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Background: The unusual nuclear shape of neutrophils has been speculated to facilitate their passage through confined spaces.
Results: Levels of nuclear protein lamin A modulate cell passage through micron-scale pores.
Conclusion: The unique protein composition of neutrophil nuclei facilitates their deformation; lobulated nuclear shape is not
essential.
Significance:Altered nuclear envelope composition, as reported in cancer cells, could impact cell passage through physiological
gaps.

Neutrophils are characterized by their distinct nuclear shape,
which is thought to facilitate the transit of these cells through
pore spaces less than one-fifth of their diameter. We used
human promyelocytic leukemia (HL-60) cells as amodel system
to investigate the effect of nuclear shape in whole cell deform-
ability. We probed neutrophil-differentiated HL-60 cells lack-
ing expression of lamin B receptor, which fail to develop lobu-
lated nuclei during granulopoiesis and present an in vitromodel
for Pelger-Huët anomaly; despite the circular morphology of
their nuclei, the cells passed throughmicron-scale constrictions
on similar timescales as scrambled controls. We then investi-
gated the unique nuclear envelope composition of neutrophil-
differentiatedHL-60 cells, whichmay also impact their deform-
ability; although lamin A is typically down-regulated during
granulopoiesis, we genetically modified HL-60 cells to generate
a subpopulation of cells with well defined levels of ectopic lamin
A. The lamin A-overexpressing neutrophil-type cells showed
similar functional characteristics as themock controls, but they

had an impaired ability to pass through micron-scale constric-
tions. Our results suggest that levels of lamin A have a marked
effect on the ability of neutrophils to passage through micron-
scale constrictions, whereas the unusualmultilobed shape of the
neutrophil nucleus is less essential.

The passage of cells through narrow spaces is critical in phys-
iological and disease processes from immune response to
metastasis. For example, neutrophils are required to rapidly
traverse constrictions that are much smaller than their own
diameter of 7–8 �m: during perfusion through capillaries with
diameters as small as 2 �m or during migration through tran-
sendothelial and interstitial spaces ranging from 0.1 to 10 �m
(1). The ability of neutrophils to transit through narrow con-
strictions is essential; increased cell stiffness results in retention
of neutrophils in arteries and capillaries (2), as well as accumu-
lation in postcapillary venules leading to inflammation in the
vascular bed (3).
Although the mechanical properties of neutrophils can be

regulated by cytoskeletal filaments such as actin (4–6) and
microtubules (7), the hallmarkmultilobed nuclear morphology
has long been thought to facilitate the deformation of neutro-
phils through narrow spaces (8, 9); a round-shaped nucleus
could sterically hinder the deformation of a cell through a nar-
row pore, whereas the multilobed neutrophil nucleus could aid
cell passage as individual lobes could be sequentially “threaded”
through constrictions. Indeed, cells with lobulated nuclear
shape show less retention in 8-�m porous membranes as com-
pared with their progenitors with round nuclei (10). However,
it remains unclear to what extent this hyperlobulated nuclear
shape is required for neutrophils to deform through narrow
gaps; tightly regulated modifications in nuclear envelope pro-
tein composition also occur during granulopoiesis. Specifically,
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during the process of granulopoiesis, as recapitulated in vitro
using human promyelocytic leukemia (HL-60)4 cells, major
alterations occur in the expression levels of two key nuclear
envelope proteins; the integral nuclear membrane protein,
lamin B receptor (LBR), is strongly up-regulated, whereas there
is a concurrent decrease in levels of lamin A, a key structural
protein that forms a network underlying the inner nuclear
membrane and imparts the nucleus with mechanical stability
(11–13). Thus, although the unique shape of the neutrophil
nucleus could facilitate the passage of these cells through nar-
row constrictions, we hypothesized that reduced levels of lamin
A could enhance nuclear deformability and thereby facilitate
the passage of cells through micron-scale constrictions.
To dissect the role of nuclear shape and nuclear envelope

composition in the passage of cells through constrictions that
mimic physiological gaps, we used all-trans-retinoic acid
(ATRA)-stimulated HL-60 cells to recapitulate granulopoiesis;
this in vitro system is widely used for structural and functional
assays of white blood cells (14–16). We probed the ability of
cells to transit through micron-scale constrictions and investi-
gated the effects of both altered nuclear shape and altered lamin
A expression levels.Our results show that levels of laminAhave
a predominant effect on the ability of cells to passage through
narrow constrictions, whereas the altered shape of the neutro-
phil nucleus is not essential for rapid passage through micron-
scale pores.

