
Eastern Illinois University Eastern Illinois University

The Keep The Keep

Masters Theses Student Theses & Publications

Fall 2019

Complex Varieties as Minima Complex Varieties as Minima

Richard Koss
Eastern Illinois University

Follow this and additional works at: https://thekeep.eiu.edu/theses

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Koss, Richard, "Complex Varieties as Minima" (2019). Masters Theses. 4649.
https://thekeep.eiu.edu/theses/4649

This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The
Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more
information, please contact tabruns@eiu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern Illinois University

https://core.ac.uk/display/270035421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://thekeep.eiu.edu/
https://thekeep.eiu.edu/theses
https://thekeep.eiu.edu/students
https://thekeep.eiu.edu/theses?utm_source=thekeep.eiu.edu%2Ftheses%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=thekeep.eiu.edu%2Ftheses%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://thekeep.eiu.edu/theses/4649?utm_source=thekeep.eiu.edu%2Ftheses%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tabruns@eiu.edu

Complex Varieties as Minima

Richard Koss

December 2019

i

Abstract

We will explore various numeric methods of finding roots of an analytic function over

some open set of the complex plane. We will discuss a method of visually observing

the roots, a gradient descent method for finding the roots of an analytic function,

a gradient descent method for solving systems of analytic functions, and finally a

method of descent that uses osculating circles to find roots of an analytic function.

Of particular interest to this thesis are roots of complex polynomials. There will be

examples, code snippets, and outputs of programs to illustrate all of these methods.

ii

Acknowledgements

To all who have contributed to my life and education, thank you.

iii

Contents

Abstract i

Acknowledgements ii

List of Figures iii

Introduction 1

Maximum Modulus Principle . 4

Osculating Circle . 6

Method of Viewing Roots . 7

Gradient Descent Method 12

Gradient Descent Method: One Complex Variable 13

Rosenbrock Function . 16

Gradient Descent Method: Several Complex Variables 19

Osculating Descent Method 21

Conclusion 22

Appendix 23

References 39

List of Figures

1 Graph of f(z) = z from −5 to 5 on both x and y axes using the non-

spiked method taking g(x, y) = f(x, y)f(x, y). Created using Maxima. 8

2 Graph of f(z) = z from −5 to 5 on both x and y axes using the spiked

method taking h(x, y) = log g(x, y), where g(x, y) is the same as in

Figure 1. Created using Maxima. 8

iv

3 Graph of f(z) = z(z−3)(z+3)(z−3i)(z+3i)(z+7i)(z−7i)(z−7)(z+7)

from −8 to 8 on both x and y axes using the non-spiked method taking

g(x, y) = f(x, y)f(x, y). Created using R. 9

4 Graph of f(z) = z(z−3)(z+3)(z−3i)(z+3i)(z+7i)(z−7i)(z−7)(z+7)

from −8 to 8 on both x and y axes taking h(x, y) = log g(x, y), where

g(x, y) is the same as in Figure 3. Created using R. 10

5 Graph is the same as in Figure 4 but viewed from a top-down perspec-

tive. Created using R. 11

6 Graph of f(x, y) = 100(y− x)2 + (1− x)2 from −2 to 2 on both x and

y axes. Created using R. 17

7 Graph of log(f(x, y)) from −2 to 2 on both x and y axes where f(x, y)

is the Rosenbrock function. Created using R. 18

1

Introduction

The main purpose of this thesis is to illustrate new numeric methods to find zeros of

complex analytic functions. All of these methods can be done in any programming

language of choice and rely on iterative algorithms. The idea for these methods

originated with attempting to find an improved version of gradient descent. Gradient

descent was originally proposed by Cauchy in 1847 [2]. He gives no formal treatment

here just an idea. He had promised to revisit this idea in his next memoir and give it

a more formal and complete treament but sadly it seems such was never made or was

lost. The gradient tells you the direction and magnitude of fastest increase or decrease

of a function at a point. Thus, the idea Cauchy had of gradient descent is that if

we move in the direction proportional to the negative gradient we should eventually

reach a local minimum with respect to the current point. He gave no specifics as

to how one should do this specifically but only gave the foundational outline of the

idea and an argument that you should eventually approach a local minimum. In

this traditional view of descent we always trust the gradient to point us in the right

direction and we must try to choose a scaling factor (Cauchy only argued that we

can find one that will work) to move proportional to the magnitude of the gradient in

the direction of the negative gradient. This form of traditional gradient descent has

difficulties in general. Firstly, it is unclear how big each step should be as Cauchy

did not posit a suggestion. Any surface with unsuitable geometry such as flat spots,

valleys, other similar phenomena that impact the gradient can, as we might expect,

be problematic for gradient descent. For problems exhibiting some of these difficult

terrain features, gradient descent increasingly zigzags or hemstitches as the gradients

point nearly orthogonally to the shortest direction to a minimum point [5].

There are existent methods that rely on information given by the gradient. One

such method is due to Nesterov [8, 9] which is commonly called the Nesterov Acceler-

ated Gradient Descent. It is a method which is designed to be implemented on smooth

convex problems and whose name stems from a term that acts to accelerate your point

2

along at each iteration. Another method is the Broyden−Fletcher−Goldfarb−Shanno

(BFGS) algorithm [3, 4]. It seeks out stationary points of your function using an ap-

proach similar to Newton’s method. It is in a class of methods that are denoted

quasi-Newton. They are any method where one replaces the true jacobian in New-

ton’s method with an approximate one. Another such method is due to Broyden [1]

which also falls within the quasi-Newton class of methods. It is a method that finds

roots in k-variables.

One of the appeals of gradient descent is that it extends to higher dimensions

and requires only that your function be continuously differentiable. Some of the

major general approaches to remedy the slowness or inherent difficulties of gradient

descent include preconditioning, calculating a better step size at each iteration, and

calculating a better direction at each iteration. Preconditioning is the process by

which one changes the geometry of the space to be analyzed. This is to make the

objects more suitable to the numeric method you wish to employ. One of the downfalls

to this is that we need be careful not to do it in such a way as to lose that which

we wish to find. Calculating a better step size is that instead of simply taking one

proportional to the gradient, we may take the time to compute a more suitable step

size. This allows us to overcome some of the cases where the gradient gets incredibly

small as we cross a relatively flat region. Calculating a better direction allows us to

avoid some of the aforementioned zigzagging or hemstitching effects. Of course, a

collective adverse effect all of these share is that they require additional computation

either by us or on the part of the computer and have the potential to increase runtime

or total number of operations depending on the implementation. Thus, there may

possibly be a harsh tradeoff in that you may get better accuracy or fewer iterations

but it may end up taking longer overall to complete. For optimal results, a certain

balance must be struck between computational might and efficiency.

The method of gradient descent presented within this thesis uses all three of these

methods in an effort to successfully implement Cauchy’s idea for gradient descent.

3

One of the advantages of this method is that it maintains computational efficiency

while still delivering improved performance as will be illustrated by example. The

alternate method of descent (though not a gradient descent) still uses a similar pre-

conditioning technique that will be discussed later in this thesis. First, let us review a

couple of key components for the success and implementation of these methods. The

first of these is the Maximum Modulus Principle and contributes to both methods.

The second of these is the application of osculating circles which applies only to the

aptly named osculating descent method.

4

Maximum Modulus Principle

The maximum modulus principle is key to the success of the algorithms contained

herein. The maximum modulus principle may be formally stated in a variety of ways.

Here is one such way.

[14, pp. 165-167] The maximum-modulus theorem. Let f(z) be an analytic

function, regular in a region D and on its boundary C, which we take to be a simple

closed contour. If |f(z)| ≤ M on C, then |f(z)| < M at all interior points of D,

unless f(z) is a constant (when of course |f(z)| = M everywhere).

