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Abstract. Together with generalized self-similarity and the
fractal spectrum, local singularity analysis has been intro-
duced as one part of the new 3S principle and technique for
mineral resource assessment based on multifractal modeling,
which has been demonstrated to be useful for anomaly de-
lineation. Local singularity is used in this paper to char-
acterize the property of multifractal distribution patterns of
geochemical indexes to delineate potential areas for oil/gas
exploration using the advanced GeoDAS GIS technology.
Geochemical data of four oil/gas indexes, consisting of acid-
extracted methane (SC1), ethane (SC2), propane (SC3), and
secondary carbonate (1C), from 9637 soil samples amassed
within a large area of 11.2×104 km2 in the Songpan-Aba
district, Sichuan Province, southwestern China, were ana-
lyzed. By eliminating the interference of geochemical oil/gas
data with the method of media-modification and Kriging, the
prospecting area defined by the local singularity model is
better identified and the results show that the subareas with
higher singularity exponents for the four oil/gas indexes are
potential targets for oil/gas exploration. These areas in the
shape of rings or half-rings are spatially associated with the
location of the known producing drilling well in this area.
The spatial relationship between the anomalies delineated by
oil/gas geochemical data and distribution patterns of local
singularity exponents is confirmed by using the stable iso-
tope ofδ13C.

1 Introduction

As one of the direct techniques used to prospect for
petroleum resources, oil/gas geochemical exploration, from a
geochemical point of view, can delineate the effective spaces
and ranges of the oil/gas reservoirs and then appraise the
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oil/gas potential of study regions. Among various kinds of
oil/gas geochemical exploration methods, hydrocarbon aci-
dolysis and the1C technique have attracted a lot of interest
from many petroleum geologists. The analytical method for
acid-extractable hydrocarbons occluded on surface soils was
developed in the 1930s (Horvitz, 1939, 1972, 1985) and1C
in soils was believed to be an effective technique for oil/gas
geochemical exploration (Duchscherer, 1988). By analyz-
ing the association of surface geochemical indicators with
a deep gas pool, one can obviously obtain large numbers
of surface geochemical tracks from deep gas accumulations
which are closely related to the type and scale of the deep
gas accumulation area. Since their early uses, the hydro-
carbon acidolysis method and1C technique have become
common in surface geochemical exploration and plenty of
data derived from the two methods have been accumulated
throughout the world. Nevertheless, because of diverse inter-
ference factors, such as geographical conditions, sampling
media, and variations of soil composition, some geochemi-
cal signatures are not considered to be distinguishable from
background signals with current methods used by the indus-
try (Abrams, 2005). This could be one of the reasons why
geochemical hydrocarbon exploration remains an unconven-
tional approach in the petroleum industry and did not result
in widdly used prospecting methods for oil/gas data process-
ing although geochemical hydrocarbon exploration was sys-
temically studied back in 1929 (Davidson, 1994; Saunders et
al., 1999). To improve the application of these data to hy-
drocarbon prospecting, many researchers have studied vari-
ous data-processing methods since the 1990s, including in-
terference elimination and anomaly recognition. However,
the methods for anomaly recognition and interference elimi-
nation based on classical statistics (Horvitz, 1985) can not be
used effectively and still restrain the extraction of valuable
information for oil/gas discovery because the data of interest
can not meet the prerequisites of some typical statistic meth-
ods, such as normal distributions of multi-source data; and
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usually it is hard to separate background from anomalies by
probability analysis.

In recent years, with the development of fractal theory,
fractal and multifractal methods have become gradually re-
garded as effective and efficient means to analyze spatial
structures in oil fields, except for extensive application in
metallic geochemical systems. Christopher and Paul (1995)
discussed the frequency-size distribution of oil fields and Xie
(2005) and Bao (2004) and Xie et al. (2005) presented the
multifractal distribution patterns of different hydrocarbons in
Tarim Basin, China. The concentration-area (C-A) multifrac-
tal model (Cheng et al., 1994) has been applied to anomaly
recognition based on wavelet analysis and it is believed tech-
niques based on fractals and multifractals have greatly im-
proved the prediction capability of the existing data (Zhang
et al., 2006).

