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Abstract. The logic TK was introduced as a propositional logic extending the classical
propositional calculus with a new unary operator which interprets some conceptions of
Tarski’s consequence operator. TK-algebras were introduced as models to TK. Thus, by
using algebraic tools, the adequacy (soundness and completeness) of TK relatively to the
TK-algebras was proved. This work presents a neighbourhood semantics for TK, which turns
out to be deductively equivalent to the non-normal modal logic EMT4.
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Introduction

Considering algebraic aspects of the notion of Tarski’s consequence operator, Nasci-
mento and Feitosa (2005) defined an algebra that rescues these conceptions in an
algebraic context, the TK-algebra. So Feitosa, Grácio and Nascimento (2007) in-
troduced a propositional logic which has as models exactly these TK-algebras. This
logical system was presented in the Hilbert-style, with axioms and rules of inference,
and the adequacy between the axiomatic system and the TK-models was proved. As
the new operator was introduced to interpret the characteristics of the Tarski’s oper-
ator, this propositional logic turns out to be a modal logic. In this paper, we present
a neighbourhood semantics for this new logical system.

1. Tarski’s consequence operator

In what follows, we consider the concept of a consequence operator in a way a little
more general than was introduced by Tarski, in 1935.

Definition 1.1. A consequence operator on S is a function C : P (S) → P (S) such
that, for every A, B ⊆ S:

(C1) A⊆ C(A);
(C2) A⊆ B⇒ C(A)⊆ C(B);
(C3) C(C(A))⊆ C(A).
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Of course, in view of (C1) and (C3), for every A⊆ S, the equality C(C(A)) = C(A)
holds.

Definition 1.2. A consequence operator C on S is finitary when, for every A⊆ S:

C(A) = ∪{C(A0) : A0 is a finite subset of A}.

Definition 1.3. A Tarski space (a deductive system or a closure space) is a pair (S, C)
such that S is a set and C is a consequence operator on S.

Definition 1.4. Let C be a consequence operator on S. The set A is closed in (S, C)
if C(A) = A; and A is open in (S, C) if its complement relative to S, denoted by A′, is
closed.

2. TK-algebras

The definition of a TK-algebra puts in the context of algebraic structures the notions
of consequence operator.

Definition 2.1. A TK-algebra is a sextuple A = (A, 0, 1,∨,∼,•) such that (A, 0, 1,
∨,∼) is a Boolean algebra and • is a new operator, the Tarski operator, such that:

(i) a ∨ • a = • a;
(ii) • a ∨ •(a ∨ b) = •(a ∨ b);

(iii) •(• a) = • a.

Since we are working with a Boolean algebra, the item (i) of the above definition
asserts that, for every a ∈ A, a ≤ • a and we can define in a TK-algebra:

a� b =df ∼ a ∨ b.

Proposition 2.2. In any TK-algebra the following conditions are valid:

(i) ∼• a ≤∼ a ≤ •∼ a;

(ii) a ≤ b⇒ • a ≤ • b.

(iii) •(a ∧ b)≤ • a ∧ • b;

(iv) • a ∨ • b ≤ •(a ∨ b).

(v) •(• a ∧ • b) = • a ∧ • b.

Naturally we can define a dual operation of • in any TK-algebra:

◦ a =df ∼•∼ a.
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Proposition 2.3. In any TK-algebra, the following conditions hold:

(i) ◦ a ≤ a;

(ii) ◦(a ∧ b)≤ ◦ a;

(iii) ◦ a ≤ ◦◦ a;

(iv) a ≤ b⇒ ◦ a ≤ ◦ b.

An element a ∈A is closed when • a = a and a ∈A is open when ◦ a = a.

Proposition 2.4.

(i) If a is open, then a ≤ b⇔ a ≤ ◦ b;

(ii) If b is closed, then a ≤ b⇔• a ≤ b.

3. TK Logic

The propositional logic TK is the logical system associated to the TK-algebras. TK is
determined over a propositional language L(¬, ∨, →,�, p1, p2, p3, . . .) as follows:

Axiom Schemas:

(CPC) ϕ, if ϕ is a tautology;

(TK1) ϕ → �ϕ;

(TK2) ��ϕ → �ϕ.

Inference Rules:

(MP) ϕ →ψ, ϕ / ψ;

(RM�) ϕ →ψ / �ϕ → �ψ.

As usual, we write `S ϕ to indicate that ϕ is a theorem of some axiomatic system
S, and we drop the subscript if there is no danger of confusion.

Definition 3.1. Let Γ∪{ϕ} a set of formulas of some system S. We say that Γ deduces
ϕ, what is denoted by Γ `S ϕ, if there is a finite subset ψ1, . . . ,ψn of Γ such that
` (ψ1 ∧ . . . ∧ψn)→ ϕ.

Notice that with the notion of syntactic consequence here presented the Deduc-
tion Theorem holds; the inference rules are understood as rules of proof.