Proof. We may prove the theorem by contradiction. Suppose there exists an interior

point z0 of D such that |f(z0)| has a value at least equal to its value anywhere else.

Since f(z) is analytic in D we may use the Taylor series expansion of f(z) in powers

of z − z0 with some radius of convergence.

f(z) =
∞∑
n=0

an(z − z0)n

Putting z − z0 = reiθ, an = Ane
iαn , we obtain

f(z) =
∞∑
n=0

Anr
nei(αn+nθ)

.

Therefore |f(z)|2 =
∞∑
m=0

∞∑
n=0

AmAnr
m+nei(αm+mθ−αn−nθ).

Suppose first that a0 6= 0. Since the double series is absolutely convergent, we may

rewrite it as a single series in r with some radius of convergence. Let k be the smallest

positive value of n for which an 6= 0. Then

|f(z)|2 = A2
0 + 2A0Akr

k cos(α0 − αk − kθ) +
∞∑

n=k+1

cnr
n

5

,

where |cn| < cn for some value of c. Hence

∣∣∣∣∣
∞∑

n=k+1

cnr
n

∣∣∣∣∣ <
∞∑

n=k+1

cnrn =
ck+1rk+1

1− cr

which is less than A0Akr
k if r is small enough. For such a value of r, |f(z)|2 − A2

0

takes both positive and negative values as θ varies between 0 and 2π. Thus we have

A0 is neither a maximum nor a minimum of |f(z)|.

We must have that at least one an(n > 0) which is not zero, otherwise, f(z) = a0

for all z.

Finally, if a0 = 0, |f(z0)| = 0, which cannot be a maximum but must be a

minimum.

We have also shown during this proof that |f(z)| cannot have a minimum other

than 0 in D, assuming f(z) is nonconstant. Since, f(z) is analytic we also know that

roots are isolated points [14, p. 88]. These two observations are key to the success of

the algorithms detailed in this thesis.

6

Osculating Circle

The term osculating circle comes from latin and means “kissing circle”, as it kisses a

given curve. Given a plane curve, the osculating circle is the tangent circle that best

approximates the curvature of that curve at a given point. In other words, it tightly

hugs and mimics the curve at that point. The only things we actually need from the

osculating circle are the Cartesian coordinates of the center of the osculating circle. If

we substitute t = x and y = f(x) for some function f , then the Cartesian coordinates

of the center of the osculating circle is given as follows [10] :

(xc, yc) =

(
x− f ′(x)

1 + f ′(x)2

f ′′(x)
, f(x) +

1 + f ′(x)2

f ′′(x)

)
(1)

This gives us the formula for the algorithm we will use when we look at the os-

culating descent method. We must now determine how this applies to our specific

problem. Later when we talk about the process of preconditioning and other things

we will end up turning our functions of z into functions of the real and imaginary

parts x, y, respectively. Thus to apply this function with the above substitutions in

mind we have to then consider our functions as functions of x and y = f(x). If

we start by looking at f(z) = 0 then we end up looking at F (x, f(x)) = 0 for the

osculating descent method. All this means is that we will treat y as function of x for

deriving the appropriate formulas for our problem. We need to solve F (x, f(x)) = 0,

the general implicit function, for f ′(x) and f ′′(x) so that we may substitute them into

the formulas above and acquire the coordinates for our center of the osculating circle

for our original function of interest. Implicit differentiation yields the following:

F ′(x, f(x)) =
∂F

∂x

dx

dx
+
∂F

∂y

dy

dx
= 0

Solving for f ′(x) we acquire:

f ′(x) =
−Fx
Fy

(2)

7

F ′′(x, f(x)) = Fxx + Fyy
dy

dx
+ Fyx

dy

dx
+ Fyy

dy

dx

dy

dx
+ Fy

dy

dx2
= 0

Solving for f ′′(x) we acquire:

f ′′(x) =
−Fxx(Fy)2 + 2FxyFxFy − Fyy(Fx)2

(Fy)3
(3)

Now that we have acquired these we may substitute equations 2 and 3 into 1 for

the center of the osculating circle and use this for the osculating descent. Note that

when the partial derivative with respect to y is zero this formula will fail. In this case

we need to treat x as a function of y instead. All we need to do to accomplish this is

substitute x for y wherever it occurs in the formulas.

Method of Viewing Roots

Let f(z) be the analytic function whose roots you wish to observe. Make the sub-

stitution z = x + yi and let g = f(x + yi)f(x+ yi). g(x, y) by definition is greater

than or equal to zero and will only be equal to zero when f(z) = 0. Thus we have a

nonnegative surface that preserves all of the roots. However, if we stop here and look

at the graph of the surface it will appear to be quite flat with no ability to visually

discern if the area over which we are plotting contains any of the roots (see Figure

1). However, we may remedy this by applying the natural logarithm to our function

g(x, y). Let h(x, y) = log(g(x, y)). Then over the same area, the graph of h(x, y)

takes on a much different appearance. This is due to the natural log exhibiting a

singularity when g(x, y) is equal to zero. This causes a sharp spike to appear at the

zero which reaches down toward −∞ (see Figure 2). The (x, y) coordinates of this

spike will correspond exactly to the coordinates of the zero of the original function.

Figures 3-5 give more examples of these surfaces.

8

Figure 1: Graph of f(z) = z from −5 to 5 on both x and y axes using the non-spiked

method taking g(x, y) = f(x, y)f(x, y). Created using Maxima.

Figure 2: Graph of f(z) = z from −5 to 5 on both x and y axes using the spiked

method taking h(x, y) = log g(x, y), where g(x, y) is the same as in Figure 1. Created

using Maxima.

9

Figure 3: Graph of f(z) = z(z− 3)(z+ 3)(z− 3i)(z+ 3i)(z+ 7i)(z− 7i)(z− 7)(z+ 7)

from −8 to 8 on both x and y axes using the non-spiked method taking g(x, y) =

f(x, y)f(x, y). Created using R.

10

Figure 4: Graph of f(z) = z(z− 3)(z+ 3)(z− 3i)(z+ 3i)(z+ 7i)(z− 7i)(z− 7)(z+ 7)

from −8 to 8 on both x and y axes taking h(x, y) = log g(x, y), where g(x, y) is the

same as in Figure 3. Created using R.

11

Figure 5: Graph is the same as in Figure 4 but viewed from a top-down perspective.

Created using R.

12

Gradient Descent Method

The gradient descent method illustrated in this thesis can be used for one or several

complex variables. We have here that any mention of an analytic function is assumed

to be nonconstant. There are some things that are common amongst both of them

regardless of dimension (number of variables). They require a function to which the

maximum modulus principle may be applied. So we need an analytic function on a

specified open region. The maximum modulus principle ensures that we have no local

maxima and any local minima are zero. Since the function will be analytic we have

that roots are isolated points and thus we can find them uniquely with this algorithm.

We also need that repeated applications of the algorithm do not yield points outside

of our specified region.

Depending on how the algorithm is implemented there are some things of which

we should be aware. If you hit the root exactly (or within machine epsilon) then the

algorithm will fail. For any function with multiple unique solutions, there will be a

collection of stationary points that will never descend to a zero. They may move but

they will continue to shift along to another stationary point. We may think of each

zero as exerting a certain amount of pull on our current point in the algorithm. The

stationary points are those points in which the pull is balanced in such a way that

they cannot escape toward any one zero. Each zero has a region, commonly referred

to as a basin of attraction, which is the set of all points which will descend to it. The

stationary points reside on the boundaries between these basins. Points sufficiently

close to these boundaries exhibit erratic behavior when the algorithm is applied to

them in that they descend to a seemingly random zero.

