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Method

Detecting sequence signals in targeting peptides using
deep learning
Jose Juan Almagro Armenteros1,*, Marco Salvatore2,3,* , Olof Emanuelsson2,4 , Ole Winther5,6,7, Gunnar von Heijne2,3 ,
Arne Elofsson2,3 , Henrik Nielsen1

In bioinformatics, machine learning methods have been used to
predict features embedded in the sequences. In contrast to what
is generally assumed, machine learning approaches can also
provide new insights into the underlying biology. Here, we
demonstrate this by presenting TargetP 2.0, a novel state-of-the-
art method to identify N-terminal sorting signals, which direct
proteins to the secretory pathway, mitochondria, and chloro-
plasts or other plastids. By examining the strongest signals from
the attention layer in the network, we find that the second residue
in the protein, that is, the one following the initial methionine, has
a strong influence on the classification. We observe that two-
thirds of chloroplast and thylakoid transit peptides have an al-
anine in position 2, compared with 20% in other plant proteins.
We also note that in fungi and single-celled eukaryotes, less than
30% of the targeting peptides have an amino acid that allows the
removal of the N-terminal methionine compared with 60% for the
proteins without targeting peptide. The importance of this fea-
ture for predictions has not been highlighted before.
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Introduction

The localisation of proteins in the cell is a fundamental determinant of
protein function. Specific sorting signals drive the subcellular local-
isation of proteins. These signals vary in structure, length, and position
between the different subcellular compartments. One of the most
common types of sorting signals are the N-terminal targeting pep-
tides. These signals are responsible for sorting proteins to the se-
cretory pathway, mitochondria, chloroplasts (or other plastids), and
compartments inside the chloroplast such as thylakoids.

Signal peptides (SPs) are responsible for transporting proteins to
the endoplasmic reticulum to enter the secretory pathway. SPs are

composed of three regions: a positively charged domain or n-region, a
hydrophobic core or h-region, and a segment before the cleavage site
(CS) or c-region (von Heijne, 1990).

Mitochondrial transit peptides (mTPs) are responsible for targeting
proteins to the mitochondrial matrix. mTPs are usually enriched in
arginine, leucine, and serine. Moreover, they tend to form an am-
phiphilic helical structure to interact with the import receptor on the
mitochondrial membrane (von Heijne, 1986). Proteins targeted to
the inner mitochondrial membrane or the inter-membrane space
often have a bipartitemTP, where the second part is similar to an SP
(Stuart & Neupert, 1996) (Fig S1).

Chloroplast transit peptides (cTPs) are involved in the transport
of proteins to the chloroplast stroma. Most of the cTPs consist of
three regions: an uncharged N-terminal region, a central region
lacking acidic amino acids but enriched in serine and threonine,
and a C-terminal region enriched in arginine that forms an amphi-
philic β strand (Heijne et al, 1989a). In addition, chloroplastic proteins
targeted to the thylakoid lumen have a bipartite pre-sequence
structure (Robinson& Klsgen, 1994). Once the cTP is cleaved and the
protein enters the stroma, a luminal transit peptide (luTP) is rec-
ognised, and the protein is further transported to the thylakoid,
where the luTP is cleaved. The luTP is similar to a bacterial SP, and
the thylakoidal processing peptidase belongs to the family of signal
peptidases (Packer and Howe, 2013).

As these signals direct the transport of proteins within the cell, it
is crucial to be able to predict their presence in protein sequences
accurately. For this reason, in the last two decades, many tools have
been developed. Those adopt various machine learning algorithms,
including Grammatical Restrained Hidden Conditional Random
Fields, N-to-1 Extreme Learning Machines, Support Vector Ma-
chines, Markov chains, profile-hidden Markov models, and neural
networks (Emanuelsson et al, 2000; Small et al, 2004; Petsalaki et al,
2006; Fukasawa et al, 2015; Savojardo et al, 2015).

One of the most used methods is TargetP 1.1 (Emanuelsson et al,
2000). TargetP uses feed-forwardnetworks andposition-weightmatrices
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to process windows of amino acids to predict the presence of SPs,
mTPs, and cTPs and the positions of their CSs. However, with the rise of
deep learning, new types of networks such as recurrent neural net-
works (RNNs) have gained popularity. The main reason is their ex-
traordinary ability to work with sequence data and model long-range
relationships between inputs in the sequence.

RNNs sequentially process sequences of any length, being able
to retain information from previous positions in the sequence.
Several methods have taken advantage of this type of network to try
to better predict signal and transit peptides (Reczko & Hatzigeorgiou,
2004; Boden & Hawkins, 2005). These methods make use of bidi-
rectional RNNs (BiRNN), which are two RNNs, one processing the
sequence forwards and another processing the sequence back-
wards. With this construction, the context around each amino acid
is modelled, as the forward RNN processes all the amino acids
from the N terminus up to one position and the backward RNN
processes all the amino acids from the C terminus up to the same
position.

