving 3,416 loci in the final analysis. A 

total of 4 individuals were removed from subsequent analysis due to a high proportion of missing 

data (>30%). The final number of individuals per site ranged from 13 to 40 (mean=29.6). 

 

Characterizing Genetic Variation 

The average observed heterozygosity ranged from 0.07 to 0.15 (mean=0.12) while the expected 

heterozygosity ranged from 0.12 to 0.37 (mean=0.19) (Table 1.1). Allelic richness ranged from 

1.32 to 1.91 (mean=1.57). Overall, eastern sites (3A,3B,4A,4B,5A, and 5B) had higher HO 

(mean=0.14) compared to western sites (1A, 1B, 2A, and 2B; mean=0.09; p= 0.01); however, 

western sites had higher levels of HE (mean=0.26) and AR (mean=1.79) than eastern sites (p= 

0.04). The exception to this pattern was site 3A, an eastern site with elevated HO (0.14) but that 

also showed the elevated HE (0.24) and AR (1.86) more characteristic of western sites.  Western 

sites had positive values of FIS, while eastern sites had negative values (indicating assortative 

mating); site 3A was again atypical of eastern sites and exhibited a positive FIS like other western 

sites. 

 

Characterizing Genetic Structure, Patterns of Gene Flow, and IBD 
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We observed population divergence between western (1A, 1B, 2A, and 2B) and eastern (3A, 3B, 

4A, 4B, 5A, and 5B) sites using PCA (Fig. 1.3). Further, we found that the presence of two 

genetically distinct clusters (K=2) was most supported by both the program STRUCTURE 

(based on both Ln|P and ∆K) and using the DAPC analysis (using unsupervised clustering and 

based on BIC) (Fig. 1.4; Fig. S1.1, S1.2, and S1.3). Genetic differentiation was detected between 

all sites using FST; however, paired A and B sites generally showed less differentiation (Fig. 1.5; 

Table S 1.2). Genetic differentiation was higher between the western-most sites (1A, 1B, 2A, and 

2B) than between sites in the east (3A, 3B, 4A, 4B, 5A, and 5B). The highest degree of 

differentiation was between sites 1A and 4A in terms of FST (0.80) and between sites 1A and 5B 

in terms of DPS (0.37). We detected significant IBD using the mantel test comparing DPS and 

geographic distance based on 999 replicates (observation= −0.76; p-value=0.003). Relative 

migration based on NM revealed high migration among the eastern sites (3A, 3B, 4A, 4B, 5A, 

and 5B) with relatively low migration occurring between eastern and western sites (Fig. 1.6). 

The little migration that occurred between regions was unidirectional, from eastern sites to site 

2B.  

 

Isolation by Resistance 

Univariate MLPE models showed that slope was the single variable that best explained genetic 

distance (R2M=0.74), followed by elevation (R2M=0.61). The optimal resistance values for 

evergreen forests, woody wetlands, herbaceous wetlands, open bodies of water, and cropland 

were 100, suggesting that they represent significant obstacles for prairie dogs to traverse (Table 

S1.1). Conversely, the optimal resistance values for grassland and barren land were 0.1 and 0.01, 

respectively, suggesting that they are conducive to prairie dog dispersal. Shrubland was the only 
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landscape feature that did not explain genetic distance better than the null (IBD) model (optimal 

resistance =10).  

 

We compared 1,014 MLPE multivariate models and found that the best performing model 

included slope, elevation, forest (rs=100), woody wetland (rs=100), open water (rs=100), 

cropland (rs=100), barren land (rs=0.01), herbaceous wetland (rs=100), grassland (rs=0.1), and 

shrubland (rs=10) (AICC =−59.01 and R2M = 0.60). However, we detected high multicollinearity 

within the fixed variables (VIF values ranged from 6.89 to 263961.60). We created 8 reduced 

MLPE multivariate models using only variables that showed no indication of multicollinearity. 

All eight reduced models included as fixed variables slope and one of eight other landcover 

variables (shrubland excluded). All reduced models had ∆AICC values under two, suggesting that 

they all had strong performance in their ability to explain patterns of connectivity. The best 

performing of the reduced models had slope and open water as fixed variables (AICC=−43.57 

and R2M = 0.71; Fig. 1.7; Table 1.2). 

 

Discussion 

Maintaining viable prairie dog populations is essential for the health of grassland ecosystems as 

they provide a host of valuable ecological functions (Martínez-Estévez et al. 2013). However, 

prairie dog populations are in decline due to a number of factors, including plague outbreaks. 

These epizootic events drive metapopulation dynamics, which are characterized by local 

extirpation events followed by recolonization events.  Recolonization is dependent on prairie dog 

dispersal to inactive burrows, which in turn is dependent upon features of the landscape that 

restrict or promote movement. Connectivity among populations is also important for mitigating 
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the erosion of genetic variation by drift within isolated populations. By characterizing patterns of 

genetic structure at high resolution, and incorporating landscape information in a circuit theory 

approach, we were able to 1) describe patterns of genetic diversity across prairie dog 

populations, 2) quantify the extent of prairie dog dispersal and the degree of connectivity 

between populations, and 3) tie connectivity to characteristics of the landscape that influence 

prairie dog movement. We observed strong population divergence between eastern and western 

sites, with evidence of limited long-distance dispersal among these two regions. Our study shows 

that although prairie dogs exhibit significant IBD, the inclusion of landscape features in an IBR 

model improves our ability to explain connectivity based on effective dispersal.  

 

We detected a high degree of population divergence between eastern and western sites 

(measured as FST and DPS). Further, our estimates of pairwise FST between these regions were 

much higher than previously reported in other black-tailed prairie dog populations (our highest 

FST=0.80; highest from previous studies =0.24; Pigg 2014; Antolin et al. 2006; Jones and Britten 

2010; Sackett et al. 2012). However, these studies were based on microsatellite loci rather than 

SNPs, which may result in different patterns of differentiation due to different mutation rates, 

resolution, and biases (Morin et al. 2004). Regardless of the methodology, it is clear that long-

distance prairie dog movement is highly restricted. In addition to low connectivity between 

regions, we detected a high degree of connectivity within regions. Specifically, connectivity 

among eastern sites was higher than anticipated, especially given that these sites are located 

roughly 18 km apart (compared to ~21 km between the closest eastern and western sites). This 

high degree of connectivity among eastern sites could be explained by their proximity to natural 

drainages. Previous studies have shown that prairie dogs are more likely to encounter a colony 



 15 

along drainage systems and that they can act as dispersal corridors (Garrett and Franklin 1988; 

Roach et al. 2001). These drainages are also represented as areas of low slope, the best predictor 

of dispersal in our models.  

 

Although population divergence is high between western and eastern sites overall, our results 

showed low but significant migration between specific sites (significant rates of NM ranged from 

0.03 to 0.10). This may explain the mixed genetic ancestry shown in some western sites. These 

migrant individuals from eastern colonies could be a result of long-distance dispersal events. 

Eastern and western sites are separated, for the most part, by grasslands. Grasslands, as long as 

vegetation is not too tall, has been shown to be highly conducive to prairie dog dispersal (Pigg 

2014). Our resistance models also showed that grasslands (and barren lands) were conducive to 

prairie dog dispersal. However, based on our best resistance model, slope, particularly when 

combined in a reduced model with open water, is a far superior indicator of prairie dog dispersal. 

The current map of this best performing reduced model suggests that individuals could be 

moving along the drainages around the Missouri river. This pattern agrees with the results from 

Roach et al. (2001), which show that natural drainages may act as connectivity corridors among 

colonies. Another possibility is that the mixed genetic ancestry in some sites is a signature of 

translocation. In 1999, an experiment was conducted in the CMR wildlife refuge to determine the 

best translocation practices for prairie dog (Dullum et al. 2006). Individuals were moved from 

private land north of the refuge to colonies within the refuge. Up to 120 prairie dogs were moved 

to new and existing colonies, creating the potential to significantly alter the genetic composition 

of sites. However, with a generation time of 1.5 years (Hoogland 1995), approximately 10 

generations had passed between the translocation and the time of sampling for this study. Barring 
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assortative mating, any remaining signature of the translocation would mostly be observed in 

admixed individuals.  We did not detect evidence of highly admixed individuals from our 

STRUCTURE or DAPC analyses, making it more likely that migrants are from more recent, 

undocumented translocations or natural dispersal. 

 

Incorporating landscape features as resistance surfaces improves our ability to explain 

connectivity. The MLPE model paired with DPS has been shown to work well in identifying 

patterns of IBD (Shirk et al. 2017) and avoids the elevated type I error found in other common 

approaches like partial Mantel tests (Raufaste and Rousset 2001; Legendre and Fortin 2010; 

Kierepka and Latch 2015). This approach has the added benefit of allowing for model 

comparison via AIC. For this study, all univariate models (with optimal cost values) performed 

better at explaining population divergence (measured as DPS) than geographic distance alone, 

with the exception of shrubland. However, it is important to note that the resistance surfaces 

have the optimal cost value assigned to pixels where the target landscape feature is present and a 

cost value of 1 for all non-target pixels. In doing this, we make distance implicit within each 

resistance surface. Therefore, landscape features with limited representation within the study 

extent (cropland, barren land, and herbaceous wetland had >1% representation) will have more 

representation of IBD within the model. Since IBD alone was significant, these models would 

perform well simply because they have a similar cost as IBD. However, if distance alone was the 

main driver of genetic differentiation, we would expect the furthest sites away to have the 

greatest differentiation (sites 2A and 5B). Instead, we found that sites 1A and 5B were the most 

differentiated. 
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Conservation implications 

Improving our ability to predict prairie dog movement advances our understanding of where and 

why plague outbreaks occur. In turn, this knowledge can be used to improve prairie dog 

conservation and enhance plague mitigation efforts. Vaccination efforts and insecticide 

application (e.g., flea dusting) can be used to protect individual prairie dog colonies from plague 

(Rocke et al. 2017; Tripp et al. 2017). Sites can be prioritized for these mitigation efforts based 

on genetic variation and degree of connectivity. For instance, populations with high genetic 

variation could be prioritized for outbreak mitigation efforts to maximize the conservation of 

genetic variation, adaptive potential, and the odds of long-term species viability. Our results as 

well as those of Proctor (1998) suggest that physical barriers, such as steep slopes, may help 

safeguard colonies from plague by reducing colony connectivity. However, a trade-off exists; 

while decreased connectivity among prairie dog populations may safeguard populations from 

plague, the isolation also contributes to loss of genetic variation via genetic drift, which could be 

important in building resistance to the disease. Therefore, maintaining some degree of 

connectivity among prairie dog colonies is essential to conserve genetic variation and facilitate 

recolonization of extirpated colonies.
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Figure 1.1 Map of sampling sites of black-tailed prairie dog within the Charles M. Russell 
Wildlife Refuge in Phillips county, MT.  

 

 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 
 
 
 

1A

3B

3A

4A 4B

5A

5B

2A

2B

1B



 19 

Figure 1.2. Eight landcover features as well as elevation and slope were used in resistance 
models to determine their effect on population divergence. The black plus signs depict the 
locations of the black-tailed prairie dog sampling sites. 
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Figure 1.3. Principal component analysis (PCA) shows genetic differentiation among sampling 
sites of black-tailed prairie dogs using SNP loci. Colors and shapes distinguish the different 
sampling sites. 
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Figure 1.4. Results from the Bayesian clustering with STRUCTURE for k= 2. Individual bars 
depict the probability of membership of each individual to one of two distinct genetic clusters. 
Individuals are grouped based on sampling site with sample sizes shown in parentheses. 
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Figure 1.5. Pairwise genetic distance (FST and DPS) among all sampling sites for black-tailed 
prairie dogs. Values closer to 0 are represented by darker colors. 
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Figure 1.6. Network plot of relative migration (NM) levels between sampling sites. The arrows 
refer to the direction of gene flow among nodes (sampling sites) whereas the edge values 
represent the degree of gene flow. Higher values of NM mean a higher proportion of shared 
migrants. 
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Figure 1.7. Current maps depicting connectivity of back-tailed prairie dogs based on: A) the null, 
IBD model and B) the best performing reduced model (slope and open bodies of water with 
resistance values of 100) generated in Circuitscape. Warmer colors indicate a higher degree of 
connectivity among sampling sites. 
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Table 1.1 Number of individuals (N), observed heterozygosity (HO), expected heterozygosity 
(HE), allelic richness (AR), and inbreeding (FIS) were calculated for 10 sites using 3,416 loci.  

