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STATE ESTIMATION FOR AN AGONISTIC-ANTAGONISTIC MUSCLE 
SYSTEM

Thang Tien Nguyen , Holly Warner, Hung La, Hanieh Mohammadi , Dan Simon and Hanz Richter

I. INTRODUCTION

The design of prosthetic, orthotic, and functional 
neuromuscular stimulation systems requires the under­
standing of the coordination of the human body and the 
dynamical properties of muscles [1]. The intermuscular 
coordination can be studied based on classical models 
proposed by Hill, Wilkie, and Richie [1], The most widely 
implemented model for simulating human muscles is the 
Hill model [2],

Human muscles operate at many joints. For a given 
joint, muscles often act in pairs with one or more 
muscles on opposite sides. Each member of a pair is 
regarded as an agonist or antagonist. In this paper, an 
agonistic-antagonistic muscle system based on the Hill 
muscle model is introduced to study coordination and 
estimate muscle parameters.

A variety of estimation problems for different mus­
cle models have been addressed. In [3], muscle forces, 
joint moments, and/or joint kinematics are estimated 
from electromyogram signals using forward dynamics. In 
[4], the estimation problem of individual muscle forces 
during human movement is solved using forward dynam­
ics. In [5], the muscular torque is estimated using a 
nonlinear observer in a sliding mode controller of a 
human-driven knee joint orthosis. In [6], the estimation 
of muscle activity is conducted using higher-order deriva­
tives, static optimization, and forward-inverse dynamics. 
In [7], an inverse dynamic optimization problem is pro­
posed to estimate muscle and contact forces in the knee 
during gait.

There have been numerous estimation methods pro­
posed to observe nonlinear systems, from high gain 
observers to sliding mode observers; see [8-11] and ref­
erences therein. High gain observers can offer a high 
level of accuracy in estimating state variables and uncer­
tainties [10,11], Sliding mode observers exhibit similar 
performance in estimating state variables and unknown 
inputs [8,9,12,19-22], A recent work [20] studies sliding 
mode control in combination with fuzzy logic to deal 
with matched/unmatched uncertainties and external dis­
turbances. In [19], sliding mode based estimation control 
schemes are presented to deal with actuator faults and 
system uncertainties for robotic systems. Therefore, slid­
ing mode observers, which are based on sliding mode 
control, can be employed to address many problems in 
fault detection and isolation, in which important param­



 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 

 

 

 
 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 
 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 

 

 
 
 

eters such as state variables, faults or unknown inputs 
need to be reconstructed from the available information. 
While traditional sliding mode techniques require the 
knowledge of unknown inputs and uncertainties, recent 
adaptive sliding mode control methods have been devel­
oped to overcome this limit at the cost of complexity
[13.14] .

In this paper, we aim to design a high gain observer, 
a conventional sliding mode observer, and a new adaptive 
sliding mode observer for our dual muscle system.

The contribution of our research work lies in the 
construction and development of a high gain observer, 
a sliding mode observer, and an adaptive sliding mode 
observer for the agonistic-antagonistic muscle system 
where unknown inputs are taken into account. The 
high gain observer is designed based on recent results 
in [10,11], which allows estimation of state variables 
and unknown inputs, from which activation signals are 
constructed. The conventional sliding mode observer 
is built based on the first order sliding mode and 
super-twisting algorithm developed in [9,15], for which 
bounds of unknown control inputs and uncertainty need 
to be known. The third observer is developed based on 
recent results on dual layer adaptive sliding mode control
[13.14] , which does not require knowledge of the bounds 
of unknown inputs and uncertainty.

It is noted that the estimation problem of the 
nonlinear agonistic-antagonistic muscle system with 
unknown inputs and uncertainties has not been fully 
addressed. Hence, the novelty of the paper is the exploita­
tion of recent developments of estimation based on 
high-gain and sliding mode approaches for the dual mus­
cle system based on the Hill muscle model. The the­
oretical convergence proofs are provided to show the 
applicablity of the observers to the dual muscle system 
with unknown inputs and uncertainties.

