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Abstract: The health burden of foodborne mycotoxins is considerable, but particularly for children 

due to their lower detoxification capacity, rapid growth and high intake of food in proportion to 

their weight. Through a Total Dietary Study approach, the objective was to estimate the dietary 

exposure and health risk caused by mycotoxins for children under 5 years living in the Lao Cai 

province in northern Vietnam. A total of 40 composite food samples representing 1008 individual 

food samples were processed and analyzed by ELISA for aflatoxin B1, ochratoxin A and fumonisins. 

Results showed that dietary exposure to aflatoxin B1, ochratoxin A and total fumonisins were 118.7 

ng/kgbw/day, 52.6 ng/kg bw/day and 1250.0 ng/kg bw/day, respectively. Using a prevalence of 

hepatitis of 1%, the risk of liver cancer related to exposure of aflatoxin B1 was 12.1 cases/100,000 

individual/year. Age-adjusted margin of exposure (MOE) of renal cancer associated with ochratoxin 

A was 127, while MOE of liver cancer associated with fumonisins was 542. Antropometric data show 

that 50.4% (60/119) of children were stunted, i.e. height/length for age z-scores (HAZ) below –2, and 

3.4% (4/119) of children were classified as wasted, i.e. weight for height z-scores (WHZ) below –2. 

A significant negative relationship between dietary exposure to individual or mixture of mycotoxins 

and growth of children was observed indicating that the high mycotoxin intake contributed to 

stunning in the children studied. 

Keywords: risk assessment; total diet study; aflatoxin B1; ochratoxin A; fumonisins; children; 

Vietnam 

Key Contribution: Exposure to mycotoxins are high and exceeds toxicological reference levels in 

children under five in Lao Cai province, Vietnam. Risk assessments showed a high risk for liver 

cancer due to the consumption of aflatoxin B1 contaminated foods and high exposure to mycotoxins 

was associated with impaired child growth when adjusted for age, gender and dietary intake. 

 

1. Introduction 
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Children are especially vulnerable to foodborne hazards due to their higher dietary exposure 

per kg body weight and differences in physiology compared to adults. Due to significant postnatal 

development of different organ systems during childhood, children up to four years of age are more 

sensitive to some neurotoxic, endocrine and immunological effects [1]. Dietary exposure to 

mycotoxins is associated with various health disorders and recognized as a major food safety hazard 

[2]. Among pathogenic mycotoxins, Aflatoxin B1, ochratoxin A and fumonisins are common and 

potent ones which can contaminate various types of foods [3]. The International Agency for Research 

of Cancer (IARC) [4,5] has classified aflatoxin B1 and mixtures of total aflatoxins into group 1: 

“Carcinogenic for humans”. Aflatoxins are documented causes of human liver cancer and impaired 

child growth, as well as an immunosuppressant [6]. The IARC has reported fumonisins as Group 2B 

as “Possible carcinogenic to humans” [5,7], based on evidence showing that fumonisins act as a 

promoter of liver and kidney tumors in rodents. Ochratoxin A has been evaluated to be carcinogenic 

in the kidney of some animal species, in addition to causing numerous other specific toxic effects, 

such as hepatotoxicity, teratogenicity and immune-suppressivity, in different animals [8–10]. 

Ochratoxin A is also classified into Group 2B as possibly carcinogenic to humans by the IARC [11]. 

Increased risk of liver cancer has been reported in people co- exposed to aflatoxins and hepatitis 

B virus (HBV) [3]. Thirty times higher risk of developing liver cancer was observed among 

individuals who experienced both exposures compared to those exposed to the mycotoxins only [12]. 

Vietnam is endemic for hepatitis B, with a prevalence of 7 to 24% among adults depending on age 

and geographic region. Of those, about 10 to 12% of pregnant women are chronically infected with 

hepatitis B. Hence, mother-to-child transmission is an important factor contributing to the high levels 

of chronic hepatitis B infection in Vietnam [13]. Newborn infants who become infected with hepatitis 

B virus show no symptoms, yet have a 90% chance of developing a chronic, life-long infection. By 

increasing the cover rate of vaccination, Vietnamese authorities expect to reduce the rate of chronic 

hepatitis B infection among children from 18% in 2003 to below 1% in 2017 [14]. 