However, regular RNNs, the so-called Elman networks, are
challenging to train (the so-called exploding/vanishing gradient
problem) and often fail to capture dependencies far apart in the
sequence (Pascanu et al, 2012 Preprint). Therefore, the ability of the
network to hold information from multiple steps back is reduced. A
variant of the RNN cell, the long short-term memory (LSTM), solves
this problem by a construction akin to a computer memory cell that
holds information for multiple steps. This type of RNN cell together
with BiRNN has been successfully applied to the prediction of SPs
andmTPs (Thireou & Reczko, 2007; Almagro Armenteros et al, 2019).
Today, new methods, such as DeepLoc (Almagro Armenteros et al,
2017), use bidirectional LSTM (BiLSTM) to predict the localisation of
proteins to a broader range of compartments. DeepLoc accurately
predicts the localisation of proteins but not the presence of the
N-terminal sorting signals and the position of the CSs. Starting
from this architecture, we decided to develop TargetP 2.0 using
BiLSTM and a multi-attention mechanism. Using the multi-attention
mechanism, the network can predict both the type of peptide and
the position of the CS by focusing on particular regions of the
sequence.

Moreover, we assemble a new protein dataset that we use to
train TargetP 2.0 (http://www.cbs.dtu.dk/services/TargetP-2.0/).
TargetP 2.0 can jointly predict the presence of SPs, mitochondrial,
chloroplast and thylakoid transit peptides, and the corresponding CS
positions. TargetP 2.0 is available at http://www.cbs.dtu.dk/services/
TargetP-2.0/, and the source code is available under the creative
commons CC BY-NC-SA license from https://github.com/JJAlmagro/
TargetP-2.0/.

When analysing the attention layer from the final version of the
network, it became apparent that most information was retrieved
from two distinct positions in most sequences. One of these was, as
expected, localised close to the CS. However, an equally important
signal from position 2 in the sequences was also found. Next, we
examined the amino acid frequencies in the second position, after
the first methionine, of all proteins. To our surprise, very distinct
patterns emerged. In chloroplasts and plastids, the second residue
was frequently an alanine, whereas in all targeting peptides in fungi
and unicellular eukaryotes amino acids that allow cleavage of the
methionine are rare (see Fig 1).

Results and Discussion

Here, we have developed a deep learningmodel to predict targeting
peptides described in Fig 2. We compare TargetP 2.0 with state-of-
the-art predictors on a set of proteins with experimentally verified
targeting peptides.

TargetP 2.0 improves identification of targeting peptides

In Table S1, it can be seen that TargetP 2.0 is better than all the
competitors at the identification of targeting peptides in accuracy
and correlation coefficients. From the receiver operator curves in
Fig 3, it is clear that TargetP 2.0 performs better than the alternative
methods except SignalP 5.0 for SPs for identification of all four
targeting peptides. It can also be noted that the identification of SPs
is more reliable than the identification of transit peptides. Tar-
getP 2.0 predicts ~97% of the SPs correctly compared with less
than 90% for other targeting peptides (see Table S1). For non-
plant proteins, the most common confusion is betweenmTPs and
non-TPs (see Table S2).

The poor discrimination betweenmTP and cTP of TargetP 1.1 and
other older methods has been significantly improved in TargetP 2.0.
The number of correctly predicted peptides increased from about
50 to 90%. The only other method that shows a similar performance
is DeepLoc, which is based on a similar methodology and training
set but cannot predict CSs. TargetP 2.0 also performs significantly
better at the identification of cTPs and luTPs than PredSL (Petsalaki
et al, 2006), the only other method that can identify luTPs. However,
still 11 of 45 luTPs are classified as cTPs (see Table S3).

Figure 1. This figure depicts the frequencies of the second residue in proteins
with different targeting peptides.
The proteins are divided into their respective type of targeting peptide: signal
peptide (SP), mitochondrial transit peptides (mTPs), chloroplast transit peptides
(cTPs), luminal transit peptides (luTPs), and noTPs. Furthermore, the proteins
were divided into their kingdom: Viridiplantae (P), Metazoa (M), Fungi (F), and
other eukaryotic organisms (O) sequences. Inspired by sequence LOGOs, the
height of each letter corresponds to the frequency of that amino acid. Only the
frequencies for the short side-chained amino acids that allow the cleavage of the
N-terminal methionine are shown.
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It can be seen that a very simple method that only considers the
20 N-terminal amino acids, MLP-20, performs on par with previous
methods when it comes to mTPs and SPs, but slightly worse than
Predotar for cTPs. Even when only using 10 residues, MLP-10 per-
forms better than PredSL for all categories except luTPs (see Table
S1).