As one new multifractal theory applied in geosciences, lo-
cal singularity has been used to analyze the hydrothermal
mineralization processes of elements and delineate the po-
tential mineralization district in metallic geochemical fields
(Cheng, 2006a), to map the distribution patterns of geochem-
ical data analyzed from samples collected from surface me-
dia for mineral exploration (Cheng, 2000). As is generally
known, metallic geochemical fields have some characteris-
tics in common with petroleum regions, but there exist great
discrepancies both in the mechanism of formation and in spa-
tial structures between these two kinds of geochemical fields.
What if we looked at the singularity patterns of oil/gas in-
dexes and could the local singularity values help map the
oil/gas anomalous trapping areas?

In this study, 9637 soil samples were taken from an
area of 11.2×104 km2 in the Songpan-Aba district, Sichuan
Province, southwestern China, and four oil/gas geochemi-
cal indexes, i.e. acid-extracted methane (SC1), ethane (SC2),
propane (SC3), and secondary carbonate (1C), which are
believed to be of great significance for oil/gas exploration
(Duchscherer, 1988), were measured. The data was ana-
lyzed in order to recognize anomalous areas with the method
of local singularity, which is available in an advanced Geo-
DAS system (Cheng, 2000). 119 isotope data (δ13C) were
then used to characterize the relationship between chemical
composition anomalies and distribution patterns of oil/gas in-
dexes in surface soils.

2 Local singularity principle

Since the concept underlying the multifractals was originally
introduced by Mandelbrot (1972, 1974), many kinds of frac-
tal and multifractal models have been developed and ap-
plied in different scientific fields to characterize self-similar
or self-affine measures (Schertzer and Lovejoy, 1991; Ev-
ertsz and Mandelbrot, 1992). Together with generalized self-
similarity and fractal spectrum, local singularity has been
introduced as one part of the new “singularity-similarity-

spectrum” (3S) principle and techniques for mineral re-
source assessment based on multifractal modeling, which has
been demonstrated to be useful for singularity analysis and
anomaly delineation (Cheng, 2006a,b).

Singularity can be defined mathematically as the point
where conventional mathematical modeling breaks down.
One example of a singularity in the geometry of space would
be a ”black hole”. From a geochemical point of view, sin-
gularity could be defined as one special phenomenon with
the anomalous accumulation of materials and abrupt release
of energy during a short period and within a narrow space,
which could be characterized by multifractal models and
could be quantitatively described as the following power-law
relationship (Cheng, 2006b):

µi(ε) ∝ εαi (1)

where∝ denotes proportionality and the measureµi(ε) de-
notes the total amount of material in thei-th box with box
sizeε; andµi(ε) also could be expressed in an average den-
sity format as below (Cheng, 1999):

µi(ε) ∝ ε2ρi (2)

and, the density of material in the space could be transformed
as:

ρi = εαi−2 (3)

whereαi is called the singularity exponent or local Hölder
exponent (Evertsz and Mandelbrot, 1992),αi−2 is the ex-
ponent of the power-law and value 2 in Eq. (2) and Eq. (3)
is the Euclidean dimension of the 2-D boxes. As discussed
above, when the material is evenly distributed in space, we
will haveα=2. Otherwise, for boxes relatively enriched with
the material,µi(ε) will be larger thanε2. As we are mainly
interested in the limit situationε→0, we haveε�1 and a
largerµi(ε) means that local Ḧolder exponentαi is less than
2. The smaller theα values are, the stronger the local en-
richment of the materials is in corresponding boxes. That
is to say,α<2 corresponds to local enrichment. Similarly,
α>2 implies local depletion. Thus, if the singularity expo-
nent values could be calculated and mapped, it will be very
valuable to delineate the trapping areas of mineralization and
oil/gas formation with association of spatial distribution pat-
terns of singularity exponents. A method and the advanced
GeoDAS GIS technical computer software has been devel-
oped (Cheng, 2000) to map the distribution of singularity
based on geochemical data of samples collected from sur-
face media such as soil, water, and till. The current paper
will use GeoDAS to map the singularity distribution patterns
and then to delineate the oil/gas potential areas for an oil/gas
geochemical survey.