13

Gradient Descent Method: One Complex Variable

The gradient descent method for a single complex variable may be applied as fol-

lows. Let f(w) be an analytic function in some open set of the complex plane to

which the maximum modulus principle applies. Making the substitution w = x + yi

and multiplying f with its conjugate then calling this new function g, we have

g(x, y) = f(x, y)f(x, y) = |f(x, y)|2. This new surface S generated by the graph

of g is the one upon which we will descend. Now that we have properly precondi-

tioned our problem we are ready for the description of the descent algorithm. Let

P0 = (x0, y0) (4)

be a point in the domain of g(w). Then

P = (x0, y0, g(P0))

be the point of S above P0. Let

G(x, y, z) = g(x, y)− z.

Then S is given by G(x, y, z) = 0. Consider the gradient vector

∇G(P0) = 〈gx(P0), gy(P0),−1〉

and its projection to the xy-plane 〈gx(P0), gy(P0), 0〉. Let L be the line passing through

P0 in the direction of this projection 〈gx(P0), gy(P0), 0〉. Let t be a real number;

consider the point P0(t) on L given by

P0(t) = (x0 + tgx(P0), y0 + tgy(P0), 0). (5)

We look for the value tint of t such that the vectors ∇G(P0) and
−−−−−−→
PP0(tint) = 〈tgx(P0), tgy(P0),−g(P0)〉 are orthogonal. This leads to the equation

gx(P0)
2tint + gy(P0)

2tint + g(P0) = 0. (6)

14

Solving the above equation (3) for tint yields

tint = − g(P0)

gx(P0)2 + gy(P0)2
= − g(P0)

‖∇g(P0)‖2
(7)

The corresponding point on L is P (tint). Omit the last zero z-coordinate in it, and

call a new point Pproj(tint), that is

Pproj(tint) =

(
x0 −

g(P0)gx(P0)

‖∇g(P0)‖2
, y0 −

g(P0)gy(P0)

‖∇g(P0)‖2

)
(8)

Finally, replace in (3) P0 with Pproj and repeat the process until the desired precision

has been achieved. We propose here the following two gauges of accuracy to deter-

mine if and when we should stop iterating in this fashion.

1. |f(P0)| is small.

2. ∇G(P0) = 〈gx(P0), gy(P0),−1〉 is almost parallel to the xy-plane. This exactly

means that the min{|gx(P0)|, |gy(P0)|} is large.

The algorithm may be summarized as follows where g(x, y) is the properly precondi-

tioned function (surface):

(xn+1, yn+1) =

(
xn −

g(xn, yn)gx(xn, yn)

‖∇g(xn, yn)‖2
, yn −

g(xn, yn)gy(xn, yn)

‖∇g(xn, yn)‖2

)
(9)

Let’s look at an example of how this may be applied in practice.

Example 1. Let f(z) = (z− 1)5(z− (1 + i))4(z− 7)3 be our function of interest. We

can easily identify the roots by inspection of this complex polynomial but this is an

illustrative example and in general we would not know the roots. Then we let

g(x, y) = f(x, y)f(x, y) = (y2+x2−14x+49)3(y2+x2−2x+1)5(y2−2y+x2−2x+2)4

, where x, y are the real and imaginary parts, respectively. Now we calculate the

partial derivatives of g(x, y) with respect to x and y using Maxima.

gx(x, y) = 3(2x− 14)(y2 +x2− 14x+ 49)2(y2 +x2− 2x+ 1)5(y2− 2y+x2− 2x+ 2)4

+ 5(2x− 2)(y2 + x2 − 14x+ 49)3(y2 + x2 − 2x+ 1)4(y2 − 2y + x2 − 2x+ 2)4+

4(2x− 2)(y2 + x2 − 14x+ 49)3(y2 + x2 − 2x+ 1)5(y2 − 2y + x2 − 2x+ 2)3

15

gy(x, y) = 6y(y2 + x2 − 14x+ 49)2(y2 + x2 − 2x+ 1)5(y2 − 2y + x2 − 2x+ 2)4+

10y(y2 + x2 − 14x+ 49)3(y2 + x2 − 2x+ 1)4(y2 − 2y + x2 − 2x+ 2)4+

4(2y − 2)(y2 + x2 − 14x+ 49)3(y2 + x2 − 2x+ 1)5(y2 − 2y + x2 − 2x+ 2)3

Now we have obtained everything required to apply the method using equation (8).

Starting with any point, let’s say (x0, y0) = (−330, 917) and performing 300 iterations

we arrive at the following output in our Python program (See Appendix for full listing

of code) for this method:

After 300 i t e r a t i o n s we f i n d the f o l l o w i n g :

Guess f o r x i s 1.0000000000844652500

Guess f o r y i s 1.0000000024292978490

I n i t i a l z va lue (he ight) : 5 .4611041058136187810E+71

Fina l z va lue (he ight) : 6 .1378070183491209655E−65

x−component o f the g rad i en t i s 7.0295783030823300559E−57

y−component o f the g rad i en t i s 2.0217710417970167169E−55

The min o f the magnitude o f x , y−s l o p e s o f the g rad i en t i s :

4 .9461584884071098931E+54

The e lapsed time f o r the method in seconds i s 0 .025024577

We observe that we are certainly descending toward the zero (1, 1) which corresponds

to the complex number 1 + i. We also have met both criteria to feel confident in how

close we are to the zero. That is we have a small final height and the magnitude of

the minimum of the xy−slopes of the gradient is fairly large. Note that although we

performed 300 iterations and started relatively far away from a zero, the runtime we

experienced was roughly 0.03 seconds. In this example, if we did 19 more iterations

we would exceed the set precision for this program. This means we would hit a point

where the calculations break down as we get sufficiently close to the zero such that the

computer can no longer distinguish the difference between what we have and the true

zero with our chosen precision. If we increase the desired precision from Python then

16

we will be able to execute more iterations, however, this will increase the runtime of

each iteration.

Rosenbrock Function

Although what has come to be called the Rosenbrock function does not fall under

the purview for which our methods were designed, we have that our gradient descent

method does work on it. The Rosenbrock function is defined as follows [13]:

f(x, y) = 100(y − x)2 + (1− x)2

This function has a minimum value of f(x, y) = 0 when x = y = 1, with a curved

valley along the parabola y = x2 which may be viewed as the dark blue band in

Figure 6. This valley may cause difficulties for gradient descent and similar methods

and that is why Rosenbrock used it. He wanted to test a proposed improved method

of descent. Thus it has seemingly become somewhat of a litmus test for descent

methods. As a curiosity, this gradient descent method was applied to the Rosenbrock

function so let us see the results starting with x = −124 and y = 431. (For a full

code listing see Appendix.)

After 13000 i t e r a t i o n s we f i n d the f o l l o w i n g :

Guess f o r x i s 1.00000000000000000000000000328

Guess f o r y i s 1.00000000000000000000000000682

I n i t i a l z va lue (he ight) : 22335318125

Fina l z va lue (he ight) : 1 .75184E−53

x−component o f the g rad i en t i s

−9.7440000000000000000000000341E−26

y−component o f the g rad i en t i s 5 .200E−26

The minimum of the abso lu t e va lue o f x , y−s l o p e s o f

the g rad i en t i s 10262725779967159277504105.0544

The e lapsed time f o r the method in seconds i s 0 .121599121

17

So we have started fairly far away and used a considerable number of iterations

but the runtime is only about an eighth of a second. We have also acquired both of

our measures of accuracy in that the final height is small and the x, y−slopes of the

gradient are large.

Figure 6: Graph of f(x, y) = 100(y − x)2 + (1 − x)2 from −2 to 2 on both x and y

axes. Created using R.

