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a b s t r a c t

The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of
oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive
area (~194,000 km2) was used to characterize the amount, chemical signature, distribution, and extent of
the DWH oil deposited on the seafloor in 2010e2011 from coastal to deep-sea areas in the GoM. The
analysis of numerous hydrocarbon compounds (N ¼ 158) and sediment cores (N ¼ 2,613) suggests that,
1.9 ± 0.9 � 104 metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in
56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not
recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate
large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the
continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of
deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the
released oil in 2010, including sedimentary transformation processes, redistribution of deposited hy-
drocarbons, and persistence in the environment as recycled petrocarbon.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 2010 an unprecedented amount of oil (~4.0 millions barrels;
U.S. District Court, 2015) was released at 1,500 m depth into the
Gulf of Mexico (GoM) after the blowout of the Deepwater Horizon
(DWH) drilling rig. The final budget of the oil spilled in 2010 in-
dicates that the intensive efforts to recover the discharged oil
reduced the oil in the marine environment (~20% of the leaked
mass; McNutt et al., 2012b; Ryerson et al., 2012) to ~3.2 million
barrels (U.S. District Court, 2015). Of the total amount of oil that
remained in the environment, natural processes like evaporation
reduced even more this amount by 5% (Ryerson et al., 2012). About
6% of the leakedmass was burned (Ryerson et al., 2012), and burned
residues remained floating on surface waters until deposition on
the seafloor (Adhikari et al., 2016; Romero et al., 2015; Stout and
Payne, 2016a). Approximately, 10% of the leaked mass formed

surface slicks that were transported horizontally or vertically via
the formation and sinking of a large marine snow event (Brooks
et al., 2015; Daly et al., 2016; Romero et al., 2015). Also, about
36% of the leaked oil formed deep plumes of dissolved and
dispersed hydrocarbons (McNutt et al., 2012b; Ryerson et al., 2012)
that were dispersed and transported mostly in southwest direction
from that DWH site, and evidences indicate some deposition on the
seafloor occurred by direct impingement on the continental slope
and sinking of oiledmarine snow formed at depth (Daly et al., 2016;
Romero et al., 2015). The oil budget as well indicates that 23% of the
leaked oil mass was unaccounted for due to the difficulty on
measuring the amount of oil in coastal and deep-sea sediments
(McNutt et al., 2012b), where it could have significant effects on
fauna (Montagna et al., 2013; Murawski et al., 2016, (Murawski
et al., 2014); Schwing et al., 2015; Tarnecki and Patterson, 2015;
White et al., 2012). Previous studies have characterized and quan-
tify this deposition in scattered areas (Allan et al., 2012; Chanton
et al., 2015; Harding et al., 2016; Nixon et al., 2016; Romero et al.,
2015; Stout et al., 2016a; Valentine et al., 2014), lacking a large-
scale integration over multiple environments in the GoM to bet-
ter characterize the distribution and amount of DWH oil-derived
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hydrocarbons deposited on the seafloor. Due to the magnitude of
the DWH spill and its spatial extent in the GoM, large areal coverage
is necessary in order to attempt calculating the DWH oil fraction
that reached the seafloor at a regional scale, essential for a broad
environmental assessment of impacts from the DWH spill and for
future mitigation plans.

The overall goal of this study was to characterize and estimate
the large-scale deposition of oil-derived hydrocarbons following
the DWH spill using sedimentary geochemical data analyzed by the
University of South Florida, the U.S. Government and the British
Petroleum (BP), collectedwithin a year after the DWH blowout over
an extensive area (~194,000 km2). We analyzed a wide range of
compounds (Aliphatics: C10eC40 n-alkanes, isoprenoids, branched
alkanes; PAHs: 2e6 ring polycyclic aromatic hydrocarbons and
their homologues; biomarkers: hopanoids, steranes, triaromatic
steroids) in order to cover major hydrocarbon mixtures that were
partitioned within the water column (subsurface plumes and oil
slick) due to the released of oil at depth (1,500 m) (Ryerson et al.,
2012) and that were transported to different environments in the
GoM (Chanton et al., 2015; MacDonald et al., 2015; Murawski et al.,
2016; Nixon et al., 2016). Also, due to the natural heterogeneity in
hydrocarbon concentrations observed throughout the GoM
(Chanton et al., 2015; Nixon et al., 2016; Stout et al., 2016a), hy-
drocarbon concentrations were compared within sediment core
layers to distinct in each site, background to post-spill levels. We
used these data to generate a large-scale spatial model of the
deposition of oil-derived hydrocarbons post-spill. The results
generated define the amount, chemical signature, distribution, and
extent of the DWH oil-derived hydrocarbons deposited on the
seafloor in 2010e2011 from costal to deep-sea areas in the GoM.

2. Materials and methods

2.1. Temporal patterns of chemical signatures

2.1.1. Hydrocarbon data
Sediments cores from coastal (including bays and estuaries to

15 km out of the coastline), continental shelf (extending from
15 km out of the coastline to the 200 m water-column depth), and
deep-sea (from 200 to 2,600 m water-column depth) areas were
studied from the collection efforts in 2010e2011 by the University
of South Florida (https://data.gulfresearchinitiative.org/data/R1.
x135.119:0004/), the U.S. Government (ERMA Deepwater Gulf
Response, https://gomex.erma.noaa.gov/, downloaded on June
2013) and the BP (Gulf Science data, http://gulfsciencedata.bp.com/
, downloaded on March 2013) (Supplementary Table 1,
Supplementary Fig. 1). Only samples with full analysis of >C9 hy-
drocarbons were used, that includes: Aliphatics (C10eC40 n-al-
kanes, isoprenoids, branched alkanes), PAHs (2e6 ring polycyclic
aromatic hydrocarbons including alkylated homologues), biogenic
PAHs (Retene, Perylene), and biomarkers like hopanoids
(C23eC35), steranes (C27eC29), triaromatic steroids (C26eC28)
(Supplementary Table 2).

P
Hydrocarbons was calculated as the

sum of all > C9 hydrocarbons studied (excluding biogenic PAHs).
The different databases used similar chemical protocols for the
analysis of the composition and concentration of hydrocarbons in
sediment samples (8015C, 2007; 8270D, 2007; Wang et al., 2006).
To assured reliable results, a strict chain of custody, calibration
check samples, method blanks, and matrix spike samples were
conducted. A more detailed explanation of QA/QC protocol and
sample collection can be found in the Analytical Quality Assurance
Plan report for Mississippi Canyon 252 (NRDA, 2011) and Stout et al.
(2016b).