A more detailed analysis at the kingdom level for TargetP 2.0 can
be found in Table S4. Here, we can see that the prediction accuracy
is slightly lower in Fungi than in the other kingdoms. One possible
explanation could be that the GC content in the Fungi genomes is
lower than that in the other genomes. The low GC content affects
the amino acid frequencies, making alanine less frequent (Basile
et al, 2017).

Because the chloroplast is not the only type of plastid, we finally
tested the ability of TargetP 2.0 to predict proteins of amyloplasts
and chromoplasts, which differ from chloroplasts primarily through
their pigments. UniProt provides transit peptide annotation for 10
amyloplast and 32 chromoplast proteins. TargetP 2.0 predicts 9 of 10
amyloplast and 26 of 32 chromoplast proteins to have a cTP,
achieving a similar performance for these plastid proteins.

TargetP 2.0 improves the prediction of CSs in cTPs and luTPs

We tested the CS prediction ability on the test set and only for the
correctly predicted proteins. The CS prediction is best for SPs, with a
recall (accuracy) of 83% on the test set both for TargetP 1.1 and
TargetP 2.0 (see Fig 4) and Table S5. TargetP 2.0 does not reach the
accuracy obtained by SignalP 5.0 (86%) possibly because of the use
of a conditional random field to predict the CS in SignalP 5.0 or

because many of the proteins we tested are included in the training
set of SignalP 5.0. Anyhow, when allowing a positional shift of up to
five residues, the performance is identical (96%).

InmTP and cTP CS, prediction is more difficult with a recall of 46
and 49% by TargetP 2.0, respectively. However, this is a clear im-
provement over TargetP 1.1 and all other methods for cTPs, and a
slight improvement for mTPs.

TargetP 2.0 CS predictions of the luTP is a new feature. Given the
small number of peptides in the database, the recall of 60% (27
correctly identified luTP CSs) is better than expected and a significant
improvement over the only other method that can predict luTPs,
PredSL (Petsalaki et al, 2006), whichonly identifies 5 (11%) CSs correctly.

If we allow up to five residue shifts of the prediction of CSs, about
two-thirds of the CSs in cTPs, mTPs, and luTPs can be identified
correctly (see Table S5).

Comparison with UniProt annotations

TargetP 2.0 provides a possibility for fast and accurate annotation of
entire or incomplete proteomes in a few hours, as it takes on
average only 0.20 s to run a single protein on a dedicated 8-core
machine. We annotated several eukaryotic proteomes for a total of
288,964 proteins from six Metazoa (Caenorhabditis elegans, Dro-
sophila melanogaster, Danio rerio, Homo sapiens, Mus musculus,
and Xenopus tropicalis), five Viridiplantae (Arabidopsis thaliana,
Brachypodium distachyon, Oryza sativa, Solanum lycopersicum,
and Vitis vinifera), and two Fungi (Saccharomyces cerevisiae and
Schizosaccharomyces pombe) proteomes. All predictions are avail-
able from the accompanying website.

Figure 2. The TargetP 2.0 architecture.
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We examined the possibility to modify the number of annotated
proteins using the confusion matrix of TargetP 2.0 as proposed
before (Marot-Lassauzaie et al, 2018). In this method, the predicted
number of proteins in a class is calculated by using the number of
members predicted to that class and the estimated number of
mispredictions from other classes. First, the fraction of mis-
prediction between classes is calculated. The estimated number of
members of one class is then calculated from the predicted
number in that class, deducing the estimated fraction of false
predictions. Thereafter, the estimated number of mispredictions
from other classes is added from the number of predictedmembers
in a class multiplied with the estimated mispredictions from that
class to the first class. The number of peptides in each class
changed with less than 3% for all categories except the luTPs that
were under-predicted by 25% (see Table S6). This indicates that our
estimates of the number of targeting peptides of each type should
be rather accurate except for luTPs.

In Table S7, a comparison of the annotations from TargetP 2.0
and UniProt is presented, including also the proteins annotated by
electronic annotations, that is, predictions. These annotations on
UniProt are certainly of lower quality than the ones used in our
dataset. Therefore, this comparison should not be taken as a

measurement of the performance of a particular prediction tool.
Instead, they should be seen as an estimate of how well we can
annotate genomes automatically today. For the best annotated
proteomes, H. sapiens, M. musculus, S. cerevisiae, and A. thaliana,
the agreement between UniProt and TargetP 2.0 predictions is
about 80% for the organelles and more than 90% for SPs. The high
agreement for SPs is quite likely due to UniProt applying SignalP
(Petersen et al, 2011) for its annotation of SPs, and it was trained on
a similar dataset as used here. For the other proteomes, the agree-
ment is substantially worse, except for SPs, indicating that the transit
peptide annotation in UniProt is far less complete than the SP an-
notation and that applying TargetP 2.0 would significantly improve the
annotation.

