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ABSTRACT
To understand the chromatin changes underlying differential gene expression during induced
differentiation of human leukemic HL-60/S4 cells, we conducted RNA-Seq analysis on quadruplicate
cultures of undifferentiated, granulocytic- and macrophage-differentiated cell forms. More than half
of mapped genes exhibited altered transcript levels in the differentiated cell forms. In general, more
genes showed increased mRNA levels in the granulocytic form and in the macrophage form, than
showed decreased levels. The majority of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were significantly enriched in genes that exhibited differential transcript levels after either
RA or TPA treatment. Changes in transcript levels for groups of genes with characteristic protein
phenotypes, such as genes encoding cytoplasmic granular proteins, nuclear envelope and
cytoskeletal proteins, cell adhesion proteins, and proteins involved in the cell cycle and apoptosis
illustrate the profound differences among the various cell states. In addition to the transcriptome
analyses, companion karyotyping by M-FISH of undifferentiated HL-60/S4 cells revealed a plethora
of chromosome alterations, compared with normal human cells. The present mRNA profiling
provides important information related to nuclear shape changes (e.g., granulocyte lobulation),
deformability of the nuclear envelope and linkage between the nuclear envelope and cytoskeleton
during induced myeloid chromatin differentiation.
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Introduction

The human myeloid leukemia cell line (HL-60) was
originally isolated from a female patient with pre-
sumed acute promyelocytic leukemia (APL).1,2 These
cells can be differentiated in vitro from a rapidly grow-
ing promyelocytic form to a nongrowing form, resem-
bling neutrophils with segmented (lobulated) nuclei,
by adding dimethyl sulfoxide (DMSO) to the growth
medium.2 A similar, but more complete, differentia-
tion toward neutrophil form can be achieved by the
addition of retinoic acid (RA).3 Eleven years after the
discovery of HL-60, it was reclassified as an acute
myeloblastic leukemia (AML) with maturation, due to
the absence of the APL characteristic t(15:17) chromo-
some translocation.4 Shortly after the initial isolation
of HL-60 cells, it was discovered that treating the
undifferentiated cells with phorbol ester (TPA) led to

rapid cessation of cell division and attachment of the
treated cells to culture dishes, exhibiting characteris-
tics of macrophage.5,6 Other investigators also
described the differentiation of HL-60 cells into
monocytic form following exposure to vitamin D3.7,8

These initial studies, demonstrating the multipotential
character of HL-60 cells to differentiate along various
myeloid directions, were summarized in an early
review by one of the original discoverers of this impor-
tant cell line.9

A number of studies have analyzed transcript levels
in the HL-60 cell system, comparing undifferentiated
and differentiated cell forms. An early study examined
the mRNA level of the neutrophil primary granule
protein myeloperoxidase; using in vivo radiolabeling
and Northern blot analysis.10 The transcript level was
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reduced by addition of TPA. Microarray analyses of
transcription in HL-60 cells examined granulocytic
differentiation induced by RA11 or DMSO,12 macro-
phage differentiation induced by TPA,13 transcript
changes induced by vitamin D314 and a comparison of
transcript level changes induced by RA or by vitamin
D3.15 More recently, transcription in HL-60 and 2
other undifferentiated myeloid leukemia cell lines,
K562 and THP1, were compared by RNA-Seq and
examination of enriched KEGG pathways.16 However,
this analysis did not include differentiated cell forms.

The subline HL-60/S4 was developed in 1992, and
exhibits several characteristics that discriminate it
from the parent line, including faster differentiation.17

For instance, this rapidly responding cell line develops
nuclear segmentation in 4 d; whereas the parent HL-
60 line requires at least 6 d for the same level of differ-
entiation.18 In addition, karyotype differences are
documented later in the present study. Our laboratory
has published extensively on HL-60/S4 in an investi-
gation of nuclear shape, chromatin structure and cyto-
skeletal changes during differentiation induced by RA,
TPA and vitamin D3 (e.g.,19-25). In our hands, HL-60/
S4 cells have proven to be robust and to yield highly
reproducible cell differentiation. Furthermore, HL-60/
S4 has now become available for purchase from
ATCC. Defining the mRNA levels resulting from the
differentiation of HL-60/S4 by RA and TPA is central
to interpreting the functional significance of observed
changes in nuclear architecture and chromatin
structure.

In the present study, we determined mRNA levels
in untreated HL-60/S4 cells and in cells treated sepa-
rately with RA and TPA, using quadruplicate indepen-
dent samples. Many KEGG pathways were enriched
after one or both treatments, and we discuss illustra-
tive groups of gene transcripts that relate to the
observed phenotypic characteristics of the differenti-
ated HL-60/S4 cells. The comprehensive data from
this model cell system furnishes transcript level con-
straints that must, in part, reflect myeloid chromatin
structural changes.