2.1.2. Background hydrocarbon concentration
Temporal changes in the sediment cores (N ¼ 802) were

calculated by comparing the concentration of >C9 hydrocarbons in
the surface layer of recently deposited sediments (post-spill layer:
0e2 cm for the coastal and continental shelf area, and 0e1 cm for
the deep-sea area) to concentrations in downcore layers of
deposited sediment in the previous years (pre-spill layer: 4e10 cm
for the coastal area, 2e4 cm for the continental shelf area, and
1e3 cm for the deep-sea area). The boundaries of these layers were
set by previous studies using different analytical techniques and
demonstrating that the sedimentary surface layer is composed of a
large and rapid deposition of sediments including organic rich
compounds (e.g. hydrocarbons) from the DWH spill in 2010 (Brooks
et al., 2015; Chanton et al., 2012; DWH Trustees, 2015; Lin and
Mendelssohn, 2012; Mahmoudi, 2013; Romero et al., 2015;
Turner et al., 2014; Valentine et al., 2014). Also, Brooks et al.
(2015) found no evidence of mixing or bioturbation in the surface
layers of cores collected in the deep-sea area after the spill. In the
deep-sea area, Chanton et al. (2015) demonstrated that the surface
layer (0e1 cm) of some sites up to a distance of ~120 km from the
DWH site contains significant amounts of DWH-derived petro-
carbons. In addition, a detailed forensic study (Stout et al., 2016a)
using the same publicly available data, demonstrated that the
surface sediment layer (0e1 cm) of some sites located up to ~40 km
from the DWH site, contains significant higher amounts of DWH oil
than downcore sediment layers in recently contaminated sites
containing background hydrocarbons or seep-derived hydrocar-
bons. Also, this study found that about 25% of the cores studied did
not contain DWH oil, similar to our results in the deep-sea area
(Section 3.1). In coastal areas, there were only 39 whole cores
available in the databases, so the residual concentration of hydro-
carbons was calculated based on the average concentration of hy-
drocarbons in the submerged layers from eight distinct subareas
(Supplementary Table 3). The surface layer was also evaluated for
oil content and specifically for DWH oil presence, using diagnostic
ratios and hopane-normalized distributions of PAHs and bio-
markers (Section 2.1.3), and only recently contaminated sites were
included in the calculation of hydrocarbons deposition (Section
2.2.2) and degradation modeling (Section 2.3.2).

Given the presence of multiple hydrocarbon sources in the GoM
(e.g. abundant and scatter natural seeps), large variability of back-
ground hydrocarbon concentrations (e.g. riverine, industry), and
the DWH event that spilled approximately 7-times the average
annual input of oil into the Gulf of Mexico (GoM) (MacDonald et al.,
2015; Murawski et al., 2014; Stout et al., 2016a), we calculated the
residual hydrocarbon concentration in the surface sediments to
correct for background inputs (e.g. terrestrial, natural seeps). Stout
et al. (2016a) showed that many sites in the deep-sea area contain
both DWH and seep oil on the surface layer of the sediment cores.
By calculating the residual hydrocarbon concentration within each
sediment core (hydrocarbon concentration difference between the
surface layer and downcore layers), the net deposition of oil-
derived hydrocarbons post-spill is calculated. For example, in
cases where recent deposition of oil-derived hydrocarbons was
lower than seeps inputs (as indicated by downcore layers; e.g.
MC338 area in Stout et al., 2016a), the residual concentration was
<0 and not considered contaminated by the DWH spill. A different
scenario was observed when recent deposition of oil-derived hy-
drocarbons was higher than seeps inputs (e.g. MC118 area in Stout
et al., 2016a), the residual concentration was >0 and considered
contaminated after the DWH spill and corrected by the background
concentration. The samples with residual hydrocarbons >0 were
further evaluated to distinguish DWH oil from other hydrocarbon
sources in the GoM (see 2.1.3. Hydrocarbon diagnostic ratios).

In summary, there are three advantages for calculating residual
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hydrocarbons as we did: first, it corrects for any possible variability
among cores (sites) due to processing and analysis by multiple
laboratories; second, it corrects for spatial variability in the con-
centration of hydrocarbons in the GoM previous to the DWH spill;
and third, it corrects for other hydrocarbon sources present in
2010e2011 such as seeps and terrestrial (Conti et al., 2016;
MacDonald et al., 2015; Stout et al., 2016a).

2.1.3. Hydrocarbon diagnostic ratios
Selected diagnostic ratios were calculated to assess the source

and weathering of hydrocarbons in the sediment samples by study
area (coastal, continental shelf, and deep-sea) and sedimentary
layers (Section 2.3). To distinguish oil-derived hydrocarbons and
DWH oil from multiple sources in the GoM (e.g. Mississippi River,
seeps, petroleum industry, Taylor spill), hydrocarbon sources in the
samples were evaluated using: 1) the Carbon Preference Index (CPI;
P

odd n-alkanes/
P

even n-alkanes for C10-40); 2) TS/TM biomarker
ratio (18a(H)-22,29,30-tris-norneohopane/17a(H)-22,29,30-
trisnorhopane); 3) pyrogenic index (PI;

P
(other 3e6 ring EPA

priority PAHs)/
P

(5 alkylated PAHs); 4) relative abundance of
retene (Retene/Total PAHs � 100); and 5) and trends in observed
hopane (17a(H),21b(H))-normalized distributions of PAHs in sedi-
ment samples relative to the DWH oil (Aeppli et al., 2014;
Mulabagal et al., 2013; Romero et al., 2015; Stout et al., 2016a;
Wang and Fingas, 2003). For the pyrogenic index, the five alky-
lated PAHs are the alkylated compounds of: naphthalene, phen-
anthrene, dibenzothiophene, fluorene, and chrysene. The “other”
3e6 ring EPA priority PAHs are: biphenyl, acenaphthylene, ace-
naphthene, anthracene, fluoranthene, pyrene, benz(a)anthracene,
benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(e)pyrene,
benzo(a)pyrene, perylene, indeno(1,2,3-c,d)pyrene, dibenz(a,h)
anthrance, and benzo(ghi)perylene. To compare samples with the
DWH oil, the hydrocarbon composition of the DWH oil (source oil:
MC252) was obtained from the BP Gulf Coast Restoration Organi-
zation (http://gulfsciencedata.bp.com/).