Site N HO HE AR FIS 
1A 40 0.07 0.13 1.59 0.45 (-0.29 – 0.71) 
1B 13 0.07 0.21 1.80 0.65 (-0.21 – 0.85) 
2A 25 0.10 0.34 1.87 0.71 (0.66 – 0.73) 
2B 23 0.11 0.37 1.91 0.70 (0.61 – 0.74) 
3A 30 0.14 0.24 1.86 0.42 (0.09 – 0.64) 
3B 30 0.14 0.12 1.34 -0.17 (-0.20 –-0.15) 
4A 30 0.14 0.12 1.32 -0.17 (-0.21 –-0.15) 
4B 29 0.15 0.13 1.34 -0.16 (-0.19 – -0.14) 
5A 30 0.15 0.12 1.34 -0.19 (-0.21 – -0.16) 
5B 28 0.14 0.12 1.32 -0.20 (-0.24 – -0.17) 
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Table 1.2. Reduced multivariate linear mixed effects models using maximum likelihood 
population effects (MLPE) parameterization were built using explanatory variables with variance 
inflation cofactors less than four. Models were evaluated based on overall corrected AIC values 
from the best model (∆AICC), AIC weights (AICew), and the marginal coefficient of 
determination (R2M). Lower values of ∆AICC indicates a better model performance of explaining 
genetic structure (calculated using the proportion of shared alleles (DPS)). 

Model AICC ∆AICC AICew R2M 
DPS ~Slope + Water100 + (1|pop1) -43.57 0.00 0.15 0.71 
DPS ~Slope + Wwet100 + (1|pop1) -43.53 0.05 0.14 0.71 
DPS ~Slope + Crops100 + (1|pop1) -43.52 0.06 0.14 0.71 
DPS ~Slope + Elevation + (1|pop1) -43.45 0.12 0.14 0.71 
DPS ~Slope + Barren0.01 + (1|pop1) -43.41 0.16 0.14 0.71 
DPS ~Slope + Hwet100 + (1|pop1) -43.41 0.16 0.14 0.71 
DPS ~Slope + Forest100 + (1|pop1) -42.78 0.79 0.10 0.70 
DPS ~Slope + Grass0.1 + (1|pop1) -41.72 1.85 0.06 0.71 
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Figure S1.1 Results from STRUCTURE supported that two distinct genetic clusters are present 
among the black-tailed prairie dog sites based on the ∆K method. 
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Figure S1.2. Results from STRUCTURE supported that two distinct genetic clusters are present 
among the black-tailed prairie dog sites based on the Ln(K) method. 
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Figure S1.3. Results from discriminant analysis of principal components (DAPC) supported two 
distinct genetic clusters among the black-tailed prairie dog sites based on the Bayesian 
information criterion (BIC). 
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Figure S1.4. Membership of individuals based on the discriminant analysis of principal 
components (DAPC). The size of the squares depicts the number of individuals from each site 
that assigned to each of the two distinct genetic clusters (inf 1 and inf 2). 
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Table S1.1. Each landscape feature was assigned four resistance values (0.01, 0.1, 10, 100) and 
compared using a corrected Akaike Information Criteria (AICC). Lower values of ∆AICC 
indicates a better model performance of explaining genetic structure (calculated using the 
proportion of shared alleles (DPS)). Further, the marginal coefficient of determination for each 
model was calculated to indicate the relative amount of variation in genetic structure explained 
by each model (R2M). Models in bold indicate those that performed best for each landscape 
variable. Distance is italicized to indicate that it is the null model to which we based our 
resistance model comparisons from. 

Model AICC ∆AICC AICew R2M 
Slope -44.72 0.00 0.23 0.74 
Elevation -43.00 1.72 0.10 0.61 
Forest100 -41.59 3.13 0.05 0.57 
Forest10 -41.27 3.45 0.04 0.57 
Wwet100 -40.77 3.95 0.03 0.56 
Water100 -40.73 3.99 0.03 0.56 
Crops100 -40.65 4.07 0.03 0.56 
Water10 -40.57 4.15 0.03 0.56 
Barren0.01 -40.57 4.15 0.03 0.56 
Crops10 -40.56 4.16 0.03 0.56 
Wwet10 -40.53 4.19 0.03 0.56 
Grass0.1 -40.48 4.24 0.03 0.59 
Barren0.1 -40.44 4.28 0.03 0.56 
Hwet100 -40.43 4.29 0.03 0.56 
Hwet10 -40.36 4.36 0.03 0.56 
Grass0.01 -40.29 4.43 0.02 0.60 
Distance -40.26 4.46 0.02 0.56 
Hwet0.01 -40.25 4.47 0.02 0.56 
Hwet0.1 -40.22 4.50 0.02 0.56 
Barren10 -40.19 4.53 0.02 0.56 
Barren100 -40.17 4.55 0.02 0.55 
Wwet0.1 -39.79 4.93 0.02 0.55 
Crops0.1 -39.76 4.96 0.02 0.55 
Crops0.01 -39.52 5.20 0.02 0.55 
Water0.1 -39.38 5.34 0.02 0.55 
Wwet0.01 -39.33 5.39 0.02 0.55 
Shrub10 -38.58 6.14 0.01 0.58 
Forest0.1 -38.26 6.46 0.01 0.53 
Water0.01 -38.01 6.71 0.01 0.54 
Shrub0.1 -37.87 6.85 0.01 0.54 
Shrub100 -37.46 7.26 0.01 0.58 
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Forest0.01 -36.45 8.26 0.00 0.52 
Shrub0.01 -34.84 9.88 0.00 0.55 
Grass10 -33.79 10.93 0.00 0.52 
Grass100 -27.72 17.00 0.00 0.53 
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Table S1.2. Pairwise values of FST are below the diagonal with p-values based on 1,000 iteration 
are above the diagonal. Italicized values refer to those that were statistically significant (p <0.05) 
before correction using the false discovery rate (FDR) and bolded if remained significant after 
correction. 

  1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 
1A – 0.040 0.006 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
1B 0.089 – 0.089 0.009 0.002 0.002 0.002 0.002 0.002 0.002 
2A 0.174 0.052 – 0.103 0.002 0.002 0.002 0.002 0.002 0.002 
2B 0.394 0.204 0.042 – 0.019 0.002 0.004 0.002 0.002 0.006 
3A 0.673 0.546 0.333 0.129 – 0.081 0.059 0.058 0.063 0.085 
3B 0.797 0.730 0.511 0.304 0.060 – 0.081 0.051 0.058 0.062 
4A 0.800 0.736 0.519 0.316 0.080 0.054 – 0.062 0.040 0.500 
4B 0.796 0.727 0.510 0.308 0.078 0.076 0.069 – 0.169 0.123 
5A 0.797 0.731 0.515 0.314 0.084 0.084 0.099 0.029 – 0.223 
5B 0.800 0.734 0.515 0.315 0.090 0.098 0.114 0.053 0.020 – 
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Abstract 

Plague is a flea-mediated disease caused by the bacterium Yersinia pestis. It moves through 

prairie dog colonies quickly, causing >90% mortality. However, the transmission pathways 

among prairie dog colonies remain unclear. Prairie dogs live in highly structured social groups 

with limited gene flow among colonies. Yet, the primary flea vector for plague found on black-

tailed prairie dogs, Oropsylla hirsuta, has a higher degree of gene flow among prairie dog 

colonies than the prairie dogs themselves. This suggests that an alternative host may serve to 

move fleas among colonies. To evaluate the potential for small rodents to carry plague-infected 

fleas among prairie dog colonies, we used cutting-edge genomic techniques to characterize 

patterns of gene flow for two candidate small rodent species [deer mouse (Peromyscus 

maniculatus) and northern grasshopper mouse (Onychomys leucogaster)] and the flea vector (O. 

hirsuta) most prominently found in prairie dog colonies. We found concordant patterns of gene 

flow in prairie dog fleas and their prairie dog hosts in areas where prairie dogs exhibit high 

connectivity. However, in areas where prairie dog gene flow is restricted, flea dispersal is better 

explained by models that incorporate O. hirsuta movement by deer mice.  These results, paired 

with field observations, indicate that deer mice are a viable alternative host for moving prairie 

dog fleas among colonies, thereby exacerbating the spread of plague. 
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Introduction 

Vector-borne diseases are challenging to study for a number of reasons, including the complex 

interactions that exist between vector species and their hosts. As a result, much of the basic 

ecology of these disease systems remains unknown. Recently, tools from the field of molecular 

ecology have aided our quest to elucidate vector-host interactions and pathways of transmission 

(De MeeÛs et al. 2007; McCoy 2008; Lymbery and Thompson 2012). Specifically, population 

genetic approaches can be used to understand the impact of host population genetic structure on 

that of the parasite. Many parasites, including fleas, have limited movement without the aid of 

their hosts (Tripet et al. 2002). In these systems, hosts dictate the dispersal dynamics of their 

parasites, resulting in concordant genetic structure between host and parasite (Little et al. 2006; 

McCoy et al. 2005; Whiteman et al. 2007). For parasites that occupy a suite of hosts, concordant 

genetic structure is expected between the parasite and the host with the largest dispersal 

(Criscione et al. 2005). We can compare the population genetic structure of parasites and hosts to 

elucidate dispersal patterns and determine the host specificity of vector species (Whiteman et al. 

2007; Criscione 2008; Stefka et al. 2011; Gómez-Díaz et al. 2012; McCoy et al. 2013). This 

molecular approach affords new insights into how population dynamics drive the spread of 

vector-borne diseases, and could aid in the identification of cryptic, alternative hosts (Prugnolle 

et al. 2005; Brouat et al. 2011). 

 

Plague is a flea-mediated mammalian disease caused by the bacterium Yersinia pestis. Since its 

emergence in North America around 1900 (Gage and Kosoy 2005), plague has spread to native 

rodents, thus creating a sylvatic cycle. Previous work suggests that Y. pestis is maintained 

through hematophagous adult fleas and rodent hosts (Gage and Kosoy 2005). Virulence is 
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variable among mammals, with some species such as prairie dogs (Cynomys spp.) and the 

endangered black-footed ferret (Mustela nigripes) more severely affected than others (Antolin et 

al. 2002; Gage and Kosoy 2005). Specifically, outbreaks of plague are devastating to prairie dog 

colonies (>90% mortality), frequently leading to colony extirpation.  Plague outbreaks in North 

America occur over the entire range of prairie dogs, including all five extant species: black-tailed 

prairie dog (Cynomys ludovicianus), white-tailed prairie dog (C. leucurus), Gunnison’s prairie 

dog (C. gunnisoni), Utah prairie dog (C. parvidens), and Mexican prairie dog (C. mexicanus). 

For the threatened Utah prairie dog, plague-associated declines put the species at risk of 

extinction (Biggins and Kosoy 2001; Hoogland et al. 2004). 