Child malnutrition, including both energy- and nutrient deficiencies, is caused by multiple 

factors and are harmful to their health, growth, development, and burden of infectious diseases. 

Stunting remains common in Vietnam despite general economic development, particularly in areas 

with large populations of ethnic minority people such as the Central Highlands, Northern Midlands 

and mountainous regions [15]. About 25% of children younger than five years old in Vietnam are 

considered stunted [16]. The stunting rate among children in rural areas is twice as high as that in 

urban areas, while the level of stunting is approximately three times higher among Vietnamese 

children from the poorest households to which ethnic minority groups belong [15]. The Lao Cai 

province in the North West mountainous area of Vietnam is inhabited by 25 ethnic groups and has 

one of the highest prevalence’s of stunted children younger than five years of age countrywide. Based 

on nutrition profiles of the year 2014, 35% of the children younger than five years of age were stunted, 

20% was underweight and wasting was seen among 6% of the children [16] 

Chronic exposure to mycotoxins is increasingly seen as a threat to child health. Therefore, it is 

important to assess and predict the negative health implications of exposure to different mycotoxins. 

Exposure assessment, as one part of risk assessment, integrates mycotoxin contamination in food 

with consumption data and is used to identify which mycotoxins compromise food safety and health 

hazards [17]. Exposure data collected by so-called total dietary study (TDS) approaches consider and 

include all different foods consumed in the whole diet. Risk characterizations for the mycotoxins 

associated with cancer risk are available. Thus, the FAO/WHO Joint Expert Committee on Food 

Additives (JECFA) estimates the cancer risk for a certain population using the incidence of the 

hepatitis B virus (HBsAg+ individuals) and the carcinogenic potency of aflatoxins, which has been 

defined for HBV carriers and non-carriers [12]. The European Food Safety Authority (EFSA) and 

JECFA recommended to use the margin of exposure (MOE) approach to evaluate compounds that 

are both carcinogenic and genotoxic [18,19]. The MOE is the ratio between a toxicological threshold 

obtained from animal studies and the estimated human exposure [18]. A small margin of exposure 

suggests a higher risk than a larger margin of exposure. Hence, risk managers can use this 

information for priority setting [15]. 
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Using the TDS approach, this study aimed at estimating the dietary exposure to aflatoxin B1, 

ochratoxin A and total fumonisins and the associated health risks among children younger than five 

years old in Lao Cai province, Vietnam. 

2. Results and Discussion 

2.1. Food and Nutrient Intake 

Children were generally fed the same dishes as the rest of the family. Complementary foods 

were composed mainly of commodities from locally available food products (Table 1). 

Table 1. Food groups and food preparation procedures in households in Lao Cai province, Vietnam. 

Food Groups a Food Items Food Preparation b 

1 Rice and products 

Rice Boiled 

Sticky rice Boiled 

Rice noodle Boiled 

2 Wheat and products Noodle Boiled 

3 Tubes, root and products 
Vicermine Boiled 

Shrimp chip Deep fried 

4 Beans and products 

Black bean Stewed 

Mung bean Stewed 

Soybean milk Ready to eat 

Soy bean Stewed 

5 Tofu Tofu Boiled 

6 Oily seeds Peanut Stir fried 

7 Vegetables Bamboo shot, fermented Boiled 

8 Sugar, confectionary 

Biscuit Ready to eat 

Wafers Ready to eat 

Cookies Ready to eat 

Sesame candy Ready to eat 

Nugget/peanut candy Ready to eat 

9 Oil, fat 
Pork, fat Fried 

Cooking oil  

10 Meat and products 

Dry pork meat Ready to eat 

Pork pie, fried Ready to eat 

Pork pie, boiled Ready to eat 

Pork rib, boneless Stewed 

Pigeon Stewed 

Beef Stir fried 

Dog meat Boiled 

Chicken Boiled 

Pork, lean Boiled, stir fried 

Pork Boiled, stir fried 

Pork liver Stir fried 

11 Egg and milk 

Egg, chicken Boiled, fried 

Egg, duck Boiled, fried 

Condensed Milk Ready to eat 

Milk powder Ready to eat 

Milk  Ready to eat 

12 Fish 
Dried fish Stir fried 

Fish, fresh water Boiled 

13 Other aquaculture products 
Dried shrimp Boiled 

Shrimp Stir fried 
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a Food groups were categorized according to a previous national survey [16]. b Food items were 

prepared as practiced by households in the Lao Cai province. 