Now we will see what happens if we attempt to spike the Rosenbrock function

to view the roots. We must keep in mind that the Rosenbrock function is not the

type of function for which the descent methods in this thesis were designed and we

will see a clear consequence of this in Figure 7. This Figure 7 is what the computer

thinks the logarithmically spiked version of the Rosenbrock function looks like when

viewed from roughly the same perspective as in Figure 6. Notice the jaggedness and

uniformity of color. This uniformity of color indicates the computer considers all the

18

values as roughly equal in height.

Figure 7: Graph of log(f(x, y)) from −2 to 2 on both x and y axes where f(x, y) is

the Rosenbrock function. Created using R.

19

Gradient Descent Method: Several Complex Variables

The method for several complex variables shall proceed in a similar fashion. We will

look at the case of two complex variables and then it will be easy to see how we would

extend it to even higher dimensions. Let f1(w1, w2) and f2(w1, w2) be a system of

analytic functions of 2 complex variables in an open set of C2. Then we create the

surface

g(w1, w2) = f1(w1, w2)f1(w1, w2) + f2(w1, w2)f2(w1, w2)

This surface exhibits similar behavior as the one variable case in that the only roots of

this surface are the common roots between the two functions and the Maximum Mod-

ulus Principle still applies, however, the Minimum Modulus Principle is not known to

exist for several complex variables. Thus, there is the possibility that we will descend

to nonzero minima.

Starting with the point P0 = (x1,0, y1,0, x2,0, y2,0) we may proceed as before and

our algorithm takes the following form on the jth iteration:

Pj =

(
x1,j−1 −

g(Pj−1)gx1(Pj−1)

‖∇g(Pj−1)‖2
, y1,j−1 −

g(Pj−1)gy1(Pj−1)

‖∇g(Pj−1)‖2
,

x2,j−1 −
g(Pj−1)gx2(Pj−1)

‖∇g(Pj−1)‖2
, y2,j−1 −

g(Pj−1)gy2(Pj−1)

‖∇g(Pj−1)‖2

)

We simply continue on in this fashion for any number of variables upon which we

wish to descend.

Example 2. Let us look at an example of how this is done in practice with a system

of 3 complex variables and functions (See Appendix for a full code listing). Let our

20

system be the following:

f1 = z21 + z2 + z23

f2 = z1(z1 − 1) + z2 + z3(z3 − i)

f3 = z1(z1 − 1)(z1 − i) + z2 + z3(z3 − 1)(z3 − i)

Then we define

g(a, b, c, d, e, f) = f1(a, b)f1(a, b) + f2(c, d)f2(a, b) + f3(a, b)f3(a, b)

The solutions to this system are

{(z1 = 1, z2 = 0, z3 = i), (z1 = z2 = z3 = 0), (z1 = −1, z2 = 0, z3 = −i)}

Using (−3.1, 10.1, 14,−7, 30,−123) as a starting point and applying the method 1000

times we arrive at the following

After 1000 i t e r a t i o n s we f i n d the f o l l o w i n g :

Guess f o r a i s 2.3894134225310400652E−11

Guess f o r b i s 2.9510895186336179897E−11

Guess f o r c i s 3.7280782254394001349E−11

Guess f o r d i s −8.5826420922136289270E−12

Guess f o r e i s −4.5910190798984508618E−11

Guess f o r f i s 6.1616021923193068003E−12

I n i t i a l z va lue (he ight) : 4162535261376.1947284

Fina l z va lue (he ight) : 2 .8456195704038821865E−21

a−component o f the g rad i en t i s −1.0029389777143585147E−10

b−component o f the g rad i en t i s −1.8849876799310263901E−11

c−component o f the g rad i en t i s 1.1687463470829950882E−10

d−component o f the g rad i en t i s −6.2729374477183938206E−11

e−component o f the g rad i en t i s −7.6830704394547604026E−11

21

f−component o f the g rad i en t i s 3.5879930688830036364E−11

The min o f the magnitude o f the s l o p e s o f the g rad i en t i s

8556176474.8684851965

The e lapsed time f o r the method in seconds i s 1 .450609399

We see here that it appears to be descending to the zero z1 = z2 = z3 = 0. We also

have acquired the conditions that allow us to be confident in our results.

Osculating Descent Method

As we saw in the next introductory subsection, Method of Viewing Roots that

the spikes produced in locating the roots appear to be rather tubular in nature. Thus,

an idea arose for a method as to how one might descend down this tunnel and swiftly

converge to a zero. This method came into form by utilizing the formulas for the

osculating circle. We will apply the same preconditioning techniques as we did in

the introductory section for viewing the roots. In other words, we will multiply our

function with its conjugate to create the same surface we have been using and then

we spike it at the roots using the natural logarithm. Then starting with any point in

our region we like, we iterate by repeatedly applying the formula we derived in the

introductory section to each output. Let us apply this method to the function from

example 1 from the earlier discussed Gradient Descent Method: One Complex

Variable section.

Example 3 (See Appendix for full code listing) Let g(x, y) be the same as in Example

1 and let

h(x, y) = log(g(x, y)).

Let’s use the same starting point an compare our results between the two methods.

So using (x0, y0) = (−330, 917) and 7 iterations we have the following results

After 7 i t e r a t i o n s we f i n d the f o l l o w i n g :

22

Guess f o r x i s 1.0000000000251796003

Guess f o r y i s 2.01443013543844E−10

The e lapsed time f o r the method in seconds i s

0.0008972829999999987

Notice here the drastic decrease in the number of iteration to approximate a zero. We

also descended to a different zero using this method as we went to 1 + i before but

now we have 1. If we increase the number of iterations by one then the computer will

not be able to distinguish between the approximate zero and the true zero and the

method will fail computationally. To resolve this we need only increase the precision

we ask from our program. This method tends to very rapidly overwhelm the standard

precision for modern programming languages. The downside to this method is that

there is no direct way to extend it to higher dimensions as it is due to the nature of

osculating circles/spheres.

Conclusion

There are many questions still to be considered on this topic. An interesting topic

of further study would be to emulate the idea and success of the osculating descent

method in higher dimensions. Another topic that merits further study is to observe

how the roots and their multiplicities shape the set of stationary points. Equivalently,

one may look at the shape of the basins of attraction. This would allow us in practice

to devise a method for selecting smart test points to initiate the algorithms that would

ensure or maximize the probability they descend to different roots. This would greatly

increase the efficiency of our search in general so that we do not repeatedly descend

to a zero we have already found. Yet further study should be made into floating

point representation and ways to increase the precision and accuracy we acquire from

our programs. There are times when standard floating point representations fail to

provide adequate results.

23

Appendix

Here are the complete Python codes associated with each example provided in this

thesis. For example 1, we have:

import time

import decimal as dec

dec . s e t con t ex t (dec . ExtendedContext)

dec . ge tcontext () . prec = 20

This i s our descen t method a p p l i e d to the f u n c t i o n

f (z)=(z−1)ˆ5 ∗ (z−(1+ i))ˆ4 ∗ (z−7)ˆ3

def g (x , y) :

return (y∗∗2+x∗∗2−14∗x+49)∗∗3

∗(y∗∗2+x∗∗2−2∗x+1)∗∗5∗(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗4

def gx (x , y) :

return 3∗(2∗x−14)∗(y∗∗2+x∗∗2−14∗x+49)∗∗2∗

(y∗∗2+x∗∗2−2∗x+1)∗∗5∗(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗4

+5∗(2∗x−2)∗(y∗∗2+x∗∗2−14∗x+49)∗∗3∗(y∗∗2+x∗∗

2−2∗x+1)∗∗4∗(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗4+4∗(2∗x−2)∗

(y∗∗2+x∗∗2−14∗x+49)∗∗3∗(y∗∗2+x∗∗2−2∗x+1)∗∗5∗

(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗3

def gy (x , y) :

