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Abstract 

Drought causes considerable reduction in plant growth. A hydroponic experiment was conducted to appraise 

the potential role of exogenously applied ascorbic acid in alleviating the effect of drought on wheat. Two 

contrasting wheat genotypes, a drought tolerant cultivar Chakwal-86 and a drought sensitive strain 6544-6 were 

used in the study. Drought was induced by dissolving 20% Polyethylene glycol (PEG8000) in the nutrient solution 

producing -0.6MPa osmotic stress. Drought caused a significant decrease in chlorophyll pigments and net 

photosynthesis resulting in growth reduction of both wheat genotypes. However, this decrease was more severe in 

the genotype 6544-6 compared to Chakwal-86. Ascorbic acid (AsA) was applied through rooting medium, as a 

foliar spray and seed soaking treatment. Ascorbic acid treated seedlings of both genotypes maintained higher 

chlorophyll contents, net photosynthesis and growth compared to the non-treated plants. Of the three different 

modes of ascorbic acid application, rooting medium was more effective in alleviating the adversities of drought in 

wheat.  
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Introduction 

Limited availability of water is a serious constraint to 

agricultural production of major crops (Shao et al., 2009) 

because water is vital factor in plant development. Reduced 

supply of water is known to hamper important 

physiological and biochemical mechanisms leading to 

reduction in plant growth. Substantial yield losses have 

been observed in different crops due to reduced supply of 

water even for a short period of time (Pinheiro et al., 2005). 

Drought stress causes reduced stomatal conductance 

resulting in decreased net photosynthetic rate. Chlorophyll 

degradation due to drought stress also inhibits 

photosynthetic rate in wheat (Moaveni, 2011). Drought 

stress deteriorates membranes which adversely affects a 

number of metabolic reactions occurring within the cell 

(Ashraf, 2009). Membrane stability is adversely affected 

due to oxidative damage caused by higher cellular 

concentrations of reactive oxygen species (ROS) like 

hydrogen peroxide, superoxide, singlet oxygen (Navarri-

Izzo et al., 1994) produced as a result of drought stress. 

Reactive oxygen species due to their reactive nature 

negatively interact with DNA, proteins, lipids and pigments 

causing huge cellular damage (Ashraf, 2009). 

A number of enzymatic and non-enzymatic 

antioxidants are produced in plants in response to abiotic 

stresses which save plant from oxidative damage caused by 

ROS (Ashraf, 2009). Major enzymatic antioxidants reported 

are superoxide dismutase (SOD), catalase (CAT), 

peroxidase (POD), ascorbate peroxidase (APX) whereas, 

ascorbic acid (vitamin C) and tocopherols are the main non-

enzymatic antioxidants exploited by plants under stressful 

conditions to ameliorate the adverse effects imposed by 

ROS (Mittler, 2002). A few studies report that exogenously 

applied ascorbic acid ameliorates adverse effects of drought 

(Singh et al., 2001; Amin et al., 2009; Dolatabadian et al., 

2009a; Dolatabadian et al., 2010; Khalil et al., 2010). 

However, they have applied ascorbic acid either as a foliar 

application or in the rooting medium under soil conditions. 

In the present study, ascorbic acid was applied by three 

different modes; pres-sowing seed treatment, rooting 

medium and foliar spray to wheat plants under drought 

stress. Objective of the study was to investigate the 

comparative effect of ascorbic acid in three different 

modes.  

Materials and Methods 

Two wheat genotypes, a drought tolerant cultivar, 

Chakwal-86 and a drought sensitive genotype 6544-6 were 

used in the study. Ten seeds of each genotype were sown on 

wet filter paper in Petri plates kept in a growth chamber. 