EXPERIMENTAL PROCEDURES

Cell Culture—HL-60/S4 cells weremaintained in RPMI 1640
mediumwith L-glutamine (Invitrogen), 10% fetal bovine serum
(FBS), and 1% penicillin:streptomycin (Gemini Bio-Products,
West Sacramento, CA). We generated scrambled control cells
to compare with HL-60/S4 cells with stable shRNA-mediated
knockdown of LBR (LBR KD cells) (17). To induce differentia-
tion into neutrophil-type cells, we added ATRA at a final con-
centration of 5 �M to 1 � 105 cells/ml; ethanol was used as
vehicle control.We probed nuclear shape and nuclear envelope
composition at days 0, 3, and 5 after ATRA treatment; we per-
formed functional assays of neutrophil-type cells at 4 days after
ATRA treatment, when cells display characteristics of neutro-
phils (11, 18).
Microfluidic Deformation—Soft lithography was used to fab-

ricate microfluidic channels in polydimethylsiloxane (Sylgard
184 silicone elastomer, Dow Corning) (19). Devices were
bonded to #1.5-thickness coverglasses. We drove the flow of
cells by applying 28 kilopascals (4 p.s.i.) of pressure to a tube of
2.5� 106 cells/ml with 0.1% F127 (Pluoronic F-127, Invitrogen)
tominimize surface adhesion (20). Images were acquired at 300
frames/s with a high speed camera (Miro ex4, Vision Research,
Wayne, NJ) mounted on an inverted light microscope (Zeiss
Observer) with 10�/0.25 Ph1 objective (A-Plan, Zeiss). The
resulting image sequences were analyzed using a custom-writ-
ten program (MATLAB) to extract the time for cell passage
through the first constriction.

Retroviral Transduction—We generated the stably modified
lamin A-overexpressing (LamA OE) cells from the parent
HL-60/S4 cell line by retroviral transduction (21–23) with the
bicistronic vector (pRetroX-IRES-ZsGreen1, Clontech) for
lamin A and the fluorophore reporter Zoanthus green fluores-
cent protein (ZsGreen1) with the 5� Moloney murine leukemia
virus LTR as the promoter. Cloning of thewild-type prelaminA
into the bicistronic retroviral vector was performed as follows:
the insert was generated by cutting pSVK3-prelamin A (24)
(kind gift fromHoward J.Worman)with SmaI and SalI; thiswas
ligated to the vector obtained from cutting pEGFP-C1 (Clon-
tech) with Ecl136II and SalI resulting in a shuttle vector, which
was subsequently digested with XmaI, blunted with Klenow,
and then cut with BglII. The insert from the latter digestionwas
then ligated to the vector generated from cutting the pRetroX-
IRES-ZsGreen1 with BamHI and blunted with Klenow fol-
lowed by BglII digestion. Transfection of the resultant
pRetro-prelamin A-IRES-ZsGreen 1 expression vector into
the 293GPG retroviral packaging cell line (kind gift from Rich-
ard C. Mulligan) was performed using Lipofectamine Plus rea-
gent (Invitrogen) based on the manufacturer’s specifications
and previous protocols with minor modifications (21–23). A
ZsGreen1 retrovector without lamin A insert was used to gen-
erate the mock control cells. Viral supernatant was collected
daily for 6 consecutive days, filtered through 0.45-�m pores,
and stored at�20 °C. Later, the viral supernatants collected per
batch were thawed and pooled, and viral titer was determined
by viral infection of mouse embryo fibroblasts. Two rounds of
viral transduction of HL-60/S4 cells were then performed using
unconcentrated viral supernatant supplemented with 6–8
�g/ml Polybrene (Sigma-Aldrich) at a multiplicity of infection
of 25–50. Gene transfer efficiency was assayed 5 days after ret-
roviral infection by flow cytometry probing ZsGreen1 levels;
because ZsGreen1 and laminA are derived from the same bicis-
tronic mRNA transcript, we sorted individual cells based on
ZsGreen1 levels into a subpopulation of cells with well defined,
elevated expression levels by fluorescence-activated cell sorting
(Aria II, BD Biosciences or MoFlo, Beckman Coulter) into cal-
cium-free PBS buffer. The resulting subpopulation does not
derive from a single clone, but is rather generated by the highest
expressing cells that may contain multiple insertions; the 5�
LTR promoter is relatively weak, and we observed an �20–30-
fold increase in lamin A levels in comparison with the mock
controls.
Analysis of Protein Expression—Cell lysates were prepared