return 6∗y∗(y∗∗2+x∗∗2−14∗x+49)∗∗2∗(y∗∗2+x∗∗2

−2∗x+1)∗∗5∗(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗4+10∗y∗

(y∗∗2+x∗∗2−14∗x+49)∗∗3∗(y∗∗2+x∗∗2−2∗x+1)∗∗4∗

24

(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗4+4∗(2∗y−2)∗

(y∗∗2+x∗∗2−14∗x+49)∗∗3∗(y∗∗2+x∗∗2−2∗x+1)∗∗5∗

(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗3

def gradmag (x , y) :

return gx (x , y)∗∗2 + gy (x , y)∗∗2

def groundx (x , y) :

intPx = g (x , y) ∗ gx (x , y) / gradmag (x , y)

return x − intPx

def groundy (x , y) :

intPy = g (x , y) ∗ gy (x , y) / gradmag (x , y)

return y − intPy

x0 = nextX = dec . Decimal (−330)

y0 = nextY = dec . Decimal (917)

i t e r a t i o n s = 300

ptm = time . p ro c e s s t ime ()

for i in range (i t e r a t i o n s) :

prevX = nextX

prevY = nextY

nextX = groundx (prevX , prevY)

nextY = groundy (prevX , prevY)

e lapsed = time . p roc e s s t ime () − ptm

gradeX = gx (nextX , nextY)

gradeY = gy (nextX , nextY)

25

xSlope = 1/abs (gradeX)

ySlope = 1/abs (gradeY)

minSlope = min(xSlope , ySlope)

print (’ After ’ , i t e r a t i o n s , ’

i t e r a t i o n s we f i n d the f o l l o w i n g : ’)

print (’ Guess f o r x i s ’ , nextX)

print (’ Guess f o r y i s ’ , nextY)

print (’ I n i t i a l z va lue (he ight) : ’ , g (x0 , y0))

print (’ F ina l z va lue (he ight) : ’ , g (nextX , nextY))

print (’ x−component o f the g rad i en t i s ’ , gradeX)

print (’ y−component o f the g rad i en t i s ’ , gradeY)

print (’The min o f the magnitude o f

x , y−s l o p e s o f the g rad i en t i s ’ , minSlope)

print (’The e lapsed time f o r the

method in seconds i s ’ , e l apsed)

Here is the code for the Rosenbrock function example:

import time

import decimal as dec

dec . s e t con t ex t (dec . ExtendedContext)

dec . ge tcontext () . prec = 30

This i s our descen t method a p p l i e d to the f u n c t i o n

Rosenbrock f u n c t i o n f (x , y)=(1−x)ˆ2+100(y−x ˆ2)ˆ2

def g (x , y) :

26

return (1−x)∗∗2 + 100∗(y−x∗∗2)∗∗2

def gx (x , y) :

return −400∗x∗(y−x∗∗2)−2∗(1−x)

def gy (x , y) :

return 200∗(y−x∗∗2)

def gradmag (x , y) :

return gx (x , y)∗∗2 + gy (x , y)∗∗2

def groundx (x , y , speed) :

intPx = g (x , y) ∗ gx (x , y) / gradmag (x , y)

i f speed == 1 :

return x − intPx

e l i f speed == 2 :

return x − 2∗ intPx

def groundy (x , y , speed) :

intPy = g (x , y) ∗ gy (x , y) / gradmag (x , y)

i f speed == 1 :

return y − intPy

e l i f speed == 2 :

27

return y − 2 ∗ intPy

x0 = nextX = dec . Decimal (−124)

y0 = nextY = dec . Decimal (431)

i t e r a t i o n s = 13000

ptm = time . p ro c e s s t ime ()

for i in range (i t e r a t i o n s) :

prevX = nextX

prevY = nextY

nextX = groundx (prevX , prevY , f a c t o r)

nextY = groundy (prevX , prevY , f a c t o r)

e l apsed = time . p roc e s s t ime () − ptm

gradeX = gx (nextX , nextY)

gradeY = gy (nextX , nextY)

xSlope = 1/abs (gradeX)

ySlope = 1/abs (gradeY)

minSlope = min(xSlope , ySlope)

print (’ After ’ , i t e r a t i o n s , ’

i t e r a t i o n s we f i n d the f o l l o w i n g : ’)

print (’ Guess f o r x i s ’ , nextX)

print (’ Guess f o r y i s ’ , nextY)

print (’ I n i t i a l z va lue (he ight) : ’ , g (x0 , y0))

print (’ F ina l z va lue (he ight) : ’ , g (nextX , nextY))

print (’ x−component o f the g rad i en t i s ’ , gradeX)

print (’ y−component o f the g rad i en t i s ’ , gradeY)

28

print (’The minimum of the abso lu t e va lue

o f x , y−s l o p e s o f the g rad i en t i s ’ , minSlope)

print (’The e lapsed time f o r the method in seconds i s ’ ,

e l apsed)

For Example 2 (system of complex variables) we have:

import time

import decimal as dec

dec . s e t con t ex t (dec . ExtendedContext)

dec . ge tcontext () . prec = 20

This i s our descen t method a p p l i e d to the system

f 1 = z1 ˆ2 + z2 + z3 ˆ2 ,

f 2 = z1 (z1−1) + z2 + z3 (z3−i) ,

f 3 = z1 (z1−1)(z1−i) + z2 + z3 (z3−1)(z3−i)

def g (a , b , c , d , e , f) :