Proposition 3.2. ` �ϕ → �(ϕ ∨ψ).
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Proposition 3.3. ϕ ` �ϕ.

As in the case of a TK-algebra, we can define the dual operator of � in the
following way:

�ϕ =df ¬�¬ϕ.

Proposition 3.4. ϕ →ψ `�ϕ →�ψ.

Corollary 3.5. ϕ ↔ψ `�ϕ ↔�ψ.

Proposition 3.6. `�ϕ → ϕ.

Proposition 3.7. `�ϕ →��ϕ.

Proposition 3.8. `�(ϕ ∧ψ)→�ϕ.

Corollary 3.9. `�(ϕ ∧ψ)→ (�ϕ ∧�ψ).

We could, alternatively, consider the operator � as primitive and substitute the
axioms TK1 and TK2 by the following ones:

(TK∗1) �ϕ → ϕ,
(TK∗2) �ϕ →��ϕ,

and the rule RM� by the rule RM�:

(RM�) ϕ →ψ /�ϕ →�ψ.

Feitosa, Grácio and Nascimento (2007) showed the adequacy of TK relative to
TK-algebras.

4. A neighbourhood semantics for TK

In this section we introduce a new semantic for TK and prove, in later section, its
adequacy.

We can show that TK is deductively equivalent to the classical modal system
EMT4 when considering the operators � and � to be identical to the necessity and
possibility operators � and ◊. Taking � as primitive, ◊ can be defined in the usual
way:

(Df◊) ◊ϕ =df ¬�¬ϕ.

EMT4 can be axiomatized by adding to the classical propositional calculus the
following axiom schemes and rule of inference:

(M) �(ϕ ∧ψ)→ (�ϕ ∧�ψ);
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(T) �ϕ → ϕ;
(4) �ϕ →��ϕ;

(RE) ϕ ↔ψ /�ϕ ↔�ψ.

Proposition 4.1. Every theorem of EMT4 is a theorem of TK.

Proof. It follows directly from the definition of �, TK∗1, TK∗2, and Corollaries 3.5
and 3.9.

Proposition 4.2. Every theorem of TK is a theorem of EMT4.

Proof. We only need to show that EMT4 provides RM�.

1. ϕ →ψ hypothesis
2. ϕ → (ϕ ∧ψ) CPC in 1
3. (ϕ ∧ψ)→ ϕ CPC
4. ϕ ↔ (ϕ ∧ψ) CPC in 2 and 3
5. �ϕ ↔�(ϕ ∧ψ) RE in 4
6. �(ϕ ∧ψ)→ (�ϕ ∧�ψ) M
7. �ϕ → (�ϕ ∧�ψ) CPC in 5 and 6
8. (�ϕ ∧�ψ)→�ψ CPC
9. �ϕ →�ψ CPC in 7 and 8.

Definition 4.3. A frame for TK is a structure F = 〈U , S〉 such that U is a nonempty
set of possible worlds and S is a function that associates to each x ∈ U a set of
subsets of U (that is, S(x)⊆P (U)) that satisfies the following conditions:

(m) X ∩ Y ∈ S(x)⇒ X ∈ S(x) and Y ∈ S(x);

(t) X ∈ S(x)⇒ x ∈ X ;

(4) X ∈ S(x)⇒ {y ∈ U : X ∈ S(y)} ∈ S(x).

Definition 4.4. A valuation V on U is a function from the set of atomic formulas to
P (U).

Definition 4.5. Let F = 〈U , S〉 be a frame and V a valuation in U . A model for TK is
a pair M= 〈F, V 〉 or, equivalently, a triple M= 〈U , S, V 〉.

Definition 4.6. Let M = 〈U , S, V 〉 be a model and x an element of U . A formula ϕ
is true in the world x , what is denoted by (M, x) � ϕ, when:

(M, x) � pi ⇔ x ∈ V (pi), if pi is a propositional variable;

(M, x) � ¬ϕ⇔ (M, x) 6� ϕ;
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(M, x) � ϕ →ψ⇔ (M, x) 6� ϕ or (M, x) �ψ;

(M, x) � �ϕ⇔‖ϕ‖M ∈ S(x), with ‖ϕ‖M = {x ∈ U : (M, x) � ϕ}.

Definition 4.7. The set ‖ϕ‖M from the above definition is called the truth set of ϕ
in M.

When there is no risk of confusion, we will drop the superscript and write simply
‖ϕ‖.

Definition 4.8. A formula ϕ is valid in a model M= 〈U , S, V 〉 when it is true in every
x ∈ U , and it is valid if it is true in any model M. We denote that a formula ϕ is
valid in a model M by M � ϕ, and that ϕ is valid by � ϕ.

If Γ is a set of formulas and M = 〈U , S, V 〉 a model, then we write M � Γ if and
only if M � ϕ, for each ϕ ∈ Γ. For every x ∈ U , we say that (M, x) � Γ if and only
if (M, x) � ϕ, for each ϕ ∈ Γ.