3 Geochemical data

Songpan-Aba Basin is situated in Southwest China, ranging
31◦36′

−34◦56′ of latitude and 101◦−105◦10′ of longitude,
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Table 1. Table of basic descriptive statistics for geochemical oil/gas indexes in Songpa-Aba area, Sichuan Province, Southwestern China.

Index SC1 (µl/kg) SC2 (µl/kg) SC3 (µl/kg) 1C (%)

No. of data 8951 8385 5837 8972
Mean 152.85 22.18 10.75 0.45
Medium 7.40 0.70 0.80 0.29
Minimum 0.40 0.10 0.10 0.04
Maximum 13073 5770 1998 6.26
Standard deviation 702.4 158.0 63.2 0.4
Skewness 9.46 15.92 13.70 3.31

 

Fig. 1. The landscape of different types of surface soils in Songpan-Aba district. Different shades of gray are representative of different
sampling media: (1) Lacustrine deposits; (2) water-saturated marsh soil; (3) marsh soil; (4) Quaternary alluvial deposits; (5) poor soil
overlying bed-rock; (6) forest or shrubbery soil; and (7) fluvial deposits.

covering an area of 11.2×104 km2. South to the Sichuan
basin, which is rich in natural gas, Songpan-Aba basin shares
the same geological base with the Yangtze Platform and be-
longs to one part of the ancient Yangtze landmass. The base-
ment of the Songpan-Aba basin consists of dark lithologic
sequences of early Paleozoic age, over 5000 m in thickness,
and a late Paleozoic carbonate landmass covered with ma-
rine sediments of the Triassic Period; and it is regarded as a
new oil/gas prospecting area to be explored. The geographi-
cal features and hence the sampling media are quite diverse.
On the basis of a detailed remote sensing interpretation, the
sampling materials on the surface of the study area could be

classified into seven types: (1) lacustrine deposits; (2) water
saturated marsh soil; (3) marsh soil; (4) Quaternary alluvial
deposits; (5) poor soil over bed-rocks; (6) forest or shrubbery
soil; and (7) fluvial deposits (Fig. 1).

As one part of an ambitious oil/gas prospecting project, a
surface geochemical survey had been conducted in the dis-
trict in 2002 by the Training Center of Oil/Gas Geochemi-
cal Exploration in Hefei, China Petrochemical Corporation.
Samples were taken on a grid of 1×2 km and 9637 were col-
lected with 15 geochemical variables measured for each sam-
ple. Among these variables, acid-extractable methane (SC1),
ethane (SC2), propane (SC3), and secondary carbonate (1C)
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are believed to be of great significance for oil/gas exploration
(Duchscherer, 1988) and were used in this study to delineate
the prospecting areas in this field. Since the concentrations
of some indexes in certain samples are lower than the detec-
tion limit, the available data of various indexes are different
and the basic statistic parameters of each index are listed in
Table 1. It can be seen that the standard deviations of the four
indexes are comparatively high and the maximum values are
quite a lot larger than the medium and mean contents. This
may be due to outliers of data existing in some samples.

