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Abstract: In this contribution, we present a new method, based on a tunable excitation laser 
source and a robust common path interferometer in the detection channel. Its purpose is to 
image spectral excitation and emission information on a monochrome complementary metal 
oxide semiconductor (CMOS) camera. This allows us to spatially obtain both excitation and 
emission spectra of the whole imaged area and create derived images such as red-green-blue 
(RGB), excitation and emission maxima, and Stokes shift images. Our presented method is a 
further development of hyperspectral imaging that usually is limited to recording spatially 
resolved emission spectra. Taking advantage of the full camera chip should speed up the 
acquisition versus line scan or pointwise hyperspectral imaging. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Applications of fluorescence spectroscopy in life and materials science are wide spread [1,2]. 
Non-invasiveness, ease to implement, and specificity are only a few of the many advantages 
provided by fluorescence spectroscopy. By combining fluorescence methods with 
microscopy, one can obtain diffraction limited spatial information, which allows probing 
heterogeneities of micro- and nanostructures. One of such approaches involves measuring 
spatially resolved spectral information [3–5]. This so called hyperspectral imaging approach 
has promoted fundamental progress for the investigation of various samples e.g. cells [6–12], 
chromosomes [13,14], organic tissue [15–18], or nanomaterials [19–21]. While measuring 
spatially resolved emission spectra has become relativity standard in many laboratories, 
measuring excitation spectra is more challenging since it requires a tunable excitation source 
or an interferometer in the excitation path [22,23]. Examples of combining emission and 
excitation spectroscopy simultaneously are even scarcer [24–26]. Here we demonstrate that 
emission-side interferometry, in combination with a tunable excitation light source, offers an 
opportunity to achieve spatially resolved excitation and emission information in wide field or 
TIRF configuration [6]. 

For recording the spatially resolved emission spectra, we rely on a robust and ultra-stable 
interferometer that is based on birefringent materials, creating a polarization based time delay 
between two beams travelling on a common path [27–29]. The advantage of this approach is 
that the interferometer does not require beam stabilization or precise beam alignment. We 
have recently shown that implementation of such an interferometer in the excitation path of a 
confocal microscope allows recording excitation spectra of single molecules [29]. In that case 
the interferometer is solely modulating the broadband excitation light and the excitation and 
emission information are recorded from a single spot in a confocal manner. However, the 
application of the common path interferometer in the detection path of a widefield 
microscope is different and more versatile since it allows transmitting the spatially resolved 
spectral information of a large area at once. For recording the spatially resolved excitation 
spectra, we use a continuum laser source with an acousto-optic tunable filter (AOTF) 
wavelength selector. Scanning the excitation wavelength and simultaneously acquiring the 

                                                                                               Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8208 

#359068 https://doi.org/10.1364/OE.27.008208 
Journal © 2019 Received 31 Jan 2019; revised 1 Mar 2019; accepted 2 Mar 2019; published 6 Mar 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.27.008208&amp;domain=pdf&amp;date_stamp=2019-03-07


emission intensity allows us to reconstruct the spatially resolved excitation spectrum of the 
specimen. This approach yields images with full spectral (excitation and emission) 
information with a monochromatic camera. Moreover, it can be applied to samples of high 
spatial density since it does not demand distinguishable spots, commonly required for line- 
based hyperspectral imaging with diffraction gratings or prisms [8,30,31]. 

We demonstrate our excitation/emission imaging (EEI) approach with a mixture of seven 
different dye-coated zeolite crystals and compare the results with dispersion-based reference 
spectra. Additionally, we show, for a polarity sensitive dye, the spectral variations in 
excitation and emission, induced by differences in the matrix polarity. 