Results

Due to the large amount of data generated by RNA-
Seq, we concentrated upon quadruplicates of only 3
cell states: undifferentiated asynchronous HL-60/S4
cells, and RA- and TPA-treated differentiated cells,

both collected after 4 d of treatment. We measured
mRNA levels of all transcripts annotated in the UCSC
hg19 (NCBI GRCh37) human reference genome with
RSEM,26 which uses a maximum likelihood expecta-
tion-maximization algorithm to estimate the tran-
script abundance of individual isoforms. The hg19
does not include ribosomal rRNA genes or the mito-
chondrial genome. Paired-end RNA-Seq reads from
each library of the 3 experimental conditions mapped
to »30,000 isoforms, representing »16,000 genes with
unique Human Genome Nomenclature Committee
(HGNC) identifiers (Table 1). We determined which
isoforms were differentially expressed with EBSeq,27

which uses an empirical Bayesian approach to model
variance among replicates and between experimental
conditions to determine the posterior probability of
differential transcript abundance (or “expression,”
PPDE) for each isoform between all comparisons of
experimental conditions. Because the variances of all
isoforms are modeled together the false discovery rate
(FDR) for any isoform is 1 – PPDE. Low variance
across biologic replicates and deep sequencing led to
PPDE < 0.05 for some isoforms even when the fold-
change was low (< 2); in contrast, for isoforms with
low expression across conditions the PPDE could be
> 0.05, even when fold-change was high. Both treat-

Table 1. Summary of significant differences in gene transcript
levels, comparing the differentiated states of HL-60/S4 cells.

Isoforms / Genes
RA TPA

Mapped 29,838 / 16,189 30,485 / 16,526
Decreased transcripts 5,045 / 3,900 6,336 / 4,528
Increased transcripts 5,937 / 4,249 7,505 / 5,156
Decreased transcripts in both

treatments
3,516 / 2,785 3,516 / 2,785

Decreased more in one, than in the
other treatment

1,171 / 1,022 386 / 361

Increased transcripts in both treatments 3,920 / 2,937 3,920 / 2,937
Increased more in one, than in the

other treatment
712 / 594 1,630 / 1,361

Increased transcripts in one, with
decreased transcripts in the other
treatment

221 / 195 412 / 362

Enriched KEGG
Pathways

Increased isoform transcripts 137 143
Decreased isoform transcripts 106 80
Increased transcripts in both treatments 126 126
Decreased transcripts in both

treatments
65 65

Table 1. There are 46,923 isoforms, defined by unique refseq identifiers, and
25,370 genes, defined by unique HGNC names, annotated in our hg19 refer-
ence genome. Reads from the control HL-60/S4 cells mapped to 29,753 iso-
forms and 15,998 genes. We required isoforms to have an RSEM estimated
transcript level of at least 1 to be considered mapped, and to have an EBSeq
posterior probability of differential transcript level of at least 0.95.
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ments caused widespread changes in mRNA transcript
levels (Table 1). In general, more genes increased than
decreased transcript levels after treatment, and more
genes were affected by TPA treatment than by RA
treatment. When a gene showed increased transcript
levels after either treatment, it was likely to have sig-
nificantly higher levels after TPA. When a gene
showed decreased transcript levels after either treat-
ment, it was likely to have significantly lower levels
after RA. More than half of 315 Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were signif-
icantly enriched in genes with PPDE < 0.05 after
either treatment. We, therefore, limited our analyses
to sets of genes and KEGG pathways likely to play a
direct role in the morphological and biochemical
changes associated with HL-60/S4 differentiation into
granulocyte and macrophage forms, some of which
we have previously studied. Examples of these gene
groups with related phenotypic effects are presented
below.

Cytoplasmic granule proteins

An emblematic feature of blood neutrophils is the pro-
fusion of cytoplasmic granules, collectively containing
about 300 different proteins.28,29 Traditionally, these
granules have been regarded as being packaged with
potent antibacterial enzymes and peptides. It is now
clear that the collection of proteins encompasses other
functions as well (e.g., facilitating the adhesion of
monocytes to the endothelium), being packaged into 3
classes of granules (1�, 2�, 3�).

We examined the expression of genes encoding 14
of the principal granule proteins. Compared to
untreated HL-60/S4 controls, 10 genes had signifi-
cantly different transcript levels in RA-treated cells
and 13 had significantly different levels in TPA-
treated cells (Fig. 1 and Supplemental Table 1). With
the exception of cystatin 3 (CST3), all of the genes
also had significantly different transcript levels
between RA and TPA treated cells. Transcripts for
defensins (DEFA1, 3 and 4) increased in RA-treated
cells and decreased in TPA-treated cells. Transcripts
for alkaline phosphatase (ALPL) increased, while
cathepsin G (CTSG) and myeloperoxidase (MPO)
decreased in TPA-treated cells. RA treatment did not
significantly change the transcript levels for any of
these 3 genes. In other cases, such as the bactericidal/
permeability-increasing protein BPI, cytostatin F
(CST7), cathepsin D (CTSD), and elastase (ELANE),
the direction of the transcriptional response was the
same after the 2 treatments, but the magnitude of the
response differed. Our results with HL-60/S4, com-
pared with a previous examination of the effects of
RA and TPA on the parental HL-60 cell line using
Northern blot assays, concur on decreased mRNA lev-
els of MPO after TPA treatment,10 but disagree with
published results which show a decrease in MPO
mRNA levels after RA treatment.10,30 This may repre-
sent a difference in gene regulation and/or MPO
mRNA stability, comparing the parent and derived
cell lines. In other studies of HL-60 cells, expression
microarrays showed increased levels of defensins and
cathepsin D after RA treatment,11 implying that for