Weathering of hydrocarbon compounds in the sediment sam-
ples was studied using the ratios of n-alkane C17/pristane, low
molecular weight PAHs to high molecular weight PAHs (2e3 rings/
4e6 rings), relative abundance of Chrysene (Chrysene/Total
PAHs � 100), and relative abundance of triaromatic steroids (TAS-
C26-28/Total biomarkers � 100) (Aeppli et al., 2014; Romero et al.,
2015; Wang and Fingas, 2003; Yunker and Macdonald, 2003).

2.2. Large-scale spatial analysis

2.2.1. Spatial modeling
Residual hydrocarbons concentration data (surface layer minus

downcore-background concentration) from 2,613 stations covering
coastal, continental shelf and deep-sea areas, were included in the
geostatistical analysis to generate a spatial distribution map. The
spatial extent was limited by the shoreline (http://shoreline.noaa.
gov/data/datasheets/composite.html; NOAA composite shoreline
at mean tidal high water), the bathymetry line at 200 m depth
(http://www.gebco.net/; GEBCO: Bathymetric Chart of the Oceans),
and geographic extension of the study sites beyond 200 m depth.
Specifically, data were imported in ArcGIS 10.3 (ESRI, Redlands, CA,
USA) and interpolated with the Empirical Bayesian Kriging (EBK)
method available from the Geostatistical Analyst Toolbox. EBK
analysis is a geostatistical interpolation technique that uses the
measured data to develop a statistical semivariogram model for
prediction of surface values (Krivoruchko, 2012). It is a robust
analysis that has been previously used to study contamination in
the environment (Chanton et al., 2015; Pandey et al., 2015;
Valentine et al., 2014). Several input parameters for the geo-
statistical interpolation were adjusted to improve computational

efficiency and statistical fit of the model (Supplementary Table 4).
In addition, due to the variable density of sites (as the result of non-
random sampling conducted during the environmental impact
surveys; Stout et al., 2016b) and hydrocarbon concentrations (non-
uniform deposition of contaminated particles; Stout and Payne,
2016b) in the large area covered in our study (194,112 km2), we
tested the statistical performance of the model covering the full
studied area and the performance of specific areas in the GoM
separately (coastal, continental shelf, deep-sea). Results of this test
(Supplementary Table 4) indicate that the spatial model perfor-
mance is not affected by density of sampling sites and areas. The
distribution of residual hydrocarbons obtained with the geo-
statistical model was also compared with bottom drainage paths in
direction down-slope using drainage data from the Gulf of Mexico
Coastal Ocean Observing System (GCOOS) data portal (http://gcoos.
tamu.edu/products/topography/Shapefiles.html). Coastal relief
model data from GCOOS was used to calculate seafloor slope and
drainage direction in the area of interest using ArcGIS 10.3 (Spatial
Analyst Toolbox \ Hydrology Toolset).

2.2.2. Calculation of hydrocarbons deposition
To estimate the total deposition of hydrocarbons post-spill in

the GoM, we first calculated the cumulative area per range of re-
sidual hydrocarbon concentration using Empirical Bayesian Kriging
analysis (see details in the previous section). For each range of re-
sidual hydrocarbon concentration, we multiplied the cumulative
area by the average concentration (±CI) of residual hydrocarbons,
the sediment surface interval, and by the average of surface sedi-
ment bulk density for the GoM (deep areas: 0.38 ± 0.16 g/cm3,
shallow areas: 0.69 ± 0.21 g/cm3) (Burdige, 2006; Rowe and
Kennicutt II, 2009; Valentine et al., 2014). Then, we added these
results to yield the total deposition of hydrocarbons in the GoM (in
metric tons). This value was compared to the amount of >C9 hy-
drocarbons (saturated and aromatic fractions calculated by Reddy
et al., 2011a) discharged from the DWH spill after recovering ef-
forts (87,752 metric tons >C9 hydrocarbons). Our calculation pro-
duced a lower limit of the total discharge of hydrocarbons post-spill
due to three limitations. First, we used a very conservative thick-
ness of the surface layer (0e2 cm for the coastal area, 0e2 cm for
the continental shelf area, and 0e1 cm for the deep-sea area).
Contaminationwas observed down to 5 cm depth in the sediments
in large coastal areas (DWH Trustees, 2015; Lin and Mendelssohn,
2012; Mahmoudi, 2013; Turner et al., 2014) and in some limited
deep-sea areas (Joye et al., 2014; Stout et al., 2016a). Second, a
limited number of sites in some locations, for example in the
continental shelf in Florida and Texas, and areas deeper than
2600 m depth. Third, our calculations do not correct for trans-
formation processes of the most degradable hydrocarbon com-
pounds (e.g. C10-20 n-alkanes) after deposition.

2.3. Fate of deposited hydrocarbons

2.3.1. Time-series data
Sediment cores were collected from 2010 to 2013 at three

sediment-coring sites located at the DeSoto Canyon
(28.59�Ne87.53�W; 29.07�Ne87.52�W; 29.06�Ne87.16�W). The
collection method and geochemical analyses of the sediment cores
from the DeSoto Canyon are described in detail in Romero et al.
(2015). We integrated geochemical and geochronology data to
detect the sedimentary layer deposited in 2010 over time in the
DeSoto Canyon cores (buried into deeper depths). The depth of the
sedimentary layer corresponding to 2010 ± 0.8 was identified in
each core and subsequently used for hydrocarbon analyses
(Supplementary Tables 5, 6, 7; Brooks et al., 2015). This 2010-layer
was identified using short-lived radioisotopemeasurements (210Pb)
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and a geochronological model in our time-series study following
the methods in Brooks et al., 2015. Specifically, samples were
analyzed by gamma spectrometry on Canberra HPGe (High-Purity
Germanium) Coaxial Planar Photon Detectors for total 210Pb
(46.5Kev), 214Pb (295 Kev and 351 Kev), and 214Bi (609Kev) activ-
ities. Data were corrected for counting time and detector efficiency,
as well as for the fraction of the total radioisotope measured
yielding activity in dpm g�1 (disintegrations per minute per gram).
Detection limits were all <3% of activities measured, determined by
similar methods (Kitto, 1991). Efficiency calibrations were based on
analyzing 12 varying masses (1e50 g) of the IAEA-447 organic
standard. The Constant Rate of Supply (CRS) model was employed
to assign specific ages to sedimentary layers, which is the most
appropriate age model for systems with variable accumulation
rates (Appleby and Oldfield, 1983; Binford, 1990).