from 5 � 106 cells using urea lysis buffer with final concentra-
tions of 9 M urea, 10mMTris-HCl (pH 8), 10 �M EDTA, 500 �M

phenylmethylsulfonyl fluoride, 20 �l of �-mercaptoethanol,
and 1 �l/ml protease inhibitor mixture (Sigma). All steps were
performed at 4 °C. Proteins were separated on a 4-12% Bis-Tris
gel with 1� MOPS running buffer and then transferred onto
activated transfer membranes, blocked, and labeled using
horseradish peroxidase-conjugated antibodies (Bio-Rad). We
used protein standard (Invitrogen SeeBlue Plus2) for size calibra-
tion and used �-tubulin as a loading control because its levels
remainconstant throughoutdifferentiation (11).Primaryantibod-
ies used for probing are described in the supplemental Methods.

4 The abbreviations used are: HL-60, human promyelocytic leukemia; LamA OE,
lamin A-overexpressing; LBR, lamin B receptor; LBR KD, LBR knockdown;
ATRA, all-trans-retinoic acid; Bis-Tris, 2-(bis(2-hydroxyethyl)amino)-2-
(hydroxymethyl)propane-1,3-diol.
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Expression levels were quantified by optical density analysis
using ImageJ (National Institutes of Health).
Cell Surface Marker Analysis—To assay expression levels of

CD11b, we used Fc receptor polyclonal human IgG (Sigma) as a
blocking agent and labeled 106 cellswithAlexa Fluor 700mouse
anti-human-CD11b (BD Pharmingen). We analyzed fluores-
cence levels by flow cytometry (LSR II, BD Biosciences).
Respiratory Burst Assay—We determined superoxide radi-

cal production of day 4/ATRA-treated cells using luminol-
enhanced chemiluminescence (Diogenes reagent, National
Diagnostics, Atlanta, GA) following stimulation by phorbol
12-myristate 13-acetate (25, 26), as per the manufacturer’s
instructions. Cells were activated by the addition of phorbol
12-myristate 13-acetate (stock solution 1 mg/ml dimethyl sulf-
oxide (DMSO), Sigma) to a final concentration of 11 �M; we
recorded luminescence values after 30 min using a plate reader
(SpectraMax M5).
Nuclear Shape Analysis—We incubated cells with Hoechst

33342 (1�g/ml, Invitrogen) for 30min at 37 °C.We then placed
the cells on a glass slide pretreated with poly-L-lysine (0.01%
w/v in water) by centrifuging a 20-�l drop of cell suspension at
1,000 rpm for 5 s. Images were acquired using a 20�/0.5 Ph2
objective (EC PlanNeofluar, Zeiss), DAPI filter set, and charge-
coupled device camera (AxioCam MRm, Zeiss). Analysis of
nuclear geometrywas performed using ImageJ. Circularity for a
nuclear cross-section is 4�A/P2, where A is the cross-sectional
area and P is the perimeter.
Transwell Migration Assay—We used membranes with 3-

and 8-�m pore sizes (Millipore) and FBS as chemoattractant
(27, 28).Day 4/ATRA-treated cellswere resuspended to 5� 106
cells/ml in RPMIwithout FBS.We placedmedia with andwith-
out FBS in the bottom well and cells in the top well and then
incubated the plate at 37 °C, 5% CO2 for 2 h. We then removed
the membrane insert, labeled cells in the bottom well with
Hoechst, and imaged eachwell bymicroscopy using a 10�/0.25
Ph1 objective (A-Plan, Zeiss), charge-coupled device camera
(AxioCam MRm, Zeiss), and DAPI filter set. We determined
the number of cells per well using image analysis (ImageJ).
Two-dimensional Migration Assay—Glass-bottomed dishes

(World Precision Instruments, Sarasota, FL) were coated with
human fibronectin (10 �g/ml in Hanks’ balanced salt solution
without calcium and magnesium, Gemini Bio-products). Cells
were seeded onto the dishes, and imageswere acquired at 1-min
intervals over 3 h (5% CO2, 37 °C) using a Zeiss microscope
outfitted with an automated stage (Applied Scientific Instru-
ments, Eugene, OR), 10�/0.3 Ph objective (EC-Plan Neofluar,
Zeiss), and charge-coupled device camera (AxioCam MRm,
Zeiss); x-y positions of cells were extracted from the resultant
movies (ImageJ), and trajectory analysis was performed using
MATLAB.