Common foods were rice, groundnuts, banana, beans, meat, powder milk, eggs and vegetables. 

The daily food-, energy- and nutrient intake are summarized in Table 2. The estimated daily mean 

energy intake was 870 (range 218–1713) kcal and mean protein intake was 28 (8–67) g. Daily intake of 

essential micronutrients such as vitamin A, iron and zinc were 99 (0–1044) mcg, 4.8 (1.0–9.5) mg and 

3.7 (1.1–6.5) mg, respectively. The latter three intakes were lower than the national recommended 

daily intake [20]. 

Table 2. Food and nutrient intake amongst children in Lao Cai. 

 Mean Range 

Food Intake (g per child per day) 

Rice and products 196 49–313 

Wheat and products 11 0–93 

Tubes, root and products 3 0–100 

Bean and products 11 0–293 

Tofu 4 0–63 

Oily seed 2 0–29 

Vegetable leaf 50 0–149 

Vegetable tube 12 0–157 

Fruit 22 0–225 

Confectionary 15 0–215 

Seasoning 0 0–4 

Oil, fat 2 0–12 

Meat and products 30 0–110 

Egg and milk 38 0–281 

Fish 6 0–31 

Other aquaculture products 2 0–55 

Other spices 0 0–4 

Dietary Composition (per child per day) 

Energy (kcal) 871 218–171 

Protein (g) total 28 8–67 

Protein from animal sources (g) 10 0–50 

Non-animal protein (g) 18 4–33 

Protein (eggs and milk) (g) 3 0–17 

Protein from meat (g) 6 0–45 

Carbohydrate (g)  152 37–258 

Fat (g) 17 2–57 

Vegetable fat/oil (g) 7 1–48 

Fiber (g) 2.5 0.4–6.9 

Ash (g) 3.5 0.9–7.2 

Total vitamin A a (mcg) 99.0 0–1044.0 

Animal source vitamin A a (mcg) 90.0 0–1044.0 

Non-animal vitamin A a (mcg) 9.0 0–145.0 

Carotenoid (mcg) 2353.0 0–8576.0 

Vitamin C (mg) 33.1 0.0–170.3 

Thiamin (mg) 0.4 0.1–1.0 

Riboflavin (mg) 0.3 0.0–1.1 

Niacin (mg) 5.1 1.2–13.2 

Vitamin D (mcg) 0.4 0.0–4.7 

Folic acid (mcg) 0.0 0.0–0.0 

Folate (mcg) 94.5 8.6–308.3 

Vitamin B12 (mcg) 0.6 0.0–4.2 

Calcium (mg) 181.8 27.8–707.9 

Sodium (mg) 167 8–1087 

Potassium (mg) 784.9 176.1–1716.6 
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Magnesium (mg) 69.5 11.7–177.4 

Zinc (mg) 3.7 1.1–6.7 

Phosphorous (mg) 361 73–905 

Iron (mg) 4.8 1.0–9.5 

Iron from meat/fish/poultry (mg) 0.5 0.0–3.4 

a Retinol equivalent. 

Forty mothers and caregivers attended five focus group discussions to talk about how they fed 

their children and handled food for children and family. The main reasons for stopping breast feeding 

after 3 to 6 months of birth were that the mothers had to go back to work; some had to stay in the 

field for a week or more during harvest time. Mothers who did not stay in the field overnight also 

did not breast feed their child, because they were not aware about the advantage of breast feeding or 

simply followed the traditional weaning practice. 

