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SUMMARY

The brain faces the difficult task of maintaining a sta-
ble representation of key features of the outside
world in noisy sensory surroundings. How does the
sensory representation change with noise, and how
does the brain make sense of it? We investigated
the effect of background white noise (WN) on tuning
properties of neurons in mouse A1 and its impact on
discrimination performance in a go/no-go task. We
find that WN suppresses the activity of A1 neurons,
which surprisingly increases the discriminability of
tones spectrally close to each other. To confirm the
involvement of A1, we optogenetically excited par-
valbumin-positive (PV+) neurons in A1, which have
similar effects as WN on both tuning properties and
frequency discrimination. A population model sug-
gests that the suppression of A1 tuning curves in-
creases frequency selectivity and thereby improves
discrimination. Our findings demonstrate that the
cortical representation of pure tones adapts during
noise to improve sensory acuity.

INTRODUCTION

Sensory processing is the basis of our interaction with the world

and an essential part of brain function. At the cortical level, we

know that neurons are informative about sensory inputs, as ac-

tivity fromcortical neurons can be decoded to reveal the stimulus

inputs (Mesgarani et al., 2009; Rabinowitz et al., 2013; Klampfl

et al., 2012). However, despite the successful decoding of sen-

sory mapping, it is still unclear what sensory-related activity

the brain uses for generating perceptions and goal-directed

behavior.

Cortical neurons are typically responsive to only a subset of

sensory features, implying a distributed sensory representation.

A clear example of this is the auditory cortex, where specific

neurons are selective to distinct sound frequencies. When pre-

sented with an auditory stimulus, the cortex receives spike trains

resulting from activity in the cochlea. The cochlea deconstructs
Cell Repor
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the external sound environment into frequency components (Von

Bekesy, 1960), which are passed further along the auditory

pathway up to the primary auditory cortex in a segregated

manner (Guo et al., 2012; Hackett et al., 2011). This spatial

separation of frequency components, conserved from the co-

chlea to the primary auditory cortex, is referred to as tonotopy

(Evans et al., 1965; Goldstein et al., 1970). At the cellular level,

tonotopy translates into spatially organized neurons with fre-

quency-selective receptive fields. In many cases, these recep-

tive fields are well characterized by a bell-shaped response to

a varying stimulus, also referred to as a tuning curve. Auditory

tuning curves are not, however, static; they have been shown

to adapt during changes in stimulus context (Atiani et al., 2009;

Reig et al., 2015) or attentional state (Carcea et al., 2017; Francis

et al., 2018; Fritz et al., 2003), and it is believed that this flexibility

is relevant for adjusting the dynamic range of sensory represen-

tation (Rabinowitz et al., 2013).

Embedding relevant sound features in background noise may

also change tuning features. Previous studies in anesthetized

animals have shown that background white noise (WN) intro-

duces a threshold effect that lowers the response of cortical

neurons to pure tone stimuli (Brugge et al., 1998; Ehret and

Schreiner, 2000; Liang et al., 2014; Phillips, 1990; Zhou and

Wang, 2010; Teschner et al., 2016). At the perceptual level,

previous human psychophysics studies mostly reported a

decrease in auditory saliency with noise (Martin et al., 1997;

Whiting et al., 1998), but some showed a positive effect of noise

on signal discrimination (Zeng et al., 2000) or speech perception

(Kishon-Rabin et al., 2008). In animal models, where a direct

correlation between neuronal activity and behavior would be

possible, psychophysical experiments seeking to measure the

limit of perception are more challenging. A recent study shows

that sound location discrimination of a pure tone decreases

gradually with signal to noise ratio (Sollini et al., 2016). It is un-

clear, however, how the threshold effect on tuning curves re-

ported at the neuronal cortical level extends to animals in the

awake state and how this suppression of activity influences the

behavior of the animal.

A previous study confirms that the primary auditory cortex is

directly involved in driving auditory perceptions and judgments

during sensorimotor integration and behavior in a frequency-

discrimination task (Aizenberg et al., 2015). Another study
ts 29, 2041–2053, November 12, 2019 ª 2019 The Author(s). 2041
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:tania.barkat@unibas.ch
https://doi.org/10.1016/j.celrep.2019.10.049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.10.049&domain=pdf
http://creativecommons.org/licenses/by/4.0/


indicates that changes in cortical neural population responses

can alter behavioral performance (Briguglio et al., 2018). Also,

the decoding of cortical activity confirms that the stimulus

information needed for the categorization of sounds is present

in A1 cortical neurons (Bathellier et al., 2012; Centanni et al.,

2014). Despite this knowledge, we still have a poor understand-

ing of how tuning curves are used by the brain to construct

representations of auditory stimuli and how perturbations of

these representations modify sensory-driven perceptions and

related behaviors.

In the present study, we investigated the effect of WN on

cortical tuning curves in awake mice and the behavioral rele-

vance of the resulting tuning curve perturbations. During WN,

we found a general suppression of tone-evoked activity in A1,

in line with previous studies in anesthetized animals (Brugge

et al., 1998; Ehret and Schreiner, 2000; Liang et al., 2014; Phil-

lips, 1990; Zhou andWang, 2010; Teschner et al., 2016). Associ-

ated with this suppression, we surprisingly found that WN im-

proves discrimination performance for two tones with small

frequency differences. We then asked whether the shift in

cortical neuronal tuning properties is the underlying mechanism

for this improved discriminability. Using optogenetics, we

manipulated the neuronal response properties directly in A1

to mimic the tuning changes observed during our WN experi-

ments and found that discriminability was improved for the

same frequency range. Measurements in the auditory thalamus

only weakly reflected the cortical tuning changes following the

two perturbations. Finally, we used a simple model to illustrate

how general suppression in tuned activity—as observed in A1

but not in thalamus—can lead to behavioral improvement in

discrimination. Together, our results demonstrate that the tuning

properties of A1 neurons are used by the brain to perform audi-

tory discrimination and judgments relevant for stimulus-driven

behavior.

RESULTS

WN Suppresses Responses to Pure Frequency Tones
in A1
To investigate the stability of the representation of key features

of an auditory stimulation in the presence of noise, we started

by characterizing neural responses to pure frequency tones,

perturbed it with a WN background, and determined whether

this modification had any consequences at the behavioral

level. Awake head-fixed mice were exposed to 37 randomly

played pure frequency tones, spanning 3.7 octaves from 4 kHz

to 48.7 kHz at 60 dB sound pressure level (SPL), lasting 50 ms

each. Pure tones were presented in either a silent or continuous

WN background at 50 dB SPL (referred to as no-WN or WN con-

ditions, respectively). We recorded neuronal activity in the pri-

mary auditory cortex with multi-electrode arrays composed of

four shafts with eight recording sites each. Voltage traces across

the 32 channels were processed to extract single-unit (SU) activ-

ity (see STAR Methods).

Response characteristics of SUs were analyzed from the

smoothed curve (see STAR Methods), obtained by plotting the

mean spike rates (10 trials per stimulus) during sound stimulation

as a function of the stimulus frequency (Figures 1A–1C). Each
2042 Cell Reports 29, 2041–2053, November 12, 2019
SU’s preferred frequency was determined as the stimulus fre-

quency evoking the peak spike rate of the smoothed curve.

The peak spike rate was measured from the mean of the raw

trial at the preferred frequency. The baseline spike rate was

calculated as the median response spike rate for stimulus fre-

quencies that elicited a spike rate lower than the mean spike

rate of all stimulus frequencies. When comparing trials with no

WN and those with WN, we found that peak spike rates were

decreased (peaknoWN = 29.3 ± 2.7 Hz; peakWN = 23.0 ± 1.9 Hz;

Nmice = 10, nsu = 159; p = 0.0007; degrees of freedom [df] =

158; linear mixed model [LMM]) (Figure 1D). Baseline spike rates

were also decreased (baselinenoWN = 12.5 ± 1.5 Hz; baselineWN =

8.4 ± 1.0 Hz; Nmice = 10; nsu = 159; p = 0.0005; df = 158; LMM)

(Figure 1E). These changes were observed across the whole to-

notopic range (Figure S1A) and were not related to changes in

preferred frequency (Figure S2A). We represented the overall

change in tuning curves by aligning all responses to peak and

calculating the grand mean (Figure 1F). WN produced a com-

bined additive and multiplicative shift (Figure 1G; regression

slope = 0.791; intersection = �1.53 Hz; r2 = 0.97) corresponding

to 26.1% suppression at peak and 14.2% suppression at

baseline.