Figure 1. Differential transcript levels for cytoplasmic granular proteins. Bars indicate the ratio of RSEM (RNA-Seq by Expectation-Maxi-
mization) expected counts of treatment (RA or TPA) compared with control (undifferentiated HL-60/S4 cells). Gene names are HUGO
Gene Nomenclature Committee (HGNC) gene symbols; repetition of the gene name indicates multiple isoforms of the gene. Bars
indicate difference in transcript levels from untreated control: solid bars indicate differential transcript levels with posterior probability
� 0.95; open bars indicate posterior probability < 0.95. Asterisks indicate that the transcript level after one treatment is significantly
different than the other treatment (p.p. � 0.95), when both exhibit increased or decreased trancript levels. Only isoforms where the
total RSEM expected count was � 10 across all 3 cell states, or where the contribution of the isoform to the total count of the gene was
� 0.05 for at least one condition, are shown. Details for all isoforms, including NCBI refseq identifiers, are in Supplemental Table 1.
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these genes, both the parent and derived cell lines
respond in a similar fashion to RA-induced differenti-
ation, generating a similar granule protein repertoire.
The major conclusion of this section is that there is a
significant difference in granule protein transcript lev-
els comparing RA and TPA treated HL-60/S4 cells.
Furthermore, the decreased transcripts of DEFA and
MPO genes, following TPA treatment of HL-60/S4
cells, suggests that the TPA-induced macrophage are
less committed to destroying bacteria than are the
RA-induced granulocytes.

Nuclear envelope and cytoskeletal proteins

Many of our previous studies on HL-60/S4 have been
concerned with 2 related questions: 1) What changes
within the nuclear envelope and in the cytoskeleton,
following RA treatment, affect nuclear shape and cell
deformability? 2) Are these changes different from
those in TPA treated cells (which do not show nuclear
segmentation)? Our earlier studies on the first ques-
tion, using immunostaining and immunoblotting,
demonstrated the presence of elevated levels of lamin
B receptor (LBR) and a reduction in levels of lamin A
(LMNA) in the nuclear envelope of RA treated HL-
60/S4 cells. We speculated that these changes in pro-
tein level caused nuclear lobulation and deformability
of the granulocytic nuclei.19-24,31,32

As can be seen in Fig. 2 and Supplemental Table 2,
there is a dramatic difference in transcript level of

LMNA between the 2 differentiated cell forms, with
significant decrease following RA, versus a significant
increase following TPA. Somewhat surprisingly, tran-
script levels of lamin B1 (LMNB1) and lamin B2
(LMNB2) decreased after both treatments. Our earlier
immunoblotting studies of nuclear envelope proteins22

had not detected reductions in LMNB1 and LMNB2,
compared with undifferentiated cells. It is, of course,
possible that the reduction in LMNB1 and LMNB2
transcript levels is compensated by increased stability
of the lamin B proteins; whereas, the decrease in
LMNA transcripts is more accurately reflected in the
protein level.

Likewise, there are significant differences between
the 3 cell states in the transcription levels of non-
lamin inner nuclear membrane (INM) proteins, which
“bridge” directly or indirectly between the INM and
underlying heterochromatin. Lamin B receptor (LBR)
mRNA is elevated following RA treatment and
reduced after TPA, agreeing with earlier immunos-
taining and immunoblotting experiments.22 Emerin
(EMD) mRNA is reduced after either treatment, also
in agreement with earlier immunochemical studies.22

However, only after TPA treatment is emerin present
in the INM, due in part to the requirement for lamin
A as a binding partner. In the absence of lamin A,
emerin is found within the cytoplasm.21 Transcripts of
lamina-associated polypeptide 2 (a.k.a thymopoietin
or TMPO) are reduced after both treatments, and sig-
nificantly more so after treatment with TPA. This
observation does not agree with earlier immunoblot-
ting data,22 which may indicate that the protein is very
stable. Transcript levels of another INM protein gene,
LEMD3, modestly but significantly increase after
either treatment.

Within the INM, the SUN proteins primarily func-
tion by connecting to KASH-domain proteins of the
outer nuclear envelope, which in turn connect to the
cytoskeleton, constituting the “linker of nucleoskele-
ton and cytoskeleton,” or LINC complex.33,34 In our
transcriptome data, the SUN1 transcript level is
decreased in RA treated cells and increased in TPA
treated cells, while the SUN2 transcript is elevated
after either treatment (although, more so after TPA).
Both of these observations are in good agreement with
our earlier immunochemical data.22 The transcript
level for the KASH-domain protein nesprin 2
(SYNE2), which binds to the actin cytoskeleton, is
increased after TPA treatment. There is also a weak

Figure 2. Differential transcript levels for nuclear envelope and
cytoskeletal proteins. Graphical representation is the same
as described in the legend for Fig. 1. Details for all isoforms,
including NCBI refseq identifiers, are in Supplemental Table 2.
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indication of an increased level of the nesprin 1
(SYNE1) transcript. Our previous immunochemical
study22 indicated that nesprin 1 protein was elevated
and nesprin 2 was not detectable. Without additional
information about mRNA and protein turnover, this
particular conundrum must remain. Even so, the
greater amount of the LINC complex proteins in the
macrophage cell form (TPA) of HL-60/S4, compared
with the granulocytic form (RA), seems largely
supported by the present transcript data.

Finally, the mRNA encoding the cytoskeleton pro-
tein vimentin (VIM) is significantly decreased in RA
treated and increased in TPA treated cells (similar to
lamin A, Fig. 2). Multiple isoforms of plectin (PLEC),
some of which connect with vimentin, show the same
pattern. It is possible that the multiple variants of plec-
tin observed in the transcriptome may correlate with
the multiple immunoblot bands of plectin described
previously.22 In summary, the transcriptomes of the
RA and TPA treated HL-60/S4 cells support the con-
ception that the granulocytic forms possess a more
malleable nuclear envelope and cytoskeleton than
within macrophage forms, consistent with their
normal counterpart cell functions.