2.2. Mycotoxins in Food Samples 

Aflatoxin B1 was found in 87.5% of composite food samples except the tofu products group 

(Table 3). The highest contamination was detected in egg and milk products (5326 ng/kg), followed 

by oily seed (4086 ng/kg), then meat and meat products (4077 ng/kg) (Table 3). In rice, the aflatoxin 

B1 concentration was 2998 ng/kg. Rice products were consumed in large amounts (Table 2). There 

have been a few surveys of mycotoxins in foods in Vietnam, including small sample sizes; however, 

they indicated that aflatoxins are common in maize kernel and maize flour [21,22]. In Lao Cai, it was 

reported that 25% of self-supplied cereal samples collected in households were contaminated with 

aflatoxins [23]. 
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Table 3. Aflatoxin B1 and ochratoxin A contents (ng/kg) in food groups included in the total dietary study. 

Food Group a 

Number of 

Composite 

Samples 

Aflatoxin B1 Ochratoxin A 

Number of Test 

Results < LOD 

Concentration (ng/kg) b Number of Test 

Results < LOD 

Concentration (ng/kg) b 

MB LB-UB MB LB-UB 

Rice and products 3 1 2989 2400–3020 3 950 0–1900 

Wheat and products 1 0 1000 1000 1 950 0–1900 

Tubes, root and 

products 
2 1 2171 1670–2670 2 950 0–190 

Beans and products 4 1 2864 2610–3110 2 9683 9210–10,160 

Tofu 1 1 1000 0–2000 1 950 0–1900 

Oily seeds 1 0 4086 4086 1 950 0–1900 

Vegetables 1 0 3470 3470 1 950 0–1900 

Sugar/confectionary 5 0 4033 4033 4 1173 410–1930 

Oil, fat 2 0 3382 3382 1 1462 980–1940 

Meat and products 11 1 4077 3990–4170 4 2685 2340–3032 

Egg and milk 4 0 5326 5325 1 3164 2930–3400 

Fish 2 1 2301 1800–2800 1 2245 1770–2720 

Other aquaculture 

products 
3 0 2518 1850–3180 0 4850 4850 

Total 40 6   20   

a Food groups were categorized according to a previous national survey [16]. b Medium bound (MB) figures (ND = LOD/2) were used as mean values. Lower bound 

(LB) and upper bound (UB) figures. LOD, limit of detection.
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Among 40 composite samples analyzed, ochratoxin A was found in 20 samples (49.5%), with the 

highest concentration (9683 ng/kg, range 9208–10158 ng/kg) found in bean products. Lower 

ochratoxin A concentrations were shown in the food groups of animal original such as aquaculture 

products (4850 ng/kg), egg and milk products (3164; 2930–3402 ng/kg), meat products (2685; 2339–

3030 ng/kg) and fish products (2245; 1770–2720 ng/kg) (Table 3). In contrast, the concentration of 

ochratoxin A in all staple cereal samples (rice products, wheat products, other cereal and tube, roof 

products) was below the detection limit. 

Only one black bean and one milk composite sample were found to be contaminated by 

fumonisins. Among 25 cereal samples collected in various locations of Vietnam, Trung found that 

eight samples (32%) were contaminated with fumonisins with concentrations ranging from 400 to 

3300 ng/g [22]. We have previously reported fumonisins in 8.1% of rice and 23.5% of maize in 

households supplying their own cereals in Lao Cai province [23]. 

2.3. Growth Indicators and Their Correlates 

The overall proportions of stunted children (HAZ < −2) were 50.4% (60/119), 3.4% (4/119) of the 

children were classified as wasted (WHZ < −2). Mean HAZ was −1.94 (range: −3.31–2.50), mean WHZ 

was −0.57 (range: −3.33–3.27). Some of the z-scores are summarized in Table 4 listed by age group and 

gender together with selected nutritional intake measures and estimated intake of mycotoxins. 