Definition 4.9. Let Γ ∪ {ϕ} be a set of formulas. We say that Γ implies ϕ, or that
ϕ is a local semantic consequence of Γ, what is denoted by Γ � ϕ, when, for every
model M= 〈U , S, V 〉 and every x ∈ U , we have: if (M, x) � Γ then (M, x) � ϕ.

5. Soundness

Since we have shown that TK and EMT4 are the same logic, we will work, in what
follows, with the EMT4 axiomatization.

Lemma 5.1. Let M= 〈U , S, V 〉 be a TK-model, and ϕ and ψ any formulas. Then:

(i) ‖¬ϕ‖=−‖ϕ‖;

(ii) ‖ϕ ∧ψ‖= ‖ϕ‖ ∩ ‖ψ‖;

(iii) ‖ϕ ∨ψ‖= ‖ϕ‖ ∪ ‖ψ‖;

(iv) ‖ϕ →ψ‖=−‖ϕ‖ ∪ ‖ψ‖;

(v) ‖ϕ ↔ψ‖= (−‖ϕ‖ ∪ ‖ψ‖)∩ (−‖ψ‖ ∪ ‖ϕ‖);

(vi) ‖�ϕ‖= {x ∈ U : ‖ϕ‖ ∈ S(x)}.

Proof. Items (i) to (v) are straightforward; we only show (vi). Now, for every x ∈ U ,
x ∈ {x ∈ U : ‖ϕ‖ ∈ S(x)} iff ‖ϕ‖ ∈ S(x) iff x � �ϕ iff x ∈ ‖�ϕ‖. It follows that
{x ∈ U : ‖ϕ‖ ∈ S(x)}= ‖�ϕ‖.

Theorem 5.2. If ` ϕ, then � ϕ.
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Proof. By induction on theorems. Let M= 〈U , S, V 〉 be a TK-model.

(A) Let ϕ be an axiom. If it is a tautology, the proof is straightforward owing to the
fact that every tautology is true in every state of a model, and thus in the model. So
suppose ϕ is one of the modal axioms.

For M: Let x be an element of U such that x � �(ϕ ∧ ψ). It follows that ‖ϕ ∧ ψ‖ ∈
S(x) and, since ‖ϕ ∧ ψ‖ = ‖ϕ‖ ∩ ‖ψ‖ by the preceding lemma, then ‖ϕ‖ ∩ ‖ψ‖ ∈
S(x). Given that (m) holds in M, it follows that S(x) contains ‖ϕ‖ and ‖ψ‖. But
then x � �ϕ and x � �ψ, from what it follows that M holds.

For T: Let x be an element of U such that x � �ϕ. By definition, S(x) contains ‖ϕ‖
and thus, because (t) holds, x ∈ ‖ϕ‖. But if x belongs to the truth set of ϕ, we have
that x � ϕ, and it follows that T is valid.

For 4: Let x be an element of U such that x � �ϕ. By definition, S(x) contains
‖ϕ‖ and thus, because (4) holds, {y ∈ U : ‖ϕ‖ ∈ S(y)} ∈ S(x). By Lemma 5.1 (vi),
{y ∈ U : ‖ϕ‖ ∈ S(y)}= ‖�ϕ‖. Thus, ‖�ϕ‖ ∈ S(x), so x � ��ϕ, and it follows that
4 is valid.

(B) If ϕ was obtained by MP, the proof is immediate, since modus ponens is validity-
preserving. So let us consider RE, and suppose ` ϕ ↔ ψ. Then (inductive hypothe-
sis) ϕ ↔ ψ is valid. So ϕ and ψ are equivalent, hence ‖ϕ‖ = ‖ψ‖. It follows that,
for every x ∈ U , ‖ϕ‖ ∈ S(x) iff ‖ψ‖ ∈ S(x). Thus x � �ϕ iff x � �ψ, from what it
follows that x � �ϕ ↔�ψ. Hence RE preserves validity.

Corollary 5.3. If Γ ` ϕ, then Γ � ϕ.

Proof. Suppose Γ ` ϕ, and let M be some model, and x a world in M, such that
(M, x) � Γ. Since Γ ` ϕ, by definition there is a finite subset ψ1, . . . ,ψn of Γ such
that ` (ψ1 ∧ . . . ∧ ψn)→ ϕ. By the preceding theorem, (ψ1 ∧ . . . ∧ ψn)→ ϕ is valid
and so true at x . Since (M, x) � Γ, and every ψi ∈ Γ, it follows that (M, x) � ϕ and,
thus, that Γ � ϕ.

6. Completeness

Definition 6.1. A set of formulas ∆ is maximal consistent if ∆ is consistent, and no
proper extension of it is consistent.

Theorem 6.2 (Lindenbaum). Every consistent set of formulas Γ can be extended to a
maximally consistent set ∆.