II. PROBLEM FORMULATION

We study the agonistic-antagonistic muscle system 
where each muscle is based on the Hill muscle model [1]. 
The Hill muscle unit models several effects of the physi­
cal muscle. It is divided into two sections: the tendon and 
the muscle body. The tendon is modeled as a nonlinear 
stiffness that includes some amount of slack. Within the 
muscle body portion of the model, a nonlinear stiffness 
element, modeled similarly to the tendon, and a force 
generation element are oriented in parallel. The tendon 
and muscle body components are then placed in series. 
The structure of the dual muscle system is described 
in Fig. 1, where the abbreviations CE, SEE, and PE 
stand for the contractile, series elastic, and parallel elas-

Fig. 1. Two-muscle, one degree-of-freedom
agonistic-antagonistic system with mass load [16].

tic elements of the Hill muscle model. Because muscles 
can only apply force when contracting, two muscles are 
required to actuate the central mass m, which is a simple 
load selected for studying the fundamental dynamics of 
this system.

The lengths of the CE and SEE are denoted as Lq 
and Ls/ for muscle j (j = 1,2), and the total length of the 
y'th muscle is defined by

Lmj ~ LCj + LSj- (1)

Let Lml be the position of the mass in Fig. 1, and the 
corresponding velocity is positive to the right.

The dual muscle system possesses the following 
dynamics [16,17]

.v, = v2 (2>

AS = —— <*>vi + At|,(r) (3)

Si =-v2+g]'l(--|) (4)

(5)
where

■vi - Sii> (6)

-,= .Sz, , tor./=1.2. <7)

where 0$, is the elastic force, (£>Pj is the parallel elas­
tic force, is the activation signal of element j with 
Oj e [0,1], and A<t,(r) is a bounded uncertainty. The 
force-length dependence factor /] has the general shape of 
a Gaussian curve, and the velocity dependence function 
g-’Uy) obeys the Hill model:
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*1i+^/.r

—IX k' 4 — 1)---------------- >i 14 I H I ’
(9)

where If'. .4, and g„wi are positive parameters. Denote

of the outputs, and it has rank 4, implying that the dual 
muscle system is locally observable [18],

For ease of presentation, let

a-3 = Lsl (17)

«i '(-i>

»2

(10) x4 — ^S2- U8)
Due to the relations (1) and (14), L(j can be deduced

from LmJ and LS!. Our system is rewritten as

as the virtual control inputs of the system (2), (3), (4), (5). 
We have the following assumptions for our system.

Assumption 1. The uncertainty A^fr) satisfies

I A<j,(r)| < A,„ (12)

where A,„ is a positive constant.

Remark 1. A^fr) can represent parameter uncertainties 
due to model mismatch; for example, uncertainties in the 
description of <D. ,(Lr.) and the mass m.

Assumption 2. The control inputs of the system (2), (3), 
(4), (5) satisfy

< UJm fory= 1,2 (13)

where Ujm is a positive constant.

The length constraint of the dual muscle system is

Lml+Lm2 = C (14)

where C is a constant. Hence, LCi and LC2 will be deter­
mined from the relations in (1) and (14) if C, LSi, LS2, 
and Lml are available. Therefore, it is sufficient to con­
sider four differential equations of the model in (2), (3), 
(4), and (5) for our estimation problem. From (1), (4), (5), 
and (14), the dynamics of LCi and LC2 are described as

Tci = -?i '(-i) (15)

®C2 = -^‘(-2)- (!6)

The nonlinear functions <FSy, <t>,,. /. and g_1 (/ = 
1,2) can be found in [16,17], All the variables and func­
tions of the dual muscle system are normalized to sim­
plify the dynamics.