Cell cycle

After RA addition to HL-60 cells (day 0), there is an
increase of “doubling time,” beginning at »day 2 and
achieving a growth plateau by »day 4.3 In contrast,
the addition of TPA to HL-60 cells results in an almost
immediate cessation of cell doubling.5, 6 We have
observed similar differences in cell cycling behavior at
day 4 in the HL-60/S4 subline. The % of cells in S
phase declines with differentiation; 0, RA and TPA
cells exhibit 23.5, 12.9 and 5.7% cells in S, respectively.
In parallel, more cells reside in G1 phase; 0, RA and
TPA cells exhibit 48.6, 64.9 and 70.6% in G1, respec-
tively. G2 phase remains relatively unchanged at
»20% of the cell cycle. In an effort to understand the
underlying mechanism for this large difference in cell
cycle behavior, we examined the steady-state mRNA
levels of the cyclins (CNN) and their partner cyclin-
dependent kinases (CDK). These proteins, and
CDK inhibitors, are well known to affect cell cycle
progression35,36 (Fig. 3 and Supplemental Table 3).

Fig. 3a shows the change in transcript levels of cyclins
A-H after treatment with RA or TPA. Cyclin A1
(CCNA1) isoform transcripts are reduced in RA treated,

but significantly increased in TPA treated cells. Cyclin
A1 protein is generally confined to the normal testis and
is regarded as involved in meiosis, but has been recently
described in AML cells.37 Among other cyclins, there is
a decreased transcript level of E1 after both treatments,
while levels of A2, B1, B2, D2, E2 and F are decreased
after treatment with TPA but not RA; transcript levels
of D1 and D3 are increased after both. CDK2, 4, 6, and
7 transcript levels are reduced after both treatments. In
addition, CDK1 mRNA is reduced after TPA (Fig. 3b).
Overall, this pattern of changes in transcript abundance
suggests that TPA treatment leads to reduction in the
protein complexes CDK1/CCNB1 (involved in early
events of mitosis, including chromosome condensation
and NE breakdown), CDK2/CCNE1 (required for the
G1 to S transition) and CDK2/CCNA2 (required for
progress through S). One other important finding is that
the mRNA levels for p21 (CDN1A, an inhibitor of
CDK2 and CDK4/cyclin complexes), p16 (CDN2A, an
inhibitor of CDK4/CCND and CDK6/CCDN com-
plexes) and p15 (CDN2B, an inhibitor of CDK4 and
CDK6 complexes) are significantly increased after TPA,
more so than after RA treatment (Fig. 3c). The increase
in p21 in TPA treated HL-60 cells was earlier observed
by immunoblotting.38 In summary, it appears that the
more rapid cessation of cell division seen with TPA
treated cells, compared with RA treated cells, may result
from a faster reduction of CDK and cyclin transcripts
and a significant inhibition of the protein complexes
needed for cell cycle progression.

An additional issue pertains to histone H1 phos-
phorylation/dephosphorylation. We previously
reported that when HL-60/S4 is differentiated using
RA or TPA, the H1 subtypes (H1.2, H1.4 and H1.5)
are extensively dephosphorylated without significant
changes in protein levels21 The effects are more pro-
found with TPA than with RA treatment. The cur-
rent view is that H1 phosphorylation at serine/
threonine sites is accomplished primarily by CDK2,39

which we have demonstrated has much reduced
transcript levels after RA and TPA (Fig. 3b).

Apoptosis

Granulocytic differentiated forms of HL-60 die by
apoptosis.40 Death begins around day 6 after RA treat-
ment, with increases in caspases 1 and 3 on day 2, as
revealed by immunoblotting and Northern blots,41

and a loss of anti-apoptotic BCL2 by day 7. The
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mechanism of cell death in TPA treated HL-60 cells is
somewhat more complex.38,42 These studies demon-
strated that a small fraction (»10%) of the HL-60 cells
do not differentiate after the addition of TPA, do not
attach and do undergo apoptosis. The attached cells,
which are overwhelmingly stopped in G1 phase,
remain alive. Gradually, cells detach and exhibit apo-
ptosis. It has been demonstrated that focal adhesion
kinase (FAK) shows increased transcripts following
TPA treatment and possesses an anti-apoptotic func-
tion.43 The present TPA treated HL-60/S4 transcrip-
tome data set was obtained from attached cells at day
4. The free-floating cell fraction with obvious apopto-
sis was removed by decanting the tissue culture
medium, before RNA purification.