Proof. The proof is standard; see, for instance, Fitting and Mendelsohn 1998, p. 76.
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Completeness will be proved using canonical models. Let S be the set of all
TK-maximal consistent sets of formulas (TK-MCS).

Definition 6.3. The proof set of ϕ is the set |ϕ|= {Γ ∈S : ϕ ∈ Γ}.

Lemma 6.4. Let ϕ and ψ any formulas. Then:

(i) |¬ϕ|=−|ϕ|;

(ii) |ϕ ∧ψ|= |ϕ| ∩ |ψ|;

(iii) |ϕ ∨ψ|= |ϕ| ∪ |ψ|;

(iv) |ϕ →ψ|=−|ϕ| ∪ |ψ|;

(v) |ϕ ↔ψ|= (−|ϕ| ∪ |ψ|)∩ (−|ψ| ∪ |ϕ|);

(vi) |ϕ| ⊆ |ψ|⇔ ` ϕ →ψ;

(vii) |ϕ|= |ψ|⇔ ` ϕ ↔ψ.

Definition 6.5. M= 〈U , S, V 〉 is a canonical model for TK if it satisfies the following
conditions:

(i) U =S;

(ii) |ϕ| ∈ S(Γ)⇔�ϕ ∈ Γ, for all Γ ∈ U;

(iii) V (pi) = |pi|, for every propositional variable pi .

Lemma 6.6. Let M be a canonical model. Then, for every formula ϕ and every Γ ∈ U:
(M,Γ) � ϕ⇔ ϕ ∈ Γ.

Proof. The proof proceeds by induction on formulas. Let Γ be some element of U:

(a) ϕ = pi , for some i ∈ N. By definition, (M,Γ) � pi iff Γ ∈ V (pi) iff Γ ∈ |pi|. By
construction of |pi|, Γ is a set in |pi| iff pi ∈ Γ.

(b) ϕ = ¬ψ. (M,Γ) � ϕ iff (M,Γ) 6�ψ iff (by induction hypothesis) ψ /∈ Γ iff ϕ ∈ Γ.

(c) ϕ = ψ → σ. By definition, Γ � ψ → σ iff (M,Γ) 6� ψ or (M, x) � σ. By the
inductive hypothesis, (M,Γ) 6�ψ iff ψ /∈ Γ, and (M, x) � σ iff σ ∈ Γ. Now ψ /∈ Γ or
σ ∈ Γ iff ψ→ σ ∈ Γ. Thus (M,Γ) �ψ→ σ iff ψ→ σ ∈ Γ.

(d)ϕ =�ψ. By definition, (M,Γ) � �ψ iff ‖ψ‖ ∈ S(Γ). By the inductive hypothesis,
for every ∆ ∈ U we have that (M,∆) � ψ iff ψ ∈ ∆, that is, ‖ψ‖ = |ψ|. So
‖ψ‖ ∈ S(Γ) iff |ψ| ∈ S(Γ). Now, by definition of S, |ψ| ∈ S(Γ) iff �ψ ∈ Γ. Hence,
(M,Γ) � �ψ iff �ψ ∈ Γ.
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It is well known with regard to monotonic logics that the smallest canonical
model — that is, the model where, for every Γ, S(Γ) contains only proof sets — does
not satisfy condition (m). Fortunately we can show that there are other canonical
models in which this condition holds.

Definition 6.7. The supplementation of M is the model M+ = 〈U , S+, V 〉 such that
for every Γ ∈ U and every X ⊆ U:

X ∈ S+(Γ)⇔ Y ⊆ X for some Y ∈ S(Γ).

It follows from this definition that S+(Γ) = {X ⊆ U : |ϕ| ⊆ X for some �ϕ ∈ Γ}
and, obviously, for every Γ ∈ U , S(Γ)⊆ S+(Γ).

We need to prove that M+ is a canonical model for TK.

Lemma 6.8. M+ = 〈U , S+, V 〉 is a canonical model for TK.

Proof. It is enough to show that condition (ii) of the definition is satisfied, that is,
for every ϕ and every Γ ∈ U:

|ϕ| ∈ S+(Γ)⇔�ϕ ∈ Γ.

(⇐) If �ϕ ∈ Γ, then |ϕ| ∈ S(Γ) and since M is a canonical for TK so |ϕ| ∈ S+(Γ).
(⇒) Let |ϕ| ∈ S+(Γ). Thus, for some Y ⊆ |ϕ|, Y ∈ S(Γ). Since M is the smallest

canonical model, this means that Y = |ψ|, for some ψ. It follows that |ψ| ⊆ |ϕ|, and
�ψ ∈ Γ. By Lemma 6.4 we have that ` ψ → ϕ, and from RM that ` �ψ → �ϕ.
Hence, �ϕ ∈ Γ.

So M+ is a canonical model for TK.

Lemma 6.9. Let M be the smallest canonical model for TK, and M+ its supplementa-
tion. Then the conditions (m), (t) and (4) hold in M+.