Assume that a1( OS1(LS1), and O^IL^) are avail­
able. The mass position can be tracked by a sensor while 
the SEE nonlinear spring forces OS1(LS1) and OS2(LS2) 
of the agonistic-antagonistic muscles can be measured 
by two load cells, from which Ls, is inferred due to the 
inverse of ®Sj(LS}). The observability matrix of the dual 
muscle system can be calculated using the Lie derivatives

A, = A2 (19)

a2 = —(OS2(a4) — <t>A-|(.v3)) + A^G) (20)

a3 = a2 + tqU) (21)

a4 = -a2 + m2(a) (22)

J’l = *1 (23)

J?2 = <1>s1(a3) (24)

Jb = <l\:i v4) (25)

where a = [ Ay a2 a3 a4 ]T, and the vector y =
[jfi JT 3b]r is the output of the dual muscle system. 
Note that from the measurement of y2 and y3, a3 and 
a4 can be calculated due to the inverse of the function 
®sj(LSj). Let

u = [ Mj w2 ]T. (26)

Given the measurements of the length of the agonistic 
muscle and muscle forces, we study the estimation prob­
lem of state and activation signals. Due to the relation (7), 
it is sufficient to estimate the state and unknown inputs 
of the system (19)-(25).

III. OBSERVER DESIGN

In this section, we introduce three methods to esti­
mate the state variables and the activation signals: a high 
gain observer, a sliding mode observer, and an adaptive 
sliding observer. The convergence analysis of the three 
observers is provided. A discussion of the comparison of 
the three observers is presented.

Denote the estimates of a, u, and a = [uj, a2I7 as

A = [ Aq a‘2 A3 A4 J (27)

U = [ - lrh2 1 (28)

= [ £7] - lrai\ ■ (29)



 
 
 

 

 

 
 

 

 
 
 

 

 
 

 

 
 

 

 

 

 

 
 

 
 
 

 

  

 

 

 
 
 
 

 

 
 
 

 

 
 

 

 

 

 

 

3.1 High gain observer

The high gain observer in this subsection is designed 
based on the extended high gain observer approach 
reported in [10,11], The structure of the proposed high 
gain observer is described as

V, = A', + — (fi - A,) 
e/i

/z I ■
* = — O'l - Jh) + + —rOh - -U)m

A* =^,-5,)

. - * _i •A-3 = A, + Hj + —- A3) 
eh

4 /'•>■> _l .»i = - v,)
£7

■ - - z^z-1 z z - zA4 = -A3 + W2 + ----- (d’zdt j) - A'4)
£/i

(30)

(31)

(32)

(33)

(34)

(35)

(36)»2 = - -V4h
CA

where eh e (0,1) is a design parameter, parameters hn, 
hn, /z13 are chosen such that the polynomial U + hns2 + 
hl2s + /z13 is Hurwitz, parameters hjf for i = 2, 3 and j =
1,2 are chosen such that the polynomials r + /z(1s + hj2 
are Hurwitz for i = 2,3 [10],

Theorem 1. Under Assumptions 1 and 2, the state and 
input estimates of the high gain observer presented in 
(30)—(36) satisfy ||a(t) - a(t)|| -> 0 and Hw/r) - zz/(r)|| -> 
0 fory = 1,2 as e/; -» 0 for r > 0.

Proof. The proof is based on the construction of the 
extended high gain observer in [10,11],

Remark 2. Theorem 1 states that if eh -» 0, the state and 
unknown input estimates will be exactly the true values. 
Since eh - 0, a practical choice of eh lies in (0,1).

Remark 3. The high gain observer requires the tuning of 
nine parameters: eh, /zn, /z12, /z13, /z21, /z22, /z31, /z32.

3.2 Sliding mode observer

Following the super twisting algorithm and the tra­
ditional sliding mode approach in [9,15], the sliding mode 
observer for our system possesses the following structure:

A'I = AS + l’l I (37)

1 I z , ,*2 = -(>3 -J’2) + V12 
ZZZ

X3 = AS + V2 

AS = -.AS + V3

where

(38)

(39)
(40)

vn = IJ’i — A-j 11/2sign(^! - a-,) (41)

v12 = sign(jq - Aq) (42)
v2 = a2 sign(O;J(js) - a3) (43)
v3 = a3 sign(<h;](j3) - a4). (44)