We then quantified frequency selectivity by measuring the

percentage of stimulus frequencies tested giving a response

with a spike rate at or above a threshold. The threshold was

set at a fraction of each SU peak spike rate in each condition

(no WN and WN). This percentage of frequencies represented

at a threshold of 0.5 of the peak rate was significantly decreased

(Figure 1H; percentage of freq. represented: noWN = 41.0% ±

2.1%; WN = 34.4% ± 1.8%; Nmice = 10; nsu = 159; p = 0.0004;

df = 158; LMM), corresponding to an increased frequency

selectivity with WN. The increased frequency selectivity was

confirmed by a significant decrease in the sigma of the

Gaussian fit on the subset of cells whose tuning curves could

be approximated by a Gaussian distribution (see STAR

Methods; Figure S3A; nsu = 27; p = 0.019; df = 26; LMM).

Though more traditional, the method to estimate tuning width

by measuring the sigma of the Gaussian fit does assume that

tuning curves can be well fitted by a Gaussian function. This

is the case for some SUs, but definitely not for all of them (27

out of 159 neurons in this case). The significant increase in fre-

quency selectivity is, however, also observed in SUs that did not

present a classical Gaussian tuning curve, as indicated by the

less-conventional analysis method of frequency selectivity

used here (Figure 1H).

As it is known that noise correlations may influence the abil-

ity of a population to code for sensory stimuli (Lin et al., 2015;

Seriès et al., 2004), we next analyzed whether background WN

influences inter-trial noise correlation. Noise correlation was

only computed for trials with minimum spike rates above

1 Hz. Comparing no-WN to WN trials showed no significant

difference (Figure 1I; npairs = 534; p = 0.187; df = 534; LMM).

We also compared trial-by-trial variance, either as mean vari-

ance or variance normalized to mean spike rates (i.e., fano

factor). The mean fano factor compared across all frequencies

tested was unchanged (Figures 1J and 1K; fanonoWN = 1.29 ±

0.03; fanoWN = 1.35 ± 0.04; p = 0.151; df = 157; LMM). The

average variance decreased with WN, as expected, since



Figure 1. WNSuppresses Responses to Pure

Frequency Tones in A1

(A) Schematic of experimental setup. An extracel-

lular electrode is inserted into A1 of awake mice

while pure tones are played in a silent or with-WN

background.

(B) Example from a SU’s raster plot of pure tone

responses to 37 frequencies across 370 trials in no-

WN and WN conditions.

(C) Same SU as in (B), with smoothed tuning curves

plotted overlaying vertical lines of trial means ±

SEM for each frequency tested. The dotted line

indicates mean spontaneous activity during noWN.

(D and E) Scatterplot of peak spike rates (D) and

baseline spike rates (E) in no-WN versus WN con-

ditions for all SUs (nsu = 159; Nmice = 10). The dotted

lines represent the unity lines, and the solid lines

(gray) are the regression lines. Boxplots with mean

spike rates (***p = 0.0007, ***p = 0.0005 for peak

and baseline, respectively; LMM).

(F) Mean of peak-aligned tuning curves (nsu = 159;

Nmice = 10). Shaded areas indicate 5%–95% con-

fidence intervals. The dotted line represents mean

spontaneous activity without WN.

(G) Mean tuning curves from (F) plotted against

each other for all stimulus frequencies. The solid

line indicates the regression line (slope = 0.791;

intersection = �1.53 Hz; r2 = 0.97).

(H) Means of cell-by-cell percentage of frequencies

represented as a function of a normalized spike rate

threshold. The dotted line is the subtraction of no-

WN (black) and WN (green) lines. Boxplots with

percentage of frequency represented at 0.5 of spike

rate peak for no-WN and WN tuning curves (***p =

0.0004; LMM). Inset shows p values comparing no

WN and WN for frequencies represented at all

thresholds of peak-normalized tuning curves using

Wilcoxon test. The vertical dotted line shows p =

0.05.

(I) Noise correlation between pairs of SUs within

individual mice (npairs = 534; p = 0.187; df = 534;

LMM).

(J) Fano factor of response to stimulus frequency

relative to preferred frequency for all SUs.

(K and L) Mean fano factor (K) and trial-to-trial variance (L) across all frequencies (fano factor: p = 0.151, LMM; variance: **p = 0.0029, LMM). All boxplots show

medians and 25th–75th and 10th–90th percentiles; circles indicate means.

See also Figures S1 and S2.
variance scales with the number of spikes (Figure 1L; varian-

cenoWN = 1.31 ± 0.17; varianceWN = 0.90 ± 0.17; p = 0.0029;

df = 158; LMM).

In summary, our findings show that background WN signifi-

cantly suppresses responses to pure tone stimulation, both as

peak and baseline spike rates, resulting in a negative shift of

tuned responses of A1 neurons. Noise correlation and fano fac-

tor remain unaffected.

WN Improves Pure Tone Discrimination in a Frequency-
Dependent Manner
How does such a mean suppression of spiking activity in audi-

tory cortical neurons affect tone discrimination performance in

mice? We tested the effect of background WN as mice per-

formed a go/no-go discrimination task. The mice were trained

to lick a drop of liquid in response to a pure frequency tone (go
tone) and to restrain from licking when hearing another tone

frequency (no-go tone). An incorrect lick was punished with

a mild air puff and time out (Figure 2A). The mice learned

the task in 3–6 days (Figures S4A and S4C). Once the task

was learned, the difficulty of the task was increased by

bringing the no-go tone closer in frequency to the go tone, un-

til the animal was no longer able to discriminate between the

tones (Figures S4A, S4B, and S4D). In this testing phase, the

go tone was kept constant at 7 kHz, and the no-go tone

was progressively shifted from 12 to 8 kHz in steps of 1 kHz

(corresponding to frequency intervals of 0.8, 0.65, 0.5, 0.35,

and 0.2 octaves between the go and no-go tones). Blocks

of 100 trials with WN or no-WN backgrounds were tested

in random order for each no-go tone (Figure S4B; see

STAR Methods). The increasing difficulty of the task was re-

flected in a gradual decrease in the discriminability index
Cell Reports 29, 2041–2053, November 12, 2019 2043



Figure 2. WN Improves Pure Tone Discrimi-

nation in a Frequency-Dependent Manner

(A) Schematic of auditory go/no-go discrimination

task.

(B) Hit rate versus FA rate for no-WN (filled circles)

and WN background (empty squares) for each go/

no-go frequency interval. Each pair of filled circle

and empty square represents a singlemouse tested

at different frequency intervals.

(C) Discriminability index d0 for WN versus no-WN

conditions. The color code represents the frequency

interval between the go and no-go tones, as in (B).

(D) Same data as in (C), but displayed as d0 changes
with WN background (n = 5, 8, 9, 6, 9 mice;

**p = 0.002, p = 0.001; paired t test). Data show

mean ± SEM.

See also Figure S4.
d0 (Figure S4D). Switching the no-go tone to 0.8 octaves be-

low the go tone (4 kHz) produced the same d0 as the no-go

tone at 0.8 octaves above the go tone (Figure S4E). This im-

plies that the discrimination difficulty is related to the distance

in octave and not to the absolute frequencies. The decay in

d0 is a result of a decreasing hit rate as well as increasing

false alarm (FA) rate (Figures 2B and S4F), indicating that

the increasing difficulty affects both go and no-go trials.

A gradual decline in motivation due to increasing satiety

during a session was not the cause of this decay, since

d0 was back to its initial value at the end of the session

(Figure S4G).

Including background WN significantly improved discrimina-

tion performance for frequency intervals of 0.35 (d0
WN-d

0
noWN =

0.24 ± 0.07; nmice = 8; p = 0.001; paired t test) and 0.2 octave

(d0
WN-d

0
noWN = 0.39 ± 0.05; nmice = 5; p = 0.002; paired t test)

but had no effect for larger frequency intervals (Figures 2C and

2D). Given that the reaction time from the tone onset to the lick

was not affected by background WN (Figures S4H and S4I),

this manipulation did not seem to affect the effectuation of

motor-related programs.