4 Data processing

In Fig. 2 the minimum, medium, and maximum values of
oil/gas indexes in different types of soils are displayed. The
numbers in the abscissa represent the types of the soils and
the vertical axis shows the contents of acid-extractable hy-
drocarbon. The value at the center of the small pane rep-
resents the medium content of each index, and the contents
represented by the short lines above and below the pane stand
for the maximum and minimum, respectively. The broken
line is applied to show the content fluctuation of the index of
interest by connecting the central dot in the small pane. It
should be noted that different sampling media possess quite
different contents of trapped light hydrocarbons. The highest
medium values for all four hydrocarbons of study are from
the water saturated marsh soils; and the contents of the in-
dexes in the samples amassed from the marsh soils are also
higher than the others except for those of the first type. But
for the others, the content values are not so scattered but lim-
ited to narrow ranges. We do not present interpretation de-
tails here, but it can be seen that the characteristics within
different types of soils are clearly different.

Figure 3a shows a geochemical contour map of original
(non-preprocessing) contents of secondary carbonate (1C)
performed by Surfer 8.0, using kriging with an exponen-
tial semivariogram model. Comparing Fig. 3a with Fig. 1,
it is quite clear that the main anomalous area of high val-
ues shown in Fig. 3a approximately coincides with the ar-
eas where the second and third types of soils are distributed
(Fig. 1). The other three indexes used in the study also show
the same kind of distribution tendency. This kind of differ-
ence is significantly influenced by the physical and chemical
characteristics of the soils and it is hard to ascertain the rela-
tionship between the anomalous area and the meaningful mi-
croseepage from underlying potential oil/gas reservoirs. In
fact, many studies have indicated that soil interference with
its hydrocarbon content is quite common and results from
the dilution by sand in soils or from condensation in clays
or carbonates (Horvitz, 1985; Ruan and Cheng, 1992). From
this perspective, the original data set is not sufficient to char-
acterize the true spatial structures of any underlying oil/gas
pool and some sort of category normalized data preprocess-
ing seems necessary.

In order to eliminate the medium interference related to the
oil/gas geochemical field, a procedure of categorized stan-
dardization is employed in relation to each type of soil sam-
ple. The transformation of the original data setxij consists
of the following two steps:

The first is to reduce the discrepancy among different types
of soil samples by normalization. On the basis of the soil
classification, each type of soil sampling data has been trans-
formed by Eq. (4):

x′

ij =
xij − x̄j

sj
(4)

wherexij is the value of variablej (content of a certain hy-
drocarbon) in samplei, x̄j andsj represent the average value
and standard deviation of variablej in each type of soil.

The second task is to eliminate negative values. Since the
preceding transformation procedure generates a new data set
x′

ij with some negative values, we therefore apply another
standardization procedure to avoid negative data before log-
transformation necessary for the calculation of local singu-
larity exponents in the next sections. The standardization is
achieved by:

x′′

ij =

x′

ij − x′

j min

x′

j max
− x′

j min

(5)

wherex′

j max andx′

j min are the maximum and minimum val-
ues of the data setx′

ij for variablej in all samples, respec-
tively; and the value which equals 0 was deleted directly. Af-
ter this preprocessing, the subsequent data are all positive.

The contour map generated with the same procedure was
also employed for the analysis of the new data setx′′

ij for
1C. Unexpectedly, a similar trend of geochemical distribu-
tion was obtained and is shown in Fig. 3b. The anomalies
with high values of acid-extractable hydrocarbons are also
located in the northern part of the study area. But it seems
that the highly anomalous areas are smaller and the data dis-
tribute more evenly on the contour map of Fig. 3b, which
may reflect that data preprocessing has removed some out-
liers from the data and has eliminated some kind of interfer-
ence related to the soil compositions.