 

The flea species Oropsylla hirsuta is the primary flea species associated with prairie dogs and is 

implicated in the spread of plague, particularly with respect to supporting the fast-moving 

epizootics that occur in prairie dog colonies (Ubico et al. 1988; Cully et al. 1997; Cully and 

Williams 2001). However, previous studies have shown higher levels of gene flow for O. hirsuta 

than their prairie dog hosts, suggesting that the fleas are moving between prairie dog colonies on 

an alternative host (Jones and Britten 2010; Brinkeroff et al 2011). The alternative host species 

may serve as an enzootic host of Y. pestis or an unaffected host that shares fleas with infected 

prairie dogs and moves them from one colony to another. Two small rodent species, the deer 

mouse (Peromyscus maniculatus) and the northern grasshopper mouse (Onychomys leucogaster), 

have been found to harbor O. hirsuta fleas (with flea loads >2; Bron et al. 2019), and are thus 

feasible alternative hosts to move Oropsylla fleas among prairie dog colonies.  
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Our main objective was to elucidate the dispersal patterns of the prairie dog flea, Oropsylla 

hirsuta, and evaluate the feasibility of deer mice and northern grasshopper mice as facilitators of 

Oropsylla dispersal. To address this objective, we had two aims. The first aim was to assess the 

specificity of O. hirsuta to black-tailed prairie dogs as hosts.  To address this aim, we compared 

patterns of genetic structure to quantify concordance. High specificity of the flea to its host is 

hypothesized to yield highly concordant patterns of genetic structure. The second aim was to 

determine if O. hirsuta dispersal is mediated by an alternative host. For this aim, we quantified 

concordance in the patterns of genetic structure between O. hirsuta and each of the two most 

abundant rodent species found in prairie dog colonies harboring O. hirsuta (i.e., deer mice and 

northern grasshopper mice). The importance of O. hirsuta as a vector for plague transmission 

makes understanding how it moves among colonies critical for improving plague mitigation 

efforts. Further, by identifying alternative hosts to transmission we may shed light on how plague 

is introduced to healthy prairie dog colonies, thereby initiating epizootic events. 

 

Methods 

Sample sites and collection 

Black-tailed prairie dogs and small rodents were trapped in 2014 from the Charles M. Russell 

National Wildlife Refuge (CMR) in Montana, USA as part of a sylvatic plague vaccine trial 

conducted by the USGS National Wildlife Health Center (Fig. 2.1; Rocke et al 2017; Bron et al. 

2018). The distance between sites ranged from 0.86 km to 34 km. Hair and whisker samples 

were collected from black-tailed prairie dogs, deer mice, and northern grasshopper mice for 

DNA extraction. Fleas, including the O. hirsuta fleas used in this study, were collected from 

each trapped animal within the study area and identified to species.  
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DNA extraction and sequencing 

Prairie dogs 

DNA was extracted from black-tailed prairie dog samples using a spin-column kit (Quick-DNA 

Miniprep kit; Zymo Research), following the manufacturer’s feather extraction protocol. The 

quantity of DNA was estimated using a Qubit 3.0 fluorometer (Invitrogen) with the high 

sensitivity kit for double-stranded DNA. Samples with >300 ng of DNA were used for double 

digest restriction site associated DNA (ddRAD) sequencing (Peterson et al. 2012). DNA was 

sheared using the restriction enzymes HindIII and NlaIII followed by a 250–500 bp size selection 

step using a Pippin Prep (Sage Sciences). Sequences were generated on a NovaSeq6000 with 150 

bp paired-end reads at Texas A&M AgriLife Genomics. Sequences were aligned to a Gunnison’s 

prairie dog genome (Sackett pers comm) using the BWA short-read aligner with the BWA-MEM 

alignment algorithm (Li and Durbin 2009). We used the program Stacks v1.48 (Catchen et al. 

2011) to assemble contigs and filter single nucleotide polymorphisms (SNPs) following the 

guidelines outlined in Rochette and Catchen (2017). Specifically, we used the populations 

module in Stacks to limit one SNP per contig, filter loci with minor allele frequencies <0.05, 

remove loci with an observed heterozygosity >0.70, and reduce loci to those present in all sites 

and in at least 80% of individuals per site. We then used VCFtools v.0.1.16 (Danecek et al. 2011) 

and the R package adegenet (Jombart et al. 2011) to remove individuals with >30% missing data 

and loci with an average depth of coverage exceeding 2X the mode.  We sequenced 300 black-

tailed prairie dogs to identify SNPs. We then subsampled 10 individuals per sampling location 

for downstream analyses, to equalize sample size across species. 
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Small rodents and fleas 

DNA was extracted from hair and whiskers from individual deer mice and northern grasshopper 

mice using the Quick-DNA Miniprep kit (Zymo Research). DNA was extracted from individual 

whole fleas that were homogenized via bead beating using a Quick-DNA Microprep kit (Zymo 

Research). Low DNA yield from fleas and from rodent whiskers required pooling samples from 

multiple individuals of the same species prior to sequencing. Pools consisted of 3–10 individuals 

from the same sampling site, pooled in equimolar amounts as quantified using a Qubit 

fluorometer. Pooled samples were sequenced using a ddRAD protocol similar to that used for 

black-tailed prairie dogs. DNA was sheared using SpeI and Mbol for deer mice and SpeI and 

NlaIII for fleas and northern grasshopper mice followed by a 300–600 bp size selection step 

(Pippin Prep, Sage Sciences) and paired-end sequencing on a NovaSeq6000 at Texas A&M 

AgriLife Genomics. We used the genomic pipeline dDocent (Puritz et al. 2014a, b) to conduct a 

de novo assembly for each species. We used VCFtools to filter loci with a minimum quality 

score of < 30, a minor allele count of < 3, a minimum depth of coverage of < 10, a maximum 

depth of coverage of < 100, minor allele frequencies < 0.05, or with > 50% missing data. 

Further, we used VCFtools to remove indels and identify SNPs within contigs. 

 

Genetic structure 

A principal component analysis (PCA) was used to visualize patterns of genetic variation using 

the R package ade4 v.1.7-13 (Chessel et al. 2004; Dray and Dufour 2007). We calculated 

pairwise FST for prairie dogs using the R package hierfstat (Goudet and Jombart 2015) and for 

pooled samples (fleas, deer mice, and northern grasshopper mice) using popoolation2 (Kofler et 

al. 2011).  
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Linear models 

To investigate the influence of known and candidate hosts on vector dispersal, we built models in 

a two-step process. First, we used basic linear models to quantify the explanatory power of each 

host’s dispersal on flea dispersal, and then we used multivariate models to identify the set of 

hosts that best predicted flea dispersal. Basic linear models were built using data from all host 

species (prairie dog, deer mouse, and northern grasshopper mouse) and geographic distance 

(calculated as Euclidean distance using the dist function in R (R Core Team 2018). Northern 

grasshopper mice were only found at 3 of the 5 sites (CMR2, CMR3, and CMR5), so linear 

models were built using data from these 3 sites only. The basic linear models were evaluated 

based on corrected AIC (AICC) and R2, which were calculated using R core functions (R Core 

Team 2018).  

 

To account for non-independence among pairwise points, we built linear mixed effects models 

with maximum likelihood population effects parameterization (MLPE) using the lme4 package 

in R (Bates et al. 2015; Clarke et al. 2002). Although it has not previously been used to evaluate 

host-vector dispersal patterns, this MLPE method has been shown to perform well in landscape 

genetic studies to evaluate how the landscape influences species dispersal (Shirk et al. 2017). For 

our host-vector application of the MLPE approach, we used patterns of pairwise genetic 

differentiation (measured as FST) for prairie dogs, deer mice, and northern grasshopper mice as 

explanatory variables (introduced as fixed effects), and flea FST as the response variable. 

Differences among sampling sites were introduced as random effect terms. We built both 

univariate and multivariate models and included a null model with geographic distance as the 
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only predictor of flea FST to test for isolation-by-distance (IBD). Northern grasshopper mice were 

omitted from these analyses because they did not occur at all sites. Multivariate models with 

explanatory variables containing variance inflation factors (VIF) > 4 were excluded as high VIF 

values indicate multicollinearity (calculated using usdm package in R; Naimi et al. 2014). All 

models were evaluated using corrected Akaike Information Criterion (AICC) values, weights 

(AICEW), and the calculated marginal coefficient of determination (R2) (R package MuMIn v. 

Bartoń 2019). 

 

Results 

DNA extraction and sequencing 

After filtering, we identified 15,507 SNPs for O. hirsuta fleas from 5 pools from 5 different sites. 

Each flea pool contained DNA from 5–10 individuals from a single site (mean=9 individuals per 

site). We identified 3,416 SNPs for black-tailed prairie dogs from a set of 300 individuals (before 

subsampling 10 individuals per site for all analyses to equalize sampling effort among species). 

We identified 80,558 SNPs for deer mice from 5 pools from 5 sites. Each pool of deer mice 

contained DNA from 5–10 individuals from a single site (mean=8.4 individuals per site). We 

identified 19,619 SNPs for northern grasshopper mice from 3 pools from 3 different sites (CMR 

2, 3, and 5; northern grasshopper mice were not found at CMR1 or CMR4). Each pool of 

northern grasshopper mice contained DNA from 3–6 individuals from a single site (mean=5 

individuals per site). 

 

Genetic structure 
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In O. hirsuta fleas, the greatest degree of population divergence occurred between western 

(CMR1 and CMR2) and eastern (CMR3, CMR4, and CMR5) sites based on PCA (Fig. 2.2). 

However, fleas exhibited low genetic divergence across all sampling sites based on FST (global 

FST=0.10). The lowest measures of pairwise FST for O. hirsuta were observed across the eastern 

sampling sites (CMR 3, 4, and 5; Fig. 2.3). CMR1 was more differentiated from all other sites, 

though FST remained < 0.14. 

 

In black-tailed prairie dogs, a high degree of population divergence between western (CMR1 and 

CMR2) and eastern (CMR3, CMR4, and CMR5) sites was observed for black-tailed prairie dogs 

based on PCA (Fig. 2.2) and FST (Fig. 2.3). Like the fleas, black-tailed prairie dogs showed low 

FST, but only across eastern sites. The global FST was much higher (FST=0.41) in black-tailed 

prairie dogs than in fleas, due to the strong differentiation of western sites (CMR1 and CMR2) 

from each other (FST=0.36) and from eastern sites (FST=0.60). 

 

Based on PCA, deer mice from CMR 1, CMR 2, and CMR 4 were the most genetically similar 

(Fig. 2.2). However, FST was low for all sites (deer mouse global FST= 0.14; Fig. 2.3). Compared 

to O. hirsuta, deer mice exhibited more genetic structure among eastern sites (deer mouse 

FST=0.17 and O. hirsuta FST=0.06) but similar levels of genetic structure between eastern and 

western sites (deer mouse FST=0.13 and O. hirsuta FST=0.11), and between western sites (deer 

mouse FST=0.09 and O. hirsuta FST=0.11). 

 

A slightly higher degree of population divergence was detected for northern grasshopper mice 

between western (CMR2) and eastern (CMR3 and CMR5) sites based on PCA (Fig. 2.2); 
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however northern grasshopper mouse global FST was low (global FST= 0.17). Like the deer mice, 

northern grasshopper mice showed a lower degree of genetic structure between western and 

eastern sites (FST= 0.15) than among the eastern sites (FST=0.19). Both potential alternative hosts 

of O. hirsuta showed lower genetic structure than black-tailed prairie dogs (deer mouse global 

FST= 0.14 and northern grasshopper mouse global FST= 0.17), but a slightly higher degree of 

genetic structure compared to O. hirsuta.  

 

Linear models 

Patterns of genetic structure in O. hirsuta fleas were best explained using a linear model that 

included black-tailed prairie dog FST (R2=0.99; Table 2.1). The next best performing model was 

Euclidean distance (IBD) (R2=0.91).  Models using the proposed alternative hosts performed the 

worst (deer mouse R2=0.88 and northern grasshopper mice R2=0.21). None of the linear models 

were statistically significant (p<0.05), largely because these models were based on data from 

only 3 sites (CMR 2, 3, 5). 

 

The linear mixed effects models yielded similar results and were more powerful in that we could 

utilize data from all 5 sampled sites. Univariate models including black-tailed prairie dog FST 

(R2M=0.80), and to a lesser degree IBD (R2M=0.35), best predicted flea differentiation (Table 

2.2).  However, the multivariate model using deer mice and prairie dogs as explanatory variables 

of flea differentiation outperformed all univariate models and was the best performing linear 

mixed effects model overall (R2M=0.89). This multivariate model also exhibited low values of 

VIF (VIF=1.15). 
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Discussion 

Vector-borne diseases involve complex interactions between hosts and vector species that make 

elucidating transmission pathways challenging. However, transmission pathways are driven by 

patterns of dispersal for both vectors and hosts, which leave genetic signatures that can be 

detected using molecular approaches. Here, we found high dispersal of the plague vector, O. 

hirsuta, throughout our study area. We also found concordant patterns of population divergence 

among black-tailed prairie dogs and their flea specialist O. hirsuta within our eastern sites. This 

indicates that black-tailed prairie dog dispersal has a large influence on the patterns of genetic 

structure for their flea specialist. However, at a broader scale, high gene flow in O. hirsuta was 

not reflected in prairie dog genetic structure patterns, suggesting that an alternative host 

contributes to the long-distance dispersal of O. hirsuta. 