A few interesting differences can be observed, which might have
biological relevance. TargetP 2.0 predicts about twice as many
mitochondrial proteins in plant proteomes compared with meta-
zoan proteomes. Even in A. thaliana, only half of these proteins are
annotated in UniProt as mitochondrial. In agreement with the
UniProt annotations, fungi seem to have fewer mitochondrial
proteins than other eukaryotes. The number of predicted chloro-
plast proteins varies significantly between the proteomes, from
1,125 in the grape proteome to 2,049 in the rice proteome. However,

Figure 3. Receiver operator curves for
identification of SPs, mitochondrial-,
chloroplast-, and luminal transit peptides.
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the rice proteome is also almost 50% larger than the grape pro-
teome, possibly explaining the difference.

Identification of the strongest contributing sequence factors

In the previous paragraphs, we show that by using a deep learning
architecture, it is possible to improve the prediction of targeting
peptides. Next, we wanted to examine if it is possible to extract
which biological features contribute to improved performance.

To analyse which features the deep learning model learned, we
focused on the maximum outputs from the attention layer (see Fig
S1). It is clear that for most proteins with targeting peptides, there
are two positions with strong signals, one very close to the N
terminus (at position 2) and one later corresponding to a position
close to the CS. These positions were analysed in more detail, by
aligning all the proteins either starting from the predicted CS (Fig 5)
or from the N terminus (Fig 6).

In Fig 5, it can be seen that the attention layer focuses on the
position just before the CS (the −1 position). In SPs, cTPs and luTPs
position −1 is dominated by alanine, whereas inmTPs, this position
is dominated by tyrosine and phenylalanine. In addition, the actual
cleavage signal comes from a couple of positions (such as −1 and −3
in SPs and luTPs) and not only position −1 (see Figs 7 and S2). This
difference can be explained by the attention layer collapsing in-
formation from nearby positions into one position and not the
biological importance of position −1. In addition to the site close to
the CS, most of the information obtained from the attention layers
is directly the N terminus of the CS. In agreement with what is
known about the differences between the targeting peptides, the
attention for the SPs is focused on a stretch of ~10 hydrophobic

residues, whereas the other peptides have a longer stretch of
informative residues. As is well known, the mTPs are enriched in
arginine.

TargetP 2.0 overpredicts mTP CSs with arginine in 23

For the SPs, cTPs, and luTPs, the sequence logos are almost
identical between predicted and experimentally annotated pro-
teins, both in the CS and the signal composition. However, we can
observe that for mTPs, the amino acid composition near the CS
differs between predicted (Fig 7B) and experimentally verifiedmTPs
(Fig S2). In both cases, there is an abundance of arginines in po-
sition −2, −3, and −10 from the CS as described before (Gavel & von
Heijne, 1990; Kutejov et al, 2013). However, the signal for arginine at
−3 is stronger among the predicted than among the experimentally
verified CSs. To investigate this difference further, we plotted the
distribution of the distance from the experimental and predicted
CSs to the nearest upstream arginine (see Fig S3). It shows that
although there is good agreement at most positions, there is a clear
overprediction at −3 and an underprediction at −10.

The sites with arginine at −2 are thought to represent the original
cleavage by mitochondrial processing peptidase, whereas the sites
with arginine at −3 and −10 are thought to arise by subsequent
cleavage events by the Icp55 peptidase and mitochondrial in-
termediate peptidase, respectively (Vögtle et al, 2009; Gakh & Isaya,
2013; Kutejov et al, 2013; Vögtle & Meisinger, 2013; Fukasawa et al,
2015). The cleavage by Icp55 could explain the fact that some
patterns in themTP CS (Figs 7B and S2B) seem to be repeated with a
shift of one position, for example, the preference for serine that
occurs in positions 1 and 2 in the mature protein.

Figure 4. Recall (or accuracy) for the CS prediction in
SPs, mTPs, cTPs, and luTPs by the different
prediction methods. Note that not all methods can
predict all types of targeting peptides.
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The findings represented in Fig S3 show that themodel can easily
recognise the arginines at position −2 (original Mitochondrial
Processing Peptidase sites) and −3 (Icp55 sites), but has troubles in
identifying arginines at position −10 (mitochondrial intermediate
peptidase sites). This overrepresentation of arginine at position −3
and underrepresentation at position −10 is probably contributing to
the relatively low performance on the CS prediction in mTPs. It
might be relevant to explore further the distance of arginines from
the CS and the patterns recognised by the three peptidases to
improve the prediction of the mTP CS in future versions.

cTPs have an alanine in position 2

There is also a strong attention peak at position 2 for all targeting
peptides (see Fig 6). From the sequence logo, it is clear that position

2 amino acid preferences differ between targeting peptides (see
Figs 8 and S4). In cTPs and luTPs, there is a powerful signal for
alanine in position 2. In contrast, SPs have some preference for
lysine and mTPs for alanine or leucine in position 2 (see Table S8).