Differences between boys and girls were minor, while the older age group had lower z-scores than 

the younger group. A significant difference of vitamin A daily intake (p < 0.05) was observed between 

the two age groups of boys only.  
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Table 4. Anthropometric measurements, selected dietary intake and mycotoxin exposure (mean and 

range) by age group and gender. 

  Boy Girl 
p-value 

n Mean and Range n Mean and Range  

Anthropometric Measurement 

Length/height for age Z- score  

13–23 months 6 −0.34 (−0.76–0.65) 8 1.01 (−2.36–2.50) n.s. 

24–59 months 58 −2.22 (−3.19–1.52) 47 −2.29 (−3.31–1.60) n.s. 

p-value  <0.01  <0.001  

Weight for length/height Z- score 

13–23 months 6 −0.49 (−1.05–0.37) 8 0.27 (−1.00–2.00) n.s. 

24–59 months 58 −0.66 (−2.33–1.13) 47 −0.61 (−2.41–3.27) n.s. 

p-value  n.s.  <0.05  

% Length/height for age Z- score < −2 (%) 

13–23 months 6 0 8 12.5 n.s. 

24–59 months 58 53.4 47 59.6 n.s. 

p-value  <0.05  <0.05  

Dietary Intake 

Energy intake(kcal/day) 

13–23 months 6 790 (434–1097) 9 742 (367–1164) n.s. 

24–59 months 58 901 (218–1436) 47 868 (378–1713) n.s. 

p-value  n.s.  n.s.  

Protein intake (g/day) 

13–23 months 6 24 (11–49) 9 22 (9–38) n.s. 

24-59 months 58 29 (8–67) 47 28 (9–48) n.s. 

p-value  n.s.  n.s.  

Vitamin A intake (mcg/day) 

13–23 months 6 15.5 (0.0–60.9) 9 47.1 (0.0–160.9) n.s. 

24–59 months 58 95.3 (0.0–629.8) 47 124.1 (0.0–1043.7) n.s. 

p-value  <0.05  n.s.  

Iron intake (mg/day) 

13–23 months 6 5.6 (3.7–8.3) 9 4.6 (1.9–6.5) n.s. 

24–59 months 58 4.8 (1.1–9.5) 47 4.7 (1.6–9.4) n.s. 

p-value  n.s.  n.s.  

Zinc intake (mg/day) 

13–23 months 6 3.7 (2.6–5.7) 9 3.6 (1.1–4.8) n.s. 

24-59 months 58 3.8 (1.1–6.7) 47 3.75 (1.5–6.5) n.s. 

p-value  n.s.  n.s.  

Mycotoxin Exposure 

Aflatoxin B1 (ng/kg bw/day) 

13–23 months 6 135.9 (87.2–170.3) 8 100.5 (49.1–156.6) n.s. 

24–59 months 58 123.5 (28.4–247.3) 47 121.6 (40.2–246.3) n.s. 

p-value  n.s.  n.s.  

Fumonisins (ng/kg bw/day) 

13–23 months 6 3.6 (2.1–4.6) 8 2.7 (1.6–4.0) n.s. 

24–59 months 58 3.5 (0.8–7.5) 47 3.5 (1.3–7.1) n.s. 

p-value  n.s.  n.s.  

Ochratoxin A (ng/kg bw/day) 

13–23 months 6 43.2 (20.4–82.1) 8 31.3 (17.6–47.2) n.s. 

24–59 months 58 54.8 (11.0–344.7) 47 57.2 (13.7–239.5) n.s. 

p-value  n.s.  n.s.  

n.s.: not significant. 

In the principal component analysis (PCA) analysis of the dietary variables, the first seven 

principal components explained 89.1% of the variation in dietary intake with the 7th component 

having an eigenvalue of 1.04. The loadings (only those above 0.3 are shown) of the included food 

intake variables on the seven rotated components are shown in Table 5. Loadings are correlations 

between the original dietary variables and the principal components. Many variables loaded slightly 

on the unrotated component 1, which likely represents the amount of food eaten, i.e., carbohydrate, 

non-animal protein and total energy intake loaded most strongly on the rotated component 1. Zinc 

intake was another factor loading on component 1 (Table 5). High loadings on components 2 to 5 

were mainly various vitamin and mineral variables, while for component 6, vegetable fat/oil, vitamin 

A from non-animal sources, the fiber content and fat from animals were important (Table 5). On 

component 7, the most important variables were protein from meat and iron derived from meat 

(Table 5). The seven principal component scores were used as potential correlates in the growth 

indicator analyses.  
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Table 5. Correlations (loadings) between dietary variables and the rotated principal components 

(Comp 1 to 7). Only loadings above 0.3 are shown. Factors not loading on the first seven components 

are not shown. 