5 Results and discussion

The transformed values of acid-extractable methane (SC1),
ethane (SC2), propane (SC3), and secondary carbonate con-
tent (1C) from the soil samples were used for calculating
and mapping of local singularities with the advanced Geo-
DAS system. The half-window sizer of each square window
used for the calculation was set from 0.75 to 30.75 km with
an interval of 1.5 km. As for edge effects, the local singu-
larity exponents in the corners of every side of the area in
study can not be calculated unless we would apply Kriging
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Fig. 2. The variations in abundance of oil/gas geochemical indexes in different types of soil: 0- Non-classified soil samples; 1- lacustrine
deposits; 2- water saturated marsh soil; 3- marsh soil; 4- Quaternary alluvial deposits; 5- poor soil overlying bed-rock; 6- forest or shrubbery
soil; and 7- fluvial deposits.(a) 1C; (b) SC1; (c) SC2; (d) SC3. The numbers along the abscissa represent the types of the soils and the
vertical axis shows the contents of acid-extractable hydrocarbon.

 

Fig. 3. 2-D structural contour map of secondary carbonate (1C) contents.(a) The contour map of1C with original data;(b) the isoline map
of 1C with categorization-standardized data. Black solid lines are the regional boundaries of different counties within the area of study. The
small circle with triangle inside it near the center is location of the drilling well, Hongcan 1#.

or other data processing methods. Here we only used the
real data measured from the samples and so every side of the
original area was reduced by 30.75 km. Consequently, the
area for which local singularity exponents were estimated is
smaller than that in Figs. 2 and 3.

Figure 4 is the raster map of local singularities estimated
by means of the windows-based method for the four oil/gas
indexes of the study. The shades in Fig. 4 go from black to
offwhite. The areas withα-value<2 are shown as jet black
pixels, the areas with anα-value larger than 2 as offwhite

pixels, and those with medium levels ofα-value close to 2
as gray pixels. Mostly inside the areas with dark color, a
dashed line has been drawn on the map that shows a ring-
shape anomalous zone of NW-SE orientation, which can be
divided into separate cinctures. The offwhite pixel areas
compose first central cincture, the center of which is close
to the site of the commercial drilling well, Hongcan 1#. The
smallerα-value area outside the dashed line with jet black
pixels was delineated as the outermost cincture, and the in-
termediate zone is between the off white central cinctures
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Fig. 4. Estimated singularityα-values by the windows-based method with GeoDAS:(a) 1C; (b) SC1; (c) SC2; (d) SC3. Dark colored
patterns represent low values. Polygons enclosed by the dashed line represent the favored target area delineated by local singularity values.
The small circle included in the center is the location of the drilling well, Hongcan 1#.

and the dashed line. The three cinctures change gradually
outerward from the center, as indicated by the shades of
gray. This kind ofα-value distribution pattern can be called
a ring-shaped anomaly in surface geochemical exploration
for oil and gas (Zhang et al., 1995). The inner cincture
of the ring-type anomalous area is of stronger singularity
(lower α-values) than outside the perimeter of the anoma-
lous area. As explained above, strong singularity (lowerα-
values) may reflect strong accumulation of material, and on
the contrary, relative depletion of material may show weak
singularity (higherα-values). For major petroleum indica-
tors in the oil/gas geochemical field, from the center to the
border of the ring-shaped anomalous zone, theα-values de-
crease gradually.

δ13C values of methane from 119 samples in the Songpan-
Aba ring-type anomalous area (Fig. 5) range from−58.6 to
92.39‰, with−20.60‰ on average, which is heavier than
theδ13C values of methane originating from both the Earth’s
surface and those associated with a biogenic gas contribu-
tion. Generally speaking, methane from the metamorphic re-
actions and degassing of the Earth’s mantle typically shows a
considerably heavier isotopic signature and the relative con-
tent of theδ13C value is heavy, amounting to−40‰, whereas
the contents of supergenic and biogenic methanes will con-
tain relatively lighter isotopic compositions and theirδ13C
values would range from−70 to−60‰ on average (Stevens
and Rust, 1982; Stevens and Engelkemeir, 1988; Kadir et al.,
2005). In the central part of the anomalous area, theδ13C

values are mainly between−60 and−40‰ (Fig. 5); while in
the marginal parts, they are greater than−40‰. As for the
non-anomalous area, there is not any obvious concentration
range. In brief, mainly lighter value dots ofδ13C fall around
the vicinity of Hongcan 1# and the center of the anomalous
ring; and the dots on Fig. 5 withδ13C values higher than
−40‰ area distributed in a scattered fashion around the mar-
gin of the ring.