2.3.2. Degradation modeling
Previous studies have demonstrated DWH oil was partitioned

into dissolved, evaporated, and undissolved hydrocarbons mixtures
along different transport pathways following the release into the
GoM (Ryerson et al., 2012) and before deposition on the seafloor
(Romero et al., 2015; Stout and Payne, 2016b). In the present study,
we investigate the potential persistence in the sedimentary envi-
ronment of the weathered hydrocarbons that were deposited
following the DWH spill. The persistence of weathered hydrocar-
bons in sediments is controlled by post-depositional processes (e.g.
biodegradation) depending primarily on the chemical properties of
the compound groups (e.g. solubility of aliphatics, aromatics, bio-
markers) and in situ temperature (Radovi�c et al., 2014; Tansel et al.,
2011). Highly variable environmental conditions in the GoM (e.g.
temperature: 4e24 �C), primarily due to bathymetry
(<20 me>3000 m) affect biodegradation rate patterns at a large
spatial scale (Louvado et al., 2015; Tansel et al., 2011). Taking into
account these parameters, we estimated the concentration of hy-
drocarbon compounds for a period of 10 years after 2010. The
persistence of hydrocarbons after deposition was studied by esti-
mating the concentration of specific compound groups over time
based on a large-scale degradation model from shallow to deep
areas in the Gulf of Mexico (Tansel et al., 2011). The degradation
model assumes (1) degradation follows first order kinetics, (2) half-
lives vary among chemical structure of compounds, and (3)
degradation of specific compounds depends primarily onwater and
sediment temperature. The model was extended to include all
compound groups in our study using degradation rate constants
from Wardlaw et al. (2011) and corrected for temperature effect
(Tansel et al., 2011). Large-scale degradation models are limited by
local half-lives of specific compounds influenced by factors such as
nutrients and oxygen, and interactions between microbial com-
munities and geochemical parameters that affect degradation rates
(Arndt et al., 2013; Gong et al., 2014; Mahmoudi, 2013; Mason et al.,
2012; Ziervogel et al., 2015). Due to these limitations of the model,
we tested the degradation model in the deep-sea area, where we
compared the data generated from the degradation model with in
situ data collected in our time-series sites in the DeSoto Canyon
from 2010 to 2013. Only in situ data from the sedimentary layer
deposited in 2010 was used. Our results indicate good agreement
between the model and in situ data (Section 3.3.) therefore, we
extended the model to the deep-sea, continental-shelf, and coastal
areas and compared results with other in situ studies .

3. Results and discussion

3.1. Temporal and spatial patterns

Comparative analysis of sedimentary layers in recently

contaminated sediments (methods in Section 2.3) reveals a strong
temporal change from pre-to post-spill in hydrocarbon concen-
trations. A 4- to 30-fold increase in

P
Hydrocarbons (sum of >C9

hydrocarbons) was observed in the post-spill surface layer
compared to downcore pre-spill sediment layers in deep-sea
(p < 0.001, 84% of total deep-sea sites) and coastal (p < 0.01, 60%
of total coastal sites) areas of the northern GoM (Fig. 1). This trend
was observed for more recalcitrant compounds like biomarkers
(hopanoids, steranes, triaromatic steroids, p < 0.01), as well as for
more degradable compounds like n-alkanes (C10eC40, p < 0.01)
(Table 1). A significant 3-fold increase in PAH concentration was
observed in the surface layer compared to downcore pre-spill
sediment layers (p < 0.01) only in the deep-sea area, where low-
molecular weight (LMW) PAHs were entrained in the submerged
deep plume (McNutt et al., 2012b; Ryerson et al., 2012) and a
fraction deposited on the seafloor (Daly et al., 2016; Romero et al.,
2015). In addition, the coastal area showed that the post-spill
sedimentary layer contains the highest concentrations of
biomarker and n-alkane compounds, while PAH concentrations
were the highest in the deep-sea area (Table 1).

Hydrocarbon sources were also distinct in recently contami-
nated sediments (post-spill sedimentary layer) in coastal and deep-
sea areas. Specifically, diagnostic ratios of hopanes and n-alkanes in
the post-spill layer indicate larger petrogenic inputs (CPI ratio;
p < 0.001; Fig. 2) and DWH oil (TS/TM ratio; p < 0.001; Fig. 2). Also,
preference biodegradation was observed for T7-T10 (C28eC29 tri-
cyclic terpanes), T32-T35 (tetrakishomohopane and pentakisho-
mohopane terpanes), and S4, S5, S14, S15 (13B(H),17A(H)e20S þ R-
diacholestane and 14B(H),17B(H)e20S þ R-cholestane)
(Supplementary Fig. 2), characteristic of DWH weathered oil
deposited on the seafloor (Stout and Payne, 2016b). Diagnostic ra-
tios of PAHs in the post-spill layer of contaminated sites indicate
recent deposition of petrogenic inputs (PI ratio; p < 0.001; Fig. 2)
only in the deep-sea area. There was no significant change in the PI
ratio between the pre- and post-spill layers in the coastal area (p >
0.05); while a significant change (p < 0.001) to weathered/pyro-
genic inputs in the surface layer was observed in the continental
shelf area (Fig. 2). This PI ratio trend is attributed by the combined

Fig. 1. Temporal change in
P

Hydrocarbons from sediment cores collected after the
Deepwater Horizon spill. Data shown as mean ± 95% confidence interval in a) coastal
(including bays and estuaries to 15 km out of the coastline), b) continental shelf
(extending from 15 km out of the coastline to the 200 m water-column depth), and c)
deep-sea (from 200 to 2600 m water-column depth) areas in the Gulf of Mexico.
P

Hydrocarbons refer to the sum of >C9 hydrocarbons (aliphatics: n-alkanes C10-40,
isoprenoids, branched alkanes; polycyclic aromatic: 2e6 ring, including alkylated
homologues; hopanoids: C27-35; steranes: C27-29; triaromatic steroids: C26-28). Sedi-
ment cores were collected in 2010e2011 (Supplementary Table 1). Post-spill denotes
hydrocarbon concentration in the surface layer, and pre-spill indicates concentration in
downcore layers (background) of the sediment cores analyzed.
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effects of multiple weathering processes (dissolution, evaporation,
biodegradataion and photo-oxidation) during transport of DWH oil
to the coastal area affecting the use of conventional diagnostic ra-
tios for PAHs (Stout et al., 2015) and mixed with environmental
PAHs (e.g. retene; Fig. 2). In the deep-sea area, about 50% of the
contaminated sites with petrogenic PAHs denote mix inputs from
DWH oil (dominated by C3eC4 benz(a)anthracenes/Chrysenes, and
low perylene content; Supplementary Fig. 3), and natural seeps
(abundant C2eC4 decalines, C2eC4 phenanthrenes, and C4 fluo-
ranthenes/pyrens; Supplementary Fig. 3) as observed previously
(Stout et al., 2016a). This is not surprising due to the relatively high
annual input of hydrocarbons by natural seeps in the GoM (~95,500
tons of oil; Ocean Studies Board and Marine Board, 2003), covering
extensive areas (MacDonald et al., 2015).