Variable Label 

Principal Component Score 

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 
Comp 

7 

Energy (Kcal) 0.38       

Non-animal protein sources (g) 0.39       

Carbohydrate by difference (g) 0.51       

Zinc (mg) 0.33       

Riboflavin (mg)  0.31      

Vitamin D (mcg)  0.44      

Calcium (mg)  0.38      

Sodium (mg)  0.40      

Poly-unsaturated fatty acid (g)   0.50     

Mono- saturated fatty acid (g)   0.62     

Animal source vitamin A (mcg)    0.55    

Vitamin B12 (mcg)    0.48    

Cholesterol (g)    0.50    

Carotenoid (mcg)     0.58   

Vitamin C (mg)     0.44   

Folate (mcg)     0.48   

Vegetable Fat/oil (g)      0.57  

Fiber (dietary fiber) (g)      0.32  

Fat (g)      0.33  

Non-animal source vitamin A      0.57  

Protein from meat (mg)       0.58 

Niacin (mg)       0.31 

Iron from fish, poultry and other meat product (mg)       0.64 

Mycotoxin exposure estimates showed a skewed distribution, and scores were therefore logn-

transformed. Pairwise correlations between exposures to the three toxins were high, i.e., correlation 

coefficients varied from 0.85 to 0.98 (results now shown). This could obviously result in problems of 

collinearity in regression models where the three toxins were used as simultaneous correlates. Hence, 

we performed a principal component analysis on logn(exposure) of the three toxins. The first principal 

component accounted for 94.3% of the total variation in mycotoxin exposure and all three toxins 

loaded similarly on the first component. The principal component scores for the first component were 

used as a correlate in further analysis of correlation between toxins and the growth indicators. 

We tested a number of potential correlates of HAZ and WHZ scores one by one (for each score 

adjusting for age in months and gender) and jointly in multivariable analyses where age, gender and 

energy consumption was forced into the model (data not shown). The HAZ and WHZ scores declined 

with increase in age in a linear manner (Table 4). None of the mycotoxins or the combined principal 

component score was significantly correlated with HAZ or WHZ when tested alone together with 

age and gender (data not shown). 

In the final analysis, we decided to model for each toxin separately and the combined score from 

PCA. Age and gender were considered potential correlates and were included in any model. We tried 

four different models (Y = growth indicator and T = toxins, individual or combined; the factors 

included in brackets were forced into the model): (1) Y = b1×age + b2×gender + b3×T + const.; (2) Y = 

b1×age + b2×gender + b3×T + b4×Energy + const.; (3) Y = (b1×age + b2×gender + b3×T + b4×Energy) + 

b5×VitA + b6×Zn + b7×Fe + const; and (4) Y = (b1×age + b2×gender + b3×T + b4×PC1) + b5×PC2 + …. + 

b10×PC7 + const. Results are summarized in Table 6. None of the toxins were significantly correlated 

with the growth indicators when adjusting for age and gender. When adjustments were also made 

for total energy (model 2), all toxins showed a significant correlation with HAZ but not with WHZ. 

This was also the case when adding vitamin A, total protein, iron and zinc (model 3). When adjusting 

for dietary intake using the principal component scores, all three toxins showed a negative correlation 

with HAZ, while only aflatoxin B1 and fumonisin were negatively correlated with WHZ (Table 6). 
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Table 6. Multivariable analyses of potential correlates of HAZ and WHZ tested adjusting for age and gender using four different models. 