 

Our models signal the close relationship between O. hirsuta and black-tailed prairie dogs. 

Parasites tend to show concordant patterns of genetic structure with their hosts, because host 

behavior drives patterns of parasite dispersal (Little et al. 2006; Martinu et al. 2018). For 

example, Calhoun (2015) found concordant patterns of genetic structure between a species of 

chewing louse and two subspecies of their pocket gopher host, thereby illustrating the point that 

parasite dispersal is highly dependent on host behavior. Further, concordance in host-parasite 

genetic structure is dependent on the host specificity of the parasite (Barrett et al. 2008; Martinu 

et al. 2018). The concordant pattern of genetic structure we observed for O. hirsuta and black-

tailed prairie dogs, combined with the fact that O. hirsuta was the dominant flea species found on 

prairie dogs at our sampling locations (Russell et al. 2018), shows that O. hirsuta is highly 

specific to prairie dogs. In accordance with these findings, factors such as geographic distance 
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that influence dispersal in prairie dogs (Jones and Britten 2010, Sackett et al. 2012) were also 

found to be important predictors of O. hirsuta gene flow.  

 

Our results show that prairie dog dispersal alone does not account for the low degree of genetic 

structure of O. hirsuta. Previous studies have found similar results of low genetic structure in O. 

hirsuta higher genetic structure in black-tailed prairie dogs (Jones and Britten 2010; Jones et al. 

2011). This suggests an alternative host may move prairie dog fleas among colonies. Even if the 

dispersal of fleas via an alternative host is rare, only a few migrants are necessary to prevent 

population differentiation from occurring (Spieth 1974). Across our entire study area, the model 

that best explained patterns of genetic structure in O. hirsuta included both prairie dog and deer 

mice as the explanatory variables. Whereas local genetic structure of the flea is likely driven by 

black-tailed prairie dog dispersal, long-distance flea dispersal is likely facilitated by an 

alternative host that moves beyond the dispersal range of prairie dogs. While numerous species 

with high dispersal capabilities exist on prairie dog colonies, few have been found with O. 

hirsuta fleas on them. However, both deer mice and northern grasshopper mice have been found 

carrying O. hirsuta fleas, and previous studies have implicated both mouse species in the spread 

of plague (Stapp et al. 2009; Salkeld et al. 2010; Kraft and Stapp 2013; Danforth et al. 2018; 

Foley and Foley 2010; Thiagarajan et al. 2008; Bron et al. 2019). Our results lend support to the 

hypothesis that deer mice are important facilitators of long-distance dispersal of O. hirsuta. 

 

A large body of prior evidence exists to support the hypothesis that northern grasshopper mice 

play a substantial role in moving prairie dog fleas (Stapp et al. 2008; Stapp et al. 2009; Stapp and 

Salkeld 2009; Thiagarajan et al. 2008). For example, Kraft and Stapp (2013) found high flea 
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burdens including O. hirsuta, and heavy burrow use by northern grasshopper mice in northern 

Colorado. Further, they showed that grasshopper mice are wide-ranging and capable of moving 

relatively long distances. However, models in our study that used the northern grasshopper 

mouse as a predictor for O. hirsuta genetic structure performed poorly compared to models that 

included deer mice or black-tailed prairie dogs as predictors. This could have been due to low 

detection of northern grasshopper mice within our study. Only a few individuals were found on 

three of our study sites (Bron et al. 2018). We were able to gauge long-distance connectivity 

from these three sites, though not at the resolution we were able to achieve for the other species 

in our study. It is possible that in portions of prairie dog range where northern grasshopper mice 

occur in greater densities, they have a greater impact on the dispersal of O. hirsuta. 

 

Comparative population genetic studies such as ours can be informative in elucidating 

transmission pathways of vector-borne diseases. They are but a first step, however, because gene 

flow is not the only determinant of population divergence (measured as FST in our study). The 

life history of a species also plays a decisive role in population genetic structure (Barrett et al. 

2008; Dharmarajan et al. 2016; Martinu et a. 2018). Accordingly, direct comparisons of genetic 

structure patterns across species should be interpreted in light of life history differences. For 

example, shorter generation times of parasites compared to their hosts might result in more rapid 

divergence, and a signature of population structure in the parasite that is not reflected in the host 

(Whiteman and Parker 2005). Because of this, studies have used parasites to identify fine-scale 

host movements. For example, tick species were used to give insight to intercolony movements 

of their hosts, the black-legged kittwake (McCoy et al. 2005). In disease transmission systems, 

parasites could be used to track fine-scale transmission of diseases that may not be reflected in 
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the host. Parasite specificity has also been found to impact host-parasite population structure 

comparisons, with highly specific parasites exhibiting a higher degree of genetic structure than 

their host (Barrett et al. 2008; Martinu et al. 2018). Little is known about the life history of O. 

hirsuta, but under the assumption that O. hirsuta is fairly host-specific, we would expect O. 

hirsuta to evolve more rapidly than black-tailed prairie dogs. Therefore, the two most likely 

scenarios resulting in lower genetic structure of O. hirsuta compared to black-tailed prairie dogs 

are that O. hirsuta dispersal occurs during non-reproductive movements of prairie dogs 

(dispersal without gene flow), or on an alternative host. Since prairie dog dispersal is uncommon 

and typically occurs over distances of less than 5 km (Garrett and Franklin 1988; Hoogland 

2013), using an alternative host for the long-distance dispersal is the most likely scenario. 

 

Prairie dogs are keystone species within prairie ecosystems and are highly susceptible to plague. 

Understanding how plague is spread among prairie dog colonies is vital to the conservation of 

not only prairie dogs, but also the numerous species that depend on them. In this study, we used 

population genetic theory to investigate potential transmission pathways of plague. We showed 

that alternative hosts move among prairie dog colonies more frequently than the prairie dogs 

themselves. This information, paired with field studies that found O. hirsuta on these alternative 

hosts, suggests that deer mice and northern grasshopper mice are viable alternative hosts and 

may serve to carry fleas beyond prairie dog dispersal range. Further, plague-positive fleas were 

found on deer mice and northern grasshopper mice prior to plague-induced die-offs of prairie 

dogs, including at our sampling sites (Bron et al. 2019). This suggests that these alternative hosts 

may also introduce plague to prairie dog colonies. By characterizing the transmission pathways 
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that include all potential hosts, we may improve our ability to predict disease outbreaks and 

develop the proper mitigation efforts. 
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Figure 2.1. Map of sampling sites within the Charles M. Russell Wildlife Refuge in Phillips 
county, MT.  For each site, samples were collected for black-tailed prairie dogs, deer mice, and 
norther grasshopper mice. Fleas were collected off all trapped mammals and identified to 
species. 
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Figure 2.2. Principal component analysis (PCA) shows genetic differentiation among the five 
sampling locations for O. hirsuta, black-tailed prairie dogs, deer mice, and northern grasshopper 
mice. Population divergence was most evident among eastern and western sites for O. hirsuta 
and black-tailed prairie dogs. 
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Figure 2.3. Pairwise FST of the flea O. hirsuta (A), black-tailed prairie dog (B), deer mouse (C), 
and northern grasshopper mouse (D). Warmer colors indicate lower FST values (less population 
differentiation) while cooler colors indicate higher FST. Grey blocks indicate no data for that site. 
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Table 2.1. Results of basic linear models. Models were evaluated based on overall log-likelihood 
(LogLik), change in corrected AIC values from the best model (∆AICC), AIC weights (AICew), 
the amount of variation explained by each model (R2), and whether the model was statistically 
significant (P-value). 

Model LogLik ∆AICC AICew R2 P-value 
Prairie Dog 15.39 0.00 0.92 0.99 0.07 
Distance 12.36 6.05 0.04 0.91 0.20 
Deer Mouse 12.00 6.77 0.03 0.88 0.22 
Grasshopper Mouse 9.17 12.43 0.00 0.21 0.70 
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Table 2.2. Results from linear mixed effects model using maximum likelihood population effects 
(MLPE) parameterization. Models were evaluated based on overall log-likelihood (LogLik), 
change in corrected AIC values from the best model (∆AICC), AIC weights (AICew), and the 
marginal coefficient of determination (R2M). 
 
 
Model LogLik ∆AICC AICew R2M 
Deer Mouse + Prairie Dog 33.81 0.00 0.86 0.89 
Prairie Dog 30.91 3.74 0.13 0.80 
Distance 28.51 8.55 0.01 0.35 
Deer Mouse 25.80 13.96 0.00 0.44 
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Abstract 

Utah prairie dogs (Cynomys parvidens) are federally threatened due to persecution, habitat 

destruction, and outbreaks of plague. Today, Utah prairie dogs exist in small, isolated 

populations, making them less demographically stable and more susceptible to erosion of genetic 

variation by genetic drift. We characterized patterns of genetic structure at neutral and putatively 

adaptive loci in order to evaluate the relative effects of genetic drift and local adaptation on 

population divergence. We sampled individuals across the Utah prairie dog species range and 

generated 2,955 single nucleotide polymorphisms (SNPs) using double digest restriction site 

associated DNA sequencing (ddRAD). Genetic diversity was lower in low elevation sites 

compared to high elevation sites. Population divergence was high among sites and followed an 

isolation-by-distance (IBD) model. Our results suggest that genetic drift plays a substantial role 

in the population divergence of the Utah prairie dog and colonies would likely benefit from 

translocation of individuals from HE sites to CC sites despite the detection of environmental 

associations with outlier loci. By understanding the processes that shape genetic structure, we 

can make better informed decisions with respect to the management of threatened species to 

ensure that adaptation is not stymied. 
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Introduction 
 
As a result of habitat loss and fragmentation, threatened species often occur in small, isolated 

populations. Genetic variation can be rapidly eroded in these small populations by genetic drift, a 

process that goes unmitigated in isolated populations without gene flow (Frankham 1996). A 

lack of genetic variation weakens species viability, stifling the evolutionary potential of a species 

and constraining adaptation to local environmental conditions (Barrett and Schluter 2008; 

Savolainen et al. 2013). As global environmental change intensifies (Urban 2015; Wiens 2016), 

the ability of a species to adapt to changing local conditions will be increasingly central to its 

long-term viability.   

 

Conservation and management activities that facilitate the retention of genetic variation, 

evolutionary potential, and adaptability will further help species avoid extinction. For example, 

translocations, used to bolster declining populations, can be improved by incorporating genetic 

data to tailor translocation actions to outcomes that boost genetic variation. Selecting source 

populations that are genetically appropriate for the target population (e.g., Johnson et al. 2010), 

prioritizing target populations with low genetic variation (e.g., Whiteley et al. 2015), or gauging 

incorporation of source genotypes (e.g., Latch and Rhodes 2005, Bateson et al. 2014, Mulder et 

al. 2017) can improve efforts to retain genetic variation. Conservation and management actions 

could further improve the evolutionary potential and adaptive capacity of populations by 

incorporating data from studies of adaptive variation, especially if those actions include 

translocations, genetic rescue, or assisted gene flow (Funk et al. 2018, Flanagan et al. 2018). 

Advances in genomics for non-model species means that we can generate broad coverage and 

high-resolution genomic data for an increasing number of species.  Genomic data can be used to 
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survey both adaptive and neutral genetic variation and can be incorporated into conservation 

policy to improve long-term species viability against changing environments and exposure to 

new diseases (Funk et al. 2018, Flanagan et al. 2018). 