return f ∗∗6−2∗ f ∗∗5+3∗e∗∗2∗ f ∗∗4−2∗e∗ f ∗∗4+4∗ f ∗∗4

−4∗e∗∗2∗ f ∗∗3+4∗e∗ f ∗∗3−2∗d∗ f ∗∗3+2∗b∗∗3∗ f ∗∗3−2∗

b∗∗2∗ f ∗∗3−6∗a∗∗2∗b∗ f ∗∗3+4∗a∗b∗ f ∗∗3+2∗a∗∗2∗ f ∗∗3

−2∗a∗ f ∗∗3−4∗ f ∗∗3+3∗e∗∗4∗ f ∗∗24∗ e∗∗3∗ f ∗∗2+8∗e∗∗2

∗ f ∗∗2−6∗c∗e∗ f ∗∗2+18∗a∗b∗∗2∗ e∗ f ∗∗2−6∗b∗∗2∗ e∗ f ∗∗2

−12∗a∗b∗e∗ f ∗∗2+6∗b∗e∗ f ∗∗2−6∗a∗∗3∗ e∗ f ∗∗2+6∗a∗∗2∗

e∗ f ∗∗2−2∗e∗ f ∗∗2+2∗d∗ f ∗∗2−2∗c∗ f ∗∗2−2∗b∗∗3∗ f ∗∗2−

6∗a∗b∗∗2∗ f ∗∗2+8∗b∗∗2∗ f ∗∗2+6∗a∗∗2∗b∗ f ∗∗2−2∗b∗ f ∗∗2

+2∗a∗∗3∗ f ∗∗2−8∗a∗∗2∗ f ∗∗2+4∗a∗ f ∗∗2+2∗ f ∗∗2−2∗e∗∗4∗ f

+4∗e∗∗3∗ f +6∗d∗e∗∗2∗ f−6∗b∗∗3∗ e∗∗2∗ f +6∗b∗∗2∗ e∗∗2∗ f+

29

18∗a∗∗2∗b∗e∗∗2∗ f−12∗a∗b∗e∗∗2∗ f−6∗a∗∗2∗ e∗∗2∗ f +6∗a∗e

∗∗2∗ f−4∗e∗∗2∗ f +4∗d∗e∗ f +4∗c∗e∗ f +4∗b∗∗3∗ e∗ f−12∗a∗b∗∗2

∗e∗ f−12∗a∗∗2∗b∗e∗ f +32∗a∗b∗e∗ f−8∗b∗e∗ f +4∗a∗∗3∗ e∗ f−4∗

a∗e∗ f +6∗a∗b∗∗2∗ f−4∗b∗∗2∗ f−4∗a∗b∗ f +2∗b∗ f−2∗a∗∗3∗ f +4∗

a∗∗2∗ f−2∗a∗ f +e∗∗6−2∗e∗∗5+4∗e∗∗4+2∗c∗e∗∗3−6∗a∗b∗∗2∗

e∗∗3+2∗b∗∗2∗ e∗∗3+4∗a∗b∗e∗∗3−2∗b∗e∗∗3+2∗a∗∗3∗ e∗∗3−2∗a

∗∗2∗ e∗∗3−2∗e∗∗3−2∗d∗e∗∗2+2∗c∗e∗∗2+2∗b∗∗3∗ e∗∗2+6∗a∗b∗∗2

∗e∗∗2−8∗b∗∗2∗ e∗∗2−6∗a∗∗2∗b∗e∗∗2+2∗b∗e∗∗2−2∗a∗∗3∗ e∗∗2+8

∗a∗∗2∗ e∗∗2−4∗a∗e∗∗2+2∗e∗∗2−2∗b∗∗3∗ e+2∗b∗∗2∗ e+6∗a∗∗2∗b∗

e−8∗a∗b∗e+2∗b∗e−2∗a∗∗2∗ e+2∗a∗e+3∗d∗∗2−2∗b∗∗3∗d+2∗b∗∗2∗d+

6∗a∗∗2∗b∗d+4∗a∗b∗d−2∗b∗d−2∗a∗∗2∗d+2∗a∗d+3∗c∗∗2−6∗a∗

b∗∗2∗c−2∗b∗∗2∗ c+4∗a∗b∗c−2∗b∗c+2∗a∗∗3∗ c+2∗a∗∗2∗c−2∗a∗c

+b∗∗6−2∗b∗∗5+3∗a∗∗2∗b∗∗4−2∗a∗b∗∗4+4∗b∗∗4−4∗a∗∗2∗b∗∗3+4∗a

∗b∗∗3−2∗b∗∗3+3∗a∗∗4∗b∗∗2−4∗a∗∗3∗b∗∗2+8∗a∗∗2∗b∗∗2−4∗a∗b∗∗2

+2∗b∗∗2−2∗a∗∗4∗b+4∗a∗∗3∗b−2∗a∗∗2∗b+

a∗∗6−2∗a∗∗5+4∗a∗∗4−4∗a∗∗3+2∗a∗∗2

def ga (a , b , c , d , e , f) :

return −12∗a∗b∗ f ∗∗3+4∗b∗ f ∗∗3+4∗a∗ f ∗∗3−2∗ f ∗∗3+18∗b∗∗2∗ e∗

f ∗∗2−12∗b∗e∗ f ∗∗2−18∗a∗∗2∗ e∗ f ∗∗2+12∗a∗e∗ f ∗∗2−6∗b∗∗2∗ f ∗∗2

+12∗a∗b∗ f ∗∗2+6∗a∗∗2∗ f ∗∗2−16∗a∗ f ∗∗2+4∗ f ∗∗2+36∗a∗b∗e∗∗2∗ f

−12∗b∗e∗∗2∗ f−12∗a∗e∗∗2∗ f +6∗e∗∗2∗ f−12∗b∗∗2∗ e∗ f−24∗a∗b∗e∗ f

+32∗b∗e∗ f +12∗a∗∗2∗ e∗ f−4∗e∗ f +6∗b∗∗2∗ f−4∗b∗ f−6∗a∗∗2∗ f +8∗

a∗ f−2∗ f−6∗b∗∗2∗ e∗∗3+4∗b∗e∗∗3+6∗a∗∗2∗ e∗∗3−4∗a∗e∗∗3+6∗

b∗∗2∗ e∗∗2−12∗a∗b∗e∗∗2−6∗a∗∗2∗ e∗∗2+16∗a∗e∗∗2−4∗e∗∗2+12∗a

∗b∗e−8∗b∗e−4∗a∗e+2∗e+12∗a∗b∗d+4∗b∗d−4∗a∗d+2∗d−6∗b∗∗2∗ c+

4∗b∗c+6∗a∗∗2∗ c+4∗a∗c−2∗c+6∗a∗b∗∗4−2∗b∗∗4−8∗a∗b∗∗3+4∗

b∗∗3+12∗a∗∗3∗b∗∗2−12∗a∗∗2∗b∗∗2+16∗a∗b∗∗2−4∗b∗∗2−8∗

30

a∗∗3∗b+12∗a∗∗2∗b−4∗a∗b+6∗a∗∗5−10∗a∗∗4+16∗a∗∗3−12∗a∗∗2+4∗a

def gb (a , b , c , d , e , f) :

return 6∗b∗∗2∗ f ∗∗3−4∗b∗ f ∗∗3−6∗a∗∗2∗ f ∗∗3+4∗a∗ f ∗∗3+

36∗a∗b∗e∗ f ∗∗2−12∗b∗e∗ f ∗∗2−12∗a∗e∗ f ∗∗2+6∗e∗ f ∗∗2−6∗

b∗∗2∗ f ∗∗2−12∗a∗b∗ f ∗∗2+16∗b∗ f ∗∗2+6∗a∗∗2∗ f ∗∗2−2∗ f ∗∗2−

18∗b∗∗2∗ e∗∗2∗ f +12∗b∗e∗∗2∗ f +18∗a∗∗2∗ e∗∗2∗ f−12∗a∗e∗∗2∗ f+

12∗b∗∗2∗ e∗ f−24∗a∗b∗e∗ f−12∗a∗∗2∗ e∗ f +32∗a∗e∗ f−8∗e∗ f+

12∗a∗b∗ f−8∗b∗ f−4∗a∗ f +2∗ f−12∗a∗b∗e∗∗3+4∗b∗e∗∗3+4∗a∗e∗∗3−

2∗ e∗∗3+6∗b∗∗2∗ e∗∗2+12∗a∗b∗e∗∗2−16∗b∗e∗∗2−6∗a∗∗2∗ e∗∗2+

2∗ e∗∗2−6∗b∗∗2∗ e+4∗b∗e+6∗a∗∗2∗e−8∗a∗e+2∗e−6∗b∗∗2∗d+

4∗b∗d+6∗a∗∗2∗d+4∗a∗d−2∗d−12∗a∗b∗c−4∗b∗c+4∗a∗c−

2∗ c+6∗b∗∗5−10∗b∗∗4+12∗a∗∗2∗b∗∗3−8∗a∗b∗∗3+16∗b∗∗3−

12∗a∗∗2∗b∗∗2+12∗a∗b∗∗2−6∗b∗∗2+6∗a∗∗4∗b−8∗a∗∗3∗b+

16∗a∗∗2∗b−8∗a∗b+4∗b−2∗a∗∗4+4∗a∗∗3−2∗a∗∗2

def gc (a , b , c , d , e , f) :

return −6∗e∗ f ∗∗2−2∗ f ∗∗2+4∗e∗ f +2∗e∗∗3+2∗e∗∗2+6∗c−

6∗a∗b∗∗2−2∗b∗∗2+4∗a∗b−2∗b+2∗a∗∗3+2∗a∗∗2−2∗a

def gd (a , b , c , d , e , f) :

return −2∗ f ∗∗3+2∗ f ∗∗2+6∗e∗∗2∗ f +4∗e∗ f−2∗e∗∗2+6∗d−

2∗b∗∗3+2∗b∗∗2+6∗a∗∗2∗b+4∗a∗b−2∗b−2∗a∗∗2+2∗a

def ge (a , b , c , d , e , f) :