The ring-shaped anomaly is a special kind of phenomenon
that commonly occurs in soils above many reservoirs (Ruan,
1992). In these reservoirs, hydrocarbons will migrate up-
wards in different ways, and the speed and strength of the
migration changes according to their structural position. To-
gether with the data ofδ13C values, the generating mecha-
nism for the ring-shaped singularity anomaly shown in Fig. 4
can be depicted as follows:

At the initial stage of vertical seepage of oil/gas ingre-
dients, representing the channel of hydrocarbon migration,
pores in the porous media are nearly empty. With time, on
top of the oil/gas reservoir, massive hydrocarbon compounds
enter into an oxidization belt through vertical seepage and
release of CO2, which will then react with calcareous miner-
als in the cap rock to form carbonates (Duchscherer, 1988).
With the continuous accumulation of secondary carbonates,
the channel for vertical migration will become jammed by
the carbonates and some pores will be filled with oil and
gas. Consequently, water will be driven out to the edge of
the oil/gas reservoir. Usually, oil/gas diffuses upwards to the
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Fig. 5. The distribution ofδ13C values in Songpan-Aba district.
The area delineated by the dashed line is as large as the area in
Fig. 4.

surface due to differences in concentration. Under this condi-
tion, hydrocarbons migrate upwards to the surface with lower
diffusion speed and accordingly the kinetic fractionation ef-
fect of isotopes will be stronger (Zhang et al., 1995), which
results in lowerδ13C at the surface of the soil on top of the
reservoir; i.e., the central part of the ring. As displayed in
Fig. 5, the site where the lowestδ13C value occurs is close
to Hongcan 1#. The slow exchange of material will cor-
respondingly lead to stronger fractionation of hydrocarbons
with higher singularity (Fig. 4) in oil/gas/water systems.

Whereas at the margins of the reservoir, corresponding
to the anomalous marginal zone, except diffusion, hydrocar-
bons and other oil/gas ingredients will continuously traverse
the pores of the bedrocks and then migrate toward the sur-
face together with oil-field water. In this case, the fast mi-
gration of hydrocarbons will result in weaker fractionation
of isotopes and weaker singularity of hydrocarbons (Fig. 4).
Thereby, often nearly reaching the surface, the carbon iso-
tope composition of the highly concentrated methane will
change slightly compared with its premigrated state, and thus
theδ13C values at the margins of the anomalous ring will be
heavier than those at the ring center (Fig. 5).

In such a case, the hydrocarbon anomaly areas of lower
α-values may be exactly at the edge of the underlying oil/gas
reservoir, and the center of the anomaly ring’s perimeter may
coincide with the position of the oil/gas deposit. Therefore,
Hongcan 1# is of great importance in the oil/gas prospect-
ing in this area and we believe drilling close to it will bring
success; and the delineated areas could be considered as fa-
vorable for detailed drilling and geological survey.

6 Conclusions

The application of the local singularity method to the oil/gas
geochemical data demonstrates that the new multifractal the-
ory has overcome some disadvantages of traditional spatial
methods and therefore constitutes a powerful tool for extract-
ing local hidden spatial information from oil/gas geochemi-
cal data and for predicting undiscovered natural resources.
Through the technique of local singularity analysis using the
advanced GeoDAS system, one can extract new local in-
formation from the patterns concerned and try to character-
ize the tendency of enrichment and depletion of oil/gas in-
dexes defined by underlying hydrocarbons. The center of the
anomalous area delineated by the local singularity method in
the current paper coincides with the producing drilling well.
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