 

In this study, we use a population genomics approach to understand the maintenance of genetic 

variation in the threatened Utah prairie dog (Cynomys parvidens). The Utah prairie dog is one of 

five species of prairie dog found in North America and is listed as Threatened under the United 

States’ Endangered Species Act. Due to a history of heavy range-wide eradication campaigns 

during the 19th and 20th centuries as well as ongoing habitat loss and epizootic outbreaks of 

plague, the Utah prairie dog has been reduced from roughly 95,000 individuals range-wide in the 

1920s to approximately 14,000 today (Collier and Spillet 1973; Brown et al. 2016). In 1972, a 

recovery plan for the Utah prairie dog was enacted that focused on translocating individuals from 

private land to protected public lands (McDonald 1993; United States Fish and Wildlife Service 

2012). Today, Utah prairie dogs exist in small, isolated populations, making them less 

demographically stable and more susceptible to the erosion of genetic variation through genetic 

drift (Wright 1931, Gilpin and Soule 1986). Further, Utah prairie dogs are highly social 

mammals that live in small family groups called coteries (consisting of 1 or 2 unrelated adult 

males, a group of related females, and their young; Hoogland 2006), with adjacent coteries 

forming a colony. In contrast to many mammalian species that exhibit natal dispersal, Utah 

prairie dogs rarely leave their natal coteries unless nearly all of the individuals in a coterie are 

gone (Hoogland 2013), for example following an outbreak of plague. Any such dispersal that 

does occur is likely male-biased and to nearby coteries, often within the same colony (Hoogland 

2013). 
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Translocations are a common practice in the management of prairie dogs (United States Fish and 

Wildlife Service 2012). This is an effective tool to combat the loss of genetic variation 

experienced through a history of population bottlenecks, eradication campaigns and disease, and 

limited natural gene flow. However, a large degree of variation in habitat (in terms of land cover, 

elevation, and climate) exists across the Utah prairie dog species range. Combined with a lack of 

natural gene flow, this habitat heterogeneity could encourage local adaptation (Blanquart et al. 

2013). Under this scenario, translocating individuals from different areas of the species range 

could introduce maladaptive genes to other colonies, leading to outbreeding depression. Even 

though fears of outbreeding depression may be inflated (Frankham et al. 2011, Ralls et al. 2018), 

translocations between locally adapted populations could still have potentially disastrous 

consequences for the evolution of plague resistance in prairie dogs. Resistance to plague has 

been shown in populations of both black-tailed prairie dogs (Rocke et al. 2012) and Gunnison’s 

prairie dogs in areas that have a history of plague exposure (Busch et al. 2013), which suggests 

that prairie dogs are under high selective pressure and can become locally adapted to their 

environment. Further, differences in climate across prairie dog colonies can change flea densities 

(Eads and Hoogland 2017), thus impacting prairie dog exposure to plague and their ability to 

build resistance. Utah prairie dogs, like other prairie dog species, are affected by plague. 

Although plague resistance has not been detected in this species, they may have the potential to 

become resistant through strong selective pressures. Thus, translocating plague-naïve individuals 

to areas where plague-resistant individuals exist could lead to a less resilient population due to a 

swamping effect of plague-resistant genes. By characterizing not only neutral genetic markers, 
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but also those under selection, we may avoid stifling the evolutionary potential of Utah prairie 

dogs. 

 

The objective of this study was to use a population genomics approach to investigate the impact 

of gene flow, genetic drift, and divergent selection on the maintenance of genetic variation in 

Utah prairie dogs across their species range. To accomplish this objective, we carried out five 

aims. First, we characterized patterns of genetic structure and gene flow among Utah prairie dog 

populations. Second, we evaluated the impact of sex-biased dispersal on the maintenance of 

genetic variation by identifying differences in patterns of genetic structure and gene flow for 

females and males separately. Third, we characterized the impact of genetic drift on the erosion 

of genetic variation and genetic differentiation. Fourth, we identified loci under divergent 

selection and compared patterns of population divergence at these loci against neutral loci. Fifth, 

we examined how the environment might influence local adaptation by identifying genotype-by-

environment associations (GEAs). Our genome-wide approach allows us to harness information 

in both neutral and adaptive loci to tailor conservation activities to maximize the success of 

recovery efforts without incurring the potentially substantial costs that could result from 

translocating locally adapted individuals. 

 

Methods 

Generating the SNP Dataset 

We trapped Utah prairie dogs and collected hair and whiskers during a field trial of a sylvatic 

plague vaccine (Rocke et al. 2017).  Samples were collected from paired sites, with adjacent 

coteries located in close proximity (0.25 – 8km). Individuals were sampled throughout the Utah 
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prairie dog range at three paired sites near Cedar City, UT (CC) and four paired high-elevation 

sites within the Awapa Plateau (HE) (Fig. 3.1). DNA was extracted from the hair and whiskers 

using the Zymo universal spin column-based tissue extraction kit (Zymo Scientific) following 

the manufacturer’s feather and hair follicle protocol. We sequenced 4–43 individuals (mean = 

22.86 individuals, total=320) per site (Table 3.1).  

 

To generate single nucleotide polymorphisms (SNPs), samples with greater than 300 ng of total 

genomic DNA, quantified using a Qubit 2.0 Fluorometer (Invitrogen), were used for double 

digest RAD sequencing (ddRAD) (Peterson et al. 2012). Genomic DNA was digested using the 

restriction enzymes HindIII and NlaIII, barcoded, and size selected for 300–600 bp fragments 

using a Pippin Prep (Sage Sciences). Fragments were paired-end sequenced on an Ilumina HiSeq 

at Texas A&M AgriLife Genomics. We aligned sequences to a Gunnison’s prairie dog (Cynomys 

gunnisoni) genome (Sackett pers comm) using the BWA short-read aligner with default 

parameters and the MEM alignment algorithm (Li and Durbin 2009). Contigs were assembled 

using the program STACKS v.1.48 software (Catchen et al. 2011,2013), following the proposed 

workflow outlined by Rochette and Catchen (2017). Preliminary sequence alignment revealed 

high sequencing error in 83 individuals, including all individuals found in sites HE2B and 

HE3A. We removed these individuals from alignment and subsequent analyses. 

 

After calling SNPs, several additional quality control measures were taken. First, in cases where 

more than 1 SNP per contig was present, only the first (most 5’) SNP was used. Second, only 

loci represented in 80% or more of individuals were retained. Third, only loci present in all 12 

sampling locations were retained. Fourth, individuals missing greater than 30% of data (n=4) 
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were removed (calculated using VCFtools v.0.1.16; Danecek et al. 2011). Fifth, since low-

frequency alleles may represent PCR errors, we removed loci with minor allele frequencies 

<0.05. Sixth, we removed potential paralogs by excluding loci with an observed heterozygosity 

exceeding 0.7 using the populations module of STACKS, and loci with a depth of coverage 

greater than twice the mode of the depth of coverage for each locus using R (Willis et al. 2017; 

O’Leary et al. 2018). Paralogous loci can skew common downstream analyses for population 

genomics by artificially inflating levels of heterozygosity (Willis et al. 2017). 

 

Characterizing the patterns of genetic structure, gene flow, and sex-biased dispersal 

To visualize genetic divergence, we used a principal component analysis (PCA). We used two 

methods to determine the number of genetic clusters (k) present in our sampling sites: the 

Bayesian clustering program STRUCTURE (Pritchard et al. 2000) and a multivariate approach 

using discriminant analysis of principal components (DAPC) in the R package adegenet (Jombart 

et al. 2010, Jombart and Ahmed 2011). We ran STRUCTURE with an MCMC burn-in of 

100,000 steps followed by 100,000 steps for inference clustering using the admixture model with 

correlated allele frequencies. For each value of k, we completed 10 replicates. For 

STRUCTURE, we used the alternative prior for population specific ancestry (a=1) since we had 

unequal sampling among sites (Wang 2017). In order to accurately resolve the number of genetic 

clusters (k) using STRUCTURE, we used a combination of the LnP(D) and delta K as outlined 

in (Janes et al. 2017) calculated using STRUCTURE HARVESTER v.0.6.93 (Earl and vonHoldt 

2012). We also adopted a ‘hierarchical STRUCTURE analysis’ approach where each genetic 

cluster was analyzed iteratively in a new STRUCTURE run in order to gauge substructure (Vaha 

et al. 2007).  We used the program CLUMPP 1.1.2 (Jakobsson and Rosenberg 2007) to assign 
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individuals to genetic clusters using q values from STRUCTURE. For the DAPC, the analysis 

was first performed unsupervised (no prior knowledge of groups) using the sequential K-means 

clustering algorithm executed through the find.clusters function in adegenet (Jombart et al. 2010, 

Jombart and Ahmed 2011). We then performed the DAPC analysis supervised by using the 

Bayesian information criterion (BIC) to determine the final value of k.  

 

To determine patterns of gene flow, we calculated the pairwise genetic differentiation between 

sites using Weir and Cockerham’s FST and Jost’s D using the R packages hierfstat (Goudet and 

Jombart 2015) and mmod (Winter 2012), respectively. We tested for significant population 

divergence using both FST and Jost’s D with 1,000 random permutations and corrected p-values 

for multiple comparisons using a false discovery rate (FDR) of 0.05 (conducted in R; R Core 

Team 2018). To test for sex-biased dispersal, we repeated the above analyses on males and 

females separately. We tested relative migration rates among sampling sites using NM with the 

divMigrate function in the R package diveRsity and identified significant migration rates using 

10,000 bootstrap iterations (Keenan et al. 2013; Alcala et al. 2014; Sundqvist et al. 2016). 

Migration networks were created using the R package qgraph (Epskamp et al. 2012). 

 

Characterizing the Effect of Genetic Drift  

Genetic drift erodes standing genetic variation where rare alleles face a greater chance of being 

lost due to random chance. As populations decrease in size and become isolated, the effects of 

genetic drift grow in significance, which accelerates the erosion of genetic variation. Thus, 

populations in which genetic drift is the primary driver of genetic structure are predicted to have 

1) less genetic variation, 2) fewer private alleles, and 3) a higher degree of inbreeding than 
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populations in which genetic structure is shaped by other mechanisms. We characterized genetic 

variation in each site as well as each genetic cluster by measuring expected heterozygosity (He), 

observed heterozygosity (Ho), allelic richness (AR), the number of private alleles (AP), and 

inbreeding (FIS). Since the effects of genetic drift are stronger in more isolated populations, we 

compared the average pairwise FST for each site with He, Ho, and AR using linear regression in R 

(R Core Team 2018). We calculated He, Ho, and AP using the R package poppr v.2.8.2 (Kamvar 

et al. 2014) and AR and FIS using the R package diveRsity, after which 95% confidence intervals 

were calculated using 1000 bootstrap iterations (Keenan et al. 2013).  

 

We estimated the effective population size (Ne) and tested for evidence of recent genetic 

bottlenecks for each site and genetic cluster, as these factors significantly impact the rate at 

which genetic variation is lost as well as the rate of increase of inbreeding and genetic drift 

(Charlesworth 2009; Banks et al. 2013; Gasca-Pineda et al. 2013). We estimated Ne for each 

genetic cluster using the linkage disequilibrium (LD) method implemented in the program 

NeEstimator (Do et al. 2014). One assumption to calculate Ne using the LD method is that 

linkage disequilibrium at independent loci in randomly mating, closed populations comes 

exclusively from genetic drift (Hill 1981). To meet this assumption, we created a neutral set of 

loci by excluding loci potentially under the influence of natural selection; those identified as high 

FST outliers by either Bayescan or PCAdapt for this analysis (see next section for details). 

 

We tested each of the 12 prairie dog sampling sites as well as each genetic cluster for evidence of 

genetic bottlenecks using the program Bottleneck v. 1.2.02 (Cornuet and Luikart 1997; Piry et al. 

1999). Like the estimation of Ne, only neutral loci were used to test for evidence of bottlenecks. 
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We used the infinite alleles model (IAM) and tested for significant heterozygosity excess 

compared to the level predicted under mutation-drift equilibrium using standardized differences 

tests. 

 

Neutral Loci vs. Loci Under Selection 

Outlier loci were detected via a Bayesian method conducted in Bayescan 2.1 (Foll and Gagiotti 

2008) and a non-constrained ordination method executed in the R package PCAdapt (Luu et al 

2019). For the Bayescan method of outlier detection, an FDR of 0.05 was used. For the PCAdapt 

method, outlier loci with p-values less than 0.05 were kept. To generate the set of outlier loci, we 

retained loci that were identified as under divergent selection in both Bayescan and PCAdapt 

methods. We compared this outlier dataset to the neutral set of loci to assess the relative 

contribution of genetic drift and selection in shaping patterns of genetic structure. Specifically, 

we compared patterns of genetic structure for outlier and neutral loci using the program 

STRUCTURE and by using DAPC in adegenet (Jombart et al. 2010, Jombart and Ahmed 2011). 