Model 
Factors Adjusted for 

(Forced into Model) 

Other Potential 

Correlates 

Logn (Aflatoxin B1 

Exposure) 

Logn (Fuminosin 

Exposure) 

Logn (Ochratoxin A 

Exposure) 

Combined (Based on 

PCA Score) 

HAZ 

1 Age (months) + gender None 0.21 (−0.40–0.81) 0.11 (−0.54–0.75) −0.07 (−0.48–0.35) 0.02 (−0.13–0.17) 

2 
Age (months) + gender 

+ total energy 
None −1.13 (−1.81–−0.45) ** −1.52 (−2.24–−0.80) *** −0.76 (−1.18–−0.35) *** −0.32 (−0.49–−0.16) *** 

3 
Age (months) + 

gender+total energy 

Vitamin A; total 

protein; iron; zinc 
−2.19 (−2.80–−1.58) *** −2.62 (−3.24–−1.99) *** −1.24 (−1.62–−0.86) *** −0.58 (−0.72–−0.43) *** 

4 
Age (months) + gender 

+ PC1 
PC2 to PC7 a −2.66 (−3.40–−1.92) *** −2.99 (−3.71–−2.27) *** −0.96 (−1.31–−0.61) *** −0.66 (−0.83–−0.48) *** 

WHZ 

1 Age (months) + gender None −0.16 (−0.56–0.25) −0.14 (−0.57–0.28) 0.01 (−0.26–0.29) −0.02 (−0.12–0.08) 

2 
Age (months) + gender 

+ total energy 
None −0.26 (−0.78–0.26) −0.26 (−0.82–0.30) 0.0145 (−0.30–0.33) −0.04 (−0.17–0.09) 

3 
Age (months) + gender 

+ total energy 

Vitamin A; total 

protein; iron; zinc 
−0.534 (−1.07–0.00) * −0.50 (−1.07–0.084) −0.08 (−0.40–0.24) −0.09 (−0.22–0.04) 

4 
Age (months) + gender 

+ PC1 
PC2 to PC7 −1.50 (−2.17–−0.83) *** −1.26 (−1.95–−0.56) *** −0.41 (−0.81–0.00) −0.27 (−0.44–−0.11) ** 

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. a Principal component scores (PC1-PC7) were used as potential correlates of growth indicators. PC1 is a measure 

of total food intake. 
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Children such as the ones studied in the Lao Cai province are constantly exposed to numerous 

mycotoxins in the food chain. There are several studies linking aflatoxin intake to growth impairment 

in children. A dose-response relationship between high aflatoxin levels in the blood and low WAZ (p 

= 0.005) and HAZ scores (p = 0.001) were found in a cross-sectional study in Togo and Benin [24]. A 

study in the Gambia found an association between high exposure to aflatoxin in utero and low weight 

(p = 0.012) and length gains (p = 0.044) in the first year of life [25]. A strong negative correlation 

between blood aflatoxin levels and child growth (stunting) was reported in a longitudinal study of 

200 children between 16 and 37 months of age. Fumonisin exposure was pointed out to be a possible 

factor in slowed child growth as levels of urinomarker of fumonisin B1 concentration were negatively 

associated with growth [26]. 

2.4. Risk Assessment for Mycotoxin Exposure 

2.4.1. Aflatoxin B1 

Using the data of contamination level and daily intake of each food group, mean dietary 

exposure of aflatoxin B1 was estimated at 118.7 ng/kgbw/day (range 104.9–124.2 ng/kgbw/day) 

resulting in a risk of hepatocellular carcinomas (HCC) of 12.1 cases/100,000 individual/year (range 

10.7–12.7 cases/100,000 individual/year). The rice product group was found to be the main source of 

aflatoxin B1 exposure (52.2 ng/kg bw/day), therefore contributed with the highest risk (5.3 

cases/100,000 individual/year) of HCC in comparison to other food groups (Table 7). Our previous 

study in Lao Cai on risks for HCC when consuming self-supplied staple cereals showed that the 

dietary exposure to aflatoxins and risk of HCC were 33.7 ng/kg bw/day and 2.7 cases/100,000 

individual/year, respectively [23]. 
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Table 7. Dietary exposure to aflatoxin B1 and ochratoxin A and risk of liver and renal cancer. 