These experiments lead to the counterintuitive observation

that noise can improve auditory discrimination. In humans, it

is clear that auditory acuity, like frequency discrimination
2044 Cell Reports 29, 2041–2053, November 12, 2019
(Henning, 1967) or speech recognition

(Martin et al., 1997), can be impaired by

noise. However, some studies have also

shown that noise allows for smaller-fre-

quency difference detection (Labiak and

Wilson, 1974), increases auditory signals

(Alain et al., 2009), or promotes acuity

for certain signal-to-noise ratios (Javel

et al., 1971; Kishon-Rabin et al., 2008;

Zeng et al., 2000). To test whether the

behavioral changes we observed are

related to the changes in cortical tuning

curves, and to address the possibility

that WN may affect discrimination perfor-

mance by mechanisms residing outside

of A1 or by mechanisms that we did not
consider to analyze, we next used optogenetics to selectively

control the tuning curves of A1 neurons.

Light-Induced Activation of PV+ InterneuronsModulates
Frequency Tuning in the Auditory Cortex
It has been reported that specific activation of PV+ cells can alter

the tuning properties of sensory neurons. For example, PV pho-

toactivation in the auditory cortex has been shown to decrease

the magnitude of tone-evoked responses (Aizenberg et al.,

2015; Hamilton et al., 2013) and to produce a mixture of divisive

and subtractive suppression on both spontaneous and tone-

evoked neuronal activities (Seybold et al., 2015). In order to

specifically manipulate auditory cortical neuron responses, we

expressed the light-sensitive cation channel, channelrhodop-

sin-2 (ChR2), in PV+ interneurons using a breeding cre-lox

approach (see STAR Methods). ChR2 was successfully ex-

pressed in the majority of PV+ neurons in the auditory cortex,

and all ChR2-positive neuronswere positive for PV+ (Figure S5A).

We tested the light effect on auditory cortical spiking with cell-

attached and intracellular recordings (Figure S5C). We found

that the suppression in spiking activity of excitatory neurons

caused by light-driven activation of PV+ interneurons varied

from mouse to mouse and was independent of cortical depth

up to 800 mm below the pia surface (Figure S5E). We titrated



Figure 3. Light-Induced Activation of PV+ In-

terneurons Modulates Frequency Tuning in

the Auditory Cortex

(A) Example of frequency-dependent spike rate

responses in light-off (black) and light-on (red)

conditions in a PV-ChR2 mouse, as recorded with

extracellular electrophysiology. All lines and

symbols are as indicated in Figure 1.

(B and C) Scatterplot of peak (B) and baseline (C)

spike rates in light-off versus light-on conditions

for all SUs (nsu = 159; Nmice = 10). Boxplots with

mean spike rates (***p < 0.0005, p < 0.0005 for

peak and baseline respectively; LMM).

(D) Mean of peak-aligned tuning curves (nsu =

159; Nmice = 10). The dotted line represents

spontaneous activity. Shaded areas indicate

5%–95% confidence intervals.

(E) Mean tuning curves from (D) plotted against

eachother for all stimulus frequencies (regression line:

slope = 0.701; intersection = �1.68 Hz; r2 = 0.988).

(F) Means of cell-by-cell percentage of fre-

quencies represented as a function of a normal-

ized spike rate threshold. The dotted line is the

subtraction of light-off (black) and light-on

(red) lines. Boxplots with percentage of fre-

quency represented at a threshold set at

0.5 fraction of peak spike rate for light-off and

light-on tuning curves (**p = 0.0011; df = 158;

LMM). Inset shows p values comparing light

off and on for frequencies represented at all

thresholds of peak-normalized tuning curves

using Wilcoxon test. The vertical dotted line

shows p = 0.05.

(G) Noise correlation between pairs of SUs within individual mice in light-off (black) and light-on (red) conditions (npairs = 452; p = 0.429; df = 451; LMM).

(H) Fano factor relative to preferred frequency for all SUs.

(I and J) Mean fano factor (I) and trial-to-trial variance (J) across all frequencies (fano factor: p = 0.382, LMM; variance: *p = 0.0265, LMM). All boxplots

show medians and 25th–75th and 10th–90th percentiles; circles indicate means.

See also Figures S1–S3 and S5.
the light power in each mouse so that the sound-evoked peak

response was inhibited to roughly 50% of its control amplitude

(Figure S5D). This ensured a comparable level of inhibition

across mice. The light pulse started at the tone onset and was

maintained for the full duration of the tone (50 ms) to target the

immediate tone representation in cortical circuits.

As previously described, we used extracellular electrophysio-

logical recordings to measure tuned responses to different

pure frequency tones. The preferred frequencies, peaks, and

baseline spike rates were measured as described previously.

As expected from the light titration approach, we observed

that light activation of PV+ interneurons significantly decreased

the peak spike rates (Figures 3A and 3B; peakoff = 29.3 ±

2.6 Hz; peakon = 19.3 ± 1.9 Hz; Nmice = 10; nsu = 159; p <

0.0005; df = 158; LMM), as well as baseline spike rates (Figures

3A and 3C; baselineoff = 12.8 ± 1.5 Hz; baselineon = 7.8 ± 1.2 Hz;

Nmice = 10; nsu = 159; p < 0.0005; df = 158; LMM), independently

of the preferred frequencies (Figure S1B). This was not related

to a change in preferred frequency between both conditions

(Figure S2A). As for the WN experiments, we plotted the mean

of the tuning curves aligned to the peak (Figure 3D). PV+ pertur-

bation produced a combined additive and multiplicative shift

(regression slope = 0.701; intersection = �1.68 Hz; r2 = 0.988)

corresponding to a 35.6% suppression at peak and 18.8%
suppression at baseline (Figure 3E). We also found an increase

in frequency selectivity, as estimated by a reduction in the per-

centage of frequencies represented as a function of a threshold

normalized to peak responses in each condition. Comparing

the percentage of frequencies represented at a threshold of

0.5 of peak showed a significant reduction in light on trials (Fig-

ure 3F; percentage of freq. represented: Off = 41.0% ± 3.3%; On =

34.0% ± 3.5%; Nmice = 10; nsu = 159; p = 0.0011; df = 158; LMM).

As for the WN perturbation, this increase in frequency selec-

tivity could be confirmed by a significant decrease of sigma in

the subset of cells whose tuning curves could be approximated

by a Gaussian distribution (Figure S3B; nsu = 27; p = 0.0014; df =

26; LMM). Light-driven activation of PV+ neurons did not affect

noise correlation (Figure 3G; npairs = 452; p = 0.429; df = 451;

LMM). The mean fano factor was also unchanged (Figures 3H

and 3I; fanooff, = 1.31 ± 0.06; fanoon, = 1.33 ± 0.01; p = 0.382;

df = 157; LMM), while mean variance decreased due to the over-

all decrease in spike rates (Figure 3J; varianceoff, = 1.31 ± 0.11;

varianceon, = 0.95 ± 0.08; p = 0.0265; df = 158; LMM).

To look at a possiblemechanistic relationship between theWN

suppressive effect and PV+ neuron activity, we performed exper-

iments combining a continuous WN background with light-

induced activation of PV+ neurons with the same conditions

described above. We found that combining both perturbations
Cell Reports 29, 2041–2053, November 12, 2019 2045



Figure 4. Continuous WN and PV Perturba-

tions Have Additive Effects

(A) Mean of peak-aligned tuning curves (nsu = 159;

Nmice = 10). Shaded areas indicate 5%–95% con-

fidence intervals. The dotted line represents the

additive effects of isolated WN and PV+ neuron

perturbation effects by subtracting them from the

control curve.

(B) Mean tuning curves from (A) plotted against

each other for all stimulus frequencies. The solid

line indicates the regression lines. The dotted

line represents the additive effects of isolated

WN and PV+ neuron perturbation effects by sub-

tracting them from the control curve.

(C) Means of cell-by-cell percentage of frequencies

represented as a function of a normalized spike

rate threshold. The dotted line is the subtraction

of control (black) andWN + light-on (pink) lines. Inset

shows p values comparing control andWN+ light on

for frequencies represented at all thresholds of peak-

normalized tuning curves using Wilcoxon test. The

vertical dotted line shows p = 0.05.