The temperature and humidity was not controlled and 

varied between 15-20
0
C and 30-60%, respectively. The 

light intensity was maintained at 500 µmol m
-1

 s
-1

 for 10 

hours daily using fluorescent tubes. A week after 

germination, seedlings of both genotypes were transplanted 
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into plastic tubs containing Hoagland’s nutrient solution 

(Epstein, 1972). The tubs were placed in a covered 

wirehouse to protect against rainfall. Aeration was 

maintained in the hydroponic system with the help of an 

electric pump. The environmental conditions during the 

course of experiment were 20.50-13.75ºC average day and 

night temperature and 41.71-76.28% average relative 

humidity. A week after transplantation when the seedlings 

were 2 weeks old, PEG8000 was dissolved in the hydroponic 

culture in three equal doses with an interval of one day until 

the final concentration of 20% to develop -0.6 MPa drought 

stress. Optimized concentrations of ascorbic acid evaluated 

from the preliminary trials (data not mentioned) were 

exogenously applied as a foliar spray, seed priming and 

rooting medium treatments soon after dissolving PEG in the 

nutrient solution. Twenty four plastic tubs were used. There 

were twenty plants (10 plants of each genotype) in a tub. 

There were 3 tubs for each treatment. The experimental 

plan was a completely randomized design with three 

replications. The treatment breakup of the 24 tubs of 

hydroponic system was as below: 

 Hoagland’s nutrient solution 

 Hoagland’s nutrient solution + PEG 

 Hoagland’s nutrient solution + 0.5mM AsA in 

rooting medium 

 Hoagland’s nutrient solution + PEG and 0.5mM AsA 

in rooting medium  

 Hoagland’s nutrient solution + 1mM AsA foliar 

spray 

 Hoagland’s nutrient solution + PEG and 1mM AsA 

foliar spray  

 Hoagland’s nutrient solution + 1mM AsA applied as 

seed priming 

 Hoagland’s nutrient solution + PEG and 1mM of 

AsA as seed priming   

For rooting medium treatment, 0.5mM AsA was added 

to nutrient solution of the plants. Seeds were soaked for 10 

h in a solution of 1mM AsA for seed priming. Foliar spray 

was prepared by dissolving 1mM AsA in distilled water 

with the addition of 0.1% tween-20 as a surfactant to 

increase the penetration of ascorbic acid solution into the 

leaves. Foliar spray was applied twice, once on 2 weeks old 

seedlings and then on 3 weeks old seedlings. The data for 

gas exchange parameters were recorded on 3
rd

 leaf of each 

plant using an open system portable infra red gas analyzer 

(Analytical Development Company, Hoddeson, England) 

after five weeks of transplantation. The plants were then 

harvested and fresh biomass was recorded with the help of 

an electronic balance. Harvested fresh leaves were used for 

the quantification of photosynthetic pigments (Chlorophyll 

“a” and “b”) following the procedure described by Arnon 

(1949). The data were subjected to analysis of variance 

using COSTAT software. LSD was calculated to see the 

differences among the means (Steel et al., 1997). 

Results and Discussion 

A marked reduction in fresh biomass was recorded 

when plants of both wheat genotypes were exposed to PEG-

induced drought stress. However, cultivar Chakwal-86 

exhibited relatively higher shoot and root fresh biomass 

compared to the genotype 6544-6 (Figure 1; Table 1).  

Reduction in plant biomass due to water stress has been 

widely reported (Kamara et al., 2003; Kusaka et al., 2005; 

Amin et al. 2009). In the present investigation, ascorbic 

acid applied via different methods improved growth of the 

treated plants compared to non-treated ones which indicated 

that AsA helped plants to mitigate adverse effects of 

drought stress. The results of the present study on the role 

of ascorbic acid in circumventing the adverse effects of 

drought on plant fresh biomass are in line with some earlier 

reports. For example, Shalata and Neuman (2001) reported 

the ameliorative effect of ascorbic acid on fresh biomass of 

tomato seedlings when exposed to PEG or NaCl-induced 

osmotic stress. They found 0.5 mM as the most effective 

concentration of ascorbic acid in the rooting medium. The 

present study also revealed that 0.5 mM AsA concentration 

was the most effective in rooting medium. Of different 

modes of AsA application in the present study, rooting 

medium application was more effective compared to that of 

other modes.  Athar et al. (2009) also applied ascorbic acid 

through different modes to counteract the adverse effects of 

salinity on the growth of wheat plants and found that 

rooting medium was the most effective mode of ascorbic 

acid application. 