Here /.,, and aj j are design parameters which can be 
chosen to satisfy the following inequalities [9]:

m, >.r (45)

I 2 (an+/+)(1+p) 
" > V «n-/+ (1-P) (46)

where p is a positive constant such that 0<p<l,/+>0 
is the upper bound of A4): | A„, | < f+. The parameters a2 
and a3 in (43) and (44) are chosen such that [15]

^lm < a2 (47)

lA,„ <a3 (48)
where Ulm and U2m are defined in (13). The reconstruc­
tion of the uncertainty A(1, and unknown inputs «1 and u2 
is accomplished with low pass filters given as

T A® — -A^ + v12 (49)

A »i = -»i + U (50)

A »2 = -»2 + L
where ts is a positive parameter.

(51)

Theorem 2. Under Assumptions 1 and 2, there exists a 
positive number r* such that the state and input esti­
mates of the high gain observer presented in (37)—(40) 
and (49)—(51) satisfy a(t) - a‘(t) = 0 and w(r) -> w(t) for
T > T*.

Proof. The proof follows the super-twisting algorithm 
and the standard sliding mode in [9,15], Let

e — a — a. (52)

The state estimation dynamics are

ei — e2 _ vii (53)

e2 = Afcfr) - v12 (54)

e3 = e2 + »i + U (55)
<?4 = -e2 + u2 + v3. (56)



 
 
 
 
 
 
 

 
 

 

 

 
 

 
 

 

 

 

 

 
 

 
 
 
 
 
 
 

 
 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 
 

According to [9], there exists a number r* > 0 such that 
e^r) = 0 and e2(r) = 0 for r > t*. It is easy to show 
that e3 and e4 are bounded in the interval [0, r*]. Since 
the error dynamics of e3 is the first order sliding mode 
for r > r*, there exists a number t* > t* such that 
e3(r) = 0 for t > t* [15]. Using the same argument, there 
exists a number r* > r* such that e4(r) = 0 for t > r* . 
Therefore, e = 0 for t > t* = max{r*, r\ r* [.

According to [9,15], the injection signals v12, v2, and 
v3 are employed to estimate Ao, tq, and w2 in (49), (50), 
(51), from which A$ -> A(1) and u — u.

Remark 4. A practical implementation of the sign func­
tion of the sliding mode observer is sign(e) « —j—y, which 
adds another design parameter, namely 8S.

Remark 5. The proposed sliding mode observer requires 
the tuning of six parameters: An, an, a2, a3, rs, 8S.

Remark 6. The parameters of the sliding mode observer 
depend explicitly on the information of the bounds of the 
unknown inputs and uncertainty.

3.3 Adaptive sliding mode observer

The adaptive sliding mode observer for our sys­
tem is designed based on the dual layer nested adaptive 
approaches in [13,14], The proposed adaptive sliding 
mode observer is given as follows:

.V, = a2 + a„(r) Ij’j - Aq | l/2sign(v1 - iq) 
-</>(.'j -5q,T„)

U = AA)sign(Pi - iq)

A® = — (-Ag, - /?fl(r)sign(jq - iq)

a-3 = (Aj(r) + ?/1)sign(4>sJ(y2) - i3)

(57)

(58)

(59)

(60)

iq = — (-Mj - (Aq(r) + //1)sign(Osj(j2) - a3)) (61)
si

a4 = (A2(r) + //2)sign(<h,](y3) - i4) (62)

m2 = —(-m2 - (A2(r) + ?/2)sign(<h^(jq) - i4)) (63) 
Ta

where r„, >/,, and rj2 are positive design parameters,

au(r) = q/L„(r)ao (64)

/l„(r) = A,,(r)/J„. (65)
where a0 and (k are fixed positive scalars and

</»(ei,LU) = -ex(r). (66)
U,(r)

Define

<WT) = 4A) - -y |A<j,l - (67)

where a is chosen such that 0 < a < l//?0 < 1 and eu is a 
small positive scalar chosen to satisfy

-L-|AO| + e„/2 > lA^I. (68)