In non-contaminated sediments, 25% of the sites in the deep-sea
and 40% in the costal area, have lower or similar

P
Hydrocarbon

concentrations in the surface layer (post-spill) relative to down-
core layers (pre-spill). Also, hydrocarbon sources in these sites are
different from the DWH oil (Supplementary Table 8) in multiple
sediment layers within a core. Hydrocarbon sources for the non-
contaminated sediments are predominantly from biogenic sour-
ces (higher CPI ratio, retene, perylene, and T20þ T26 terpenes than
recently contaminated sediments) and natural seeps (lower TS/TM
ratio, and higher C2eC4 decalines and C2eC4 phenanthrenes than

recently contaminated sediments) (Fig. 2, Supplementary Fig. 3,
Supplementary Table 8). Biogenic inputs are primarily terrestrial
fromwatershed runoff from the Atchafalaya and Mississippi Rivers
and coastal plants debris that deposits within 30 km off the Mis-
sissippi River, and up to ~200 km from the Mississippi River delta
(Gordon and Go~ni, 2004; Kujau et al., 2010). Similar number of non-
contaminated sites in the deep-sea area was also observed by Stout
et al. (2016a).

The overall spatial trend in the composition of hydrocarbons
matches previous observations of hydrocarbon mass flows in the
environment (McNutt et al., 2012b; Reddy et al., 2011b; Ryerson
et al., 2012). Transport of surface slicks rich in the heaviest hydro-
carbons such as n-alkanes (C > 23) and biomarkers (Reddy et al.,
2011b; Ryerson et al., 2012) to coastal areas, while more soluble
hydrocarbons abundant in the water column and in submerged
plumes from the DWH spill, such as PAHs (Reddy et al., 2011b;
Ryerson et al., 2012), were transported to deeper benthic areas in
the GoM (Daly et al., 2016; Romero et al., 2015). This is supported by
the spatial trend of PAH concentrations and ratios (Table 1, Fig. 2),
with weathered mixed PAHs in the coastal area (PI ¼ 0.4 ± 0.02;
retene ¼ 2.1 ± 0.1%), pyrogenic PAHs in the continental shelf
(PI ¼ 0.8 ± 0.3; retene ¼ 0.3 ± 0.2%), and dominant petrogenic in-
puts in the deep-sea (PI¼ 0.2 ± 0.02; retene¼ 0.6 ± 0.1%) relative to
the DWH oil (Romero et al., 2015). Also, some sites (N ¼ 26) in the

Table 1
Concentrations (ppm) as mean ± 95% confidence interval (CI) of

P
Hydrocarbons (sum of >C9 hydrocarbons), PAHs (polycyclic aromatic hydrocarbons: 2e6 rings and alkylated

homologues), n-alkanes (C10-40), and biomarkers (hopanoids: C27-35, steranes: C27-29, and triaromatic steroids: C26-28). Data shown for the surface (post-spill) and downcore
(pre-spill) layers of sediment cores collected from coastal, continental shelf and deep-sea areas in the Gulf of Mexico.

Area Sediment
Layer

SHydrocarbons PAHs n-alkanes Biomarkers

Mean CI Mean CI Mean CI Mean CI

Coastal Post-spill 95.9 ± 56.8 1.00 ± 0.58 75.72 ± 47.56 10.21 ± 4.08
Pre-spill 3.1 ± 1.6 0.57 ± 0.48 1.55 ± 1.23 0.39 ± 0.20

Continental Shelf Post-spill 0.7 ± 0.2 0.11 ± 0.04 0.59 ± 0.19 0.07 ± 0.02
Pre-spill 1.0 ± 0.3 0.04 ± 0.01 0.73 ± 0.19 0.08 ± 0.01

Deep-sea Post-spill 80.6 ± 34.6 15.09 ± 6.67 47.73 ± 20.74 4.67 ± 1.31
Pre-spill 18.5 ± 7.8 3.76 ± 1.70 10.64 ± 4.64 1.24 ± 0.30

Fig. 2. Temporal changes in diagnostic source ratios from sediment cores collected after the Deepwater Horizon spill. Data shown as mean ± 95% confidence interval, in a) coastal
(including bays and estuaries to 15 km out of the coastline), b) continental shelf (extending from 15 km out of the coastline to the 200 m water-column depth), and c) deep-sea
(from 200 to 2600 mwater-column depth) areas in the Gulf of Mexico. Post-spill denotes ratios from the surface sediment layer, and pre-spill indicates ratios from downcore layers
from the cores analyzed, with CPI (Carbon preference index) ¼ P

odd Cn/
P

even Cn; TS/TM ¼ 18a(H)-22,29,30-tris-norneohopane/17a(H)-22,29,30-trisnorhopane; PI ¼ P
(other

3e6 ring EPA priority PAHs)/
P

(5 alkylated PAHs); Retene (%) ¼ Retene/Total PAHs � 100. Diagnostic ratios for DWH oil (Aeppli et al., 2014; Romero et al., 2015): CPI (0.9 ± 0.004),
TS/TM (1.1 ± 0.2), PI (0.01 ± 0.03), Retene% (non-detectable). An asterisk (*) indicates significant changes (P < 0.05) in the post-spill layer relative to the pre-spill layer.
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deep-sea showed a larger content of pyrogenic PAHs (PI > 0.5). It is
likely that pyrogenic PAHs were derived from an incomplete
combustion of large surface oil slicks that were burned during the
response efforts to the DWH oil spill (~222,000e313,000 barrels)
(Adhikari et al., 2016; McNutt et al., 2012b; Romero et al., 2015;
Shigenaka et al., 2015; Stout and Payne, 2016a) and/or from
intense weathering of oil slicks exposed to high summer temper-
atures (25e30 �C), which enhanced the evaporation of low mo-
lecular weight compounds (Aeppli et al., 2014; Bacosa et al., 2015;
McNutt et al., 2012b; Romero et al., 2015; Ryerson et al., 2012).