The chloroplast pigments, chlorophylls “a” and “b” 

play an important role in photochemical reactions (Taiz and 

Zieger, 2006). The present study showed that drought stress 

significantly reduced the leaf chlorophyll “a” and “b” 

content of drought sensitive as well as drought tolerant 

genotype. This is in line with what has been earlier reported 

in sunflower (Zhang and Kirkham, 1996; Manivannan et 

al., 2007), rice (Pattanagul, 2011), barley (Havaux, 1998), 

maize Dolatabadian et al. 2009a), okra (Amin et al. 2009) 

and wheat (Moaveni, 2011). The decrease of chlorophyll 

content under water limited conditions is reported to take 

place because of its photo-oxidation and degradation under 

drought (Anjum et al., 2011). Under drought stress, 

degradation of chlrorophyll takes place due to the increased 

activity of chlorophyllase enzyme (Mihailovic et al., 1997). 

Non-stomatal decrease in photosynthesis due to drought 

stress in the present study may have been as a result of 

chlorophyll degradation (Guo and Li, 1996; Sairam et al., 

1998; Anjum et al., 2011). 
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Figure 1: Comparison of shoot fresh biomass, root fresh 

biomass, chlorophyll a (Chl a) and 

chlrorophyll b (Chl b) contents of drought 

stressed and non-stressed 6 week old plants of 

two wheat genotypes, Chakwal-86 (Ch-86) 

and 6544-6 with ascorbic acid application 

through different modes (mean + S.E.) 

The cultivar Chakwal-86 maintained higher chlorophyll “a” 

and “b” content compared to that of genotype 6544-6 under 

drought stress. Earlier studies have also reported that the 

chlorophyll content of drought resistant genotypes of 

barley, wheat and maize were higher compared to the 

sensitive genotypes in drought stress conditions (Pastori 

and Trippi, 1992; Rong-Hua et al., 2006). The present study 

revealed that exogenous application of ascorbic acid via 

rooting medium helped plants maintaining the chlorophyll 

pigments and hence mitigated the adverse effects of drought 

stress. These findings are in line with some earlier reports 

on Cassia (Singh et al., 2001), okra (Amin et al., 2009), 

wheat (Azzedine et al., 2011), and maize (Dolatabadian et 

al., 2009a). Reactive oxygen species produced under stress 

conditions have been reported to cause pigment degradation 

(Sairam and Saxena, 2000; Anjum et al., 2011). However, 

ascorbic acid being an antioxidant actively scavenges these 

ROS, thereby reducing the chlorophyll degradation under 

stress (Ashraf, 2009). 

 
Figure 2: Comparison of net photosynthetic rate (Pn), 

transpiration rate (E), stomatal conductance 

(gs), sub-stomatal CO2 concentration (Ci) of 

drought stressed and non-stressed 6 week old 

plants of two wheat genotypes, Chakwal-86 

(Ch-86) and 6544-6 with ascorbic acid 

application in different modes (mean + S.E.) 
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Drought stress is also known to cause a significant 

reduction in the gas excahge attributes; net photosynthesis, 

transpiration rate and stomatal conductance of plants (El-

hafid et al., 1998; Shah and Paulsen, 2003; Flexas et al., 

2004; Ali and Ashraf, 2011). In the present investigation, 

drought stress caused a marked reduction in net 

photosynthesis, transpiration rate and stomatal conductance 

in both wheat genotypes. However, the drought tolerant cv. 

Chakwal-86 was superior to the drought sensitive genotype 

6544-6 with respect to these gas exchange attributes (Figure 

2; Table 2). Drought-induced reduction in photosynthesis 

and transpiration rate has been reported earlier in a number 

of crops including wheat (El Hafid et al., 1998), maize (Ali 

and Ashraf, 2011), and sorghum (Kreig and Hutmacher, 

1983). In the present study, exogenous application of 

ascorbic acid mitigated the adverse effects of drought on 

photosynthesis in both wheat genotypes by increasing 

stomatal conductance. This could have also been due to the 

fact that ascorbic acid as an antioxidant has the ability to 

mitigate the negative effects of stress on plants by 

neutralizing harmful oxidants which have been reported to 

damage plant membranes such as the thylakoid membranes 

of chloroplasts (Miguel et al, 2006; Dolatabadian et al., 

2009b). In the present investigation, ascorbic acid applied 

through the rooting medium was found to be more effective 

compared to the other modes of application in alleviating 

the adverse effects of drought on different gas exchange 

attributes of both wheat cultivars. 