RESULTS

Lobulated Nuclear Shape Is Not Essential for Cell Transit—
To probe the ability of neutrophil-type cells with round or lob-
ulated nuclei to deform through narrow gaps, we designed a
microfluidic device with precisely defined constrictions of
5-�m width (Fig. 1A); this width is less than the typical
7–10-�mdiameter ofHL-60 nuclei, such that nuclear deforma-

tion is required for a cell to passage through a pore (supplemen-
tal Fig. S1). We forced the neutrophil-type cells (day 4/ATRA-
treatedHL-60 cells) to transit through thesemicron-scale pores
using pressure to drive a flow of cell suspension through the
channels; we monitored the passage of cells as a function of
time. When a cell arrives at a constriction, it is subjected to
physical forces resulting from external stresses due to the pres-
sure drop across the cell trapped in the constriction; these
stresses cause the cell to deform and passage through the pore.
Given the dimensions of a single pore, a pressure of 28 kilopas-
cals corresponds to approximately micronewton-scale forces.
The rate at which the cell deforms largely depends on the
applied stress (driving pressure) as well as the global mechani-
cal properties of the cell and nucleus (5, 29–32) As individual
cells deformed through the 5-�mconstrictions of themicroflu-
idic device, we imaged their passage using a high speed camera
(Fig. 1, B and D). By automated image analysis, we determined
the time required for the cell to passage through the first 5-�m
constriction, which we define as its passage time. Given these
millisecond timescales of cell passage at a driving pressure of 28

FIGURE 1. Ectopic expression of lamin A increases passage time through
microfluidic constriction channels. A, schematic overview of the microflu-
idic device and close-up of the 5-�m constrictions. Pressurizing the reservoir
drives the cell suspension through the inlet, and cells passage through the
channels with 5-�m constrictions, as shown in the inset. Scale bar, 20 �m. B,
time-sequence images of day 4/ATRA-treated cells passaging through 5-�m
constrictions. Scrmbl Ctrl, scrambled control; Mock Ctrl, mock control. C, LBR
KD cells have similar passage times as the scrambled controls despite the
round shape of their nucleus, which has been speculated to sterically hinder
the passage of cells through narrow pores. D and E, LamA OE cells take longer
to passage the constrictions than mock control cells. In all box plots, the white
bar denotes the population median, boxes are the 25th and 75th percentiles,
and lines show the 10th and 90th percentiles. n.s., p � 0.05 for LBR KD versus
scrambled control; ***, p � 0.001 for LamA OE versus mock control. n � 300
cells for each cell type. Error bars represent S.E. over three independent
experiments.
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kilopascals, this microfluidic assay primarily probes the passive
mechanical behavior of the cell, as actin remodeling and pro-
tein expression changes occur on timescales of several minutes
and more (33). Although actin can contribute to the cortical
stiffness of neutrophils (4–6), we confirmed that the actin
makes little contribution to these measurements by treating a
subset of neutrophil-type cells with cytochalasin D to disrupt
actin polymerization; this treatment had no effect on passage
times (data not shown), indicating that the deformability of the
nucleus has a pivotal role in the passage of cells through
micron-scale pores.
To assess the effect of hypolobulated or round-shaped nuclei

on the passage of neutrophil-type cells through micron-scale
constrictions, we used LBR KD cells as an in vitro system. In
contrast to the control cells that exhibit strong up-regulation of
LBR during differentiation and develop lobulated nuclei, LBR
KD cells show only trace levels of LBR expression andmaintain
roundnuclei (17).Nevertheless, despite their roundnuclei, LBR
KD cells exhibited similar passage times as compared with the
scrambled control cells (Fig. 1B). These observations suggest
that themultilobed shapes of nuclei in mature neutrophils pro-
vide no significant advantage in the time required for cells to
deform through 5-�m constrictions.
Generating Neutrophil-type Cells with Increased Lamin A

Expression—Because the above experiments indicate that lob-
ulated nuclear shape is not essential for neutrophil-type cell
passage through narrow constrictions, we hypothesized that
the unique molecular composition of the nuclear envelope in
neutrophils could determine the ability of cells to deform. One
possible origin may be the low levels of the key structural pro-
tein of the nucleus, lamin A; this protein is normally down-
regulated by over 90% in ATRA-stimulated HL-60 cells after
4–5 days of stimulation (Fig. 2B) (11, 14). Given the essential
role of lamin A in nuclear mechanical stability (12, 13, 30), we
postulated that preventing lamin A down-regulation could
reduce nuclear deformability and impair cell passage through
pores. Because the LBR KD neutrophil-type cells that have
round nuclei have similar reduced lamin A expression levels as
unmodified and mock-modified cells, this may also explain
their unaltered passage times (17).
To test the effect of increased lamin A levels on cell passage