r e turn6 ∗e∗ f ∗∗4−2∗ f ∗∗4−8∗e∗ f ∗∗3+4∗ f ∗∗3+12∗e∗∗3∗ f ∗∗2−

12∗ e∗∗2∗ f ∗∗2+16∗e∗ f ∗∗2−6∗c∗ f ∗∗2+18∗a∗b∗∗2∗ f ∗∗2−

6∗b∗∗2∗ f ∗∗2−12∗a∗b∗ f ∗∗2+6∗b∗ f ∗∗2−6∗a∗∗3∗ f ∗∗2+6∗a∗∗2

31

∗ f ∗∗2−2∗ f ∗∗2−8∗e∗∗3∗ f +12∗e∗∗2∗ f +12∗d∗e∗ f−12∗b∗∗3∗ e∗ f

+12∗b∗∗2∗ e∗ f +36∗a∗∗2∗b∗e∗ f−24∗a∗b∗e∗ f−12∗a∗∗2∗ e∗ f+

12∗a∗e∗ f−8∗e∗ f +4∗d∗ f +4∗c∗ f +4∗b∗∗3∗ f−12∗a∗b∗∗2∗ f−

12∗a∗∗2∗b∗ f +32∗a∗b∗ f−8∗b∗ f +4∗a∗∗3∗ f−4∗a∗ f +6∗e∗∗5−

10∗ e∗∗4+16∗e∗∗3+6∗c∗e∗∗2−18∗a∗b∗∗2∗ e∗∗2+6∗b∗∗2∗

e∗∗2+12∗a∗b∗e∗∗2−6∗b∗e∗∗2+6∗a∗∗3∗ e∗∗2−6∗a∗∗2∗

e∗∗2−6∗e∗∗2−4∗d∗e+4∗c∗e+4∗b∗∗3∗ e+12∗a∗b∗∗2∗e−

16∗b∗∗2∗e−12∗a∗∗2∗b∗e+4∗b∗e−4∗a∗∗3∗ e+16∗a∗∗2∗ e

−8∗a∗e+4∗e−2∗b∗∗3+2∗b∗∗2+6∗a∗∗2∗b−8∗a∗b+2∗b−2∗a∗∗2+2∗a

def g f (a , b , c , d , e , f) :

r e turn6 ∗ f ∗∗5−10∗ f ∗∗4+12∗e∗∗2∗ f ∗∗3−8∗e∗ f ∗∗3+16∗ f ∗∗3−

12∗ e∗∗2∗ f ∗∗2+12∗e∗ f ∗∗2−6∗d∗ f ∗∗2+6∗b∗∗3∗ f ∗∗2−6∗b∗∗2

∗ f ∗∗2−18∗a∗∗2∗b∗ f ∗∗2+12∗a∗b∗ f ∗∗2+6∗a∗∗2∗ f ∗∗2−6∗a∗ f ∗∗2

−12∗ f ∗∗2+6∗e∗∗4∗ f−8∗e∗∗3∗ f +16∗e∗∗2∗ f−12∗c∗e∗ f+

36∗a∗b∗∗2∗ e∗ f−12∗b∗∗2∗ e∗ f−24∗a∗b∗e∗ f +12∗b∗e∗ f−

12∗a∗∗3∗ e∗ f +12∗a∗∗2∗ e∗ f−4∗e∗ f +4∗d∗ f−4∗c∗ f−4∗b∗∗3∗ f−

12∗a∗b∗∗2∗ f +16∗b∗∗2∗ f +12∗a∗∗2∗b∗ f−4∗b∗ f +4∗a∗∗3∗ f−

16∗a∗∗2∗ f +8∗a∗ f +4∗ f−2∗e∗∗4+4∗e∗∗3+6∗d∗e∗∗2−6∗b∗∗3∗

e∗∗2+6∗b∗∗2∗ e∗∗2+18∗a∗∗2∗b∗e∗∗2−12∗a∗b∗e∗∗2−

6∗a∗∗2∗ e∗∗2+6∗a∗e∗∗2−4∗e∗∗2+4∗d∗e+4∗c∗e+4∗b∗∗3∗e−

12∗a∗b∗∗2∗e−12∗a∗∗2∗b∗e+32∗a∗b∗e−8∗b∗e+4∗a∗∗3∗e−

4∗a∗e+6∗a∗b∗∗2−4∗b∗∗2−4∗a∗b+2∗b−2∗a∗∗3+4∗a∗∗2−2∗a

def gradmag (a , b , c , d , e , f) :

return ga (a , b , c , d , e , f)∗∗2 + gb (a , b , c , d , e , f)∗∗2 +

gc (a , b , c , d , e , f)∗∗2 + gd (a , b , c , d , e , f)∗∗2 +

ge (a , b , c , d , e , f)∗∗2 + gf (a , b , c , d , e , f)∗∗2

32

def grounda (a , b , c , d , e , f) :

intPa = g (a , b , c , d , e , f)∗ ga (a , b , c , d , e , f)/

gradmag (a , b , c , d , e , f)

return a − intPa

def groundb (a , b , c , d , e , f) :

intPb = g (a , b , c , d , e , f)∗gb (a , b , c , d , e , f)/

gradmag (a , b , c , d , e , f)

return b − intPb

def groundc (a , b , c , d , e , f) :

intPc = g (a , b , c , d , e , f)∗ gc (a , b , c , d , e , f)/

gradmag (a , b , c , d , e , f)

return c − intPc

def groundd (a , b , c , d , e , f) :

intPd = g (a , b , c , d , e , f)∗gd (a , b , c , d , e , f)/

gradmag (a , b , c , d , e , f)

return d − intPd

def grounde (a , b , c , d , e , f) :

intPe = g (a , b , c , d , e , f)∗ ge (a , b , c , d , e , f)/

gradmag (a , b , c , d , e , f)

return e − intPe

def groundf (a , b , c , d , e , f) :

i n tP f = g (a , b , c , d , e , f)∗ g f (a , b , c , d , e , f)/

33

gradmag (a , b , c , d , e , f)

return f − i n tP f

a0 = nextA = dec . Decimal (−3.1)

b0 = nextB = dec . Decimal (1 0 . 1)

c0 = nextC = dec . Decimal (14)

d0 = nextD = dec . Decimal (−7)

e0 = nextE = dec . Decimal (30)

f 0 = nextF = dec . Decimal (−123)

i t e r a t i o n s = 1000

ptm = time . p ro c e s s t ime ()

for i in range (i t e r a t i o n s) :

prevA = nextA

prevB = nextB

prevC = nextC

prevD = nextD

prevE = nextE

prevF = nextF

nextA = grounda (prevA , prevB , prevC , prevD , prevE , prevF)

nextB = groundb (prevA , prevB , prevC , prevD , prevE , prevF)

nextC = groundc (prevA , prevB , prevC , prevD , prevE , prevF)

nextD = groundd (prevA , prevB , prevC , prevD , prevE , prevF)

nextE = grounde (prevA , prevB , prevC , prevD , prevE , prevF)

nextF = groundf (prevA , prevB , prevC , prevD , prevE , prevF)

e lapsed = time . p roc e s s t ime () − ptm

34

gradeA = ga (nextA , nextB , nextC , nextD , nextE , nextF)

gradeB = gb (nextA , nextB , nextC , nextD , nextE , nextF)

gradeC = gc (nextA , nextB , nextC , nextD , nextE , nextF)

gradeD = gd (nextA , nextB , nextC , nextD , nextE , nextF)

gradeE = ge (nextA , nextB , nextC , nextD , nextE , nextF)

gradeF = gf (nextA , nextB , nextC , nextD , nextE , nextF)

aSlope = 1 / abs (gradeA)

bSlope = 1 / abs (gradeB)

cSlope = 1 / abs (gradeC)

dSlope = 1 / abs (gradeD)

eSlope = 1 / abs (gradeE)

fS l ope = 1 / abs (gradeF)

minSlope=min(aSlope , bSlope , cSlope , dSlope , eSlope , f S l ope)

print (’ After ’ , i t e r a t i o n s ,

’ i t e r a t i o n s we f i n d the f o l l o w i n g : ’)

print (’ Guess f o r a i s ’ , nextA)

print (’ Guess f o r b i s ’ , nextB)

print (’ Guess f o r c i s ’ , nextC)

print (’ Guess f o r d i s ’ , nextD)

print (’ Guess f o r e i s ’ , nextE)

print (’ Guess f o r f i s ’ , nextF)

print (’ I n i t i a l z va lue (he ight) : ’ , g (a0 , b0 , c0 , d0 , e0 , f 0))

print (’ F ina l z va lue (he ight) : ’ ,

g (nextA , nextB , nextC , nextD , nextE , nextF))

print (’ a−component o f the g rad i en t i s ’ , gradeA)