(D) Boxplots comparing controls (noWNor light off),

WN, or light on and WN + light on together (peak

spike rate of WN versus WN + light on, ***p <

0.0001; light on versus WN + light on, **p = 0.0051;

baseline spike rate WN versus WN + light on, ***p <

0.0003; light on versus WN + light on, **p = 0.0035;

% frequency tested at 0.5 threshold WN versus

WN + light on, ***p < 0.0001; light on versus WN +

light on, ***p < 0.0001; LMM). Circles indicate

means. Red lines mark the medians showing a near

linear effect of combining continuous WN and PV+

neuron perturbation.
resulted in a response suppression that was largely similar to

the sum of the suppressive effects of WN and PV+ neuron activa-

tion separately (Figure 4). These results indicate that the activa-

tion of cortical PV+ neurons might not be the driving mechanism

behind the suppressive effect induced by WN.

Given the large similarities in the representations of pure

tones in A1 between background WN and light-induced

changes, we asked whether PV+ neuron activation improves

discrimination performance in the same interval range as the

background WN does.

Tone Discrimination Improves with Light Excitation of
A1 PV+ Interneurons
Using optogenetics, we tested the effect of light-driven activa-

tion of PV+ neurons in the same go/no-go discrimination task

described previously (Figure 5A). In these experiments, a crani-

otomy was performed to insert electrodes and set the light

intensity to induce a suppression of roughly 50% in pure tone-

evoked responses, similar to the passive recordings described

above (Figures S6A and S6B). We found no difference in discrim-

ination performance for pure tone intervals of 0.8, 0.65, and

0.5 octaves when comparing light-off versus light-on trials,

while a significant improvement in performance was noted for

the smaller intervals of 0.35 and 0.2 octaves (Figures 5B-5D;

d0
on-d

0
off = 0.42 ± 0.14; nmice = 8; p = 0.021; d0

on-d
0
off = 0.50 ±

0.12; nmice = 6; p = 0.008, respectively; paired t test). As for the

WN perturbations (Figure S4F), this improvement in discrimina-
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tion performance was due to a decrease in FA rates (Figure S6E).

We found no change in reaction time, suggesting that light-

driven activation of PV+ neurons does not impose changes in

motor-related areas driving the behavior (Figures S6C and

S6D). The light effect was not caused by retinotopic activation,

as light did not alter the discrimination performance in control

mice (Figure 5D).

Our results prove that activating PV+ neurons suppresses

tuned responses of A1 neurons similar to WN and enhances

the discrimination performance for tones close in frequency

in a similar range to WN. Together, the WN and optogenetic per-

turbations suggest that mice use the response features of A1

neurons to form perceptions and discriminate between pure

tones. Although PV+ neurons were targeted at the cortical level,

thalamic neurons could be influenced by these cortical perturba-

tions via cortico-thalamic projections (Guo et al., 2017), and

behavioral performance could hence be explained by thalamic

changes in activity. To address this possibility, we recorded in

the auditory thalamus and tested the effect of the two

perturbations.

Thalamic Responses Weakly Reflect Cortical Tuning
Changes during WN and Light-Induced Activation of
Cortical PV+ Neurons
We asked how changes in cortical tuning properties imposed

by WN or cortical PV+ activation would reflect in the auditory

thalamus. We used a linear multi-electrode array to reach



Figure 5. Tone Discrimination Improves with

Light Excitation of A1 PV+ Interneurons

(A) Schematic of auditory go/no-go discrimination

task with light stimulation.

(B) Hit rate versus FA rate in light-off (filled circles)

and light-on (empty squares) conditions for each

frequency difference between go and no-go trials in

PV-ChR2 mice. Each pair of filled circle and empty

square represents a singlemouse tested at different

frequency intervals.

(C) Discriminability index d0 without and with light

for all frequency differences between go and no-go

tones (n = 13, 9, 8, 8, 6 mice; color coded as in B).

(D) The d0 changes between light-off and light-on

trials as a function of frequency interval between go

and no-go tones for PV-ChR2 (**p = 0.008, *p =

0.021, paired t test) and control mice (D: wild-type

control, n = 3, 4, 4, 4, 4 mice; ,, PV-ChR2 before

craniotomy control, n = 3, 3, 3, 3, 3 mice). Data

show mean ± SEM.

See also Figure S6.
the medial geniculate body (MGB) and recorded activity in

response to pure frequency tones as described earlier, with

or without background WN (Figures 6A and 6B) or while per-

forming light-induced activation of PV+ neurons in the auditory

cortex (Figures 6H and 6I). In the MGB, background WN

induced a slightly significant reduction in peak and baseline

spike rates of responses to pure frequency tones (Figure 6C;

peaknoWN = 23.8 ± 2.6 Hz; peakWN = 21.5 ± 2.5 Hz; Nmice =

11; nsu = 122; p = 0.034; df = 121; LMM) (Figure 5D; baseline-

noWN = 9.8 ± 1.4 Hz; baselineWN = 8.5 ± 1.6 Hz; Nmice = 11;

nsu = 122; p = 0.0094; df = 121; LMM). Plotting the mean of

the peak aligned tuning curves showed a decrease in re-

sponses (Figures 6E and 6F; regression slope = 0.915; inter-

section = �1.05 Hz; r2 = 0.936), corresponding to 13.0% sup-

pression at peak and 7.9% suppression at baseline. We then

estimated the frequency selectivity by computing the percent-

age of frequencies represented at a threshold of 0.5 of the

peak spike rates. This showed a significant reduction in WN

compared to no-WN trials (Figure 6G; no WN = 42.9% ±

3.3%; WN = 35.3% ± 3.5%; Nmice = 11; nsu = 122; p =

0.0013; df = 121; LMM). However, this increase in frequency

selectivity could not be confirmed by a significant decrease

of sigma in the small subset of cells whose tuning curves

could be approximated by a Gaussian distribution (Figure S3C;

nSU = 7; p = 0.578; df = 6; LMM). In summary, the MGB activity

was suppressed by WN both at peak and baseline. However,
Cell Repor
the overall effect of WN was less pro-

nounced than in the cortex.

Next, we tested if cortical light-driven

activation of PV+ neurons would similarly

affect tone responses in the thalamus.

We recorded activity in the MGB while

performing cortical light-driven activation

of PV+ neurons using similar light intensity

levels described for the cortical record-

ings. We found a slightly significant

decrease of peak and baseline spike rates
(Figure 6J; peakoff = 21.7 ± 2.5 Hz; peakon = 19.3 ± 2.2 Hz; Nmice =

7; nsu = 75; p = 0.0283; df = 74; LMM) (Figure 5K; baselineoff = 9.7

± 1.4 Hz; baselineon = 8.3 ± 1.1 Hz; Nmice = 7; nsu = 74; p = 0.0125;

df = 74; LMM). Themean of peak aligned tuning curves exhibited

a decrease in responses (Figures 6L and 6M; regression slope =

0.88; intersection = �0.19 Hz; r2 = 0.897), corresponding

to 12.7% suppression at peak and 6.1% suppression at

baseline. We also quantified the percentage of frequencies

represented as a function of a threshold normalized to peak spike

rates. PV+ activation did not change the selectivity at a threshold

of 0.5 of peak (Figure 6N; Off = 43.7% ± 3.3%; On = 41.6% ± 3.1%;

Nmice = 7; nsu = 75; p = 0.2043; df = 74; LMM), as confirmed by the

measurement of sigma of theGaussian fits (Figure S3D; nSU = 10;

p = 0.105; df = 9; LMM). As for the cortical data, we verified that

the preferred frequencies were not significantly shifted in either

of the two perturbations (Figure S2B).

These recordings reveal that WN and cortical PV+ activation

also modify tuning features in the thalamus. Since the thalamus

is a relay station on the feedforward pathway to the cortex, it

is not surprising that WN effects are observed here. In the case

of cortical PV+ perturbations, corticothalamic projections

probably echoed the cortical changes in thalamic circuits. PV+

perturbations, however, did not change the frequency selectivity

of MGB neurons. In general, the effects of WN and light-driven

activation of PV+ neurons were less pronounced in the thalamus

as compared to the cortex.
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We next developed a theoretical framework to investigate if

thalamic or cortical changes in activity could explain the behav-

ioral effects of WN and cortical light-induced PV+ manipulation.