2. Results and discussion 

The experimental setup is shown in Fig. 1(a) and consists of scientific grade microscopy 
components in combination with a tunable light source and a common path interferometer in 
the detection path. Thereby, excitation spectroscopy is performed by scanning the laser line of 
a continuum white light laser and collecting the red-shifted fluorescence signal with a camera 
(see Fig. 1(b)). In addition, emission spectra are obtained by placing a birefringent based 
interferometer [32,33] in front of the complementary metal oxide semiconductor (CMOS) 
camera. For ideal polarization of the entrance light, the interferometer throughput is close to 
100% and therefore higher than for standard dispersion based spectrographs. The 
interferometer introduces a tunable delay between s- and p- polarization component of the 
fluorescence light. For each position of the interferometer, the fluorescence signal is detected 
on the CMOS camera. The time series of images provides an interferogram at each pixel 
which corresponds to the Fourier transform of the emission spectrum (see Fig. 1(c)). This 
approach allows for a fast acquisition of spatially resolved excitation and emission spectra of 
a large area. Assuming 0.5 s integration time per frame while scanning from 450 nm to 620 
nm in steps of 2 nm results in an acquisition time of 42.5 s. A similar time of 40 s is needed 
for measuring a spatially resolved interferogram with 200 data points and 0.2 s integration 
time per frame. This gives an overall measurement time of 82.5 s which can be further 
reduced by an appropriate choice of polarization optics and a high-power laser source. The 
advantage here is the parallel acquisition of data over the whole region of interest typically 
consisting of about 500 by 500 pixels. Performing the same experiment with a scanning 
confocal microscope leads to extremely long acquisition times. We can estimate the 
acquisition of a single excitation spectrum to be faster since the excitation intensity is strongly 
increased. The applied laser poses a technical limit of about 50 ms per data point which gives 
4.25 s per excitation spectrum. Also, a single emission spectrum would require less 
integration time which we estimate to be in the best case in the range of 0.01 s. However, the 
major drawback here is the scanning of a large number of pixels. This gives a total 
measurement time of 500 × 500 × 4.26 s = 295.6 h which is unrealistic for an experiment. 
Reducing the pixel number would increase the acquisition speed but also reduce the image 
quality. At such long exposure times it is likely that thermal drift would lead to image 
distortions. 
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Fig. 1. A) Scheme of the experimental setup consisting of a continuum light source (CLS), 
fiber, acousto-optic tunable filter (AOTF), beam splitter (BS), band pass (BP), short pass (SP) 
and long pass (LP) filters, objective, sample, birefringent wedge interferometer with polarizers 
(P1 & P2), birefringent block A and birefringent wedges B, mirror and a CMOS camera 
[27,32,33]. B) Measurement procedure for excitation spectra based on scanning the excitation 
wavelength. C) Measurement procedure for emission spectra based on interference of the 
fluorescence emission which leads to destructive/constructive interference depending on the 
optical path difference d and the transmitted spectrum. The Fourier transform yields the 
emission spectrum at every pixel. 