Proof. (a) For (m): We have from the previous lemma that M+ is a canonical model
for TK. Let Γ be an element of U , and X and Y be subsets of U such that X ∩ Y ∈
S+(Γ). By construction, there must be some Z such that Z ⊆ X ∩ Y and Z ∈ S(Γ). It
follows that Z ⊆ X and Z ⊆ Y and, again by construction, X ∈ S+(Γ) and Y ∈ S+(Γ).

(b) For (t): Let Γ be an element of U , and X a subset of U such that X ∈ S+(Γ).
Suppose that X is a proof set, that is, X = |ϕ|, for some ϕ. By definition, we have
that �ϕ ∈ Γ. Since Γ is an MCS, and TK has T, it follows that ϕ ∈ Γ. But then
Γ ∈ |ϕ|, and (t) holds. Suppose now that X is not a proof set. By construction, for
some ϕ, |ϕ| ∈ S(Γ), |ϕ| ⊆ X . But if |ϕ| ∈ S(Γ), �ϕ ∈ Γ, Γ ` ϕ, Γ ∈ |ϕ|, Γ ∈ X , and
again (t) holds.

(c) For (4): Let Γ be an element of U , and X a subset of U such that X ∈ S+(Γ).
We have to show that {∆ ∈ U : X ∈ S+(∆)} ∈ S+(Γ).
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Suppose first that X is a proof set, that is, X = |ϕ|, for some ϕ. By definition,
we have that �ϕ ∈ Γ. Since Γ is an MCS, and TK has 4, it follows that Γ ` ��ϕ
and that ��ϕ ∈ Γ. By canonicity of the model, |�ϕ| ∈ S(Γ) and, by construction of
M+, |�ϕ| ∈ S+(Γ). We must now show that |�ϕ| = {∆ ∈ U : �ϕ ∈ S+(∆)}. Now,
|�ϕ| = {∆ ∈ U : �ϕ ∈ ∆}. Since the model is canonical, �ϕ ∈ ∆ iff |ϕ| ∈ S(∆) iff
(by construction) |ϕ| ∈ S+(∆). So |�ϕ| = {∆ ∈ U : |ϕ| ∈ S+(∆)}. It follows that
{∆ ∈ U : |ϕ| ∈ S+(∆)} ∈ S+(Γ), and (4) holds.

Suppose now that X is not a proof set. By construction of M+, however, there
is some formula ϕ such that |ϕ| ⊆ X and |ϕ| ∈ S(Γ). As above, we can show that
|�ϕ| ∈ S+(Γ), and that {∆ ∈ U : |ϕ| ∈ S+(∆)} ∈ S+(Γ). Now, for every ∆ ∈ U , if
ϕ ∈ S+(∆), then X ∈ S+(∆). So {∆ ∈ U : |ϕ| ∈ S+(∆)} ⊆ {∆ ∈ U : X ∈ S+(∆)}.
But {∆ ∈ U : |ϕ| ∈ S+(∆)} = |�ϕ|, so it is a proof set. By construction of M+,
{∆ ∈ U : X ∈ S+(∆)} ∈ S+(Γ), and (4) holds.

Theorem 6.10 (Completeness). If Γ � ϕ, then Γ ` ϕ.

Proof. Suppose that Γ 0 ϕ. Thus, Γ 0 ¬¬ϕ, and it follows that Γ∪{¬ϕ} is consistent.
By Lindenbaum’s Theorem, there exists an TK-MCS ∆ such that Γ∪ {¬ϕ} ⊆∆, that
is, ¬ϕ ∈∆, and ϕ /∈∆. Let now M be the smallest canonical model for TK, and M+

its supplementation. By the preceding lemma, conditions (m), (t) and (4) hold in
M+, so it is a model for TK. Now ∆ is a TK-MCS and Γ ⊆ ∆, so ∆ is a state in M+

such that, by Lemma 6.6, (M+,∆) � Γ and (M+,∆) 2 ϕ; hence Γ 2 ϕ.

7. Decidability

We show the decidability of TK using filtrations.

Definition 7.1. Let Γ be a set of formulas closed under subformulas, and M a model.
For any states x and y in M, we say that

x ≡Γ y iff for every ϕ ∈ Γ, (M, x) � ϕ iff (M, y) � ϕ.

In other words, if x ≡Γ y then x and y are equivalent with regard to the formulas
in Γ. We can easily show that ≡Γ is indeed an equivalence relation, partitioning the
set U of states into disjoint equivalence classes.

Definition 7.2. Let Γ be a set of formulas closed under subformulas and M =
〈U , S, V 〉 a model. Then:

(i) if x ∈ U , [x]Γ = {y ∈ U : x ≡Γ y};

(ii) if X ⊆ U , [X ]Γ = {[x] : x ∈ X }.
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Again, we will usually drop the subscript and write ≡, [x], and [X ].