Modeling the Decoding of the Auditory Cortex Using a
Simple Threshold Model Shows Improved
Discriminability due to Suppression of Tuning Curves
Our results so far indicate a direct relationship between pertur-

bations of cortical activity and behavioral outcome. But how

can a suppression of cortical activity lead to an improvement

in sensory discriminability? One possible explanation is that

downstream circuits decode the sound-evoked activity in the

primary auditory cortex in comparison to spontaneous activity

levels. If only activity that exceeds a specific threshold is used

for discrimination, a suppression of the tuning curves would

mean that a narrower range of frequencies evokes activity that

exceeds the threshold (Figure 7B). To explore this possible

mechanism, we implemented a simplified model of a decoding

circuit (Figure 7A) and used our experimentally measured

mean tuning curves as input to the model.

The model assumes that frequency-tuned activity in A1 feeds

into a layer of readout neurons in which a threshold is applied.

Only activity that reaches the threshold evokes activity in the

readout layer (Figure 7B). We assumed the activity in the readout

neurons to follow Poisson variability, and we set up a decoder

to classify between the go and no-go tones based on the sin-

gle-trial activity in the readout layer (see STAR Methods). As a

starting point, we used a threshold corresponding to 90% of

the baseline spike rate in the control condition.

We simulated a model consisting of 800 readout neurons

with preferred frequencies spanning eight octaves and

computed the fraction of errors (error rate), as the frequency

interval between go and no-go tones was varied (Figures 7C

and 7E). The error rates generally increased as the frequency

interval decreased, as expected, due to an increased similarity

between the responses for go and no-go tones. While using

the experimentally derived mean tuning curves for the control

condition as a starting point, we then tried inducing a negative

offset to the A1 activity (and hence in the input to the readout

layer). An overall suppression in the A1 tuning curves led to a

reduction in error rates, and this effect was most pronounced

for small frequency intervals (Figure 7C). For values of negative

offsets comparable to perturbed conditions (WN, PV+ manipula-

tion), we saw a clear improvement for frequency intervals

smaller than 0.5 octaves (Figure 7C; colors indicate offset values

for control, WN, and light-induced perturbations of PV+ neurons).

To compare the performance of the decoder with the behav-

ioral performance measured experimentally, we calculated the

d0 of the decoder by setting p(hit) = 1 � (error rate) and p(FA) =

error rate and computed the difference in d0 due to WN and

light perturbations using experimentally derived tuning curves

for control, WN, and light-induced PV+ perturbations (Figures

7F and 7G; see STAR Methods for details). This revealed a

clear improvement in d0 for both WN and light perturbations for

frequency intervals between go and no-go tones smaller than

0.5 octaves. We noted, however, that the decoder performed

almost perfectly for larger frequency intervals, leaving little

room for improvement at these intervals.
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A key aspect of the model is the thresholding occurring in

the layer of readout neurons, which causes a more frequency-

selective activation in the perturbed conditions. To test the

generality of this threshold assumption and the stability of our

model results, we varied the threshold, expressed as spike

count, over a wide range of values (Figures 7D and 7F). We

computed the difference in decoding errors and the difference

in d0 for WN and light perturbations separately. This analysis

showed that the improvements in decoding were not specific

to the threshold values we used above, but occurred in a

range of thresholds corresponding to approximately 50%–

100% of the control baseline firing or to a spike count range

between 0.30 and 0.60 spikes per trial. The experimentally re-

corded mean spontaneous spike count was 0.33 ± 0.46 SD

across cortical neurons. If, however, no threshold was applied

(corresponding to decoding the A1 activity directly), only a small

improvement could be seen for the WN perturbation and no ef-

fect for light activation (as shown in Figures 7D and 7F with

threshold, expressed in spike counts, set to zero).

Next, we investigated if the small changes observed in the

MGB during WN or PV+ perturbations would lead to a better

discrimination in our model. Instead of using A1 activity as input

to the readout layer, we used fits of the experimentally recorded

MGB activity (Figure S7). We observed that the small changes

during WN did give a better discrimination, though smaller than

for A1 activity. However, the PV+ perturbation did not give an

increased discriminatory performance (Figure 7G), which con-

firms our conclusion that A1 activity seems to have a stronger

weight than MGB activity in determining the discriminatory

behavior.

Taken together, these results for our model illustrate a

possible link between suppression in A1 activity and improve-

ment in behavioral performance.

DISCUSSION

Our results demonstrate that tone discrimination is influenced

by the tuning properties of primary auditory cortical neurons.

We show that background WN suppresses responses to

pure tones in cortical neurons. In an auditory go/no-go task,

we find that background WN improves discrimination for

pure frequency tones that are close together but does not

affect performance for tones farther apart. Since WN selec-

tively modifies tuning curves without significantly changing

the fano factor or noise correlation, our data suggest that

the brain might use neuronal tuning features to solve the

discrimination task. Optogenetic manipulation of neurons in

A1 selectively led to a similar suppression of A1 responses

and behavioral effects as WN, even though the optical and

WN manipulation were suggested to rely on different mecha-

nisms (Figure 4). This supports the view that suppression of

frequency tuning curves in the cortex led to the observed

improvement in frequency discrimination. To gain insight into

how activity in A1 neurons could relate to the discrimination

of auditory stimuli and why background WN aids tone discrim-

ination, we constructed a model of a simple decoding circuit

and studied the discrimination performance in this model.

The results of the model show that for neuronal parameters



Figure 6. Thalamic Responses Weakly

Reflect Cortical Tuning Changes during WN

and Light-Induced Activation of Cortical PV+

Neurons

(A) Schematics of extracellular recordings using a

linear multi-electrode array through the MGB.

(B) Example of a SU’s spike rates in response to

pure tones in no-WN (black) or WN (green) back-

ground. All lines and symbols are as indicated in

Figure 1.

(C and D) Scatterplot of peak (C) and baseline (D)

spike rate in no-WN (black) versus WN (green)

conditions (nsu = 122; Nmice = 11). Boxplots with

peak spike rates (C, *p = 0.034, LMM) or baseline

spike rates (D, **p = 0.0094, LMM). The dotted lines

represent the unity lines.

(E) Mean of peak-aligned tuning curves. The dotted

line represents spontaneous activity. Shaded areas

indicate 5%-95% confidence intervals.

(F) Mean tuning curves from (E) plotted against

each other (regression: slope = 0.915; intersec-

tion = �1.05 Hz; r2 = 0.936).

(G) Percentage of frequencies represented as a

function of a normalized spike rate threshold. The

dotted line is the subtraction of no-WN (black) and

WN (green) lines. Boxplots with percentage of fre-

quency represented at a threshold of 0.5 of peak

spike rate for no-WN and WN tuning curves (**p =

0.0013; df = 121; LMM). Inset shows p values

comparing no WN and WN for frequencies repre-

sented at all thresholds of peak-normalized tuning

curves using Wilcoxon test. The vertical dotted line

shows p = 0.05.

(H) Schematics of extracellular recordings in the

MGB combined with light-activation of PV-ChR2

cells in the A1.

(I) Expample of a SU’s spike rates in response to

pure tones in light-off (black) or light-on (red) con-

ditions. All lines and symbols as indicated in

Figure 1.

(J and K) Scatterplot of peak (J) and baseline (K)

spike rate in light off (black) or light on (red) condi-

tions (nsu = 75; Nmice = 7). Boxplots with peak spike

rate (J, *p = 0.0283; LMM) or baseline spike rates (K,

*p = 0.0125; LMM).

(L) Mean of peak-aligned tuning curves. The dotted line represents spontaneous activity. Shaded areas indicate 5%–95% confidence intervals.

(M) Mean tuning curves from (L) plotted against each other (regression: slope = 0.88; intersection = �0.19 Hz; r2 = 0.897).

(N) Percentage of frequencies represented as a function of a normalized spike rate threshold. The dotted line is the subtraction of light-off (blakc) and light on (red)

lines. Boxplots with percentage of frequencies represented at a threshold of 0.5 of peak spike rate for light-off and light-on tuning curves (p = 0.2043; LMM). Inset

shows p values comparing light off and light on for frequencies represented at all thresholds of peak-normalized tuning curves using Wilcoxon test. The vertical

dotted line shows p = 0.05. See also Figures S2 and S3.
matching our in vivo recordings in A1, and not in the MGB, the

uncertainty of the sensory representation of go and no-go sig-

nals is reduced with the suppression of neuronal tuning curves

only when the go and no-go signals are close to each other, in

line with our behavioral observations. Together, our results

suggest that the general tuning properties of A1 neurons

directly shape discriminative performance and guide sen-

sory-driven behavior.