Gene flow was also estimated for each set of loci using pairwise Jost’s D and FST. To determine 

if geographic distance alone drives patterns of genetic structure, we tested for isolation by 

distance (IBD) in the full genetic dataset (neutral and outlier loci), neutral loci only, and outlier 

loci only using Mantel tests between genetic and geographic distance carried out in the R 

package adegenet (Jombart et al. 2010, Jombart and Ahmed 2011). Significance was assessed 

based on 999 replicates. 

 

Selection and Environmental Associations 
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Genotype-environment associations were characterized using a multivariate ordination method, 

Redundancy Analysis (RDA) (Forester et al. 2018). For the environmental comparisons, we used 

land cover data from the National Landcover Database (NLCD; resolution= 30 m × 30 m; Jin et 

al. 2013) and climatic variables from Worldclim (resolution = 30 arc-seconds; Hijmans et al. 

2005).  Since prairie dog sampling coordinates represent the center of a larger sampling area, we 

characterized the most represented land cover types by the proportion of each landcover type 

within a 5 km buffer around the coordinate point (Fig. S3.1). To avoid multicollinearity, we used 

Pearson’s correlations to remove variables that were correlated with an |r| of 0.7 or higher prior 

to performing the RDA. Predictor variables in the RDA model were further pruned based on 

their variance inflation factors (VIF; multicollinearity was assumed if VIF > 4). To determine if 

associations exist between environmental variables and the environment, we converted the full 

SNP dataset to allele frequencies. Using the RDA, we identified outlier loci and the 

environmental variables most associated with those loci (Forester et al. 2018, Capblanco et al. 

2018). We tested each RDA as a full model to quantify how well it explained genetic variation 

with 999 permutations. We then used an analysis of variance (ANOVA) to see if some axes 

performed better than others in terms of explaining genetic variation. 

 

Results 

Generating the SNP Dataset 

After initial filtering steps, a total of 3,549 variable SNP loci were retained. An additional 594 

loci were removed due to exceptionally high depth of coverage, suggesting potential paralogs 

(2X the mode of depth of each locus averaged for all individuals; mode=17.55). The final 

genomic dataset contained 2,955 variable SNP loci with a mean depth of coverage of 20.08 
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(averaged across all individuals and ranged from 7.68 to 35.58; Fig. S3.2). Four individuals with 

a high amount of missing data (>30%) were removed from the dataset, leaving a total of 233 

individuals used for subsequent analyses (4–40 individuals per site, mean=19.42). These 233 

individuals used for analyses had an average of 4.2% missing data (Fig. S3.3). 

 

Characterizing the patterns of genetic structure, gene flow, and sex-biased dispersal 

Differentiation among sampling sites was observed using PCA; however, paired A and B sites 

were indistinguishable from one another (Fig. 3.2). The most supported number of genetic 

clusters (K) was two, using both the program STRUCTURE (based on Ln(K) and the ∆K 

method) and the unsupervised clustering method using DAPC (Figs. S3.4 and S3.5). In the two 

clusters, all individuals from the CC sites grouped to make one genetic cluster and all individuals 

from HE sites grouped to make the second genetic cluster. When using a supervised clustering 

approach for DAPC, additional clustering solutions (K=2–4) were informative for describing 

genetic structure based on BIC (Fig. S3.6). For example, under a K of four for DAPC, sites from 

CC3 formed a separate genetic cluster and an additional genetic cluster included all individuals 

from HE2A and 11 individuals from HE4 A and B (Fig. S3.7). This pattern was also observed 

using the hierarchical clustering approach in STRUCTURE (Fig. S3.5). 

 

We found similar patterns of population differentiation with pairwise values of FST and Jost’s D 

(Table S3.1), so only values of FST are reported. Values of pairwise FST were low among paired 

A and B sites, suggesting little to no population differentiation, but we detected significant 

genetic differentiation among sampling locations (Fig. 3.3, Table S3.1). Particularly, a high 

degree of differentiation was observed between the CC sites and the HE sites. Among those CC 
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to HE comparisons, the lowest FST values were between the CC3 sites and the HE1 sites. Further, 

the CC3 sites showed high values of FST to CC1 and CC2 sites, compared to other CC-CC or 

HE-HE comparisons.  

 

The relative migration analyses conferred with our estimates of population differentiation using 

pairwise FST in that we observed high migration rates (NM) among paired A and B sites. We also 

observed high migration rates among CC1 and CC2 sites as well as among the HE sites (Fig. 

3.4). The CC3 sites showed intermediate levels of NM among both other CC sites as well as the 

HE sites. Overall, females and males showed comparable patterns of population differentiation 

(Fig. 3.3). We observed global FST values of 0.43 and 0.40 for males and females, respectively.   

 

Characterizing the Effect of Genetic Drift  

Using all 2,955 variable SNP loci, we determined the level of genomic diversity for all 12 

sampling sites within CC and HE as well as each genetic cluster for K=2. Overall, levels of 

genomic diversity (as measured by HO, HE, and AR) were higher in HE sites compared to CC 

sites (Table 3.1). Observed and expected heterozygosity were greatest in the HE sites, 

particularly in the HE 1 sites (CC average HO= 0.12, HE=0.10; HE average HO= 0.27, HE=0.26; 

Table 3.1). The highest levels of AR were observed in the HE1 sites (AR for HE1A=1.71 and 

HE1B= 1.70; Table 3.1).  FIS values ranged from −0.28 to 0.19 for CC sites and from −0.15 to 

0.11 for HE sites (Table3.1). All sites had significant, negative FIS values except the HE4 sites 

(FIS for HE4A=0.11 and HE4B=0.04; Table 3.1), a deficit of heterozygotes that suggests 

individuals in these subpopulations are more related than expected.  No alleles were unique to 

any one site; however, a large number of private alleles were detected when individuals were 
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grouped into genetic clusters (Table 3.1). The genetic group that contained individuals from the 

HE sites had the largest number of private alleles (AP=1,326). This genetic cluster also had the 

highest amount of genomic variation in terms of HO, HE, and AR (Table 3.1). We found a 

negative relationship between FST and measures of genomic variation, indicating that more 

divergent populations also have reduced genomic variation (Fig. 3.5). 

 

Estimates of Ne ranged widely across sites (1.0–48.4) and had large confidence intervals (Table 

3.1). We found that site CC3A had the largest effective population size at 48.4 individuals; 

however, confidence intervals went to infinity (Table 3.1). When genetic clusters were used to 

estimate Ne, values were much smaller (CC=2.1 and HE =4.1) and confidence intervals were 

tighter. We also detected significant bottlenecks (p-value < 0.000001) for all sites as well as for 

each genetic cluster.  

 

Neutral Loci vs. Loci Under Selection 

Using Bayescan, 303 loci were identified as under divergent selection compared to 531 loci 

identified as under selection using PCAdapt (Fig. S3.8). For our outlier dataset, only loci that 

were identified as potentially under divergent selection in both Bayescan and PCAdapt were 

used (nloci=51). We found significant patterns of isolation by distance using the full SNP dataset 

(nloci=2955; r=0.85; p=0.002), only neutral loci (nloci=2904; r=0.84; p=0.002), and only outlier 

loci (nloci=51; r=0.83; p=0.001) based on 999 replicates (Fig. 3.6).  

 

The neutral loci were most similar to that of the full set, suggesting that neutral loci drive the 

overall pattern of population divergence (Fig. 3.2). The outlier loci explained the greatest total 
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variance in genetic structure compared to either the full set of loci or neutral loci. Overall, outlier 

loci depicted a high degree of divergence among CC and HE sites but less divergence within 

either the HE or CC sites. 

 

Selection and Environmental Associations 

We found that a large proportion of the climatic variables were highly correlated (|r| > 0.70) to 

elevation. Therefore, we conducted two different RDAs, one with landcover and elevation data, 

and another with only climatic data. For the first RDA using landcover and elevation data, 

cropland was removed as a predictor variable due to low variation across sites. For the second 

RDA with climate data, we reduced the 19 predictor variables to 2 – one temperature variable 

(BIO9- Mean temperature of the driest quarter) and one precipitation variable (BIO17-

Precipitation of the driest quarter). For our landcover and elevation RDA, we found outlier loci 

associated with elevation (n=32), forests (n=42), and shrubland (n=20) (Fig. 3.7). Our full 

landcover and elevation model was significant when compared to the SNP data (p= 0.002). 

However, when we compared how well each component of the RDA explained genetic variation 

using an ANOVA, we found that only the first component was significant (p=0.001). For our 

RDA with climate data, the full model explained genetic variation well (p=0.003). However, the 

ANOVA analyses showed that only the first component (RDA1) was significant (p=0.002). We 

found SNPs associated with BIO9 (n=34) and BIO17 (n=4) (Fig. 3.7). All predictors within their 

respective RDA models had VIF <2. The two separate RDA models shared 34 outlier loci in 

common. These loci were associated with only one climate variable (BIO9) and both shrubland 

(n=12) and forests (n=22). However, higher correlations were observed with the BIO9 variable 
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compared to correlations with either shrubland or forests. No outlier loci had overlapping 

correlations with elevation or BIO17. 

 

Discussion 

Through the use of high-resolution, genome-wide markers we have demonstrated that we can 

characterize patterns of genetic structure and gene flow, elucidate demographic processes, 

compare the effects of drift and selection on population divergence, and identify genotype-by-

environment associations in a genetically depauperate species. This information is invaluable in 

tailoring the conservation policy of threatened species to mitigate the loss of genetic variation 

and maintain evolutionary potential. We found that Utah prairie dogs show high genetic 

structure, limited gene flow, and a lack of genetic variation across their range. This pattern can 

be explained sufficiently well by demographic processes– population isolation and genetic drift. 

These processes seem to have had a greater impact on the CC sites, where genetic variation was 

lower than in the HE sites. However, selection also plays a role in the divergence of Utah prairie 

dog populations, primarily between low-elevation (CC) sites and high-elevation (HE) sites.  

 

Limited genetic variation in Utah prairie dogs puts them at risk for further erosion of variation 

through genetic drift. Although Utah prairie dog population sizes have either stabilized or 

increased within their conservation units (United States Fish and Wildlife Service 2012), these 

positive demographic trends contrast with our observations of limited gene flow, low effective 

population size, and recent genetic bottlenecks. Utah prairie dogs are highly social and have been 

shown to rarely leave natal colonies (Hoogland 2013). This was reflected in both Jost’s D and 

FST metrics. Higher rates of migration between paired A and B sites than between more distant 
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sites, combined with strong evidence of isolation-by-distance, suggest that when prairie dogs do 

disperse, it is likely to nearby colonies and that long-distance dispersal is rare or non-existent.  

 

We did not detect evidence of sex-biased dispersal, which we expected based on the observations 

in Hoogland (2013). This could be explained by a number of factors. First, young males are 

likely to remain in their natal coterie until they mature. If a large proportion of the males we 

sampled were juveniles, then our estimates of male dispersal could be unrealistically low. Male 

prairie dogs also actively defend their coterie (and females) and have even been found to 

occasionally engage in infanticide and cannibalism (Hoogland 2007). This means it is possible 

that males disperse as observed by Hoogland (2013), but individuals that disperse experience 

high mortality by either other prairie dogs or by predators before they pass on their genes.  

 

The effective population size (Ne) remains an important metric for characterizing the long-term 

evolutionary potential of a species, as it describes the ideal population size that will result in the 

same amount of genetic drift as the census population size (Jamieson and Allendorf 2012). 