The importance of position 2 is likely to be related to the
cleavage of the N-terminal methionine. When there is a short side-
chained amino acid (Ala, Cys, Gly, Pro, or Ser) in position 2, the
methionine can be cleaved by a methionine aminopeptidase (MAP)
(Frottin et al, 2006). There exist two classes of MAPs, MAP1, and
MAP2. All these proteins are homologous to the machinery in
bacteria, indicating that they work co-translationally. A. thaliana
has four MAP1s (MAP1A, MAP1B, MAP1C, and MAP1D) and two MAP2s
(MAP2A and MAP2B). It has been shown that MAP1B, MAP1C, and
MAP1D are targeted for proteins belonging to the organelles (Giglione
& Meinnel, 2001).

Figure 5. Attention layer LOGOs showing the impact strength of the attention layer and the frequency of amino acids. All sequences are aligned at the predicted CS.
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In Fig 1, it can be seen that about 60% of the proteins without
targeting peptides (noTPs) have an amino acid in position 2 that
allows the N-methionine to be cleaved. These proteins have mostly
alanine or serine in position 2. The N-terminal methionine can only
be cleaved if the second residue has a short side chain. For proteins
with SPs, in all species except the plants, less than 40% of the
residues in position 2 have a short side chain. The same can be seen
for mTPs in the fungi and single-celled eukaryotic groups.

Most striking is the observation that about two-thirds of the cTPs
and luTPs have an alanine in position 2 (see Fig 1). This preference
has been noted before (Heijne et al, 1989b; Zybailov et al, 2008).
When mutating the second position in dual-targeting proteins that
are imported to both chloroplasts and mitochondria, the targeting
was disrupted (Pujol et al, 2007). Surprisingly, when the authors

mutated one of the few chloroplast proteins that did not have an
alanine in position 2, PheRS, from threonine to alanine the import to
chloroplasts decreased.

It has been reported that amino acid frequencies in position 2
differ between species (Shemesh et al, 2010). The frequency of
alanine in position 2 varies from 7% in Escherichia coli to close to
30% in A. thaliana. Table S9 shows that alanine is frequent in all
types of proteins in A. thaliana but also that the frequency is higher
in proteins targeted for plastids. One possible reason for alanine to
be preferred in position 2 is that alanine has a strong helical
propensity. The amino-terminal sections of cTPs and luTPs are less
prone to form secondary structures than mTPs and SPs at the
amino-terminal (see Fig S5). Here, it can also be seen that SPs have
a stronger tendency to form a structure close to the N terminus

Figure 6. Attention layer LOGOs showing the impact strength of the attention layer and the frequency of amino acids. All sequences are aligned at the N terminus.
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than the other peptides. The importance of the N termini can also
be seen by the fact that the simple MLP-20 method performs quite
well at identification of noTPs, SPs, and mTPs. However, to fully
understand the importance of the second position, additional
experimental studies are needed.

Materials and Methods

Dataset

The protein data used to train TargetP 2.0 were extracted from the
UniProt database, release 2018_04 (UniProt-Consortium, 2014). The
negative dataset consists of proteins without either signal or transit
peptides from the nucleus, cytoplasm, and plasma membrane

(without SPs) and with experimental annotation (ECO:0000269) of
their subcellular localisation. The positive set contained secreted,
mitochondrial, chloroplastic, and luminal proteins with experi-
mental annotation of their signal or transit peptide. The final set
consists of 9,537 noTPs, 2,697 with SPs, 499 mTPs, 227 cTPs, and 45
luTPs (see Table S1). Note that although a thylakoid targeting signal,
as described in the introduction, consists of a cTP followed by an
SP-like luTP, the first CS (for the stromal processing peptidase) is
almost never annotated in UniProt. We were, therefore, not able to
predict this CS for thylakoid proteins, only the second cleavage by
thylakoidal processing peptidase will be predicted. Hereafter,
“luTP” will refer to the entire thylakoid targeting signal. The dataset
was further divided into four groups representing the eukaryotic
kingdoms Viridiplantae, Metazoa, and Fungi and a group of other
eukaryotes.