2.1 Hyperspectral imaging of seven different dyes 

To test the presented EEI setup and verify its performance, we produced a heterogeneous 
sample of dye-coated zeolite 5A crystals as described in the materials and methods section. 
These samples are ideal for demonstrating purposes as they feature bright emission from 
spatially well separated crystals which differ strongly in absorption and emission properties. 
Each crystal was coated with one of seven possible dyes. A 60 x 60 µm2 region of such a 
sample is shown in the light transmission image in Fig. 2(a). The crystals are randomly 
distributed and, in most cases, spatially separated. Despite the fact that we chose seven 
different dyes based on their solution spectral properties, coating the dyes on the zeolite 
crystals led to spectral changes which resulted in the fact that Rhodamine B became 
indistinguishable from Alexa 546 (see Fig. 5). The same also happened for Rhodamine 101 
and Alexa 594 (see Fig. 5). Dyes with overlapping excitation and emission spectra will 
always be hard to discriminate from each other with any spectrally resolving technique. If 
necessary, other parameters like decay time or anisotropy might be useful tools for 
discrimination. However, for the spectral imaging demonstration here, this is not a problem; it 
only means that we cannot discriminate with absolute certainty Rhodamine B from Alexa 546 
and Rhodamine 101 from Alexa 594. We acquired the fluorescence emission of this sample 
area upon 473 nm excitation while scanning the common path interferometer at the same time 
from about −0.6 mm to 0.6 mm. This wavelength was chosen since it was capable of exciting 
all seven dyes at varying levels of efficiency. The sum of the recorded intensity of all frames 
is shown in Fig. 2(b). It resembles the transmission image and verifies that all crystals are 
fluorescent. The resulting interferograms (examples shown in Fig. 2(e)) at each pixel were 
then Fourier transformed to obtain the full emission spectrum with a line width resolution of 
50 nm at 550 nm – which is sufficient for the broad dye spectra - and a peak positioning 
accuracy of about 0.3 nm for the highest signal-to-noise ratio [34,35]. This spectral 
information can now be used to create different types of images or be used for spectral 
unmixing which is, however, beyond the scope of this experimental methods article [5]. For 
demonstration purposes Fig. 2(d) shows an emission maximum image, color-coded according 
to the scalebar. The intensity matrix shown in Fig. 2(b) in combination with a fixed threshold 
serves as a mask in Fig. 2(d) in order to exclude non-zeolite related regions, which can be 
considered as background in this case. Representative spectra of the marked spots are 
displayed in Fig. 2(e) together with the corresponding interferograms. 
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Fig. 2. A) Transmission image of dye-doped zeolite crystals. B) Integrated fluorescence 
intensity from the interferometric data. C) Reconstructed RGB image from the spectra of each 
pixel. D) Color-coded emission maximum image. Values below a certain intensity threshold 
are colored white. The pixel size corresponds to 115 nm. E) Example spectra and 
interferograms of the marked spots in D. The gray spectra have been acquired confocally with 
a dispersion-based spectrograph from samples of unmixed zeolite crystals (see Fig. 5). Spot 1 
can be associated with Atto 488, spot 2 with Rhodamine 6G, spot 7 with Atto 633. 

We associated the emission spectra at each pixel with a red (R), green (G) and blue (B) 
wavelength range to create an RGB image in Fig. 2(c) as explained in more detail in the 
materials and methods section and Fig. 7. Emission maxima, as well as the RGB image, allow 
for an easy assessment of the different dye coated zeolites. However, while the RGB image 
suggests, e.g. that the emission properties at spot 6 and 7 are very similar, the emission 
spectra show that both particles are coated with different dyes. Association of spectral 
features to individual dyes was done by comparing the recorded spectra to reference spectra 
of the unmixed dye coated zeolites (see gray spectra in Fig. 2(e) and Fig. 5). While the 
association is unambiguous for Atto 488, Rhodamine 6G and Atto 633, two pairs of dye 
coated zeolites cannot be discriminated from each other, as pointed out previously. Apart 
from creating RGB images and plotting of peak positions, any other image can be created 
with the gained spectral information at each pixel. This includes FWHM information as well 
as ratio metric imaging. 