To determine if differences in the processes of cell
death between RA and TPA treated HL-60/S4 cells are
correlated with genetic mechanisms of apoptosis, we
examined changes in transcript levels of caspases and
other genes involved in apoptosis (Fig. 4 and Supple-
mental Table 4). Consistent with Northern blot
results,41 we observe a significant increase in mRNAs

for multiple isoforms of caspase 1 (CASP1) and a sig-
nificant decrease in both isoforms of BCL2 in RA
treated cells. RA treated cells also have increased tran-
scripts for initiator caspases 8, 9, and 10 and of effec-
tor caspase 7 (an increased mRNA level of CASP3
observed at day 2 is not evident in these samples,
which are from day 4). Besides sufficient and suitable
caspases, RA treated cells should be able to utilize an
extrinsic “Cell Death Receptor” pathway, due to ele-
vated mRNAs of the death receptor tumor necrosis
factor receptor (TNFRSF1A) and associated proteins
TRADD and TRAF1, which leads to activation of
CASP9 or 10. Transcripts of TRAF2, which interacts
with TRADD and TRAF1 to inhibit caspase activity,
are reduced following RA or TPA treatment. However,
the slight reduction of TNFRSF1A following TPA,
may be enough to reduce apoptosis by “muting” the
consequence of dramatically increased levels of
TRAF1 transcript. It is also conceivable that the
intrinsic mitochondrial pathway can initiate apoptosis
in RA treated cells. There is increased mRNA of “apo-
ptotic protease activating factor 1” (APAF1), which

Figure 3. Differential transcript levels for proteins involved in the cell cycle. (A) Cyclins; (B) Cyclin Dependent Kinases; (C) CDK Inhibitors.
Graphical representation is the same as described in the legend for Fig. 1. Details for all isoforms, including NCBI refseq identifiers, are
in Supplemental Table 3.
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can complex with CASP9. By contrast, at day 4, TPA
treated cells have significantly decreased transcript
levels of CASP1 isoforms, mixed expression of CASP
initiator and effector isoforms, a slight reduction of
TNFRSF1A transcript and significantly reduced levels
of an APAF1 isoform, all of which reduce the likeli-
hood of initiating apoptosis. However, they also
exhibit a significant decrease in BCL2 transcript level.
It appears that the attached TPA treated cells resist
apoptosis in a variety of ways. It is not clear what
provokes these cells to detach and initiate apoptosis.

Cell attachment

Undifferentiated HL-60/S4 cells grow as suspension
cultures, settling to the bottom of the culture dish, but
not attaching. RA treated cells also settle when undis-
turbed. If one observes an undisturbed dish of granu-
locytic forms in the microscope, one can see the cells
slowly migrating on the bottom surface. In contrast,
TPA treated cells firmly attach to the bottom surface

within one day (Fig. 5), form cell clusters by day 2 and
larger clusters by day 3. The clusters are spaced apart
almost in a grid pattern, with isolated cells “stretch-
ing” between them.

Gene set enrichment analysis based upon elevated
transcript levels after RA or TPA treatment highlighted
several KEGG pathways: “Extracellular Matrix (ECM)
Receptor Interactions” (Fig. 6), “Adherens Junction” and
“Cell Adhesion Molecules” (Fig. 7) and “Leukocyte
Transendothelial Migration” (Fig. 8). However, TPA
treated cells are more enriched in these genes than are RA
treated cells. The statistics summarizing mRNA levels in
these pathways are shown in Supplemental Table 5.

Examination of individual genes in each KEGG path-
way revealed differences in mRNA levels between the 2
cell types. Among genes involved in ECM-receptor
interactions, few have reduced transcripts after either
treatment (Fig. 6). In comparison to control cells and to
RA treated cells, TPA treated cells have increased tran-
script levels for genes encoding the extracellular matrix
proteins agrin (AGRN), type VI a collagen (COL6A3),

Figure 4. Differential transcript levels for proteins involved in apoptosis. (A) top, initiator caspases; bottom, caspase 1 and effector cas-
pases. (B) Other genes involved in Apoptosis. Graphical representation is the same as described in the legend for Fig. 1. Details for all
isoforms, including NCBI refseq identifiers, are in Supplemental Table 4.
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Figure 5. Light microscopic images of HL-60/S4 cells following treatment with 16 nM TPA. Cell attachment and progressive cell cluster-
ing are readily apparent. “Day,” refers to the days after addition of TPA. Magnification bar, 100 mm.

Figure 6. Differential transcript levels for proteins involved in cell attachment. KEGG Pathway: “Extracellular Matrix (ECM) Receptor Inter-
actions.” Graphical representation is the same as described in the legend for Fig. 1. Details for all isoforms, including NCBI refseq identi-
fiers, are in Supplemental Table 5.
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Figure 7. Differential transcript levels for proteins involved in cell attachment. KEGG Pathways: “Adherens Junctions” and “Cell Adhesion
Molecules.” Graphical representation is the same as described in the legend for Fig. 1. Details for all isoforms, including NCBI refseq iden-
tifiers, are in Supplemental Table 5.

Figure 8. Differential transcript levels for proteins involved in cell attachment. KEGG Pathway: “Leukocyte Transendothelial Migration.”
Graphical representation is the same as described in the legend for Fig. 1. Details for all isoforms, including NCBI refseq identifiers, are
in Supplemental Table 5.
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fibronectin (FN1), laminins (LAMA2, 3, 5, LAMB1),
ostopontin (SPP1), perlecan (HSPG2), tenascin (TCN),
and von Willebrand Factor (VWF), and for genes
encoding many integrins (ITGA2B, A3, A5, A6, A7,
A11, B1, B7, B8). Among cell-surface glycoproteins,
CD44 has increased transcript levels following TPA
treatment and decreased levels following RA treatment.
Among the few genes with increased transcripts in RA
treated cells (and not in TPA-treated cells) are the
receptor CD36 and its ligand thrombospondin
(THBS1). We do not know what factors are critical for
defining the difference in attachment behavior after
TPA and RA treatment, but the increased mRNAs for
multiple ECMs and integrins after TPA treatment, con-
trasted with the more limited RA-specific gene tran-
scripts (i.e., CD36 and THBS1), may be of importance.