through narrow constrictions, we generated a LamAOEHL-60
cell line by retroviral transduction. The resulting subpopulation
of high expressing cells exhibits lamin A levels that are about
20–30-fold higher than themock-modified cells (supplemental
Fig. S2A). Although lamin A expression levels in the LamA OE
cells are greater than those in unmodified HL-60 cells, they are
comparablewith physiological levels in other somatic cells such
as mouse embryo fibroblast cells (supplemental Fig. S2B). To
confirm that the ectopic lamin A is properly localized to the
nuclear envelope, we conducted immunofluorescence and con-
focal imaging (supplemental Fig. S3).
Protein Composition of LamA OE Cells—To characterize

how protein levels of the LamA OE cells change during granu-
lopoiesis, we monitored expression levels of major structural
proteins over the differentiation time course; we induced the
HL-60 cells to differentiate into neutrophil-type cells by ATRA
treatment, collected cell lysates at days 0, 3, and 5 following

ATRA treatment, and performed immunoblotting (Fig. 2A). As
expected, unmodified and mock-modified cells displayed a
strong up-regulation of LBR during granulopoiesis with a con-
current decrease in lamin A levels (Fig. 2, B and C), confirming
previous observations (11). In contrast, LamA OE cells have
increased levels of lamin A that further increased during gran-
ulopoiesis (Fig. 2, B and C), possibly due to an ATRA-sensitive
element in the ectopic promoter region. LamAOE cells showed

FIGURE 2. Genetically modified HL-60 cells show typical characteristics of
neutrophils after ATRA stimulation. A, representative immunoblots for
lamins A/C, B1, B2, and LBR with �-tubulin as loading control. Cell lysates are
collected from LamA OE and mock control (Mock Ctrl) cells at days 0, 3, and 5
after ATRA stimulation. B and C, quantitative analysis of lamin A and LBR
protein levels normalized first to �-tubulin and then to day 0 for each protein
in each cell line. Error bars represent S.E. of 3–5 independent experiments;
where not visible, they are smaller than the symbols. Based on immunoblot
analysis, base-line levels of lamin A are estimated to be �20 –30� greater in
the LamA OE cells as compared with the mock control cells (supplemental Fig.
S2); for this reason, two separate axes are plotted for each cell line. D, expres-
sion levels of the cell surface antigen, CD11b, a hallmark of neutrophils,
increase during differentiation for all cell lines. Left, representative histograms
of data from a single flow cytometry experiment showing the distribution of
CD11b expression levels at day 4 after ATRA stimulation. Right, graphs show-
ing median values of CD11b after ATRA treatment with the values for each cell
line normalized to day 0 for each independent experiment. Error bars repre-
sent S.E. over three independent experiments. Scrmbl Ctrl, scrambled control.
E, respiratory burst assay that probes superoxide production using a lumines-
cence assay 30 min after stimulation by phorbol myristate acetate, indicating
that all cells show normal functional characteristics of neutrophils. Lumines-
cence values are relative to the mock and scrambled control for the left and
right panels, respectively. Data represent the average of three independent
experiments; error bars represent the S.E. n.s., p � 0.05 for LBR KD versus
scrambled control; *, p � 0.05 for LamA OE versus mock control.
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elevated basal levels of LBR as compared with the mock con-
trols, with a similar�4-fold increase in LBR levels during gran-
ulocytic differentiation. We also probed levels of other struc-
tural proteins that could contribute to cell deformability (4–6);
during differentiation in both the mock-modified and LamA
OE cells, actin levels showedminor variations, and other struc-
tural nuclear proteins, including lamin B1 and B2, showed a
decrease in expression levels (Fig. 2) (34). Although we cannot
exclude the possible contribution of lamin B1 and B2 down-
regulation to altered cellular mechanical properties, we antici-
pate that the observed changes in lamin B1/B2 levels would
have little effect on nuclear mechanical properties in compari-
sonwith the laminAup-regulation; laminsA/Chave a predom-
inant role in nuclear shape stability and stiffness (12, 13, 30),
whereas lamin B1 does not have any significant effect on
nuclear mechanical stability (13).
Genetically Modified Cells Display Characteristics of