Definition 7.3. Let M = 〈U , S, V 〉 be some model, and Γ a set of formulas closed
under subformulas. A filtration of M through Γ is any model M∗ = 〈U∗, S∗, V ∗〉 such
that:

(a) W ∗ = [W];

(b) for every x ∈ U , and every formula �ϕ ∈ Γ,

(i) ‖ϕ‖M ∈ S(x)⇔ [‖ϕ‖M] ∈ S∗([x]);

(ii) ‖�ϕ‖M ∈ S(x)⇔ [‖�ϕ‖M] ∈ S∗([x]);

(c) V ∗(pi) = [V (pi)], for every i ∈ N such that pi ∈ Γ.

Notice that the above definition leaves room for different filtrations of a model.

Definition 7.4. A filtration is the finest filtration if, for every x ∈ U , S∗([x]) con-
tains only the sets [‖ϕ‖M] and [‖�ϕ‖M] such that, respectively, ‖ϕ‖M ∈ S(x) and
‖�ϕ‖M ∈ S(x), for every �ϕ ∈ Γ.

This is what is needed for a model to be a filtration. Coarser filtrations will allow
S∗([x]) to contain other sets besides the minimum required.

Theorem 7.5. Let M∗ = 〈U∗, S∗, V ∗〉 be a Γ-filtration of a model M= 〈U , S, V 〉. Then,
for every ϕ ∈ Γ and every x ∈ U:

(M, x) � ϕ⇔ (M∗, [x]) � ϕ,

that is, [‖ϕ‖M] = ‖ϕ‖M
∗
.

Proof. The proof is by induction on formulas. Let x be any state in M, and p some
variable in Γ:

(M, x) � p iff x ∈ V (p) (by 4.6)
iff [x] ∈ [V (p)] (by 7.2(ii))
iff [x] ∈ V ∗(p) (by 7.3(c))
iff (M∗, [x]) � p (by 4.6).

The boolean cases are straightforward; we show only the case in which ϕ =�ψ,
for some ψ. Let again x be any state in M:

(M, x) � �ψ iff ‖ψ‖M ∈ S(x) (by 4.6)
iff [‖ψ‖M] ∈ S∗([x]) (by 7.3(b))
iff ‖ψ‖M

∗
∈ S∗([x]) (inductive hypothesis)

iff (M∗, [x]) � �ψ (by 4.6).
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Corollary 7.6. Let M∗ be a Γ-filtration of a model M. Then M and M∗ are equivalent
modulo Γ, that is, for every ϕ ∈ Γ, M � ϕ iff M∗ � ϕ.

A well-known result says that if a logic is axiomatizable and has the finite model
property—that is, every nontheorem fails in some finite model—, then it is decidable.
TK is axiomatizable, as we have shown before. All we need to show is that TK is
determined by the class of finite models satisfying conditions (m), (t) and (4).

Lemma 7.7. Let M be a model, Γ a set of formulas closed under subformulas, and M∗

a Γ-filtration of M. Then, for every ϕ ∈ Γ:

(i) ‖�ϕ‖M = {x ∈ U : ‖ϕ‖M ∈ S(x)};

(ii) [‖�ϕ‖M] = {[x] ∈ U∗ : [‖ϕ‖M] ∈ S∗([x])}.

Proof.

(i) x ∈ ‖�ϕ‖M iff x � �ϕ; [Def. truth-set]
iff ‖ϕ‖M ∈ S(x); [Def. 4.6]
iff x ∈ {x ∈ U : ‖ϕ‖M ∈ S(x)}.

(ii) [x] ∈ [‖�ϕ‖M] iff [x] ∈ ‖�ϕ‖M
∗
;

iff [x] � �ϕ;
iff ‖ϕ‖M

∗
∈ S∗([x]);

iff [‖ϕ‖M] ∈ S∗([x]);
iff [x] ∈ {[x] ∈ U∗ : [‖ϕ‖M] ∈ S∗([x])}.

Theorem 7.8. Let M be a model satifying conditions (m), (t) and (4), and, for some
set of formulas Γ closed under subformulas, let M∗ be the finest Γ-filtration of M. Then
its supplementation, M∗+, is a Γ-filtration of M and satisfies (m), (t) and (4).

Proof. We first show that M∗+ is a Γ-filtration of M. That is, we must show that, for
every x ∈ U and every �ϕ ∈ Γ,

(i) ‖ϕ‖M ∈ S(x)⇔ [‖ϕ‖M] ∈ S∗+([x]), and

(ii) ‖�ϕ‖M ∈ S(x)⇔ [‖�ϕ‖M] ∈ S∗+([x]).

(i). Suppose first that ‖ϕ‖M ∈ S(x). Then [‖ϕ‖M] ∈ S∗([x]), since M∗ is a Γ-
filtration of M. Thus [‖ϕ‖M] ∈ S∗+([x]) by supplementation.