The basis for cell clustering after TPA treatment is
even more mysterious. One possibility is the establish-
ment of adherens junctions and cell adhesion mole-
cules (Fig. 7). Cadherin 1 (CDH1), responsible for
Ca2C dependent cell adhesion, reveals minimal tran-
scripts in HL60/S4 cells under either control or treat-
ment conditions. However, mRNAs of genes making
up the complete pathway for Ca2C independent
adherens junctions, including nectin 2 (PVRL2), afa-
din (MLLT4), a, b, and delta catenins (CTTNA1, B1,
D1) and actins (ACTN, ACTB, ACTG1) clearly
increase after treatment with TPA. Some, but not all,
of these genes increase their transcript levels after RA
treatment, but their steady-state levels after TPA treat-
ment are consistently significantly higher.

A second possibility is that clustering is a product
of activation of the leukocyte transendothelial migra-
tion pathway (Fig. 8). Many genes in this KEGG path-
way reveal increased transcripts after both RA and
TPA treatment. Intriguingly, CD226, which binds nec-
tin 2, has higher transcript levels after TPA than after
RA treatment. Transcript levels for the genes encoding
the endothelial cell adhesion molecules PECAM1 and
ESAM are increased after TPA, but not after RA treat-
ment. ESAM is implicated in forming endothelial tight
junctions rather than leukocyte migration, but other
genes specific to tight junction formation do not show
elevated transcripts in HL-60/S4 cells. Interactions
between PVRL2 and MLLT4, between PVRL2 and
CD226, as well as PECAM1-PECAM1 and ESAM-
ESAM junctions may establish tight junctions between
the TPA treated cells, which appear to be unlikely
between RA treated HL-60/S4 cells.

Discussion

The present study details the changes in mRNA levels in
the HL-60/S4 cell line when differentiated with retinoic
acid (RA) or phorbol ester (TPA), leading to granulocyte
or macrophage cell forms. The RNA-seq data for each
cell state was obtained from quadruplicate independent
cell samples yielding measurements of transcript levels
with high statistical significance. These data indicated
that for both differentiated cell forms, compared with
undifferentiated cells, more genes showed increased lev-
els of transcripts than revealed decreased levels. The tran-
script data was mapped to »30,000 isoforms,
representing »16,000 genes. The examples shown above
of phenotypically related gene groups represent a very
small sampling of the transcriptomes of undifferentiated,
granulocytic and macrophage-differentiated cell forms.
As mentioned earlier, we used gene set analysis of KEGG
pathways to obtain new insights into processes involved
in differentiation. The vast majority of enriched path-
ways, and all of the most enriched, was common in both
treatments. The top 10 most enriched pathways included
chemokine, MAPK, B cell, and Toll-like receptor signal-
ing; osteoclast differentiation; lysosome activity; endocy-
tosis; phagocytosis; regulation of actin cytoskeleton; and
focal adhesion. Some pathways, such as chemokine sig-
naling, seem to be quite appropriate, since the pathway
supports migration, chemotaxis, cell shape change and
apoptosis, all attributes of differentiated granulocytes (see
Supplemental Figure 1). Others are more surprising, such
as osteoclast differentiation (see Supplemental Figure 2).
Osteoclasts are multinucleated cells in the monocyte-
macrophage lineage. HL-60/S4 TPA-treated macrophage
cells are not multinucleated. However, several genes
involved in osteoclast differentiation (RANK, DC-
STAMP, OC-STAMP and Atp6v0d2)44,45 exhibit signifi-
cantly higher transcript levels after TPA treatment, than
after RA treatment (data not shown). Furthermore, the
differences in Granule Protein transcripts (described ear-
lier) suggest that the HL-60/S4 macrophage formmay be
less adapted to fighting bacterial infection, and more
adapted to function in bone resorption. Perhaps addi-
tional in vitro experiments with HL-60/S4 macrophage
cells could achieve differentiation into more mature mul-
tinuclear osteoclasts. This is one of many examples where
analysis of specific pathways suggests new experimental
directions.

The current transcriptome analysis details critical
genetic data on aspects of nuclear architecture and
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chromatin changes occurring during differentiation of
HL-60/S4 cells. Ongoing collaborative studies using
HL-60/S4 cells are defining RA and TPA induced
changes in DNA methylation, nucleosome positioning
and occupancy, histone modifications and Hi-C (chro-
matin proximity). With HL-60/S4 cells now available
from ATCC to any laboratory, we anticipate an acceler-
ated understanding of the mechanisms and consequen-
ces of cell differentiation within this cell system. To
facilitate this progress, we attach a fully searchable data
sheet (Supplemental Table 6) containing all of the HL-
60/S4 transcriptome data, so that specific transcripts of
interest are accessible to the individual researcher. Fur-
thermore, we attach a ranked list of the KEGG
enriched pathways for the HL-60/S4 granulocytic and
macrophage cell states (Supplemental Table 7). The
transcript level changes described in this study of HL-
60/S4 cells undergoing granulocytic or macrophage dif-
ferentiation should reflect changes in mRNA synthesis
and degradation. The synthesis changes must arise
from structural events occurring at the local chromatin
and global nuclear architectural levels. Well character-
ized and reproducible HL-60/S4 cell differentiation fur-
nishes a convenient model system for additional
exploration of these structural events responsible for
regulation of differential gene expression.