Classical neural activity-to-behavior analysis (Britten et al.,

1992; Yang et al., 2008; Znamenskiy and Zador, 2013) relies

on a correlation between neurometric and psychometric func-

tions to link neural activity and certain behaviors. However, to

establish causality, the best available option is to perturb
neurons while the animal engages in task-related behaviors

(Panzeri et al., 2017). Ideally, perturbations should be subtle

enough not to annihilate the neural activity or the behavior. By

preserving neuronal activity during perturbations, we can look

for activity features relevant toward the behavior. These features

can be further implemented in models that may predict behav-

ioral outcome. In our study, we used two different methods of

perturbation to confirm causality—one natural, experienced on

a daily basis by the auditory system (background WN), and

one artificial (optogenetics)—to point to a particular feature of

cortical activity. The results of these manipulations, producing

similar cortical changes and similar improved behavioral out-

comes, allow us to conclude that the response profile of A1
Cell Reports 29, 2041–2053, November 12, 2019 2049



Figure 7. Modeling the Decoding of the Auditory Cortex Using a Simple Threshold Model Shows Improved Discriminability due to Sup-

pression of Tuning Curves

(A) Illustration of model setup. A1 activity feeds to a layer of readout neurons where decoding occurs using a Bayes classifier.

(B) Bottom: Expected response in A1 for a go tone (solid lines) and a no-go tone (dashed lines) for the three different conditions indicated by color. The activity

level that corresponds to the threshold in the readout layer is indicated by the dotted line. Top: Corresponding activity in the readout layer.

(C) Error rate for control tuning curve shifted to different baseline level (y scale). Solid lines indicate baseline levels for control (black), WN (green), and PV+

activation (red). Dashed white line indicates the default threshold set at 90% of control baseline.

(D) Difference in error rate compared to control for WN (left) and PV+ activation (right) as a function of the threshold level in the readout layer (y scale). Solid black

lines indicate control baseline, and dashed white line indicates default threshold.

(E) Error rate for default threshold in the three different conditions.

(F) Difference in d0 compared to control for WN (left) and PV+ activation (right) as a function of the threshold level in the readout layer (y scale). Solid black lines

indicate control baseline, and dashed white lines indicate default threshold.

(G) Difference in d0 for default threshold compared with control for WN (green) and PV+ activation (red).

See also Figure S7.
neurons is not only correlated, but also directly involved in

shaping the formation of tone percepts.

In our experiments, continuous WN did not show any increase

in mean excitatory activity, as compared to silence (Figure 1B).

This is counterintuitive—in our ears, continuous WN can be

perceived—but not new (Liang et al., 2014; Teschner et al.,

2016) or surprising. Indeed, the mean A1 excitatory response

to constant sounds, even as short as 100 ms, is mainly observed

at the tone onset and sometimes at the tone offset, but not during

the tone (Shiramatsu et al., 2016). We cannot, however, rule out

whether individual A1 neurons, or neurons outside of A1,

respond strongly to continuous WN. Adaptation to continuous

WN has been shown to increase as one ascends the auditory

pathway (Rabinowitz et al., 2013).

The mechanisms leading to the suppression of cortical

tuning curves by background WN are also still unresolved.

Our experiments indicate that background WN modifies audi-

tory responses subcortically already (Figures 6A–6G) and that
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the activation of cortical PV+ neurons might not be the main

driver behind this suppression (Figure 4). We cannot rule out

that other interneurons in the cortex, or PV+ neurons activated

at different timing than the ones imposed by optogenetics,

might emphasize the suppression already observed in the

thalamus. It has indeed been shown that two tones presented

simultaneously sharpen tuning curves via lateral inhibition

throughout the auditory pathway (Kato et al., 2017; Shamma

and Symmes, 1985). Whether a similar mechanism might be

involved when a tone is played simultaneously with WN is

not known. Further work would be needed to disentangle

the mechanisms behind the effects of background WN on

tone responses.

We used the optogenetic approach targeted at inhibitory

neurons to ask whether the cortical effects of the background

WN were enough to explain the discrimination performance,

and we hence affected neurons in A1 directly. Previous work

has already shown that PV+ neuron activation suppresses



tuned responses and improves sensory acuity. A study in the

auditory cortex finds that PV+ neuron activation causes

improved perceptual discrimination between a phasic and a

continuous pure frequency tone in a prepulse inhibition behav-

ioral paradigm (Aizenberg et al., 2015). With the same para-

digm, it has also been shown that PV+ manipulation improves

or impairs behavioral performance due to modifications in fre-

quency tuning (Briguglio et al., 2018). Here, it is argued that

an increased signal-to-noise ratio in A1 responses is the under-

lying mechanism for the improved performance. In our study,

we rather see a decrease in the signal-to-noise ratio, measured

as the peak-to-baseline ratio. Since the behavioral paradigms

are different in both studies—the prepulse inhibition test relying

on a startle response and the go/no-go test based on a decision

of the mouse to react to a sound—it is difficult to compare both

studies.

PV+ perturbation might lead to changes in other features of

the cortical activity than those analyzed here. Interneurons, for

example, have been shown to play an important role in

increasing temporal precision and reducing the randomness of

the cortical operation (Wehr and Zador, 2003; Moore and

Wehr, 2013) or in enabling context-dependent behavior (Kuchib-

hotla et al., 2017). Activating PV+ interneurons could also

decrease intracortical activity and promote activity locked to a

strong thalamic drive (Krause et al., 2019). In addition, PV+ acti-

vation has been shown to enhance functional connectivity in

columnar cortical circuits (Hamilton et al., 2013). Our data cannot

tell whether such mechanisms are at play with the perturbations

explored here.

The results from both WN and light-driven PV+ activation

show that discrimination performance improves only for small

frequency intervals, while large intervals remain unaffected.

This suggests that the perturbation effects are specific in

manipulating particular constraints determined by the encoding

of pure tones across a population of A1 neurons and not

because of changes in a global parameter such as attention

or motivation. However, our analysis cannot rule out whether

specific changes in individual or subgroups of cells could be

responsible for the increase in discriminability. Both perturba-

tions induce heterogeneous changes to individual cells (Figures

1D, 1E, 3B, and 3C). The fact that the mean activity of the

neuronal population correlates with behavioral performance

suggests that the brain integrates activity across a larger

population.

One could speculate whether the fact that the learning phase

of the behavioral paradigm was done without background WN

and without light stimulation could have any perceptual learning

consequences that could influence the results of the testing

phase. However, if this were the case, we would expect a bigger

effect at the no-go frequency used during the learning phase (i.e.,

0.8 oct) and not at frequencies the mice had not been exposed

to during the learning phase (>0.8 oct), or at least the same effect

on all frequencies tested. This was not reflected in our results.

Finally, although the two perturbations allow us to identify

cortical tuning curves to shape tone discrimination performance,

A1 would not be expected to be the sole contributor to the

integrated auditory information relevant for solving the behav-

ioral task.
A basic function of the sensory system is to extract relevant

information from a more-or-less distracting background noise.

We demonstrate that cortical representation of pure tones

adapts during noise by suppressing pure tone responses and

thereby increasing selectivity at the expense of the mean ampli-

tude of the spike response. As a consequence, the mice can

more easily distinguish tones within a narrow frequency band.

Sowhywould auditory acuity improve during noise? It is possible

that total silence is an unnatural context and that the brain is sim-

ply optimized for more noisy environments. Alternatively, the

brain could promote discrimination at the expense of precision

in other sound features, such as loudness, in the competing de-

mands of discrimination versus detection (Guo et al., 2017).