Figure 7. Sequence LOGOs showing the amino acid frequencies in the pre-sequences.
All sequences are aligned according to the predicted CS.
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We also trained unique predictors for each eukaryotic kingdom;
unfortunately, this resulted in a decrease in performance by about
5%. Most likely, this is due to smaller training sets and that the
targeting peptides do not differ significantly between the kingdoms.

PSI-CD-HIT (Li & Godzik, 2006) was used to cluster the first 200 residues
of each protein with 20% of identity or 10−6 E-value using Basic Local
AlignmstSearchTool andalignment coverageofat least 80%of theshorter
sequence.Weperformedastringenthomologypartitioning togeta realistic
assessment of generalisation performance. Each cluster of homolo-
gousproteinswasassigned tooneoffivecross-validationgroups toensure
that similar proteins were not mixed between the different datasets.

The TargetP 2.0 algorithm

The TargetP 2.0 model is described in Fig 2. The model consists of
two key components, a BiRNN with LSTM cells and a multi-attention

mechanism (Lin et al, 2017 Preprint) to predict both the type of
peptide and the position of the CS.

The input to this model is the first 200 amino acids of a protein.
This threshold was chosen based on the maximum length of known
transit peptides, which is 162 amino acids (Stefely et al, 2015). The
amino acids in the protein are encoded using BLOSUM62 sub-
stitution matrices.

We first describe the model at a high level and give more details
on each of the layers below: The first layer of the model is a fully
connected layer to perform a feature transformation of each amino
acid input feature with 32 hidden units. The following layer is the
BiLSTM with 256 hidden units in both forward and backward di-
rections. The first hidden state to the BiLSTM is a vector containing
the group information, which denotes whether the protein is a plant
or nonplant protein. The 512-dimensional concatenated output from

Figure 8. Sequence LOGOs showing the amino-terminal pre-sequences.
All sequences are aligned at the N terminus.
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the BiLSTM is then used to calculate the multi-attention matrix
similarly to those applied in machine translation (Bahdanau et al,
2014 Preprint; Luong et al, 2015 Preprint). The attention size is 144
units and the number of outputs from the attention matrix is of size
13. Of these 13 attention vectors, four were used to predict the
different CS positions for SP, mTP, cTP, and luTP. The attention
matrix is further utilised to encode the whole sequence into a
context matrix. This context matrix of size 512 × 13 is processed by a
fully connected layer with 256 units, to summarise it into a vector.
Finally, this is fed to the output layer with 5 units and softmax
activation.

We train a model that learns to predict the type of peptide and
the position of the corresponding CS (y, y9) where y is the predicted
type of peptide, y9 the predicted CS position, f the model, θ the
learnable parameters, and X the protein sequence. Here, y is a
vector of size equal to the number of classes C, five in this case, and
y9 is a vector of size equal to the length of the sequence L, which can
be up to 200. The θ parameters are optimised using an extension of
stochastic gradient descent, Adam with cross-entropy loss for both
types of peptide and CS prediction. Both losses were then averaged.
The only regularisation technique used was dropout between the
different layers.

The network has three main types of layers: fully connected, RNN
with LSTM cell, and multi-attention layer. The first fully connected
layer c applies a feature transformation:

ct = fc Wxt + bð Þ (1)

where xt is an amino acid at position t in the sequence andW and b
are the learnable weights and biases. The first layer is followed by a
BiRNN that utilises an LSTM cell to capture the context around each
amino acid in the sequence. The RNN applies the same set of
weights to each position t

ht
!

= LSTM���! ct; ht−1
�!� �

(2)

 
ht =

 ���
LSTM ct;

 �
ht+1

� �
(3)

where ht
!

and
 
ht are the hidden states of the RNN at position t for

the forward and backward directions, respectively. The hidden
states are concatenated into ½ht

!
;
 �
h↓t�.

The last part of the network is a multi-attention mechanism.
Here, we calculate multiple attention vectors A from the LSTM
hidden states, instead of just one single attention vector a. The
attention matrix is then used to create multiple fixed-sized rep-
resentations of the input sequence, with a different focus on the
relevant parts of the sequences. The attention matrix is calculated
as follows:

a = softmax ðtanh ðWaht + baÞVaÞ (4)

where Wa and Wb are weight matrices and ba is the bias of the
attention function. The advantage of having multiple attention
vectors is that some of them can be used to predict the position of
the CS, as they are vectors of size equal to the sequence length L

summing to 1. Therefore, 4 of the 13 attention vectors that themodel
uses are used in the prediction of the SP, mTP, cTP, and luTP CS:

y9 = fcs
�
a1:4

�
(5)

To encode the sequence of hidden states H = ½h1; :::; hL� into a
fixed sized matrix, the hidden states are multiplied by the attention
matrix and summed up:

e = �
L

t = 1
atht (6)

where e matrix is the encoded representation of the protein
sequence. e holds a total of 13 different representations of the
protein sequences; therefore, it is needed to summarise this
matrix into a vector. This is done by a final feed-forward layer,
which converts E into a representation vector e. This is then used
to calculate the output layer of the network, to predict the type of
peptide (p) y

y = fp eð Þ (7)

Both outputs from the network y and y9 are trained together.
The exception is for proteins belonging to the negative set, that is,
noTPs that lack a CS and, therefore, there is no error to back-
propagate.