The proposed adaptive element La(r) is given by

Ta(r) = l0 + Zfl(r) (69)

where /„ is a small positive design constant and

/„(r) = -pfl0(r)sign(<5fl(r)). (70)

The time-varying term in (70) is given by

where r00 is a positive design parameter,

.. ,r>_ / /»<> I^Ul if'lh„(r)| > <50(l 
0 otherwise

(71)

(72)

where 8a0 is defined in (67), yu0 > 0 and d’oo > 0 are design 
parameters. For j = 1,2, define

^y(r) = A/r) - — |fi,| - t;,,- (73)

where aaj is chosen such that 0 < auj < 1 and eaj > 0 is a 
small positive scalar chosen to satisfy

— |M/I+euy/2> ImJ. (74)
aaj

The proposed adaptive elements A,(t) are given by

kj(r) = -pfl/(r)sign(<5fl/(r)) (75)

for j = 1,2. The time-varying terms in (75) are given by

PajM = r0j + for7 = 1,2

where r0/ is a positive design parameter and

r tr} - / > <5()/
y 0 otherwise

where y > 0 and dj„ is a small positive parameter.

(76)

(77)

Theorem 3. Under Assumptions 1 and 2, there exists a 
positive number U such that the state and input estimates 
of the high gain observer presented in (57)—(63) satisfy 
a(v) - ^(r) = 0 and «(r) —>■ u(t) for r > rT.



 

 

 

 

 
 

 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 
 

 

 

 

 

 

 

 
 

 

 
 

 
 
 

 

 

 

 
 

 
 
 
 
 
 

 
 
 

 

 
 

 
 
 
 

 

 

 

 

Proof. The proof follows the results of the dual layer 
nested adaptive approaches in [13,14], The error dynam­
ics for the state estimation are

c, = e2 - «„(T) ki|1/2sign(ei) - (p(ex,La) (78)

e2 = - /Jfl(r)sign(e,) (79)
e3 = e2 - (^(r) + ^signfej) (80)
e4 = -e2 - (k2(r) + //2)sign(e4). (81)

According to [14], there exists a number r,' > 0 such that 
e^r) = 0 and e2(r) = 0 for r > r,'. It is easy to show that 
e3 and e4 are bounded in the interval [0, rj ].

According to [13], there exists a number r] > rj 
such that c3(t) = 0 for t > r, [15], Using the same argu­
ment, there exists a number r, > t‘ such that e4(r) = 0 
for r > r]. Therefore, e = 0 for t > V = max { r,, U, r,}.

The recovery of A^, tq, and m2 follows the standard 
filtering approach in sliding mode control [15] in (59), 
(61), (63), from which A<j, A$ and it —■ it.

Remark 7. Similar to the traditional sliding mode 
observer, the sign function of the adaptive sliding mode 
observer can be approximated as sign(e) » ——, which 
introduces another design parameter, that is oa.

Remark 8. The proposed adaptive sliding mode observer 
requires the tuning of 21 parameters: a0, ^0, //1; //2, a, l0,
r00’r0l’r02’ Ta’ eal’ea2’ aal’ aa2’ Zo0> T/l’ >o2» 5)0. ^01 > 5)2. 5r 
The tuning of the parameters was presented above. For 
more details, see [13,14],

Remark 9. The parameters of the adaptive sliding mode 
observer in general do not depend on the bounds of the 
unknown inputs and uncertainty.

3.4 Discussion

As presented above, the high-gain observer requires 
the tuning of nine parametes, the traditional sliding mode 
observer needs six parameters, and the adaptive high 
gain observer uses 21 parameters. All of the observers 
can estimate state variables and unknown inputs in the 
presence of uncertainties. The traditional sliding mode 
observer requires the least number of parameters but par­
tial knowledge of bounds of uncertainties and unknown 
inputs is required. Meanwhile, the adaptive sliding mode 
observer has an advantage over the traditional sliding 
mode observer in the sense that it does not need any 
knowledge of unknown inputs and uncertainties but its 
structure is the most complicated. The high-gain observer 
is flexible in terms of the number of parameters but

the tuning of parameters depends on the experience or 
trial-and-error tests of the designer. In addition, the 
high-gain observer can produce high peaks during tran­
sients due to its high gain.