Neutrophils—To test whether the genetically modified HL-60
cells still undergo normal granulopoiesis, we assayed essential
functional, biochemical, and proteomic characteristics that
define neutrophils. One metric to assess the differentiation of
HL-60 cells into neutrophil-type cells is to measure cell density
following ATRA stimulation; decreased proliferation rates are
an indicator of successful differentiation as cells exit the cell
cycle to commit to their differentiation into neutrophils (35).
Both LBR KD and LamAOE cells showed a similar progressive
decrease in proliferation rates over the days following ATRA
treatment as compared with the scrambled and mock controls
(supplemental Fig. S4). As amore direct assay of differentiation
into neutrophil-type cells, wemeasured expression levels of the
cell surface marker, CD11b, a subunit of a heterodimeric adhe-
sion glycoprotein, which is widely used as a marker for neutro-
phils (36). After 4 days of ATRA treatment, CD11b levels were
increased for all cell types as compared with the undifferenti-
ated HL-60 cells and vehicle-treated controls (supplemental
Fig. S5). These results confirmed that the HL-60 cells are dif-
ferentiating into neutrophil-type cells. Importantly, we
observed that all cell lines show significant increase in CD11b
levels following ATRA stimulation, with levels varying slightly
between cell lines (Fig. 2D); this demonstrates that the changes
in nuclear envelope composition do not markedly affect differ-
entiation efficiency.
Another hallmark of neutrophil cells is their respiratory

burst response upon exposure to phagocytotic stimuli, such as
yeast or bacteria. To probe this functional characteristic of the
modified neutrophil-type cells, we stimulated cells with phor-
bol myristate acetate and measured subsequent superoxide
production (Fig. 2E). LBR KD cells showed similar response as
compared with the scrambled controls. LamA OE cells exhib-
ited a small yet statistically significant 15% reduction in super-
oxide production as comparedwith themock controls. Overall,
these experiments suggest that the functional and biochemical
characteristics of the genetically modified neutrophil-type cells
are generally maintained despite their altered nuclear envelope
composition.
Lamin A Expression Alters Nuclear Lobulations during

Granulopoiesis—A key hallmark of granulopoiesis is the transi-
tion from round tomultilobednuclear shape,which is observed in

HL-60 cells after 3–5 days followingATRA treatment (11, 18). To
investigate the effect of altered nuclear envelope composition on
this shape transition, we imaged Hoechst-stained nuclei by flu-
orescence microscopy over the differentiation time course. To
quantify changes in nuclear shape, we analyzed the circularity
of nuclei, defined as 4�A/P2, whereA is the cross-sectional area
and P is the perimeter of an individual nuclear cross-section.
For a perfect circle, the circularity value equals one; lower val-
ues reflect deviations from a circular shape. In the undifferen-
tiated state, all cell lines have nuclei with predominantly circu-
lar shape and similarly high circularity values, representative of
round nuclei (Fig. 3, A–C).
After 3 days of ATRA treatment, the unmodified, mock, and

scrambled control cells exhibited nuclei with large invagina-
tions; circularity values correspondingly showed a lower
median and greater variability, reflecting these irregular
nuclear shapes. By contrast, LBR KD cells retained their round
shape, as reflected by the higher circularity values, even after 5
days of ATRA treatment (Fig. 3A) (17). The nuclei of LamAOE
cells showed somemorphological changes but failed to develop
the characteristic lobulations seen in the unmodified andmock
control cells (Fig. 3A, supplemental Fig. S3); the lack of severe
lobulation that is typical for normal neutrophil cells illustrates
that down-regulation of lamin A expression during neutrophil
differentiation could also be required for the lobulated nuclear
shape of mature neutrophils.

FIGURE 3. Nuclear shape transition during granulopoiesis requires lamin
A down-regulation and LBR up-regulation. A, fluorescent images of
Hoechst-stained nuclei acquired at day 0 and day 5 after ATRA treatment. All
images were acquired at the same magnification. Scale bar, 5 �m. B, to quan-
titatively describe nuclear shape, the circularity of the nucleus is defined as
4�A/P2. Histograms show the distribution for each cell type at days 0 and 5
after ATRA treatment. C, box plots show the circularity of nuclei at days 0, 3,
and 5 after ATRA treatment. The white bar denotes the population median,
boxes are the 25th and 75th percentiles, and lines show the 10th and 90th
percentiles. To evaluate statistical significance, we compared the medians of
at least 3 independent experiments for each cell type. Day 0, unmodified to
scrambled control. n.s., p � 0.05; *, p � 0.05. Nuclei from over 300 individual
cells were analyzed for each cell type.
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Increased Lamin A Expression Delays Cell Passage through
Pores—LaminA is a crucial modulator of nuclear deformability
(13, 30, 37). To probe the effects of increased lamin A levels on
the ability of cells to deform through physiological gaps, we
measured the passage time of LamA OE neutrophil-type cells
and mock controls when forced through the 5-�m constric-
tions of ourmicrofluidic device (Fig. 1,A andD). The LamAOE
neutrophil-type cells exhibited a 3-fold increase inmedian pas-
sage time as compared with the mock controls (Fig. 1E); these
results indicate that increased density of lamin protein at the
nuclear envelope may impair the ability of LamA OE neutro-
phil-type cells to passage through the 5-�m constrictions.
Taken together, our results show that lamin A levels have an
important effect on the ability of cells to passage through
5-�m constrictions; physiological down-regulation of lamin
A following ATRA-induced differentiation of HL-60 cells
results in faster passage through the micron-scale constric-
tions, whereas ectopically increased expression of lamin A
results in slower passage of LamA OE-neutrophils through
the 5-�m constrictions.
Active Migration through Pores Is Impaired in LamA OE