The model was trained and optimised using fivefold nested
cross-validation. The four inner subsets were used to train the
model, where three are used for training and one for validation to
identify the best set of hyper-parameters. After optimisation, the
fifth set, which was kept out of the optimisation, was used to assess
the test set performance. This procedure was repeated using all five
subsets as the test set. The advantage of this approach is that we
obtain an unbiased test set performance on the whole dataset at
the expense of having to train 5 × 4 = 20 models.

Different hyper-parameters were tested to find the best model
such as the number of hidden units for the LSTM, attention and fully
connected layers, number of attention vectors, the learning rate,
and the dropout rate. We also experimented with a convolutional
neural network as the initial layer, but the best results were
achieved using a filter size of 1, which is equivalent to a fully
connected layer along the feature dimension.

Related tools

The tools included in the analysis adopt different machine learning
algorithms intending to classify from one to many N-terminal
sorting signals and the CS position. Most of the tools contain
modules both for plant and nonplant proteins.

MitoFates (Fukasawa et al, 2015) combines amino acid compo-
sition and physicochemical properties with positively charged
amphiphilicity, pre-sequence motifs, and position-weight matrices
as input to a standard support vector machine classifier for
modelling the mitochondrial pre-sequence and its CS.

PredSL (Petsalaki et al, 2006) uses neural networks, Markov
chains, profile-hidden Markov models, and scoring matrices to
classify proteins from the N-terminal amino acid sequence into five
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groups: chloroplast, thylakoid, mitochondrion, secretory pathway,
and other.

SignalP 5.0 (Almagro Armenteros et al, 2019) is a deep neural
network–based method combined with conditional random field that
distinguishes between various types of SPs across all domains of life and
between three kinds of prokaryotic SPs (Sec/SPI, Sec/SPII, and Tat/SPI).

TargetP 1.1 (Emanuelsson et al, 2000, 2007) classifies proteins into
four different groups (SP, mTP, chloroplastic transit peptide, and

other) using two layers of feed-forward neural networks and de-
tects the CSs using a variety of methods, including position-weight
matrices for the mTPs.

TPpred 3 (Savojardo et al, 2015) is a combination of a Gram-
matical Restrained Hidden Conditional Random Field, N-to-1 Ex-
treme Learning Machines, and Support Vector Machines. It detects
transit peptides, classifying them as mitochondrial or chloroplastic
and localising their CSs.

Table 1. Performance of the predictors considering only the identification of the targeting peptides.