2.2 EEI of four spectrally close lying dyes 

The spatially resolved excitation spectrum can be measured by applying a tunable light source 
– in our case a continuum laser equipped with an AOTF. The fluorescence emission is then 
recorded while continuously scanning the excitation wavelength. For this purpose, the 
interferometer is set to zero delay in order to allow for maximum transmission. While 
scanning the full visible excitation range (420 nm to 700 nm) is technically possible, it is not 
advisable since it requires a 700 nm long pass filter which would suppress most of the 
fluorescence from blue and green emitters. Therefore, multiple scans with a shorter excitation 
range (e.g. 100 nm) and appropriate long pass filters are preferable. For demonstrating 
purposes, and in order to capture the excitation spectra in one scan, we have chosen four 
spectrally close lying dyes: Rhodamine 6G (530/560), Alexa 546 (555/575), Rhodamine B 
(557/577) and Alexa 594 (580/605). Transmission and integrated fluorescence images of such 
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a sample are shown in Figs. 3(a) and 3(d). Individually dye coated zeolite crystals are again 
clearly visible in the transmission and integrated fluorescence image. Measuring the 
excitation spectrum at every single pixel of the image has been performed by scanning the 
excitation wavelength from 450 nm to 620 nm in steps of 2 nm at a scanning speed of 500 ms 
per step, using a 633 nm LP filter in front of the CMOS camera. Faster scan rates for both, 
excitation and emission, are possible but in the present work inhibited by the low available 
excitation intensity of less than 10 W/cm2. Fluorescence images were recorded 
simultaneously. After correction for the wavelength dependent laser intensity, we receive 
excitation spectra such as the spectra exemplarily shown in Fig. 3(g) at every single pixel. For 
plotting maximum excitation and emission images as shown in Figs. 3(e) and 3(f), the product 
of the excitation and emission intensity matrix was combined with a fixed threshold in order 
to color non-zeolite related regions (background) white. The depicted excitation spectra have 
been taken from individual zeolites, marked in Figs. 3(e), 3(f), and 3(h) and resemble the four 
different dyes which have been used to coat the zeolite crystals. We find excitation peak 
positions at about 530 nm (Rhodamine 6G), 560 nm (Rhodamine B and Alexa 546) and 580 
nm (Alexa 594). Again, no clear decision can be drawn whether spectra peaking at about 560 
nm belong to Rhodamine B or Alexa 546 or even result from overlapping dye species (see for 
example spectrum 5 in Fig. 3(g)). The overlapping can be due to cross-contamination upon 
mixing or due to overlapping zeolite particles in the same area. However, combining 
excitation and emission information does allow us to extract information about the 
distinguishable dyes at most locations. Exciting at 473 nm and using the common path 
interferometer in front of the CMOS camera will give us the emission spectra, while the 
excitation scan of the continuum laser will give us the excitation spectrum at every pixel, as 
shown in Fig. 3(g). Spot 3 and 5 can now be easily distinguished from each other by the 
different emission spectra and Stokes shift. Spot 3 belongs to Rhodamine B or Alexa546 
(which cannot be distinguished, neither by excitation nor emission spectra, see Fig. 5) while 
spot 5 can be attributed to Alexa594 overlapping with Rhodamine B or Alexa546 (see Fig. 5). 
At this point an experimental validation of the gained spectra through comparison with 
conventional fluorescence measurements of the dye in solution is not appropriate since the 
spectral properties of the dyes attached to zeolite crystals deviate strongly from the solvent 
case. In order to verify the accuracy of the interferometer-based emission spectra, we 
measured at the same positions the emission spectra with a confocal microscope equipped 
with a dispersion-based spectrometer. The resulting spectra are shown in Fig. 3(g) in green 
and agree well with the spectra we received from the interferometer approach. Slight 
deviations might arise from the smaller excitation volume of the confocal microscope in 
comparison to the widefield microscope. The excitation and emission spectra were again used 
to create RGB images and can be seen in Figs. 3(b) and 3(c). The difference in peak positions 
for excitation and emission contained in Figs. 3(e) and 3(f) yield the spatially resolved Stokes 
shift presented in Fig. 3(h). Combined excitation, emission and Stokes shift images allow us 
to identify spots stained with the same dye (spot 3 and 4) as well as to distinguish between 
different dyes which appear similar, e.g. in emission (spot 2 and 3). 
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Fig. 3. A) Transmission image of dye-doped zeolite crystals. B) Reconstructed RGB image 
from the excitation spectra at each pixel. C) Reconstructed RGB image from the Fourier 
transform of the interferogram at each pixel. D) Integrated fluorescence intensity from the 
interferometric data. E) Color-coded excitation maximum image. Values below a certain 
intensity threshold are colored white. F) Color-coded emission maximum image. Values below 
a certain intensity threshold are colored white. The pixel size corresponds to 115 nm. G) 
Example excitation and emission spectra of the marked spots in Figs. 3(e) and 3(f). For 
comparison, the emission spectra recorded at the same positions with a confocal microscope 
and a dispersion-based spectrograph are shown in green (see spectra of the unmixed dye coated 
zeolites in Fig. 5) H) Color-coded Stokes shift in units of cm−1 as calculated from the 
excitation and emission maxima from the data in Figs. 3(e) and 3(f). Values below a certain 
intensity threshold are colored white. 