Suppose now that [‖ϕ‖M] ∈ S∗+([x]). By the definition of a supplementation,
there must be someψ (eventuallyψ= ϕ) such that �ψ ∈ Γ, [‖ψ‖M] ∈ S∗([x]) and
[‖ψ‖M] ⊆ [‖ϕ‖M]. It follows that ‖ψ‖M ∈ S(x), since M∗ is the finest Γ-filtration
of M. Now M satisfies condition (m), which means that every superset of ‖ψ‖M

belongs to S(x). We just need to show that ‖ψ‖M ⊆ ‖ϕ‖M.
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Now, [‖ψ‖M] ⊆ [‖ϕ‖M] means that {[x] : x ∈ ‖ψ‖M} ⊆ {[x] : x ∈ ‖ϕ‖M}. Let
y ∈ ‖ψ‖M. Hence [y] ∈ {[x] : x ∈ ‖ψ‖M}, and [y] ∈ {[x] : x ∈ ‖ϕ‖M}. It follows
that y ∈ ‖ϕ‖M. So ‖ψ‖M ⊆ ‖ϕ‖M, and from this we have that ‖ϕ‖M ∈ S(x).

(ii). If ‖�ϕ‖M ∈ S(x), then [‖�ϕ‖M] ∈ S∗([x]) because M∗ is a Γ-filtration of M,
and, by the definition of a supplementation, [‖�ϕ‖M] ∈ S∗+([x]).

Suppose now that [‖�ϕ‖M] ∈ S∗+([x]). By the definition of a supplementation,
there must be some ψ such that �ψ ∈ Γ and

(a) [‖ψ‖M] ∈ S∗([x]) and [‖ψ‖M]⊆ [‖�ϕ‖M], or

(b) [‖�ψ‖M] ∈ S∗([x]) and [‖�ψ‖M]⊆ [‖�ϕ‖M].

(a). Since M∗ is a Γ-filtration of M, we have ‖ψ‖M ∈ S([x]). Suppose now y ∈
‖ψ‖M. Hence [y] ∈ {[x] : x ∈ ‖ψ‖M}, and [y] ∈ {[x] : x ∈ ‖�ϕ‖M} by the
second part of (a) above. But then y ∈ ‖�ϕ‖M. Thus ‖ψ‖M ⊆ ‖�ϕ‖M. Since M is
supplemented, ‖�ϕ‖M ∈ S([x]).
(b). Since M∗ is a Γ-filtration of M, we have ‖�ψ‖M ∈ S([x]). Suppose now
y ∈ ‖�ψ‖M. Hence [y] ∈ {[x] : x ∈ ‖�ψ‖M}, and [y] ∈ {[x] : x ∈ ‖�ϕ‖M} by the
second part of (b) above. But then y ∈ ‖�ϕ‖M. Thus ‖�ψ‖M ⊆ ‖�ϕ‖M. Since M

is supplemented, ‖�ϕ‖M ∈ S([x]).

Thus, M∗+ is a Γ-filtration of M. Does it satisfy conditions (m), (t) and (4)?
Since M∗+ is a supplementation, it automatically satisfies (m).

Let us consider (t). We need to show, for any [x] ∈ U∗ and any subset X of U∗,
that [x] ∈ X , if X ∈ S∗+([x]). Suppose first that X ∈ S∗([x]). Since M∗ is the finest
filtration, X = [‖ϕ‖M], for some formula ϕ such that �ϕ ∈ Γ and ‖ϕ‖M ∈ S(x).
Now condition (t) holds in M, so x ∈ ‖ϕ‖M, and [x] ∈ [‖ϕ‖M] = X .

If now X /∈ S∗([x]) then, by the definition of a supplementation, X is a superset
of some [‖ϕ‖M] such that �ϕ ∈ Γ and ‖ϕ‖M ∈ S(x). As above, it follows that
[x] ∈ [‖ϕ‖M], and, thus, that [x] ∈ X . Thus (t) holds in M∗+.

With regard to condition (4), we show first that M∗ has (4). Let [x] be an
element of U∗, and X a subset of U∗ such that X ∈ S∗([x]). We have to show that

{[y] ∈ U∗ : X ∈ S∗([y])} ∈ S∗([x]).

Since M∗ is the finest filtration, there must be some formula �ϕ ∈ Γ such that

(i) X = [‖ϕ‖M] and ‖ϕ‖M ∈ S(x), or
(ii) X = [‖�ϕ‖M] and ‖�ϕ‖M ∈ S(x).

Suppose it is (i). Since [‖�ϕ‖M] = {[y] ∈ U∗ : [‖ϕ‖M] ∈ S∗([y])}(Lemma 7.7),
what we have to show is that [‖�ϕ‖M] ∈ S∗([x]).
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Now condition (4) holds in M, so {y ∈ U : ‖ϕ‖M ∈ S(y)} ∈ S(x). But (Lemma
7.7) ‖�ϕ‖M = {y ∈ U : ‖ϕ‖M ∈ S(y)}; thus ‖�ϕ‖M ∈ S(x). By condition (b.ii) of
the definiton of filtration, we immediately have [‖�ϕ‖M] ∈ S∗([x]).