3.2. Large-scale deposition

The base-scale analysis of residual hydrocarbons (surface layer
minus downcore-background concentration) suggests that
following the DWH spill, contamination in sediments (residual
hydrocarbon concentration >0) was observed up to a distance of
180 km from the DWH rig in the deep-sea area, and up to 517 km in
coastal and continental shelf areas (Fig. 3). The spatial distribution
of residual hydrocarbons (Fig. 4) agrees with visually impacted
regions reported for coastal areas in Louisiana (e.g. Barataria Bay,
Chandeleur Islands), Mississippi (e.g. Horn and Petit Bois Islands),
Alabama (e.g. Cat Island), and Florida (e.g. Panhandle area) (DWH
Trustees, 2015; Floyd et al., 2012), and for offshore deep-sea areas
(e.g. Mississippi Canyon, DeSoto Canyon) (Brooks et al., 2015;
Chanton et al., 2015; Stout et al., 2016b; Valentine et al., 2014).
Further, the geostatistical model generated using the residual hy-
drocarbon data (Fig. 4) agrees with the actual values observed in
the study area (Fig. 4) and impacted regions reported in the GoM
(Chanton et al., 2015; DWH Trustees, 2015; Floyd et al., 2012;
Valentine et al., 2014; Stout et al., 2016a, b).

A distinct spatial distribution of both hydrocarbon residual
concentrations (Fig. 4) and weathering indicator ratios
(Supplementary Fig. 4) denotes that the deposition on surface
sediments occurred via various transport mechanisms due to par-
titioning of petroleum hydrocarbons at depth into aqueous, gas and
particulate phases (Reddy et al., 2011b; Ryerson et al., 2012), as
suggested elsewhere (Brooks et al., 2015; Chanton et al., 2015;
Romero et al., 2015; Valentine et al., 2014). Specifically, before
deposition surface slicks were transported along the Louisiana-
Texas coastline region by sustained downwelling favorable winds
combined with high Mississippi River discharges and river induced
stratification (Kourafalou and Androulidakis, 2013). In contrast,
anticyclonic circulation in the region east of the Mississippi Delta
created a front, which restrained onshore transport of surface slicks
(Kourafalou and Androulidakis, 2013). The spatial model indicates
that high concentration of hydrocarbons deposited on ~4% of the
contaminated coastal area (>10 ppm; Fig. 4 and Supplementary
Fig. 4) containing weathered hydrocarbons (nC17/Pr <3.0, Chry
>12%, HMW/LMW >3.0, TAS >16%) due to degradation, dissolution
and/or photo-oxidation processes during horizontal transport of
surface slicks towards the coast (Aeppli et al., 2012; Ryerson et al.,
2012; Stout and Payne, 2016a). Less weathered oil at lower con-
centrations were deposited in ~97% of the contaminated shallow
areas (<10 ppm; Fig. 4 and Supplementary Fig. 4) with settling of
oil-mineral aggregates from thewater column as a probably source,
in areas where contaminationwas observed (Murawski et al., 2016;
Wade et al., 2016). Also, a large phytoplankton bloom
(>11,000 km2) covering the continental shelf and slope east of the
Mississippi Delta (O’Connor et al., 2016) may have contributed to
the weathering of hydrocarbons in the water column subsequently
reducing deposition of hydrocarbons in this area (Fig. 4). In the
deep-sea, hydrocarbon deposition was greater at 1,300e1,600 m
depth up to 30 km from the DWH rig and at 1,000e1,300 m depth
from 30 km to 175 km from the DWH rig (Fig. 4) following the

trajectory of the seafloor and submerged plumes, respectively
(Camilli et al., 2010; Chanton et al., 2015; Daly et al., 2016).
Deposited hydrocarbons at high concentrations (>50 ppm;
Supplementary Fig. 4) were observed in only ~1.0% of the deep-sea
area containing heavy weathered alkanes (nC17/Pr < 0.4) and LMW
PAHs (HMW/LMW >1.0), possibly from settling of oil-mineral ag-
gregates from the surface column-water observed close to the DWH
site (Daly et al., 2016). In contrast, hydrocarbons (>C9 saturated and
aromatic fractions) deposited in most of the deep-sea area contain
lower concentrations of

P
hydrocarbons (<50 ppm;

Supplementary Fig. 4) with weathered HMW PAHs (Chry >1.0%)
and high relative abundance of LMWPAHs, possibly from settling of
oil-mineral aggregates from the submerged plumes (Daly et al.,
2016; Romero et al., 2015; Ryerson et al., 2012). The spatial trends
observed following the trajectory of the seafloor and submerged
plumes predominantly in southwest direction (Fig. 4,

Fig. 3. Spatial extent of contaminated sediments found in the northern Gulf of Mexico
after the Deepwater Horizon spill. Data shown for a) coastal, b) continental shelf, and
c) deep-sea areas. Contaminated sediments contain higher

P
Hydrocarbons in the

surface layer (post-spill) compared to downcore layers (background, pre-spill) of the
sediment cores analyzed. Sediment cores were collected in 2010e2011
(Supplementary Table 1).

P
Hydrocarbons refer to the sum of aliphatics (n-alkanes C10-

40, isoprenoids, branched alkanes), polycyclic aromatic (2e6 ring, including alkylated
homologues), hopanoid (C27-35), sterane (C27-29) and triaromatic steroid (C26-28)
compounds.
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Supplementary Fig. 4), indicate that the weathering of oil occurred
principally before deposition on the seafloor, and was affected
mostly by dissolution and biodegradation in the submerged plumes
and during vertical transport to the seafloor (Stout and Payne,
2016b).

Results also indicate that a total cumulative area of
~110,000 km2 was contaminated post-spill, with a total hydrocar-
bon input to surface sediments (background subtracted) of
1.9 ± 0.9 � 104 metric tons (up to 4.1 � 104 metric tons) of oil-
derived hydrocarbons (>C9 saturated and aromatic fractions)
(Table 2), equivalent to the deposition of about 9.1 ± 4.1 � 104

metric tons of DWH crude oil. The total deposition of hydrocarbons
to surface sediments corresponds to 21 ± 10% (up to 47%) of the
total amount of oil discharged from the DWH spill that remained in

the environment after recovery from the environment during
response efforts (3.2 millions barrels; U.S. District Court, 2015).
Specifically for each of the studied areas and relative to the oil mass
that remained in the environment, 18.9± 9.8% (up to 43%) was
deposited in the coastal area, 0.4± 0.1% (up to 0.5%) in the conti-
nental shelf area, and 2.0± 0.5% (up to 3.7%) in the deep-sea area.
While our calculations yielded a conservative assessment of the
amount of oil-derived hydrocarbons deposited on the seafloor, our
estimates are within the bounds of the oil budget (McNutt et al.,
2012a, b).