2.3 Stokes shift imaging of a polarity sensitive dye 

The previous example demonstrates how imaging spatially resolved excitation, emission 
maxima and Stokes shifts can help to distinguish between different emissive features. In a 
next example, we want to use Stokes shift imaging in order to determine different polymers 
(polarity), containing Nile Red that coat zeolite 5A crystals. Nile Red has been widely used as 
a molecular probe for polarity in lipids [36–39] and polymers [40]. Individual batches of Nile 
Red embedded in PVA or PEG attached to zeolite crystals were mixed and deposited on a 
coverslip. Similar to our previous examples the zeolite crystals act as a support to form 
heterogeneous micrometer sized structures. Fluorescence excitation spectra were acquired by 
scanning the excitation wavelength from 450 to 640 nm in steps of 1 nm and simultaneously 
measuring the fluorescence emission after being transmitted through a 647 nm long pass 
filter. The measured fluorescence intensity values were corrected afterwards for the 
wavelength dependent laser intensity. The interferograms were acquired at 473 nm excitation 
wavelength by scanning the common path interferometer from −0.5 mm to 0.5 mm within 
200 steps using a 488 nm long pass filter. Figure 4 shows transmission, integrated 
fluorescence, RGB images and color-coded maxima for excitation and emission as well as the 

                                                                                               Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8213 



Stokes shift images together with example spectra of five different spots. The influence of the 
two different polymers on the excitation and emission properties are obvious when comparing 
the five different example spots. Spot 1 and 2 with excitation maxima at about 560 nm and 
emission maxima at about 630 nm can be clearly attributed to Nile Red embedded in PEG 
when compared with the ensemble data of a pure Nile Red/PEG polymer film (see Fig. 6). 
Contrary, spot 3, 4 and 5 can be associated with emission from Nile Red being embedded in 
PVA with excitation maxima at about 595 nm and emission maxima at about 610 nm (see 
Fig. 6). Inspection of Figs. 4(c) and 4(f) reveal only minor changes for emission spectra of 
Nile Red in the two polymers. Emission spectra are commonly used as a measure for polar or 
hydrophobic heterogeneities in life and materials sciences [12,36,39]. Therefore, accurate 
spatial discrimination of such heterogeneities might be hampered when environmental effects 
on the emission properties become negligible. Simultaneous acquisition of spatially resolved 
excitation spectra can provide additional means to probe these heterogeneities as can be seen 
from Figs. 4(b), 4(e), and 4(h). For the present example the spatial distribution of the Stokes 
shift in Fig. 4(h) gives the best contrast and allows for an easy and visually intuitive 
discrimination of the two different polymers. 

 

Fig. 4. A) Transmission image of Nile Red doped PVA and PEG coated zeolite crystals. B) 
Reconstructed RGB image from the excitation spectra at each pixel. C) Reconstructed RGB 
image from the Fourier transform of the interferogram at each pixel. D) Integrated 
fluorescence intensity from the interferometric data. E) Color-coded excitation maxima image. 
Values below a certain intensity threshold are colored white. F) Color-coded emission 
maximum image. Values below a certain intensity threshold are colored white. The pixel size 
corresponds to 287 nm. G) Example excitation and emission spectra of the marked spots in 
Figs. 4(e) and 4(f). For comparison, the emission spectra recorded at the same positions with a 
confocal microscope and a spectrograph are shown in green. H) Color-coded Stokes shift in 
units of cm−1 as calculated from the difference between the data in Figs. 4(e) and 4(f). Values 
below a certain intensity threshold are colored white. 
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3. Materials and methods 

The experimental setup is shown in Fig. 1(a) and consists of scientific grade microscopy 
components (inverted microscope, objective, filters, CMOS camera) in combination with a 
tunable light source (continuum laser with an AOTF) and a common path interferometer in 
the detection path. 