In the present study, ascorbic acid increased 

transpiration rate of wheat under drought stress compared to 

non-treated plants. Similar results were reported in okra 

plants under drought using ascorbic acid as a foliar spray 

(Amin et al., 2009). It has been reported that maintenance 

of water status is regulated by stomatal conductance and 

rate of transpiration (Ashraf, 2009). In the present study, 

there was a significant decline in stomatal conductance of 

drought tolerant as well as drought sensitive genotype under 

drought. Application of ascorbic acid improved the stomatal 

conductance of plants compared to non-treated plants. 

Table 1: Mean squares from analysis of variance of data for shoot fresh weight, root fresh weight, chlorophyll a 

(Chl a) and chlrorophyll b (Chl b) contents of drought stressed and non-stressed 6 week old plants of two 

wheat genotypes (Chakwal-86 and 6544-6) with ascorbic acid application in different modes 

Source df Shoot fresh wt Root fresh wt Chl a Chl b 

Main effects      

Genotype 1 3.44*** 0.55*** 0.62*** 0.12* 

Drought 1 7.83*** 0.97*** 0.82*** 0.007ns 

AsA 3 0.06ns 0.06ns 0.04*** 0.01ns 

Interaction      

Genotype  x drought 1 0.20* 0.03ns 0.17*** 0.04ns 

Genotype  x AsA  1 0.25*** 0.04ns 0.04*** 0.02ns 

Drought x AsA  3 0.73*** 0.26*** 0.07*** 0.09** 

Genotype  x drought x AsA 3 0.17** 0.03ns 0.02** 0.00655ns 

Table 2: Mean squares from analysis of variance of data for net photosynthetic rate (Pn), transpiration rate (E), 

stomatal conductance (gs), sub-stomatal CO2 concentration (Ci) of drought stressed and non-stressed 6 

week old plants of two wheat genotypes (Chakwal-86 and 6544-6) with ascorbic acid application in 

different modes 

Source df Pn E gs Ci 

Main effects      

Genotype 1 14.73* 0.47* 0.0007ns   43.12ns 

Drought 1 23.98*** 2.46*** 0.067*** 134.29** 

AsA 3   4.72*** 0.50** 0.0004ns 282.11*** 

Interaction      

Genotype x drought 1 0.12ns 0.34ns 0.0003ns 47.16ns 

Genotype x AsA 1 0.36ns 0.18ns 0.0008ns   78.47ns 

Drought x AsA 3 1.98* 0.26ns 0.0001ns 243.36*** 

Genotype x drought x AsA 3 0.01ns 0.17ns 0.0009ns 139.26** 

*, **, *** = significant at 0.05, 0.01 and 0.001 levels, respectively, ns = non-significant 
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Although the ascorbic acid application was effective 

through all three modes, the effect of ascorbic acid through 

the rooting medium was relatively higher. This may be 

expected as in rooting medium, a continuous supply of 

ascorbic acid is available to the plant compared to the other 

two modes. 

Conclusion 

Overall, ascorbic acid application through rooting 

medium was comparatively more effective in overcoming 

the adverse effects of drought stress in wheat compared to 

that of foliar spray or seed priming treatment in terms of 

photosynthetic rate and plant growth. Ascorbic acid treated 

plants showed higher net photosynthetic rate, transpiration 

and stomatal conductance compared to non-treated ones. 

Moreover, relatively less stress-induced degradation of 

chlorophyll pigments took place in plants supplied with 

ascorbic acid. Thus, it may be concluded that exogenously 

applied ascorbic acid is effective in ameliorating the 

adverse effects of drought stress.  
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