IV. NUMERICAL EXAMPLE

For the purpose of estimation, we employ a 
backstepping controller for the output Lml to track 
a time-varying reference signal. A numerical example 
will be conducted using the proposed controller and 
observers to estimate the state variables and the activa­
tion signals.

4.1 Backstepping controller

In this paper, a tracking control scheme is con­
structed based on its counterpart for setpoint regulation 
[16].

Denote the reference signal as r(?) and assume that 
it is twice differentiable.

Denote the tracking error and its derivative as

0 x, - r
e2 ,Y| - r

Furthermore, define

f = ^S2^S2^ ~ 1 + — • (83)

Our goal is to design u} and u2 such that e converges to 
0. The error dynamics is described in the form

e = Ae + B£ (84)

where

0 1 0
A= 0 0 ’ B= i • (85)

m

Consider the Lyapunov function

V = [-e!Pe (86)

where P is a positive definite matrix. The system (84) is 
stable if a state feedback regulator is chosen as

f = ¥(e) = -Ke (87)

such that Ad = A - BK is Hurwitz. Hence,

V = \eT(ATdP + PAd)e = -\eT Qe (88)

where Q is positive definite. Thus, V < 0. This
implies that the error converges to 0. However, f is



 

 
 

 

 
 
 

 
 

 
  

 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 
 
 

 
 

 
 

 
 
 
 

 
 

 
 

 
 
 

 
 
 
 

 
 

 
 
 

 

not a direct control input. As a result, we introduce a 
variable

w = £- W). (89)

Its derivative is given as w = £-'¥(e) = <&\-,LS2-<b'S[Lsl + 
m^ - mr where O' = . - for z = 1,2.

The error dynamics is rewritten as 

e = Acle + Bw (90)

Augment the Lyapunov function V with a quadratic term

K,= r+ ’̂2- (91)

Taking its derivative yields Va = -\eTQe + irzr where 
k = O'S7(a2 + m2) - + tq) + dmkq, — mr + BTPe.

Here, k is chosen such that

k = -yw (92)

with y > 0 to make Va negative definite. Hence, the 
augmented system of e and w is asymptotically stable. It 
should be noted that we cannot deduce unique solutions 
of M] and u2 from k in (92).

From (92), O's?m2 - O^tZ] = jj where P = -K^ - 

K2e - (O'S2 + O's1)a2 + zzzrwithAj = y + KB, and K2 = 
(KA + yK + BTP)e.

Similar to [16], the least square virtual control
(J)' <J>'

inputs are given as ux = —— p and u2 = -&P where 
A = (O'S1)2 + (O'S2)2.

Table I. Controller parameters.

Parameter Equation Value

4.2 Simulation

To illustrate the proposed schemes, we conducted a 
numerical simulation for a dual muscle system. The total 
length of the dual muscle system is C = Lzzz, + Lm2 = 
5.54. The mass of the system is m = 1. The reference 
trajectory is chosen as r = 2.6315 + 0.01 sin0.5r.

Functions OS/, O,., are chosen as in (17) and (18), 
[17]. The parameter of (8) is W = 0.3. The parameters of 
(9) are chosen as: A = 0.25, gmax = 1.5.

The upper bound of OS2(a4) - O51(a3) is 1. 
The uncertainty of the system is A^r) = 0.005 + 
0.005 sin0.8r.

The controller parameters in Subsection 4.1 are 
presented in Table I. The parameters for the high gain 
observer (HGO) are presented in Table II. The tuning of 
the parameters was shown in Section 3.1. The parame­
ters for the sliding mode observer (SMO) are presented 
in Table III. The tuning of the parameters was shown 
in Section 3.2. The parameters for the adaptive sliding 
mode observer (ASMO) are presented in Table IV. The 
parameters are chosen according to [23, 24],

Table III. SMO parameters.