Excitation spectroscopy was performed by scanning the laser line of a continuum white 
light laser (NKT SuperK EXTREME EXB-6 with SuperK SELECT AOTF wavelength 
selector). The SuperK SELECT provides a laser line width of about 3.5 nm full width at half 
maximum [41]. Remaining laser sidebands were cleaned up with a 633 nm or 650 nm short 
pass filter (SP01-633RU-25 and FF01-650/SP-25, Semrock). The laser light was then 
reflected by a 30:70 beam splitter (XF122 Omega Optical) into an Olympus IX71 microscope 
and illuminated the sample through an objective (Olympus, UPLFLN 100 × NA = 1.4, PLAN 
FL N 100 × NA = 0.95 or PlanC N 40 × NA = 0.65). The red-shifted fluorescence signal was 
collected by the same objective. Afterward, the remaining laser light was blocked by a 633 
nm (BLP01-633R-25, Semrock) or 647 nm (BLP01-647R-25, Semrock) long pass filter. The 
excitation wavelength was scanned in steps of 1 or 2 nm while the fluorescence signal was 
acquired with a CMOS camera (Hamamatsu ORCA-flash 4.0 C11440) for each excitation 
step (see Fig. 1(b)). Excitation power correction of all measurements was performed by 
measuring the power above the objective as a function of excitation wavelength with a 
photodiode power sensor (S120VC Thorlabs). 

Confocal microscopy for comparing the Fourier based emission spectra with dispersion-
based emission spectra was performed using a home-built confocal microscope. Details on 
this setup can be found in work from Liao et al. [42]. Confocal excitation spectra were 
recorded the same way as described above by scanning the laser line of a continuum white 
light laser, now using only an avalanche photo diode (Perkin-Elmer CD3226) as detector. 

Emission spectra were obtained by placing a birefringent based interferometer (GEMINI, 
NIREOS) [32,33] in front of the CMOS camera. The interferometer firstly polarizes the 
emission linearly by a Glan-Thompson prism at an angle of 45° with respect to the fast axis of 
the following birefringent block A (see Fig. 1(a)). This block A introduces a fixed delay 
between the two orthogonal components of the beam. Block B consists of two identical 
birefringent wedges with the opposite orientation of the fast and slow optical axis with respect 
to block A. One of the wedges is mounted on a precision translational stage which allows for 
tuning the position of the wedge and thereby the effective optical path length in the 
birefringent material of block B. Typically, the displacement between the two wedges of the 
interferometer was scanned from −0.5 mm to 0.5 mm within 200 steps (resulting in a 
wavelength accuracy of about 0.3 nm for the maximum achievable signal-to-noise ratio). For 
each step of the interferometer, the fluorescence signal was detected on the CMOS camera. 
The time series of images provides an interferogram at each pixel which corresponds to the 
Fourier transform of the emission spectrum (see Fig. 1(c)). However, since the time delay of 
the two beam paths is not linearly dependent of the wedge position, the interferometer needs 
to be calibrated with back reflected white light and a spectrograph with an optical fiber whose 
entrance is placed in the imaging plane where otherwise the camera is positioned. A detailed 
description of how the calibration process works can be found in a recent publications from 
Perri et al. [27]. Synchronization of the continuum laser, interferometer, and CMOS camera 
was accomplished by self-written LabVIEW routines. Data analysis was performed with self-
written MATLAB routines. 

3.1 Sample preparation 

In order to obtain micro particles with different excitation and emission maxima we prepared 
seven batches of 10 mg zeolite 5A (zeolites are a gift from UOP Antwerpen), each coated 
with one of seven different commercial dyes at high concentration (ATTO 488 – ATTO-TEC, 
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Rhodamine 101 - Merck, Alexa 546 – Invitrogen, Rhodamine 6G - Merck, Rhodamine B - 
Merck, Alexa 594 – Invitrogen and ATTO 633 – ATTO-TEC). After evaporation of the 
solvent, the surface dyed zeolite crystals were mixed and spread on a cover glass in order to 
image the bright crystals, each with an individual dye coating. Reference spectra can be found 
in Fig. 5. During the mixing process the differently coated zeolites can come in contact with 
each other allowing for cross-contamination to a certain extend. 

 

Fig. 5. Confocally measured excitation and emission spectra from non-mixed dye coated 
zeolite crystals utilized also for the experiment shown in Fig. 2. Excitation wavelength for 
acquiring emission spectra was 473 nm. 