Cells—The results of our microfluidic experiments illustrate
that altered expression of lamin A can substantially alter the
passive deformability of cells. However, a critical function of
neutrophils is their ability to actively migrate through narrow
constrictions. To test migration efficiency, we used a transwell
migration assay to probe the ability of cells to migrate through
3- and 8-�m pores; we monitored the number of cells that
migrate through the pores after 2 h and determined the migra-
tion efficiency relative to the respective control cells. As seen in
the passive deformation results obtained bymicrofluidic assays,
the LBR KD cells exhibited similar migration efficiency as the
scrambled control cells (Fig. 4, A and B), further substantiating
that neutrophil-type cells with round nuclei can exhibit equiv-
alent passage efficiency through micron-scale pores. By con-
trast, the LamAOE cells showed a marked reduction in migra-
tion through 3-�m pores (Fig. 4, D and E). The impaired
migration was less severe in the experiments with 8-�m pores
(Fig. 4, D and E); because deformation through 8-�m pores
requires smaller deformations of nuclei, these results are con-
sistent with our observations that nuclear deformation rate-
limits the passage of cells through micron-scale constrictions.
To address the possibility that a general migration defect

underlies the impaired transwell migration efficiency of the
LamA OE cells, we performed two-dimensional migration
assays; cells exhibited velocities from 2 to 5�m/min, consistent
with previous observations of neutrophil migration (38). The
LBR KD cells showed a slightly increased velocity as compared
with the scrambled control cells (Fig. 4C). Importantly, LamA
OE cells exhibited similarmigration velocities as themock con-
trol cells (Fig. 4F), indicating that the observed differences in
the transwell assay cannot be attributed to general defects
in their migration. Taken together, our experiments indicate
that the density of lamin A at the nuclear envelope is crucial
in facilitating the passage of cells through micron-scale
constrictions.

DISCUSSION

It has long been speculated that the lobulated shape of the
neutrophil nucleus is ”a special adaptation for passing through
vessel walls“ (8). However, here we show that nuclear shape
alone does not always determine the timescale for neutrophil
deformation throughmicron-scale pores; neutrophil-type cells
with round nuclei resulting from LBR knockdown (17) show
unaltered passage efficiency through pores down to 3 �m, as
probed using both passive deformation through 5-�m micro-
fluidic constrictions, as well as active migration through 3- and
8-�m porous membranes.
These LBRKD cells also provide an in vitromodel for Pelger-

Huët anomaly; the nuclei from neutrophils of these individuals
are round or bilobulated (36, 37) due to a complete or partial
lack of functional LBR. The extent to which the altered nuclear
shape of Pelger-Huët anomaly neutrophils affects their ability
to passage through micron-scale constrictions has been incon-
clusive (26, 39–41). Some previous studies of these neutrophils
discovered altered migration (26, 39, 40); however, these pri-
mary neutrophils also exhibited bilobular nuclei, and differ-