Addendum

HL-60/S4 Karyotype Analysis We performed 24-color
multiplex fluorescence in situ hybridization (M-FISH)46

on 2 aliquots of undifferentiated HL-60/S4 cells (one
frozen in 2008; the other, in 2012) cultivated under
standard conditions with colcemide for 17 h (generally
yielding»40–50% mitotic cells). Following M-FISH, we
analyzed images from 15 mitotic spreads of 2008 and
15 from 2012 cells for chromosome number and integ-
rity. The results show that the karyotype of HL-60/S4
cells is abnormal, but stable at the 2 time points with
the following ISCN karyotype:

44,X,-X,inv(2),der(3)t(3;14),der(4)t(4;18),der(5)t
(5;17;16),der(6)t(6;8;6),der(7)t(5;7),der(9)t(9;14), der
(11)t(6;8;11),dup(13),der(14)t(9;14),del(14q),der(15)t
(6;16;15),-16,der(16)t(7;16),-17,del(18q), der(21)t
(16;21),mar1–2.

A representative example of one mitotic spread
from 2008 cells is presented as a multicolor karyogram
in Fig. 9. Analyses of all 15 metaphase spreads of the
2008 cells are presented in Supplemental Table 8.

Several general conclusions have emerged from the
karyotype analyses: (1) The karyotypes are stable,
comparing 2012 and 2008 cell samples. (2) The
karyotypes exhibit only one X chromosome and no Y
chromosomes. (3) Apparently normal diploid states
are observed for chromosomes 1, 8, 10, 12, 19, 20 and
22. (4). Apparently monosomic states are seen for
chromosomes 17 and X. (5) Structural aberrations
(inversion, duplication, deletions and translocations)
involved chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14,
15, 16, 17, 18 and 21. (6) The karyotype clearly
demonstrates the absence of a translocation t(15;17).

The karyotype of the “parent” HL-60 cell line has
been examined several times, most recently in 1999, also
using M-FISH.47 There are both similarities and differ-
ences between the parent and derived (HL-60/S4) cell
lines. The differences might be attributed to improve-
ments in the M-FISH technique and/or to genetic
changes induced during the derivation of HL-60/S4 with
the mutagen N-methyl-N0-nitro-N-nitrosoguanidine.17

There is a considerable amount of transcript data
available for normal myeloid cell differentiation48 and
for acute myeloid leukemia.16,49 However, given the
massive karyotypic rearrangements of HL-60/S4 cells
compared with the normal human karyotype, we sug-
gest that comparisons between HL-60/S4 transcrip-
tomes and those from normal or leukemic myeloid
cells should be made with great caution. The reverber-
ations of extensive chromosomal rearrangements
upon chromosomal higher order structure, gene
proximities and environments could be considerable.

Materials and methods

Cell culture

HL-60/S4 cells were maintained in RPMI 1640 medium,
plus 10% fetal calf serum and 1% Pen/Strep(Glutamine.
This cell line is newly available from ATCC [www.atcc.
org, #CRL-3306]). For the current experiments: undif-
ferentiated HL-60/S4 cells were seeded into 4 separate
T-25 flasks (5 ml each at a concentration of 1 £ 105);
RA (Sigma-Aldrich R2625) treated cells were seeded
into 4 separate T-25 flasks (5 ml each at a concentra-
tion of 2 £ 105, with RA added to 1 mM); TPA
(Sigma-Aldrich P1585) treated cells were seeded into
4 separate 6 cm diameter petri dishes (5 ml each at a
concentration of 4 £ 105, with TPA added to 16 nM).
After 4 d, cells were observed and counted: undifferen-
tiated (0), 1.45£106 cells/ml; RA treated, 1.48£106
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cells/ml; TPA treated, could not be counted due to
clumping (see Fig. 5), but based upon previous studies
were assumed to be »5 £ 105 cells/ml.

RNA extraction

Total RNA was isolated using the RNeasy Micro Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions, with minor modifications. For 0

and RA treated cells, 1.4 ml was harvested from each
flask, centrifuged at 420xg for 5 min in RNAse-free
tubes, supernatants removed and 1.4 ml of RLT-buffer
containing ß-Mercaptoethanol was added. For TPA
treated cells, dead cells were decanted from the Petri
dish and 1.75 ml RLT-buffer containing ß-Mercaptoe-
thanol was added and cells scraped (yielding approxi-
mately the same cell concentration as the 0 and RA
treated cells). Each of the 4 replicate samples was

Figure 9. M-FISH Karyotype Analysis of HL-60/S4 Cells. Top, representative multicolor karyogram of undifferentiated HL-60/S4 cells. Each
chromosome is presented in a specific classification color allowing the easy detection of numerical and structural chromosome
aberrations. Bottom, inverted DAPI staining results in a GTG-like banding pattern of the chromosomes. Data in Supplemental Table 8.
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individually lysed by vigorous vortexing, immediately
frozen in dry ice and stored at ¡80 C�. Subsequently,
each thawed lysate was homogenized using QIAshred-
der spin columns (Qiagen, Hilden, Germany). One
volume of 70% EtOH was added, the RNA bound to a
RNeasy MinElute spin column and genomic DNA
digested by DNAse I. Afterwards, DNase I and resid-
ual buffer traces were removed by subsequent washing
steps and the RNA eluted in 14 ml nuclease-free water
(Ambion, ThermoFisher Scientific, Waltham, MA).
Integrity and purity of RNA was ensured using a Bioa-
nalyzer 2100 (Agilent, Santa Clara).