Specifically to the deep-sea, our calculations of the total mass of
DWH oil deposited in this area using >C9 hydrocarbons in surface
sediments, are within the range or close to previous studies using
different methods, such as: 14C data in surface sediments (3.0e4.9%

Fig. 4. Residual hydrocarbon concentrations (ppm) in surface sediments after the Deepwater Horizon spill in the Gulf of Mexico. A) Residual hydrocarbon concentrations at each
study site from coastal to deep-sea areas. B) Spatial distribution model of residual hydrocarbon concentrations from coastal to deep-sea areas. Data was interpolated using Empirical
Bayesian Kriging (EBK) analysis to calculate cumulative areal extent for each concentration range from Table 2. Input parameters for the EBK model for the full area are in
Supplementary Table 3. Sediment cores (N ¼ 2,613) were collected in 2010e2011 (Supplementary Table 1). Residual hydrocarbons refer to surface layer minus background con-
centration. Hydrocarbon concentrations include the sum of aliphatics (n-alkanes C10-40, isoprenoids, branched alkanes), polycyclic aromatic (2e6 ring, including alkylated ho-
mologues), hopanoid (C27-35), sterane (C27-29) and triaromatic steroid (C26-28) compounds. Gray lines indicate bathymetry (m). Green star: location of the DWH site. (For
interpretation of the colour concentration ranges in this figure legend, the reader is referred to the web version of this article.)
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of the discharge oil; Chanton et al., 2015), 17a(H),21b(H)-hopane
concentration in surface sediments (2.3e11.3% of the discharge oil;
Valentine et al., 2014), and 17a(H),21b(H)-hopane concentration in
0e3 cm sedimentary layer (6.9e7.7% of the discharge oil; Stout
et al., 2016b). Comparable spatial patterns were observed among
the studies, indicating that the deposition of DWH oil was spatially
heterogeneous, with larger inputs close to the DWH site. The dif-
ferences observed among these studies in relation to the amount of
DWH oil deposited in deep-sea floor, is attributed to the number of
compounds used (one compound like 17a(H),21b(H)-hopane,
instead of numerous hydrocarbon compounds including >C9
saturated and aromatic fractions) and the background correction
applied (averaged background value instead of background value
within each sediment core studied). The former is critical due to the
partitioning of petroleum hydrocarbons at depth into aqueous, gas
and particulate phases during the DWH spill (Reddy et al., 2011b;
Ryerson et al., 2012) influencing the footprint at depth (Chanton
et al., 2015; Romero et al., 2015; Stout et al., 2016b). Our
impacted deep-sea area by the deposition of DWH oil is larger than
these studies, however it is less than half of the total spatial
extention calculated for the deep-plume (Du and Kessler, 2012). In
addition, due to a sustained deposition of DWH oil of at least 5
months after the well was capped, it is plausible that DWH oil
would have distributed to awider area before deposition (Yan et al.,
2016).

3.3. Significance for long-term fate

A fundamental requirement examining impacts of oil in natural
environments, is to determine not only the concentration of hy-
drocarbons in sediments but also how the concentration and
composition of hydrocarbons changes over time (Turner et al.,
2014). Results in our study indicate that a large amount of hydro-
carbons were deposited post-spill mostly in selected coastal and
deep-sea areas (Figs. 1 and 4). Hydrocarbons deposited in these
areas were different in amount, composition and degree of
weathering (Supplementary Figs. 2, 3, 4) due to different vertical

and horizontal transport mechanisms (Camilli et al., 2010; Daly
et al., 2016; Kourafalou and Androulidakis, 2013; Reddy et al.,
2011b; Romero et al., 2015; Ryerson et al., 2012; Stout and Payne,
2016b). We hypothesize that the long-term fate of the hydrocar-
bons deposited on the seafloor in the GoM following the DWH spill
may not only depend on in situ transformation processes but also
on redistribution of deposited hydrocarbons.

In the coastal area, a rapid degradation of LMW PAHs com-
pounds in oiled sand-patties occurred within 19 months after the
DWH spill (Gros et al., 2014). Similarly, in saltmarshes, dominance
of HMW PAH compounds was observed after 24months, indicating
a possible long-term persistence of hydrocarbon compounds of at
least a decade (Turner et al., 2014), as observed elsewhere (Reddy
et al., 2002) and in our long-term estimates using the large-scale
degradation model (Supplementary Fig. 5). The initial hydrocar-
bon composition of surface sediments from samples collected in
2010e2011 in the coastal and deep-sea areas was predominately n-
alkanes (C10-40) and 2e3 ring PAHs (~80%), which decreased to
background concentrations in the following two years according to
the model (Supplementary Figs. 5 and 6). Similar to previous
studies in GoM coastal areas (Gros et al., 2014; Turner et al., 2014)
the model estimated a long-term persistence of more recalcitrant
compounds (e.g. biomarkers, HMW PAHs) (Supplementary Fig. 6).
Also, a rapid decrease in concentration of more degradable hy-
drocarbons (e.g. PAHs, n-alkanes) was observed a year after the
DWH spill, in our sedimentary collections at deep-sea sites in the
DeSoto Canyon (Supplementary Fig. 7). The trend observed over
time in the DeSoto Canyon (in situ time-series study) follows those
from estimated concentrations in the same region (p > 0.05;
Supplementary Fig. 7) and other studies in the GoM (Snyder et al.,
2014) indicating a good performance of the degradation model.
Some differences are observed between the two methods when
comparing relative abundance of oil-derived hydrocarbons
(Supplementary Fig. 8). Overall, results support the hypothesis of a
long-term persistence (~decade) and potential impact from coastal
to deep-sea environments of, not surprisingly, the most recalcitrant
oil-derived hydrocarbons deposited in 2010e2011.

Table 2
Residual hydrocarbon concentrations, cumulative contaminated area, and total deposition of hydrocarbons to surface sediments in the Gulf of Mexico. Areas for each range of
residual hydrocarbon concentration were calculated using Empirical Bayesian Kriging analysis. Residual hydrocarbons refer to surface layer concentration minus background
concentration. Data shown as mean ± 95% confidence interval.