Tool Loc Proteins Precision Recall F1 score MCC

TargetP 2.0 SP 2697 0.97 0.98 0.98 0.97

TargetP 1.1 SP 2697 0.86 0.97 0.91 0.89

DeepLoc SP 2697 0.90 0.84 0.87 0.84

PredSL SP 2697 0.69 0.90 0.78 0.73

Predotar SP 2697 0.92 0.92 0.92 0.90

MLP-20 SP 2697 0.93 0.93 0.93 0.91

SignalP 5.0 SP 2697 0.99 0.99 0.99 0.98

TargetP 2.0 mTP 499 0.87 0.85 0.86 0.86

TargetP 1.1 mTP 499 0.32 0.90 0.48 0.51

DeepLoc mTP 499 0.73 0.97 0.83 0.83

PredSL mTP 499 0.18 0.93 0.31 0.37

Predotar mTP 499 0.71 0.74 0.73 0.72

TPpred 3 mTP 499 0.69 0.68 0.68 0.67

MitoFates mTP 499 0.70 0.92 0.80 0.80

MLP-20 mTP 499 0.69 0.58 0.63 0.62

TargetP 2.0 cTP 227 0.90 0.86 0.88 0.88

TargetP 1.1 cTP 227 0.39 0.88 0.54 0.58

DeepLoc cTP 227 0.70 0.94 0.80 0.80

PredSL cTP 227 0.16 0.78 0.27 0.34

Predotar cTP 227 0.51 0.76 0.61 0.61

TPpred 3 cTP 227 0.76 0.64 0.69 0.69

MLP-20 cTP 227 0.51 0.37 0.43 0.40

TargetP 2.0 luTP 45 0.75 0.75 0.75 0.75

PredSL luTP 45 0.46 0.71 0.56 0.57

MLP-20 luTP 45 0.10 0.02 0.04 0.05

TargetP 2.0 noTP 9537 0.98 0.98 0.98 0.95

TargetP 1.1 noTP 9537 0.99 0.84 0.91 0.75

DeepLoc noTP 9537 0.95 0.95 0.95 0.83

PredSL noTP 9537 0.99 0.60 0.75 0.52

Predotar noTP 9537 0.96 0.95 0.95 0.84

TPpred 3 noTP 9537 0.76 0.98 0.86 0.29

MitoFates noTP 9537 0.75 0.98 0.85 0.25

MLP-20 noTP 9537 0.95 0.97 0.96 0.85

SignalP 5.0 noTP 9537 0.92 0.99 0.96 0.83

The table shows the performance in the test set yield by each predictor for mitochondria (mTP), chloroplast (cTP), thylakoid (luTP), SP, and other (noTP), in
terms of F1 score, Matthews correlation coefficient (MCC), precision, and recall.
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For comparison, we also choose to include two methods that do
identify the subcellular localisation of proteins but do not predict
the CS of the targeting peptides.

Predotar (Small et al, 2004) is a three-layer feed-forward neural
network-based approach to classify proteins in four different
classes: SP, mTP, cTP, and other.

DeepLoc (Almagro Armenteros et al, 2017) uses a deep learning
architecture very similar to what we have used in this study to
predict the subcellular localisation of proteins.

MLP-XX is a simple multi-layer perceptron that we tested for
comparison. MLP-XX consists of a one layer feed-forward neural
network where using one hot encoding of the first XX amino acids as
input (up to 20). It used the same cross-validation as TargetP 2.0. We
examined the inclusion of different numbers of N-terminal resi-
dues, and the average F1 score increased from 0.77 when using five
residues to 0.93 when using 20 (see Table 1). For comparison, we
include MLP-20 in the results.

Evaluation of the performance
We use several performance measures to obtain a uniform eval-
uation of the prediction. For the performance of sorting signals, we
use the F1 score that may count as a harmonic average of the
precision and recall. We also computed the Matthews Correlation
Coefficient for each class to measure the ability to separate one
type of target peptides from all other proteins (Baldi et al, 2000). In
addition, we used precision and recall to examine the combined
performance of sorting signals and CS. All these measurements
were expressed in terms of “tp” = true positive, “tn” = true negative,
“fp” = false positive, and “fn” = false negative.

precision = tp
tp + fp (8)

recall = tp
tp + fn

(9)

F1 = 2 precision × recall
precision + recall

� �
(10)

MCC = tp × tn − fp × fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tp + fnð Þ tp + fpð Þ tn + fpð Þ tn + fnð Þp (11)

Additional analysis

In several figures, standard or variations of sequence LOGOs are
shown. Thesewere generated using the Seq2Logo program (Thomsen&
Nielsen, 2012). In addition to standard sequence LOGOs calculated
from multiple sequence alignments, we generated two other types
of LOGOs. First, LOGOs representing the frequency of amino acids in
position 2 (and not the entropy) were generated to highlight dif-
ferences in frequencies. Furthermore, LOGOs representing the
strength of the attention layer output were also generated to
analyse the importance of a position deduced by the machine
learning method.

Secondary structure preferences for the different targeting
peptides were calculated from the scale from (Delage & Roux, 1987).

The Log2 of the average preference was plotted for each residue in
the different targeting peptides.

Conclusions

Here, we introduce the new version of TargetP 2.0 that includes the
prediction of thylakoid transit peptides and uses deep neural
networks. TargetP 2.0 can be helpful to accurately annotateN-terminal
sorting signals and CSs in particular as it scales to complete pro-
teomes. TargetP 2.0 outperforms all other methods in all N-terminal
sorting signals. Regarding classification, the only alternative method
that comes close to TargetP 2.0 in performance is DeepLoc for SPs and
mitochondrial transit peptides. However, for chloroplast peptides,
TargetP 2.0 is superior, and DeepLoc does not predict thylakoid
localisation. On the other hand, DeepLoc also predicts many other
subcellular localisations not governed by targeting peptides.

When analysing how TargetP 2.0 arrives at its predictions, we
note that two distinct regions contribute. As expected, the region
around the CS is essential for classification of the type of transit
peptide. However, surprisingly, an equally important contribution
comes from the N-terminal region. Upon closer inspections, it is
clear that (i) in plants, two-thirds of the chloroplast and luminal
transit peptides have an alanine in position 2 (after the N-terminal
methionine) and (ii) in fungi, only 20–30% of the N termini of mTPs
and SPs can be cleaved, compared with 60% for noTPs. In summary,
this indicates that it is not unlikely that specificity of MAPs aids in
the co-translational targeting of peptides into organelles.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900429.
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