FIGURE 4. Impaired migration of LamA OE cells through narrow constric-
tions. To probe the active migration of cells through micron-scale pores, we
use a Transwell migration assay. A and D, representative images from a single
experiment showing Hoechst-stained nuclei of cells that have passed
through 3- or 8-�m pores. Scale bar, 100 �m. Ctrl, control; Scrmbl Ctrl, scram-
bled control; Mock Ctrl, mock control. B and E, migration efficiency is defined
as the number of cells that passaged through the porous membrane relative
to the corresponding scrambled or mock control. Bars represent averages
from at least three independent experiments; error bars represent S.E. ***, p �
0.001 for LamA OE versus mock control. C and F, two-dimensional migration
experiments were performed by tracking the positions of individual cells at
1-min intervals over 3 h. Traces of three representative cells for each cell type
show the total distance traveled and the directionality of movement over the
three-hour time-lapse experiment. Axes are 150 �m with 50-�m increments.
Migration speed over the entire trajectory is computed from the individual
traces of over 50 cells for each cell type. Mean values for each LBR KD and
LamA OE cells are normalized to their respective controls. n.s., p � 0.05; *, p �
0.05; ***, p � 0.001. Absolute velocities of cells are: LBR KD, 4.4 –5.1 �m/min;
scrambled control, 3.5– 4.2 �m/min; LamA OE, 2.2– 4.7 �m/min; mock con-
trol, 2.8 – 4.8 �m/min.
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ences in migratory ability could result from other phenotypic
differences. Here we used LBR KD cells as an in vitro system to
specifically investigate the effect of the hypolobulated nucleus
on cell passage throughmicron-scale constrictions. Despite the
round shape of LBR KD nuclei, which could sterically hinder
the passage of nuclei through constrictions, these cells exhib-
ited similar passage efficiencies throughmicron-scale constric-
tions as compared with the scrambled control cells with multi-
lobed nuclei (Fig. 1).
Although LBR KD neutrophil-type cells have an atypical

roundnuclear shape, they have similarly low levels of laminAas
the unmodified controls (17). Here, we show that lamin A
expression levels, rather than the shape of the cell nucleus, can
be amajor determinant of the timescale of cell passage through
micron-scale gaps (Fig. 5). By contrast, nonmechanical func-
tions of these cells are not substantially affected by changes in
nuclear envelope composition. Although other types of white
blood cellswith ovoid-shapednuclei, such asmacrophages, also
undergo transendothelial migration, their deformations occur
on a slower timescale as compared with neutrophils (31).
Indeed, monocyte/macrophage-differentiated HL-60 cells also
show increased levels of lamin A/C expression relative to neu-
trophil-type cells (34).
If irregular nuclear shape is not essential for the deformabil-

ity of neutrophil cells, then why do their nuclei exhibit this
distinct shape? One possibility is that the multilobed nucleus
could simply result from the marked changes in nuclear enve-
lope protein composition. Indeed, lamin A levels impact the
mechanical stability of the nuclear envelope, whereas ectopic
overexpression of LBR can increase nuclear membrane surface
area (42, 43) (Fig. 5). Alternatively, the unusual multilobed
nuclear shapemay facilitate other neutrophil functions, such as
phagocytosis, the formation of neutrophil extracellular traps, or
migration through even smaller �1-�m constrictions of the
endothelium, either between or through cells (44).
Here we have used HL-60 cells, which are a well established

in vitro model system to study white blood cell lineages; for
example, the resulting neutrophil-type cells show similar struc-
tural and functional characteristics as primary neutrophils

(14–16).HL-60 cells also exhibit similarmechanical properties;
recent measurements of cell compliance using an optical
stretcher confirmed that in vitro differentiation of HL-60 cells
into neutrophil-type cells recapitulates the 3–6-fold increase in
cell deformability observed in primary neutrophils and their
CD34� precursor cells (31). A direct comparison of the abso-
lute passage times through micron-sized constriction between
primary neutrophils andHL-60-derived neutrophil-type cells is
complicated by the fact thatHL-60 cells are typically larger than
primary neutrophils (�12-�m versus 7–8-�m median diame-
ter, respectively) and exhibit substantially larger transit times
throughmicrofluidic constriction channels (29). Consequently,
we have focused our study on HL-60 cells and vary protein
levels within the same cell type; this has enabled us to clearly
illustrate the importance of nuclear envelope composition, par-
ticularly the levels of lamins A/C, on the ability of cells to pass
through narrow constrictions during perfusion and migration.
It is intriguing to speculate that changes in levels of lamin A

expressionmay have implications for cellular deformability in a
variety of physiological processes and diseases (45). For exam-
ple, certain types of cancer cells have reduced levels of lamin A
expression as compared with their nonmalignant progenitors
(46, 47). Akin to neutrophils, large deformations of cancer cells
and their nuclei are required during deformation through
micron-scale constrictions (48) in extravasation and metasta-
sis. Ultimately, a deeper knowledge of the molecular basis of
cellular and nuclear deformability will provide unique insights
into the mechanical aspects of cell biology and possibly new
therapeutic approaches.
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