Future work will be required to determine how the many effects

of WN already described at the perceptual level (Kishon-Rabin

et al., 2008; Zeng et al., 2000) are reflected in the cortical

neuronal activity.
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Donkey anti rabbit Alexa-594 Thermo Fisher Scientific Cat # R37119; RRID: AB_2556547

DAPI antibody Thermo Fisher Scientific Cat # D1306; RRID: AB_2629482

Experimental Models: Organisms/Strains

Mice: C57BL6/6J Janvier N/A

Mice: PV-Cre knockin line Jackson Cat # 017320

Mice: Ai32 line Jackson Cat # 024109

Software and Algorithms

Klusta-Suite Cortical Processing Laboratory (UCL) https://github.com/klusta-team/

MATLAB Mathworks https://www.mathworks.com/

Python Python Software Foundation Python 2.7

Other

Silicon Probes (A4x8, A1x32) Neuronexus A4x8-5mm-50-200-177

Silicon Probes (A4x8, A1x32) Neuronexus A1x32-5mm-25-177
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tania

Rinaldi Barkat (tania.barkat@unibas.ch). This study did not generate any new or unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were carried out according to the Basel University, Switzerland and Copenhagen University, Denmark,

animal care and use committee guidelines. To target the opsins to PV+ interneurons, we used PV-Cre knock-in line with C57BL/6J

background (JAX stock number 017320, Jackson Laboratories, ME, USA). This strain drives expression of Cre in PV+ interneurons of

the cortex with minimal leak. We crossed this line to the Ai32 line (JAX stock number 024109 with C57BL/6 background), which en-

codes the light-gated depolarizing cation channel channelrhodopsin-2 conjugated to e-YFP after a floxed stop cassette under the

CAG promoter. Wild-types were C57BL/6J mice (Janvier, France). For all experiments, we used adult (7 to 12 weeks old) male or

female mice without distinction. Unless the mice were food-deprived (Figures 2 and 5), they were housed in groups of 2 to 5 under

a 12hr/12hr light/dark cycle, and allowed to get food and water ad libido.

METHOD DETAILS

Surgical procedure
During surgery, mice were anesthetized with isoflurane (4% for induction, 1.5 to 2.5% for maintenance), and their bodies maintained

at 37�C for the duration of the surgery with a heating pad (FHC, ME, USA). A custom-made stainless-steel head-restraint post was

fixed on the bone on top of the left hemisphere, and used to head-fix the animals. Using a scalpel, a craniotomy (�2x2 mm2) was

performed just above the auditory cortex. The dura was left intact and was covered with silicone oil and a silicone casting compound

(Kwik cast, World Precision Instruments, Inc. FL, USA)) to protect the brain during the recovering period from the anesthesia. The

animals were allowed to recover from anesthesia in their homecage for at least one hour.

Auditory stimulation
Sounds were generated with a complex auditory processor (RZ6, Tucker Davis Technologies, FL, USA) at 200 kHz sampling rate and

played through anMF1 speaker (Tucker Davis Technologies. FL, USA) positioned at 5 cm from themouse’s left ear. Pure tones (50ms

duration, 4 ms cosine on/off ramps) from 4 to 48.5 kHz in 0.1 octave increments were played with randomized inter-tone intervals of

500 to 1000ms at 60 dB SPL and repeated 10 times (Figures 1 and 3). For the WN experiments (Figures 1 and 2), a continuous WN of
e1 Cell Reports 29, 2041–2053.e1–e4, November 12, 2019
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50 dB SPL (bandwidth of 1 to 64kHz) was played in addition to the tones, through the same MF1 speaker. For the behavioral exper-

iments, similar pure tones of the go and no-go tone frequencies were played at 60 (Figure 2) or 80 dB SPL (Figure 5). Stimuli were

calibrated with a wide-band ultrasonic acoustic sensor (Model 378C01, PCB Piezotronics, NY, USA).

Extracellular recordings
After recovery from the surgery, mice were placed in a cardboard tube (4 cm diameter) and the head-post was attached to a holder

fixed to the soundbox. The mice could move their body inside the tube while the head was fixed. The silicone cast was then gently

removed and a 4x8 electrode (A4x8-5mm-50-200-177-A32, Neuronexus, MI, USA) was inserted in A1 orthogonal to the brain surface

(as confirmed through postmortem electrode track reconstructions in a subset of cases; Figure S5B) with a motorized stereotaxic

micromanipulator (DMA-1511, Narishige, Japan) at a constant depth (tip of electrode at 625 ± 25 mm from pia). Recording sites

spanned 600 mm in the caudal-rostral axis and 350 mm in depth traversing the granular layer including sites in the supra -and sub

granular layer. Recordings from the primary auditory cortex were confirmed in each animal by the increase in preferred frequency

from the most caudal to the most rostral shaft of the 4-shaft electrodes, confirming the tonotopic organization typical of A1.

For the thalamic recordings, the craniotomywas bigger in the direction of themidline in order to allow a vertical access to theMGB.

These recordings were performed with a 1x32 electrode ((A1x32-5mm-25-177-A32, Neuronexus, MI, USA) inserted vertically at

about 0.2 mm anterior to lambda and 0.8 mm lateral to the midline, to a depth of about 3mm and spanning 800 mm, targeting the

ventral part of the MGB. No post hoc staining was performed to confirm the locations of the recording electrodes as a function of

the MGB subdivisions.

Behavioral experiments
Mice were implanted with a metal head-restraint post at 7-9 weeks after birth under isoflurane anesthesia. After recovery from

the surgery for a couple of days, mice were food restricted. They were then adapted to the head restrain and taught to associate

a sound with a reward availability. During subsequent training, they were trained to differentiate two pure tones of different fre-

quencies (typically 7 kHz for the go tone, and 12 kHz for the no-go tone). If the mice licked as a response to a go tone in the reward

time window (typically 2 s), they received a drop of soy milk as reward and the trial was considered a hit. If they did not lick in the

reward window, it was considered a miss trial. If the mice did not lick as a response to a no-go tone in the reward window, it was

considered a correct rejection (CR), which was not rewarded. If they licked to a no-go tone, it was considered a false alarm trial

(FA), and the mice received a mild air puff oriented toward the right eye, and a time out (3 s) until the next trial could start (Figures

2A and 5A). Sounds were delivered without preceding cues at random interstimulus intervals ranging from 3 to 5 s. If the mice licked

in this interstimulus interval, the trial was aborted. Licks were detected with a piezo film attached to the reward spout. All experiments

were performed in a sound proof box (IAC acoustics, Hvidovre, Denmark) and monitored from outside the soundbox with a camera

(C920, Logitech, Switzerland). Behavioral control and data collectionwere carried out with custom-written programs using a complex

auditory processor (RZ6, Tucker Davis Technology, FL, USA), and further analyzed with MATLAB (MathWorks, MA, USA). Once

the mice achieved a consistent discriminability (d’ > 2), they were considered well trained and moved on to the discrimination

test, where the no-go tone progressively got closer to the go tone for each additional session (no-go tone tested: 12, 11, 10, 9, 8

kHz), until the mice were not able to discriminate both tones anymore, or until they did not want to perform anymore (Figures S4D

and S4E). Not all mice were tested at all five frequency intervals. In this discrimination test, each session typically lasted about 10 mi-

nutes (presentation of about 50 go tones and 50 no-go tones). All sessions with a hit rate below 50%, where mice were not motivated

or satiated, were eliminated. For the experiments with the WN, the same tests were done but the mice were exposed to a continuous

WN sound in addition to the go and no-go pure frequency tones. The sessions with no WN and with WN were following each other

for each No-go tone (Figure S4B). In order to make sure that the observed effects were not due to the order of presentation of the

WN or no WN sessions, the order of no WN and WN was mixed in the different testing days, so that some days the WN was played

before the noWN conditions, and some days the noWNwas played before theWN conditions. All sessions of the testing phase were

then averaged for eachWNand noWNconditions and eachNo-Go tone per animal. For the experiments with optogenetics, the same

tests were done but a laser light on top of A1 was turned on during the tone duration every second trial. WN and optogenetics were

not applied during behavioral training.

Optogenetics
Once the electrodes were inserted, the cortical surface just above the electrodes was illuminated with light through a 50 mmdiameter

fiber optic connected to a 473 nm laser (BL473T3-100FC, Shanghai Laser & Optics Century Co, Shanghai, China) on every second

trial. The light illumination lasted 50 ms and started at tone onset. Laser power was determined so that recording with blue light sup-

pressed firing to about 50% of light-off condition, on average (Figures S5C, S5D, S6A, and S6B).