Although confidence intervals for Ne values were large, it is clear that the Ne values for Utah 

prairie dog populations are remarkably low. Small Ne was also reported in another study of Utah 

prairie dog using different markers and methodology (Brown et al. 2016). Drift acts more rapidly 

in small vs. large populations (Lacy 1987), which means that without gene flow we should 

expect genetic diversity to decline quickly in Utah prairie dog populations, despite positive 

demographic trends. Facilitated gene flow (i.e., translocation) from populations with unique 

alleles and high genetic variation would increase Ne of small populations and slow drift-based 

erosion of diversity (Laikre et al. 2016). However, this strategy should be pursued with caution, 
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as maladapted individuals introduced to new environments could reduce population fitness, as 

shown by the low establishment success of poorly adapted seeds (Kulpa and Leger 2013) and 

reduced hatching success in non-native habitat in pike (Berggren et al. 2016). 

 

Whereas restricted gene flow leaves genetic drift and inbreeding unmitigated, it also facilitates 

adaptation to local environments (Slatkin 1987; Barrett and Schluter 2008; Savolainen et al. 

2013). A large proportion of our SNP loci in our study were identified as under divergent 

selection (10% using Bayescan and 18% using PCAdapt). These outlier loci reflected high 

divergence between high-elevation (HE) sites and low-elevation (CC) sites. Specifically, patterns 

of variation at outlier loci were associated with high elevation environments, a greater proportion 

of shrubland and forests, and a higher amount of precipitation in the HE sites. These genotype-

by-environment associations may be important in terms of adaptation to plague as precipitation 

affects flea prevalence (Eads and Hoogland 2017) and temperature affects a flea’s ability to 

transmit plague (Williams et al. 2013). Further, the HE sites harbor a greater diversity of flea and 

small mammal species compared to CC sites (Bron et al. 2018; Russell et al. 2018). This 

variation in species composition likely plays a role in plague dynamics. Differences in habitat 

and community composition between HE and CC sites suggest that local adaptation could occur, 

and our outlier and genotype-by-environment association analyses suggest that adaptation is 

ongoing. Experimental work such as common garden or reciprocal transplant experiments would 

help to validate the true connection between the genotypes and their associated environmental 

variables. However, in Utah prairie dogs, any local adaptation is likely diminished by stochastic 

processes such as genetic drift (Hereford 2009), suggesting that the benefit of translocations for 

overall genetic variation may outweigh the risk of incurring outbreeding depression. 
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Implications for Conservation 

With continued change in land use and climate, maintaining genetic variation is of paramount 

importance for the survival of threatened species. Greater standing genetic variation allows for 

selection to act on a larger pool of phenotypic traits. Species that are most at risk of losing 

genetic variation and exhibiting reduced viability in the face of a changing environment are those 

that have 1) small, isolated populations, 2) a history of bottlenecks/founder events, 3) low 

effective population size, and 4) limited gene flow among populations. Our range-wide study on 

Utah prairie dogs, as well as another by Brown et al (2016), showed that Utah prairie dogs have 

all of the above characteristics and already exhibit limited genomic variation. We also observed 

signatures of selection via local adaptation that is contributing to divergence among CC and HE 

sites. Local adaptation reduces genome-wide variation, but also improves a population’s ability 

to survive in their current environment. 

 

Translocations are currently used for prairie dogs, with considerable research focused on 

improving success (Curtis 2014; Truett et al. 2001; United States Fish and Wildlife Service 

2012). Translocations initiate gene flow and increase the genetic variation of a population 

(Whiteley et al. 2015) and have been successful in other threatened species (Johnson et al. 2010; 

Bateson et al. 2014). However, translocations could exacerbate population decline in threatened 

species by introducing maladaptive genes into populations that are locally adapted (Weeks et al. 

2011; Frankham 2015). Incorporating selection into translocation strategies could help to 

mitigate the risks associated with translocations (Harrison et al. 2017; Flanagan et al. 2018). 

With low levels of species-wide genetic variation and limited gene flow in Utah prairie dogs, the 
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consequences of genetic drift may outweigh concerns of outbreeding depression from moving 

potentially locally adapted individuals (Ralls et al. 2018). Specifically, translocations from HE 

sites to CC sites may serve to increase genetic variation in CC sites, and, provided HE 

individuals could successfully integrate into CC sites, would not disrupt the local adaptation we 

identified in HE sites.  
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Figure 3.1. Map of Utah prairie dog sampling locations across the species range (shown in green 
on the Utah state inset map). Prairie dogs were sampled from 6 paired sites near Cedar City, UT 
(CC) and 8 paired, high-elevation sites on the Awapa Plateau (HE). 
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Figure 3.2. Principal component analysis (PCA) to characterize genetic differentiation among 
Utah prairie dogs using all SNP loci (Full), only SNP loci identified as outliers in both Bayescan 
and PCAdapt (Outlier), and only neutral SNP loci (Neutral). Colors correspond to site (CC1, 
CC2, CC3, HE1, HE2, HE3, and HE4) while symbols distinguish paired sites (A and B). 
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Figure 3.3. Population differentiation based on pairwise FST across Utah prairie dog sites for a) 
all individuals; b) only males; and c) only females. Warmer colors indicate lower FST (less 
differentiation) while cooler colors indicate higher FST (more differentiation). 
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Figure 3.4. The relative rate of migration (NM) among sampling sites. Arrows indicate direction 
and relative rates among sites with darker blue indicating higher migration rate than lighter blue. 
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Figure 3.5. Regression plots relating population divergence (average pairwise FST) to genetic 
variation [observed heterozygosity (HO), expected heterozygosity (HE), and allelic richness (AR)] 
in Utah prairie dogs.  
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Figure 3.6. Correlation between genetic and geographic distance for a) all SNP loci; b) only 
neutral SNP loci; and c) only SNP loci identified as outliers. 
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Figure 3.7. Redundancy Analysis (RDA) showing environmental associations with outlier loci. 
A) An RDA using only landcover data and elevation found outlier loci associated with elevation 
(n=32), forests (n=42), and shrubland (n=20). B) An RDA using climatic variables identified 
outlier loci associated with the mean temperature of the driest quarter (BIO9; n=34) and 
precipitation of the driest quarter (BIO17; n=4). 
a) 

 
b) 
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Table 3.1. Measures of genetic variability in Utah prairie dogs for a) each of the sampled sites 
and b) the two putative populations identified using both STRUCTURE v. and DAPC based on 
2,955 variable SNP loci. 
 N Nm Nf Ho He Ar Ap Fis (95%CI) Ne (95%CI) 

a) Sampled Sites      

CC1A 28 17 11 0.11 0.09 1.21 0 -0.24 (-0.26 - -0.21) 25.4 (16.7 - 44.4) 
CC1B 12 11 1 0.11 0.09 1.22 0 -0.27 (-0.34 - -0.21) 8.6 (2.7 - 44.7) 
CC2A 18 8 10 0.11 0.09 1.23 0 -0.24 (-0.28 - -0.21) 23.1 (15.6 - 39.3) 
CC2B 40 21 20 0.11 0.09 1.22 0 -0.24 (-0.26 - -0.22) 16.7 (9.2 - 32.6) 
CC3A 17 12 5 0.15 0.13 1.32 0 -0.19 (-0.22 - -0.16) 48.4 (20.2 - infinity) 
CC3B 4 2 2 0.15 0.12 1.33 0 -0.28 (-0.47 - -0.14) infinity  
HE1A 24 9 12 0.31 0.29 1.71 0 -0.09 (-0.13 - -0.06) 12.7 (6.2 - 30.3) 
HE1B 20 11 9 0.31 0.28 1.70 0 -0.11 (-0.15 - -0.07) 10.6 (6.9 - 16.9) 
HE2A 24 15 9 0.23 0.20 1.48 0 -0.14 (-0.19 - -0.09) 6.3 (3.0 - 11.4) 
HE3B 13 6 8 0.29 0.25 1.62 0 -0.15 (-0.21 - -0.10) 24.2 (12.5 -91.6) 
HE4A 22 7 15 0.22 0.25 1.60 0 0.11 (0.02 - 0.17) 1.0 (0.8 - 1.3) 
HE4B 11 6 5 0.24 0.26 1.64 0 0.04 (-0.15 - 0.16) 2.2 (1.3 - 7.3) 

b) Putative Populations      

CC 119 71 49 0.12 0.12 1.54 111 0.04 (-0.01 - 0.08) 2.1 (1.9 - 2.3) 
HE 114 54 58 0.27 0.30 1.96 1,326 0.10 (0.07 - 0.12) 4.1 (3.5 - 6.8) 

N=sample size; Nm= number of males sampled; Nf= number of females sampled; Ho= observed 
heterozygosity; He= expected heterozygosity; Ar= allelic richness; Ap= number of private 
alleles; Fis= inbreeding with 95% confidence intervals (95%CI); and Ne= estimated effective 
population size with 95% confidence intervals (95%CI). 
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Figure S3.1. Landcover for each sampling location was characterized using the proportion of 
each landcover type within a 5km buffer area around the center of the sampling area. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 96 

Figure S3.2. The mean depth of coverage for the 2,955 SNP loci used in this study was 20.08 
(averaged across all individuals) and ranged from 7.68-35.58 after filtering high depth loci 
(based on 2X the mode of depth of each locus averaged for all individuals; mode=17.55). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 500 1000 1500 2000 2500 3000

10
15

20
25

30
35

Locus

Lo
cu

s 
D

ep
th



 97 

Figure S3.3. Average number of missing loci per individual after filtering individuals with a high 
amount of missing data (>30%). The minimum amount of missing data for an individual was 
0.00% while the maximum was 26.16% (mean=4.20%). 
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Figure S3.4. A K=2 was best supported in STRUCTURE based on the a) ∆K and b) Ln(K) 
method. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. b. 



 99 

Figure S3.5. STRUCTURE plots for a) full run for K=2 (most supported based on Ln(K) and the 
deltaK method) b) hierarchical results for the CC and HE genetic clusters (K=2 for each) c) 
females only (K=2) d) males only (K=2) e) neutral loci only (K=2) and f) outlier loci only (K=2). 
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Figure S3.6. Discriminant analysis of principal components (DAPC) showing genetic structure in 
Utah prairie dogs. Solutions dividing samples into 2-4 genetic clusters were informative (a) 
based on the Bayesian information criterion (BIC) (b). 
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Figure S3.7. Sites from the Cedar City (CC) area made up one genetic cluster and the high 
elevation site (HE) made up another with K=2 in the DAPC analysis (a). When K=4, we saw 
CC3 sites form their own cluster and some further differentiation among the HE sites (b). 
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Figure S3.8. Two approaches were used to identify outlier loci. A Bayesian-based program 
(Bayescan; (a) showing the posterior odds (PO) compared to FST of each locus with a FDR 
threshold of 0.05) and an ordination-based method (PCAdapt; (b) Q-Q plot showing the 
distribution of observed p-values compared to an expected uniform distribution of p-values (dark 
line) and (c) Manhattan plot showing the p-values for each locus). 
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Table S3.1. Pairwise estimates of FST (below the diagonal) and Jost’s D (above the diagonal) for 
all pairs of sampling sites of Utah prairie dog. Bolded and italicized numbers indicate measures 
that were statistically significant with a false discovery rate (FDR) correction using 999 
permutations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CC1A CC1B CC2A CC2B CC3A CC3B HE1B HE1A HE2A HE3B HE4A HE4B
CC1A - 0.00 0.01 0.01 0.08 0.08 0.20 0.19 0.29 0.25 0.26 0.26
CC1B 0.03 - 0.01 0.01 0.08 0.08 0.20 0.18 0.29 0.24 0.26 0.25
CC2A 0.10 0.09 - 0.00 0.08 0.07 0.20 0.18 0.29 0.24 0.26 0.25
CC2B 0.12 0.10 0.04 - 0.08 0.08 0.20 0.18 0.29 0.24 0.26 0.25
CC3A 0.42 0.39 0.39 0.41 - 0.00 0.16 0.15 0.25 0.20 0.22 0.22
CC3B 0.45 0.42 0.41 0.43 0.00 - 0.15 0.14 0.25 0.20 0.22 0.21
HE1B 0.49 0.43 0.45 0.51 0.37 0.31 - 0.01 0.11 0.04 0.06 0.05
HE1A 0.46 0.40 0.42 0.47 0.34 0.28 0.03 - 0.11 0.04 0.07 0.05
HE2A 0.64 0.60 0.61 0.65 0.55 0.51 0.25 0.25 - 0.10 0.05 0.07
HE3B 0.60 0.53 0.56 0.61 0.47 0.40 0.09 0.10 0.27 - 0.04 0.02
HE4A 0.58 0.52 0.54 0.60 0.47 0.42 0.14 0.15 0.14 0.11 - 0.01
HE4B 0.61 0.54 0.57 0.62 0.48 0.41 0.10 0.11 0.20 0.06 0.02 -