Now consider (ii). We now have to show that

{[y] ∈ U∗ : [‖�ϕ‖M] ∈ S∗([y])} ∈ S∗([x]).

By Lemma 7.7, [‖��ϕ‖M] = {[y] ∈ U∗ : [‖�ϕ‖M] ∈ S∗([y])}. So what we have to
show is that [‖��ϕ‖M] ∈ S∗([x]).

Since condition (4) holds in M, {y ∈ U : ‖�ϕ‖M ∈ S(y)} ∈ S(x). By Lemma 7.7,
‖��ϕ‖M = {y ∈ U : ‖�ϕ‖M ∈ S(y)}; thus ‖��ϕ‖M ∈ S(x).

Now ` �ϕ ↔ ��ϕ (it follows from T and 4), so � �ϕ ↔ ��ϕ. But then, for
every x ∈ U , x � �ϕ iff x � ��ϕ. Thus ‖�ϕ‖M = ‖��ϕ‖M.

From this it follows that ‖�ϕ‖M ∈ S(x), and also that [‖�ϕ‖M] = [‖��ϕ‖M].
By conditon b.ii of the definition of filtration, we immediately have [‖�ϕ‖M] ∈
S∗([x]), and [‖��ϕ‖M] ∈ S∗([x]).

It follows from (i) and (ii) above that M∗ has (4). We now show that M∗+ has
(4).

Let [x] be an element of U∗, and X a subset of U∗ such that X ∈ S∗+([x]). We
thus have to show that {[y] ∈ U∗ : X ∈ S∗+([y])} ∈ S∗+([x]).

Since M∗+ is the supplementation of M∗, there must be some formula ϕ such
that �ϕ ∈ Γ, [‖ϕ‖M] ∈ S∗(x) and [‖ϕ‖M]⊆ X (eventually [‖ϕ‖M] = X , of course).
But as we have shown above, M∗ has (4), so {[y] ∈ U∗ : [‖ϕ‖M] ∈ S∗([y])} ∈
S∗([x]). Now, for every [y] ∈ U∗, if [‖ϕ‖M] ∈ S∗([y]) then X ∈ S∗+([y]) by
supplementation. So we have:

{[y] ∈ U∗ : [‖ϕ‖M] ∈ S∗([y])} ⊆ {[y] ∈ U∗ : X ∈ S∗+([y])}.

Finally, since {[y] ∈ U∗ : [‖ϕ‖M] ∈ S∗([y])} belongs to S∗([x]), {[y] ∈ U∗ : X ∈
S∗+([y])} ∈ S∗+([x]) by supplementation and we are done.

Theorem 7.9. TK is determined by the class of finite models satisfying conditions (m),
(t) and (4).

Proof. If ϕ is a theorem of TK, then it is valid in the class of all models satisfying
conditions (m), (t) and (4); in particular, in the class of finite models satisfying these
conditions.

For the other direction, suppose ϕ is not a theorem of TK. Then ϕ fails in some
world x of some model M for TK. Let Γ be any finite set of formulas closed under
subformulas such that ϕ ∈ Γ, and let M∗+ be the supplementation of a finest Γ-
filtration M∗ of M. By Theorem 7.8, M∗+, is a Γ-filtration of M and satisfies (m),

Principia 15(2): 287–302 (2011).



A Neighbourhood Semantics for the Logic TK 301

(t) and (4). Since Γ is a finite set, M∗+ is a finite model. By Theorem 7.5, x and [x]
agree on every formula in Γ; thus (M∗+, [x]) 2 ϕ.

In view of the preceding result, every nontheorem of TK fails in some finite
model, from what it follows that TK has the finite model property. Since it is also
axiomatizable, TK is decidable.
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Resumo. A lógica TK foi introduzida como uma lógica proposicional estendendo o cálculo
proposicional clássico com um novo operador unário que interpreta algumas concepções do
operador de consequência de Tarski. TK-álgebras foram introduzidas como modelos para
TK. Assim, usando ferramentas algébricas, foi demonstrada a adequação (correção e com-
pletude) de TK relativamente às TK-álgebras. Este trabalho apresenta uma semântica de
vizinhanças para TK, lógica que resulta ser dedutivamente equivalente à lógica modal não
normal EMT4.

Palavras-chave: Operador de consequência; álgebra TK; lógica TK; semântica de vizinhan-
ças.

Notes

1 Of course, one can also define deduction locally: we say that Γ ` ϕ if there is a finite
subset ψ1, . . . ,ψn of Γ such that ` (ψ1 ∧ . . . ∧ ψn)→ ϕ. With this definition, obviously, the
Deduction Theorem holds.
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