RNA library preparation and RNA Sequencing

Library preparation for RNA-sequencing was con-
ducted following the TruSeq RNA Library Preparation
Kit v2 (Illumina Inc., San Diego, CA) with minor
modifications. In brief, 1mg of total RNA was frag-
mented to approx. 150bp and the polyA-RNA fraction
reverse transcribed to obtain cDNA. After the end
repair, 30 ends were adenylated and the adapters
ligated. 10ml of the ligated adaptor mix was used as
PCR template and the number of PCR cycles was lim-
ited to 12. The library quality was validated on a DNA
Bioanalyzer (Agilent, Santa Clara) and a Qubit fluo-
rometer (ThermoFisher Scientific, Waltham, MA). A
PhiX control (1%, #FC-110–3001) was spiked into the
resulting library and clustering was done according
to the TruSeq PE Cluster Kit v3 (#PE-401–3001,
Illumina Inc., San Diego, CA). Sequencing was per-
formed on the HiSeq 2000 platform, which generated
2£ 100 paired-end reads (TrueSeq SBS Kit v3, #FC-
401–3001, Illumina Inc., San Diego).

Determination of differential transcript levels

We followed the RSEM workflow outlined at http://
deweylab.github.io/RSEM and used the sequences and
annotation of UCSC human genome v19 from Illu-
mina igenome (https://support.illumina.com/sequenc
ing/sequencing_software/igenome.html). A bash
script of the workflow is available as Supplemental
Text 1. Briefly, we used bowtie2 to map paired-end
reads to transcripts extracted from the reference
genome, and calculated expression values using RSEM
v1.2.15. RSEM uses a maximum likelihood expecta-
tion-maximization algorithm to estimate the tran-
script abundance of isoforms from RNA-Seq reads.26

A summary of mapping results is available as

Supplemental Table 9. We then calculated the signifi-
cance of expression differences using EBSeq v1.1.5
with the ng-vector option for isoform-level analysis.27

We tested RA vs control, TPA vs control, and RA vs
TPA, and accepted isoforms with posterior probability
greater than or equal to 0.95 as differentially
expressed. We used the output of a 3-way test of con-
trol vs RA vs TPA to generate the normalized mean
count value from the 4 replicates for each condition.
See Supplemental Table 6 for a complete table of
EBseq normalized counts and PPDE values for each
hg19 transcript. We uploaded lists of differentially
expressed genes (HGNC gene symbols) to WebGestalt
(http://bioinfo.vanderbilt.edu/webgestalt) for gene set
enrichment analysis of KEGG pathways.50 We consid-
ered a KEGG pathway enriched for increased or
decreased gene expression if the hypergeometric test
returned an adjusted p value less than 0.05. See Sup-
plemental Table 7 for a listing of KEGG pathways
enriched in RA- or in TPA-treated cells. Output from
RSEM, EBSeq, and WebGestalt were loaded into a
MySQL database with hg19 annotation and KEGG
data for analysis.

Multiplex fluorescence in situ hybridization

M-FISH was performed, as described.51 Briefly, 7
pools of flow-sorted human chromosome painting
probes were amplified and directly labeled using 7
different fluorochromes (DEAC, FITC, Cy3, Cy3.5,
Cy5, Cy5.5 and Cy7) using degenerative oligonucleo-
tide primed PCR (DOP-PCR). Metaphase chromo-
somes immobilized on glass slides were denatured in
70% formamide/2xSSC pH 7.0 at 72�C for 2 min fol-
lowed by dehydration in a degraded ethanol series.
Hybridization mixture containing combinatorially
labeled painting probes, an excess of unlabeled cot1
DNA, 50% formamide, 2xSSC, and 15% dextran sul-
fate were denatured for 7 min at 75�C, pre-annealed
at 37�C for 20 min and hybridized at 37�C to the
denaturated metaphase preparations. After 48 h the
slides were washed in 2xSSC at room temperature for
3£5 min followed by 2 washes in 0.2xSSC/0.2%
Tween-20 at 56�C for 7 min, each. Metaphase
spreads were counterstained with 4.6-diamidino-2-
phenylindole (DAPI) and covered with antifade solu-
tion. Metaphase spreads were recorded using a DM
RXA epifluorescence microscope (Leica Microsys-
tems, Bensheim, Germany) equipped with a Sensys
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CCD camera (Photometrics, Tucson, AZ). Leica Q-
FISH software controlled the camera and microscope.
Images were processed on the basis of the Leica MCK
software and presented as multicolor karyograms
(Leica Microsystems Imaging solutions, Cambridge,
United Kingdom).

Availability of data and materials

The data sets supporting the conclusions of this arti-
cle are included within the article, the Additional
files and are available in the NCBI Short Read
Archive at http://www.ncbi.nlm.nih.gov/bioproject/
303179

Health and safety

We confirm that all mandatory laboratory health and
safety procedures have been complied with in the
course of conducting any experimental work reported
in this paper.
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LINC linker of nucleoskeleton and cytoskeleton
M-FISH Multiplex fluorescence in situ hybridization
NE nuclear envelope
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