Parameter Equation Value

“n equation (45) 1.1
4n equation (46) 28.17
“2 equation (47) 1.1
“3 equation (48) 1
F equations (49) (51) 0.01
5, equation in Remark 4 0.01

Table IV. ASMO parameters.
equation (87)

equal ion (88)

equation (88)

equalion (92)

[ 0.5774 
10 
0

21.1284
17.3205

1.2198 |
0
10
17.3205 
36.5955

Parameter

“0
A)
7l
’ll

Equation Value

equation (64) 
equation (65) 

equations (60), (61) 
equations (62), (63)

1.1
2.97
0.2
0.2

a equation (67) 0.82
k equation (69) 0.4

Table II. HGO parameters. r00 equation (71) 0.4

Parameter Eauation Value r01 • r02 equation (76) 0.5
equations (59), (61), (63) 0.01

£h equations (30)-(36) 0.1 £al equation (73) 0.2
/’ll equation (30) 3 ea2 equation (73) 0.2
/’12 equation (31) 3 “al-“«2 equation (73) 0.99
/’13 equation (32) 1 Ym equation (72) 200
/?2I equation (33) 2 YaX’Yal equation (77) 300
/'22 equation (34) 1 500 equation (72) 0.001
/?31 equation (35) 2 ^01-502 equation (77) 0.001
/’32 equation (36) 1 A, equation in Remark 7 0.01



 

 

 

 

 

 

Fig. 2. The true value and estimates of .v using 3 observers: high gain observer (HGO), sliding mode observer (SMO), adaptive 
sliding mode observer (ASMO). [Color figure can be viewed at wileyonlinelibrary.com]

Fig. 3. The true value and estimates of u and A([, using 3 observers: high gain observer (HGO), sliding mode observer (SMO), 
adaptive sliding mode observer (ASMO). [Color figure can be viewed at wileyonlinelibrary.com]

Fig. 4. The true value and estimates of a using 3 observers: high gain observer (HGO), sliding mode observer (SMO), adaptive 
sliding mode observer (ASMO). [Color figure can be viewed at wileyonlinelibrary.com]
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Note that the model under consideration is dimen­
sionless as pointed out in Section II. Hence, there are no 
units specified on axes in the following figures.

4.3 Results discussion

It is shown in Fig. 2 that the estimates of a, , a2, a3, 
a4 using the three observers converge to their true val­
ues at about r = 0.5. It is seen that the estimates using 
the HGO exhibit peaks during transients while the SMO 
and ASMO do not possess such problems. Fig. 3 depicts 
the evolution of the estimates of the uncertainty and 
unknown inputs w, and u2, which track well their true 
values. The estimates of the activation signals shown in 
Fig. 4 converge to their true values. The closeness of the 
estimates and their true values reveals that the estimation 
schemes are effective in estimating the state variables and 
activation signals.

The simulation illustrates that the three observers 
are comparably effective in estimating the state variables 
and activation signals of the dual muscle system. Note 
that the three observers have a lot of freedom in tuning 
parameters. While the ASMO does not require knowl­
edge of the bounds of the unknown inputs and uncer­
tainty, the SMO offers more simple tuning with fewer 
parameters. Although the HGO provides good estimates, 
it can produce high peaks during transients, which in 
some cases are not desired.

V. CONCLUSIONS

In this paper, we have presented the agonistic- 
antagonistic muscle system based on the Hill muscle 
model. Three estimation approaches have been intro­
duced to estimate the state variables and activation sig­
nals. A numerical simulation was conducted to demon­
strate the efficiency of the proposed schemes.

The dual muscle system considered in this paper 
serves as a basic element in complicated muscle sys­
tems with multi-muscle multi-joint structures. In future 
work, the estimation problems of these systems will face 
interconnection structures and output measurement with 
nonlinear components. In addition, experimental tests 
will be carried out to validate the proposed estimation 
schemes. Possible challenges include calibration and scal­
ing of system structures in experiments.
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