 104 

Table S3.2. The Redundancy Analysis (RDA) with landcover and elevation variables identified 
94 outlier loci-environment associations. 

axis snp loading shrub forest elevation pred correlation 
3 65468_33.03 -0.179 -0.073 -0.521 0.212 forest 0.521 
3 65468_33.02 0.179 0.073 0.521 -0.212 forest 0.521 
3 73547_133.04 0.174 0.407 0.561 0.411 forest 0.561 
3 73547_133.03 -0.174 -0.407 -0.561 -0.411 forest 0.561 
3 74672_9.04 -0.145 -0.545 -0.462 -0.646 elevation 0.646 
3 74672_9.03 0.145 0.545 0.462 0.646 elevation 0.646 
3 75811_137.01 0.171 0.441 0.524 0.417 forest 0.524 
3 75811_137.02 -0.171 -0.441 -0.524 -0.417 forest 0.524 
3 79651_62.01 -0.138 0.053 -0.258 0.597 elevation 0.597 
3 79651_62.02 0.138 -0.053 0.258 -0.597 elevation 0.597 
3 80478_20.02 0.134 0.555 0.419 0.663 elevation 0.663 
3 80478_20.03 -0.134 -0.555 -0.419 -0.663 elevation 0.663 
3 83606_106.04 0.171 0.438 0.547 0.448 forest 0.547 
3 83606_106.03 -0.171 -0.438 -0.547 -0.448 forest 0.547 
3 88180_80.03 0.143 0.242 0.602 0.448 forest 0.602 
3 88180_80.01 -0.143 -0.242 -0.602 -0.448 forest 0.602 
3 89828_143.04 0.152 0.349 0.505 0.377 forest 0.505 
3 89828_143.03 -0.152 -0.349 -0.505 -0.377 forest 0.505 
3 91664_77.04 0.170 0.375 0.545 0.357 forest 0.545 
3 91664_77.03 -0.170 -0.375 -0.545 -0.357 forest 0.545 
3 93801_71.03 -0.181 -0.462 -0.469 -0.281 forest 0.469 
3 93801_71.04 0.181 0.462 0.469 0.281 forest 0.469 
3 98064_112.04 0.179 0.500 0.540 0.481 forest 0.540 
3 98064_112.03 -0.179 -0.500 -0.540 -0.481 forest 0.540 
3 123865_13.03 0.148 0.545 0.433 0.573 elevation 0.573 
3 123865_13.01 -0.148 -0.545 -0.433 -0.573 elevation 0.573 
3 123876_15.03 0.136 0.545 0.399 0.598 elevation 0.598 
3 123876_15.01 -0.136 -0.545 -0.399 -0.598 elevation 0.598 
3 126307_112.01 -0.140 -0.100 -0.326 0.249 forest 0.326 
3 126307_112.03 0.140 0.100 0.326 -0.249 forest 0.326 
3 126451_57.01 -0.140 -0.535 -0.467 -0.682 elevation 0.682 
3 126451_57.03 0.140 0.535 0.467 0.682 elevation 0.682 
3 126524_19.02 -0.145 -0.217 -0.116 0.481 elevation 0.481 
3 126524_19.04 0.145 0.217 0.116 -0.481 elevation 0.481 
3 126530_39.02 -0.147 -0.179 -0.147 0.502 elevation 0.502 
3 126530_39.04 0.147 0.179 0.147 -0.502 elevation 0.502 
3 127062_142.01 0.171 0.447 0.535 0.446 forest 0.535 
3 127062_142.02 -0.171 -0.447 -0.535 -0.446 forest 0.535 
3 129015_133.04 0.171 0.438 0.547 0.448 forest 0.547 
3 129015_133.03 -0.171 -0.438 -0.547 -0.448 forest 0.547 
3 131409_30.01 0.168 0.318 0.453 0.120 forest 0.453 
3 131409_30.02 -0.168 -0.318 -0.453 -0.120 forest 0.453 
3 137314_20.03 -0.177 -0.552 -0.511 -0.519 shrub 0.552 
3 137314_20.02 0.177 0.552 0.511 0.519 shrub 0.552 
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3 139534_23.01 -0.171 -0.553 -0.488 -0.523 shrub 0.553 
3 139534_23.03 0.171 0.553 0.488 0.523 shrub 0.553 
3 140130_111.04 0.167 0.412 0.540 0.426 forest 0.540 
3 140130_111.03 -0.167 -0.412 -0.540 -0.426 forest 0.540 
3 144498_133.04 0.162 0.360 0.547 0.398 forest 0.547 
3 144498_133.03 -0.162 -0.360 -0.547 -0.398 forest 0.547 
3 163865_133.01 -0.144 -0.575 -0.445 -0.671 elevation 0.671 
3 163865_133.02 0.144 0.575 0.445 0.671 elevation 0.671 
3 170146_142.04 -0.174 -0.438 -0.585 -0.497 forest 0.585 
3 170146_142.02 0.174 0.438 0.585 0.497 forest 0.585 
3 171880_58.04 0.169 0.576 0.359 0.338 shrub 0.576 
3 171880_58.03 -0.169 -0.576 -0.359 -0.338 shrub 0.576 
3 184937_147.01 0.140 0.481 0.293 0.278 shrub 0.481 
3 184937_147.04 -0.140 -0.481 -0.293 -0.278 shrub 0.481 
3 185994_105.04 0.170 0.428 0.545 0.438 forest 0.545 
3 185994_105.03 -0.170 -0.428 -0.545 -0.438 forest 0.545 
3 193452_58.03 -0.135 0.127 -0.718 -0.142 forest 0.718 
3 193452_58.02 0.135 -0.127 0.718 0.142 forest 0.718 
3 193526_53.04 -0.160 -0.306 -0.214 0.279 shrub 0.306 
3 193526_53.02 0.160 0.306 0.214 -0.279 shrub 0.306 
3 193737_20.01 0.173 0.559 0.504 0.546 shrub 0.559 
3 193737_20.04 -0.173 -0.559 -0.504 -0.546 shrub 0.559 
3 195037_37.03 0.139 0.567 0.434 0.676 elevation 0.676 
3 195037_37.01 -0.139 -0.567 -0.434 -0.676 elevation 0.676 
3 195890_75.04 0.158 0.661 0.139 0.148 shrub 0.661 
3 195890_75.03 -0.158 -0.661 -0.139 -0.148 shrub 0.661 
3 199906_109.03 0.158 0.515 0.444 0.480 shrub 0.515 
3 199906_109.04 -0.158 -0.515 -0.444 -0.480 shrub 0.515 
3 215068_104.04 0.170 0.315 0.441 0.077 forest 0.441 
3 215068_104.03 -0.170 -0.315 -0.441 -0.077 forest 0.441 
3 222778_31.02 -0.144 -0.505 -0.128 0.008 shrub 0.505 
3 222778_31.04 0.144 0.505 0.128 -0.008 shrub 0.505 
3 223812_22.04 -0.154 -0.577 -0.459 -0.631 elevation 0.631 
3 223812_22.01 0.154 0.577 0.459 0.631 elevation 0.631 
3 230647_132.04 0.152 0.651 0.110 0.129 shrub 0.651 
3 230647_132.03 -0.152 -0.651 -0.110 -0.129 shrub 0.651 
3 233925_17.03 0.148 0.519 0.450 0.563 elevation 0.563 
3 233925_17.04 -0.148 -0.519 -0.450 -0.563 elevation 0.563 
3 234279_42.04 0.153 0.550 0.462 0.599 elevation 0.599 
3 234279_42.02 -0.153 -0.550 -0.462 -0.599 elevation 0.599 
3 234817_121.02 -0.134 -0.187 -0.137 0.414 elevation 0.414 
3 234817_121.04 0.134 0.187 0.137 -0.414 elevation 0.414 
3 268078_55.02 -0.150 -0.051 -0.313 0.419 elevation 0.419 
3 268078_55.01 0.150 0.051 0.313 -0.419 elevation 0.419 
3 271602_21.03 0.151 0.397 0.474 0.397 forest 0.474 
3 271602_21.01 -0.151 -0.397 -0.474 -0.397 forest 0.474 
3 314486_128.02 0.141 0.574 0.430 0.666 elevation 0.666 
3 314486_128.01 -0.141 -0.574 -0.430 -0.666 elevation 0.666 
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3 359516_126.03 -0.167 -0.435 -0.534 -0.452 forest 0.534 
3 359516_126.04 0.167 0.435 0.534 0.452 forest 0.534 
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Table S3.3. The Redundancy Analysis (RDA) with climatic variables (BIO9= Mean temperature 
of the driest quarter and BIO17=Precipitation of the driest quarter) identified 38 outlier loci-
environment associations. 
 

axis snp loading wc_9 wc_17 predictor correlation 
2 73547_133.04 0.174 -0.879 -0.008 wc_9 0.879 
2 73547_133.03 -0.174 0.879 0.008 wc_9 0.879 
2 75811_137.01 0.172 -0.867 -0.008 wc_9 0.867 
2 75811_137.02 -0.172 0.867 0.008 wc_9 0.867 
2 83606_106.04 0.172 -0.872 0.020 wc_9 0.872 
2 83606_106.03 -0.172 0.872 -0.020 wc_9 0.872 
2 93801_71.03 -0.183 0.908 0.119 wc_9 0.908 
2 93801_71.04 0.183 -0.908 -0.119 wc_9 0.908 
2 98064_112.04 0.176 -0.896 0.060 wc_9 0.896 
2 98064_112.03 -0.176 0.896 -0.060 wc_9 0.896 
2 127062_142.01 0.170 -0.861 0.027 wc_9 0.861 
2 127062_142.02 -0.170 0.861 -0.027 wc_9 0.861 
2 129015_133.04 0.172 -0.872 0.020 wc_9 0.872 
2 129015_133.03 -0.172 0.872 -0.020 wc_9 0.872 
2 137314_20.03 -0.174 0.891 -0.113 wc_9 0.891 
2 137314_20.02 0.174 -0.891 0.113 wc_9 0.891 
2 140130_111.04 0.168 -0.851 0.005 wc_9 0.851 
2 140130_111.03 -0.168 0.851 -0.005 wc_9 0.851 
2 171880_58.04 0.184 -0.914 -0.133 wc_9 0.914 
2 171880_58.03 -0.184 0.914 0.133 wc_9 0.914 
2 185994_105.04 0.171 -0.865 0.013 wc_9 0.865 
2 185994_105.03 -0.171 0.865 -0.013 wc_9 0.865 
2 193526_53.04 -0.174 0.802 0.597 wc_9 0.802 
2 193526_53.02 0.174 -0.802 -0.597 wc_9 0.802 
2 193737_20.01 0.172 -0.882 0.125 wc_9 0.882 
2 193737_20.04 -0.172 0.882 -0.125 wc_9 0.882 
2 195890_75.04 0.185 -0.893 -0.323 wc_9 0.893 
2 195890_75.03 -0.185 0.893 0.323 wc_9 0.893 
2 215068_104.04 0.179 -0.861 -0.317 wc_9 0.861 
2 215068_104.03 -0.179 0.861 0.317 wc_9 0.861 
2 230647_132.04 0.182 -0.875 -0.348 wc_9 0.875 
2 230647_132.03 -0.182 0.875 0.348 wc_9 0.875 
2 260660_30.01 -0.170 0.754 0.800 wc_17 0.800 
2 260660_30.03 0.170 -0.754 -0.800 wc_17 0.800 
2 260661_119.03 -0.169 0.752 0.802 wc_17 0.802 
2 260661_119.01 0.169 -0.752 -0.802 wc_17 0.802 
2 359516_126.03 -0.168 0.853 -0.024 wc_9 0.853 
2 359516_126.04 0.168 -0.853 0.024 wc_9 0.853 
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