In order to prepare heterogeneous samples with the polarity sensitive fluorophore, we 
prepared an aqueous solution of poly vinyl alcohol (PVA - Merck) and another aqueous 
solution with poly ethylene glycol (PEG – Sigma Aldrich/Merck). After adding Nile Red 
(Thermo Fisher Scientific) to both solutions, the zeolite 5A crystals were added to the 
individual solutions. After solvent evaporation the crystals, coated with the different Nile 
Red-embedding polymers, were mixed and spread on a cover glass. Reference spectra can be 
found in Fig. 6. 
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Fig. 6. Confocally measured excitation (blue) and emission (red) spectra of Nile Red 
embedded in films of pure PVA (solid, Stokes shift 336 cm−1) and pure PEG (dashed, Stokes 
shift 1855 cm1). 

3.2 Image creation 

The spectral regions for R, G and B are color-coded in Fig. 7(a) and have been defined 
arbitrarily as B = 420 - 498.5 nm, G = 498.5 – 576 nm and R = 576 - 750 nm. The RGB 
images are created by associating the highest intensity which can be found with respect to 
pixels and RGB channels to the number 255. In this case, the red channel at position 1 gives 
the highest intensity with 10.72 Mio. cts. Hence, the green and blue channel at position 1 are 
associated with the values 3.75 / 10.72 · 255 = 89 and 0.3 / 10.72 · 255 = 7, respectively. We 
analyze the data of all other pixels the same way, always referring to 10.72 Mio. cts as the 
reference value for normalization. Superimposing the resulting RGB values results in the 
RGB image as shown in Fig. 2(c) and Fig. 7(b) on the left side. The RGB values together 
with the color are additionally shown in Fig. 7(c) for the three example positions. Apparently, 
the RGB colors for position 1 and 2 differ dramatically despite the fact that the spectra differ 
only in intensity. From this we can conclude that RGB colors are not an ideal measure for 
spectral features since they are intensity dependent. This becomes even more obvious, when 
simply multiplying the RGB values by a factor of 3 and in this case saturating some of the 
color detection channels. The resulting RGB image in the middle of Fig. 7(b) appears brighter 
but the colors as depicted for the three example positions in Fig. 7(c) have not much in 
common with the previous RGB colors. A more representative option for visualizing spectral 
properties constitutes color-coded plotting of the peak positions, especially in case of emitters 
featuring well-defined emission spectra. An example of such a plot can be found in Fig. 7(b) 
on the right side where the color-coded wavelength of the emission maximum of each pixel is 
plotted. Since position 1 and 2 belong to the same particle, hence dye, the spectral properties 
are the same and the plot shows the same color for both positions. 
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Fig. 7. A) Representative emission spectra of the three spots marked in B after Fourier 
transformation. The three areas mark the color channels for red, green and blue. B) Left: RGB 
image reconstructed from the emission intensity values appearing in the R, G and B channel 
for all pixels. Middle: Same as left but with threefold increased RGB values. Right: Image of 
the emission maximum wavelength for every pixel. The wavelength values have been 
converted to RGB values in order to plot them correctly. Values below a certain intensity 
threshold are colored white. Also shown are the intensity values for the example positions 1, 2 
and 3 with respect to the RGB channels. C) Color examples for position 1, 2 and 3 for the three 
cases shown in B including the applied RGB values. 

4. Conclusions 

We have introduced a setup that allows for spatially resolved excitation and emission imaging 
(EEI) based on a tunable continuum light source and a common path interferometer in the 
detection path. The ease of implementation of the common path interferometer facilitates the 
introduction of EEI in any wide field or TIRF microscope. The additional benefits, EEI can 
bring, were illustrated by three test cases. Besides full frame hyperspectral imaging, it allows 
to record excitation spectra and hence create Stokes shift images. The latter can find 
application for imaging local heterogeneities that affect the Stokes shift, e.g. the polarity as 
illustrated for Nile Red in different matrices. In combination with optimized polarization 
optics our approach should also be realizable at the single molecule level where the 
nanoscopic environment leads to strong heterogeneities in the measured Stokes shift [22]. The 
presented approach can enhance the currently established hyperspectral imaging methods in 
the fields of life and materials science imaging. 
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