35

print (’b−component o f the g rad i en t i s ’ , gradeB)

print (’ c−component o f the g rad i en t i s ’ , gradeC)

print (’d−component o f the g rad i en t i s ’ , gradeD)

print (’ e−component o f the g rad i en t i s ’ , gradeE)

print (’ f−component o f the g rad i en t i s ’ , gradeF)

print (’The min o f the magnitude o f the s l o p e s o f the

g rad i en t i s ’ , minSlope)

print (’The e lapsed time f o r the method in seconds i s ’ ,

e l apsed)

For example 3 we have the code used as follows:

import numpy as np

import decimal as dec

import time

dec . s e t con t ex t (dec . ExtendedContext)

dec . ge tcontext () . prec = 20

This i s our tunne l method a p p l i e d to the f u n c t i o n

f (z)=(z−1)ˆ5 ∗ (z−(1+ i))ˆ4 ∗ (z−7)ˆ3

def g log (x , y) :

return 3∗np . l og (y∗∗2+x∗∗2−14∗x+49)+

5∗np . l og (y∗∗2+x∗∗2−2∗x+1)+4∗np . l og (y∗∗2−2∗y+x∗∗2−2∗x+2)

def glogx (x , y) :

return (4∗(2∗x−2))/(y∗∗2−2∗y+x∗∗2+(−2)∗x+2)+(5∗(2∗x−2))

/(y∗∗2+x∗∗2+(−2)∗x+1)+(3∗(2∗x−14))/(y∗∗2+x∗∗2+(−14)∗x+49)

36

def glogy (x , y) :

return (4∗(2∗y−2))/(y∗∗2−2∗y+x∗∗2+(−2)∗x+2)+(10∗y)/

(y∗∗2+x∗∗2+(−2)∗x+1)+(6∗y)/ (y∗∗2+x∗∗2+(−14)∗x+49)

def glogxy (x , y) :

return −(4∗(2∗x−2)∗(2∗y−2))/(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗2

−(10∗(2∗x−2)∗y)/ (y∗∗2+x∗∗2−2∗x+1)∗∗2−(6∗(2∗x−14)∗y)/

(y∗∗2+x∗∗2−14∗x+49)∗∗2

def glogxx (x , y) :

return 8/(y∗∗2−2∗y+x∗∗2−2∗x+2)−(4∗(2∗x−2)∗∗2)/

(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗2+10/(y∗∗2+x∗∗2−2∗x+1)−

(5∗(2∗x−2)∗∗2)/(y∗∗2+x∗∗2−2∗x+1)∗∗2+6/

(y∗∗2+x∗∗2−14∗x+49)−(3∗(2∗x−14)∗∗2)/

(y∗∗2+x∗∗2−14∗x+49)∗∗2

def glogyy (x , y) :

return 8/(y∗∗2−2∗y+x∗∗2−2∗x+2)−(4∗(2∗y−2)∗∗2)/

(y∗∗2−2∗y+x∗∗2−2∗x+2)∗∗2+10/(y∗∗2+x∗∗2−2∗x+1)−(20∗y∗∗2)/

(y∗∗2+x∗∗2−2∗x+1)∗∗2+6/(y∗∗2+x∗∗2−14∗x+49)−

(12∗y∗∗2)/(y∗∗2+x∗∗2−14∗x+49)∗∗2

37

def yx (x , y) :

return −glogx (x , y)/ g logy (x , y)

def yxx (x , y) :

return (−glogxx (x , y)∗ glogy (x , y)∗∗2+

2∗ glogxy (x , y)∗ glogx (x , y)∗ glogy (x , y)−

glogyy (x , y)∗ glogx (x , y)∗∗2)/ g logy (x , y)∗∗3

def xFinder (x , y) :

return x−yx (x , y)∗(1+yx (x , y)∗∗2)/ yxx (x , y)

def yFinder (x , y) :

return y + (1 + yx (x , y) ∗∗ 2) / yxx (x , y)

xNot = −330

yNot = 917

nextX = xNot

nextY = yNot

i t e r a t i o n s = 7

nextXprec = dec . Decimal (xNot)

38

nextYprec = dec . Decimal (yNot)

ptm = time . p ro c e s s t ime ()

for i in range (i t e r a t i o n s) :

prevXprec = nextXprec

prevYprec = nextYprec

nextXprec = xFinder (prevXprec , prevYprec)

nextYprec = yFinder (prevXprec , prevYprec)

e l apsed = time . p roc e s s t ime () − ptm

print (’ After ’ + str (i t e r a t i o n s) +

’ i t e r a t i o n s we f i n d the f o l l o w i n g : ’)

print (’ Guess f o r x i s ’ + str (nextXprec))

print (’ Guess f o r y i s ’ + str (nextYprec))

print (’The e lapsed time f o r the method in seconds i s ’

, e l apsed)

39

References

[1] Broyden, C. G. (1965. A class of methods for solving nonlinear simultaneous

equations. Mathematics of Computation. American Mathematical Society. 19

(92), 577–593.

[2] Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations

simultanées. C. R. Acad. Sci. Paris, 25, 536-538.

[3] Fletcher, R. (1970). A new approach to variable metric algorithms. Computer

Journal, 13(3), 317-322.

[4] Goldfarb, D. (1970). A family of variable metric updates derived by variational

means. Mathematics of Computation, 24 (109): 23–26

[5] Gradient descent. (2019, November 20). Retrieved from https://en.wikipedia.

org/wiki/Gradient descent

[6] Maxima. More information available from maxima.sourceforge.net

[7] Maximum Modulus Principle. (2019, November 15). Retrieved from https://en.

wikipedia.org/wiki/Maximum modulus principle

[8] Nesterov, Yu. (1998). Introductory lectures on convex programming.

[9] Nesterov, Yu. (1983). A method for unconstrained convex minimization problem

iwth the rate of convergence. O(1/k2). Doklady AN USSR. 269, 543-547

[10] Osculating circle. (2019, October 9). Retrieved from https://en.wikipedia.org/

wiki/Osculating circle

[11] Python. More information available from https://www.python.org/

[12] R. More information available from https://www.r-project.org/

40

[13] Rosenbrock, H. H. (1960). An automatic method for finding the great-

est or least value of a function. The Computer Journal, 3(3), 175–184.

https://doi.org/10.1093/comjnl/3.3.175

[14] Titchmarsh, E. C. (1939). The theory of functions (Second edition.). London:

Oxford University Press.

[15] Weatherburn, C. E. (1930). Differential geometry of three dimensions. Cambridge

[England]: University Press.

	Complex Varieties as Minima
	Recommended Citation

	tmp.1576603881.pdf.mNNef