Intracellular and cell-attached recordings
Mice were kept on isoflurane anesthesia (1%–1.4%) for these recordings. Whole-cell and cell-attached recordings were made with

an Axopatch 700B amplifier (Molecular Devices, CA, USA). Patch pipettes (4-7 MOhm) were filled with an intracellular solution

containing (in mM) 135 K-gluconate, 4 KCl, 10 Na phosphocreatine, 10 HEPES, 4 MgATP, 0.3 Na3GTP, pH adjusted to 7.3 with

KOH, Biocytin 2 mg/ml. Recordings were made under voltage-clamp mode for cell-attached recordings and current-clamp mode
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for whole-cell recordings. The light effect was tested in a 1.0 s off - 0.5 s on cycle. Mean number of spikes or time spent in the up-state

relative to the down-state from 20-50 cycles where used to compute the level of suppression for cell-attached andwhole-cell modes,

respectively.

Immunohistochemistry
To confirm the specific expression of genetically encoded ChR2 in PV+ interneurons, we performed PV immunohistochemistry

(Figure S5A). Mice were transcardially perfused with 4% PFA under deep anesthesia. Brains were extracted from the skull and

post-fixed in 4% PFA for 24 hours at 4�C, then washed in PBS and sliced coronally at 100 mm thickness on a vibratome. Fixed brain

sections were incubated for 2 h at room temperature in blocking buffer containing PBS with 0.5% v/v Triton X-100 (Sigma-Aldrich,

Switzerland) and 5% Donkey serum (Bio-Rad, UK). The buffer solution was removed and the slices were incubated at 4�C for 4 days

in the primary antibody (rabbit anti-PV, 1:500, Swant, Switzerland). Slices were thenwashed and incubated at room temperature for 2

hours in the secondary antibody (Donkey anti rabbit Alexa-594, 1:500, Invitrogen, CA, USA). Slices were then washed and incubated

at room temperature for 15 minutes with a DAPI solution (Molecular Probes, USA), washed, mounted and coverslipped using Fluo-

romount (Sigma-Aldrich, Switzerland). Images were acquired with a 20x objective on a confocal microscope (LSM 710, Carl Zeiss

Inc, Switzerland).

Population model
We considered a population of readout neurons that receive frequency tuned input fromA1. The population consisted of 800 neurons

with preferred frequencies distributed over 8 octaves, in steps of 0.01 octaves. The activity of each neuron was set by

f(I) = I-threshold, for I > threshold, and 0 otherwise. The input I to each neuron was given by a fit to the experimentally measured

mean tuning curves using the following lorentzian function:

IðfÞ = rbaseline + ðrpeak � rbaselineÞ 0:5w2

ðf � fbfÞ2 + 0:5w2

where rbaseline and rpeak corresponds to baseline and peak firing rate, w denotes the width of the tuning curve and fbf is the best fre-

quency of each neuron. We considered the activity within a 50 ms window and used the spike count within this window to denote

activity levels. The output of each neuron in each trial was simulated by drawing a random number from a Poisson distribution

with the intensity given by f(I) described above.

To decode the activity in the layer of readout neurons we used a Bayes classifier to determine which of the two tone frequencies

ðfgo; fnogoÞ was most likely to have generated the spike response r:

bf = argmax
f

log pðrjfÞpðfÞ

with f˛ffgo; fnogog and pðfgoÞ = pðfnogoÞ = 1=2. Throughout this study we generated activity corresponding to a go tone and used to

decoder to discriminate the go tone from a no-go tone with varying frequency intervals between go and no-go tone.

The activity in the readout layer was assumed to be generated by independent Poisson processes for each neuron and we calcu-

lated the log likelihood of a specific spike count response across the population using the Poisson distribution:

log pðr j fÞ =
Xn

i = 1

log pðri j fÞ=
Xn

i = 1

log
e�miðfÞmiðfÞri

ri!

For each simulation of an error rate we generated 10000 trials of go tone activity and computed the error rate as the fraction of

incorrect classifications. To compute the discriminability index d’ we calculated hit and false alarm rates as p(hit) = 1-(error rate)

and p(fa) = error rate, respectively. To account for variability unrelated to sensory evidence and to avoid unrealistically high d’ values

we introduced additional errors in 10% of the trials (thereby setting the minimum error rate to 0.1) in the d’ simulations.

The model implementation was done in Python 2.7 using packages numpy, scipy and matplotlib (Python Software Foundation).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing
Responses from extracellular recordings were digitized with a 32-channel recording system (RZ5 Bioamp processor, Tucker Davis

Technologies, FL, USA) at 24’414Hz. Single units (SUs) were identified from raw voltage traces using a semi-automated spike-detec-

tion and clustering algorithm followed by a manual clustering according to their interspike interval distributions, waveform consis-

tency and presence in neighboring recording sites with Klusta-Suite (Klusta, open source software) and further analyzed with custom

software in MATLAB (Mathworks, MA, USA). For intracellular recordings, data were filtered at 2 kHz, sampled at 10 kHz and digitized

by Digidata 1440 (Molecular Devices, CA, USA), and analyzed with custom software in MATLAB (Mathworks, MA, USA).
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Data analysis
Raw tuning curveswere smoothed using a 3-pointmean filter. The rawdata was smoothed to reduce noise and emphasize the typical

bandwidth selective shape of tuning curves. The smoothed data was only used when representing tuning of single SU examples and

during the calculation of preferred frequency. Raw tuning curves were used for calculation of all other analysis parameters.

For Figure S3, tuning curves of SU were analyzed by fitting a Gaussian function to the mean spike rates (10 trials per frequency,

50ms timewindow) during pure tone stimulation. Only response profileswith a certain precision of the fit (r2 > 0.5) were included in the

analysis. The sigma of the Gaussian curve (s) was taken as a measure of frequency selectivity (2 x s cover the frequency range con-

taining 68.27% of the evoked spikes, and therefore directly relates to tuning width).

Statistics
For electrophysiology, all statistical values were reported as means ± standard error (SEM) and plotted as boxplots including mean

(circle) andmedian, 25th-75th and 10th-90th percentiles (box), with n representing the number of SUs or pairs of SUs and N represent-

ing the number of animals. Degrees of freedom (df) is given as number of observations – 1. We used a linear mixed model (LMM)

analysis of variance to compare differences between no WN and WN trials or light off and light on trials, with WN or light conditions

as fixed effects and individual mouse number, cluster numbers and shank number as random effects. For the p values of the insets in

Figures 1H, 3F, 6G, and 6N, the Wilcoxon test was used because we did it over a large dataset (for threshold values of 0 to 1 in 0.01

steps) where using LMM is not practical. We further confirmed that the LMM andWilcoxon tests yielded p values in the same range,

as illustrated by the p values comparing% frequencies tested at 0.5 threshold across conditions computed with LMM (bloxplot, right

panels) or Wilcoxon (inset, left panels) respectively: 0.004 and 0.0011 (Figure 1H), 0.0011 and 0.0032 (Figure 3F), 0.0013 and 0.0017

(Figure 6G), 0.2043 and 0.265 (Figure 6N). For the LMM, statistical tests were carried out in R version 0.99.896 using the relevant

packages lme4 and LMERConvenienceFunctions. p values were computed from the initial LMMmodel using the pamer.fnc function

as part of the package LMERConvenienceFunctions. Pamer.fnc performs an ANOVA based on the lmer model. For behavioral ex-

periments, all statistical values were reported and plotted as mean ± SEM, with N representing the number of animals. Statistical

testing was carried out in Microsoft Excel using Student’s two-tailed paired t test. The reason to use LMM for physiology is to

take into account statistical dependencies due to random effects such as single units acquired from the same animal or units in

close proximity recorded from the same electrode shank. For the behavioral data however, each animal is represented by only

one sample point with no dependent variable among animals, and the Student’s t test is therefore appropriate. The effects were

named significant if the p value was smaller than 0.05 (*), 0.01 (**) or 0.001 (***), for a confidence interval of 95, 99 or 99.9%, respec-

tively. Tests to determine sample size were not performed, but our sample sizes were similar to those used in previous publications in

the field. All statistical details of experiments can be found in the result section and in the figure legends.

DATA AND CODE AVAILABILITY

Data and custom code supporting the current study have not been deposited in a public repository but are available from the Lead

Contact on request.
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