Area Residual Hydrocarbon (ppm) Area Total deposition (tons)b

Average ± CI min max (km2) Average (range)

Coastal 1.0 ± 0.1 0.01 2.5 22,383 298 (282e471)
3.6 ± 0.1 2.5 5.0 5,698 283 (275e438)
6.1 ± 0.2 5.0 7.3 3,098 259 (251e399)
8.5 ± 0.2 7.5 9.7 1,435 168 (164e260)
23.6 ± 2.3 10.1 49.8 879 286 (258e471)
74.4 ± 5.5 53.5 98.9 25 26 (24e42)
4,075.1 ± 2,273.3 104.0 30,059.9 271 15,217 (6,729e35,560)

Total 33,789 16,538 (7,982e37,641)
Continental Shelf 0.5 ± 0.1 0.1 1.3 42,068 274 (240e340)

3.0 ± 0.7 2.6 3.4 1,007 41 (32e51)
6.0a N.A. N.A. 29 2 N.A. N.A.
8.5a N.A. N.A. 17 2 N.A. N.A.

Total 43,121 319 (277e395)
Deep-sea 1.0 ± 0.1 0.01 2.5 17,623 69 (61e115)

3.6 ± 0.2 2.5 4.9 6,228 85 (81e133)
6.1 ± 0.2 5.0 7.5 475 11 (11e17)
8.7 ± 0.2 7.6 9.9 418 14 (13e21)
21.1 ± 1.5 10.0 48.4 7,610 609 (566e978)
69.0 ± 8.3 54.0 93.4 76 20 (17e33)
1,080.7 ± 456.4 123.7 6,010.4 219 898 (519e1,916)

Total 32,648 1 ,706 (1,269e3,213)

a Concentration determined by the Kriging model.
b Total deposition (metric tons) ¼ Area * sediment interval * sediment mass * residual hydrocarbon.
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Redistribution of DWH oil residues deposited post-spill may as
well affect the long-term fate of the most recalcitrant compounds
in the sediments. Large-scale events in the GoM like hurricanes, can
bring new contaminated sediments to coastal areas not impacted
by the initial oiling in 2010 (Turner et al., 2014) and promote
sediment resuspension and down-slope currents to deeper areas
(Ross et al., 2009; Ziervogel et al., 2015). Also, natural heterogeneity
of bottom topography and circulation processes may promote
transport of materials to deeper areas in the GoM (Parinos et al.,
2013; Ross et al., 2009) and elsewhere (e.g. Mediterranean Sea;
Parinos et al., 2013). The combination of these processes has been
observed in the Mississippi Canyon, where the net down-slope
transport of bottom sediments is enhanced by hurricane activity,
with variability in direction caused by canyon topography (Ross
et al., 2009). Evidence of this transport to deeper areas in our
study includes: (1) background (pre-spill) concentration trends
(Fig.1, Table 1) indicate that the deep-sea area serves as a repository
system for hydrocarbons in the northern GoM, and (2) observations
of regional-scale long transport and deposition to deeper areas
(>1,500 m depth) of oil-associated marine snow from the DWH
spill (Brooks et al., 2015; Daly et al., 2016; Passow et al., 2012;
Chanton et al., 2015; Valentine et al., 2014). In our study, a
gradient of residual hydrocarbons towards deeper depths was
observed (>2,400 m; Fig. 4) along bottom drainage paths
(Supplementary Fig. 9). Most of the samples in this area with the
highest residual hydrocarbon concentrations (>5.0 ppm) were
found at the highest slopes of morphological highs on the seafloor
or on lower grade bottom drainage channels (Supplementary Fig. 9)
where redistribution of sediments is expected. A recent study
(Conti et al., 2016) describing high-resolution morphology of the
seafloor about 5 km south-east of the DWH site, shows erosional
channels indicative of high current speeds that are required to
transport sediments and build this type of bottom morphology.
Also in 2012, Hurricane Isaac induced resuspension of sedimentary
organic matter in the Mississippi Canyon, redistributing deposited
oil-derived hydrocarbons from the DWH spill (Ziervogel et al.,
2015), possibly to deeper areas as observed in previous storm
events in the northern GoM (Ross et al., 2009). These evidences
suggest redistribution of deposited hydrocarbons should be
consider as an important process for future modeling of long-term
fate of oil-spills at depth.

4. Conclusion

We used a combination of analyses including geochemistry,
geochronology, and spatial and degradation modeling to charac-
terize the chemical signature, distribution, extent, and fate of the
DWH oil deposited on the GoM seafloor in 2010e2011. A large
number of chemical compounds (N ¼ 158) and sediment cores
(N ¼ 2,613), and background correction within each core were
included to take into account a large-spatial area (from coastal to
deep-sea areas), the partitioning of hydrocarbons during transport
in the water column, and hydrocarbon sources present in the GoM
(e.g. biogenic, natural seeps). Results from this study, identify
distinct weathered signatures for oil deposited in coastal and deep-
sea areas related to hydrocarbon compounds specific chemical
properties and transport mechanisms to the seafloor. The related
spatial and chemical trends denote the complexity of chemical and
physical processes transporting vertically and horizontally DWH oil
in the GoM. Contamination (residual hydrocarbon >0) was
observed in ~110,000 km2, up to a distance of ~517 km from the
DWH site. Diagnostic ratios and hopane-normalized distributions
indicate surface sediments were contaminated with petrogenic
hydrocarbons possible related to the DWH oil. Presence of other
hydrocarbon sources was as well observed, primarily from natural

seeps in the deep-sea area. Background corrected data (residual
hydrocarbons) indicate that 21 ± 10% of the total amount of oil
discharged and not recovered from the DWH spill may have been
deposited on the seafloor, similar to the unaccounted amount re-
ported previously (McNutt et al., 2012b). Sustained deposition of at
least 5 months after the DWH well was capped (Yan et al., 2016),
may have deposited even more DWH oil that remained in the
environment, for a deposition up to 47% of the total amount of oil
leaked and not recovered. The spatial and temporal trends indicate
possible long-term persistence of the most recalcitrant hydrocar-
bon compounds deposited post-spill (~decade) and downslope
redistribution to deeper areas.

Summary of main finding

21± 10% (up to 47%) of the total amount of oil discharged and not
recovered from the Deepwater Horizon spill was found in
~110,000 km2, from coastal to deep-sea areas in the Gulf of Mexico.
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