Food Groups a 

Aflatoxin B1 Ochratoxin A 

Exposure 

(ng/kg bw b/day) 

HCC risk d 

(cases/100,000 

population) 
MOEeHCC 

MOEfHCC 

Adjusted 

Exposure 

(ng/kg bw/day) MOEe RC 
MOEfRC 

Adjusted 

MBc LB-UBc MB LB-UB MB LB-UB 

Rice and products 52.2 41.2–52.8 5.3 4.2–5.4 3 1 14.2 0–1900 1478 468 

Wheat and products 1.0 0–1.9 0.1 0–0.2 183 58 0.9 0–1900 >10,000 7384 

Tubes, roof and products 0.7 0.5–0.8 0.1 0–0.1 261 83 0.3 0–1900 >10,000 >10,000 

Beans and products 3.9 3.6–4.1 0.4 0.4 44 14 9.8 9208–10,158 2142 678 

Tofu 0.3 0–0.6 0.0 0–0.1 532 168 0.3 0–1900 >10,000 >10,000 

Oily seeds 0.6 0.6 0.1 0.1 287 91 0.1 0–1900 >10,000 >10,000 

Vegetables 18.9 18.9 2.0 2 9 3 5.2 0–1900 4,038 1278 

Sugar/confectionary 6.8 5.5 0.7 0.7 25 10 1.6 413–1933 >10,000 4153 

Oil, fat 0.5 0.5 0.1 0.1 347 110 0.2 987–1937 >10,000 >10,000 

Meat and products 13.8 13.5–14.0 1.4 1.4 12 4 7.1 1339–3030 2957 936 

Egg and milk 18.0 18 1.9 1.9 9 3 10.7 2927–3401 1962 621 

Fish 1.3 1.0–1.6 0.1 0.2 133 42 1.2 1770–2720 >10,000 5538 

Other aquaculture 

products 
0.4 0.3–0.6 0.0 0–0.1 384 122 0.9 4850 >10,000 7384 

Total 118.7 104.9–124.2 12.1 10.7–12.7 1.4 0.5 52.6 29.7–77.0 400 127 
a Food groups were categorized followed those applied in data of National Survey in the year 2010 [16] . b Mean body weight (bw) of children was 11.3 kg. c Medium 

bound (MB) figures (ND = LOD/2) were used for mean. Lower bound (LB) and upper bound (UB) figures (ND = 0, ND = LOD) were used for range. d Children risk 

of hepatitis carcinogen is calculated on the assumption of HbsAg + prevalence 2% [14] and mean exposure. e MOE, Margin of exposure, based on the calculated as 

a ratio of benchmark dose lower limit 10% lower bound of AFB1 (170 ng/kw bw/day [6]) or OTA (21 µg/kg bw/day [27]) and MB of exposure. HCC, hepatocellular 

cancer; RC, renal cancer. f MOEs adjusted by age-dependent adjustment factors for children aged 2–16 (ADAF = 3.16) [28]. 
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In line with the above risk estimation, MOEs of aflatoxin B1 of all food groups are far lower than 

10,000 (range from 3 to 532), resulting in a combined MOE of total aflatoxin B1 daily intake as low as 

1.4, which is of major public health concern. This is supported by evidence of increased susceptibility 

to cancer from early-life exposure, particularly for chemicals acting through a genetoxic mode of 

action like aflatoxins [1]. The high dietary intake exposure of aflatoxins found in the present study 

together with HBV and HCV infections is likely to represent increased risks of children to liver cancer 

much more than for adults. 

2.4.2. Ochratoxin A 

An amount of 52.6 ng/kg bw/day was estimated as the average ochratoxin A exposure, while 

77.0 ng/kg bw/day was the highest exposure value (Table 7). The mean and high dietary exposure 

levels of ochratoxin A were, respectively, equivalent to 261% and 413% of PTDI (14 ng/kg bw/day) 

[29]. It should be noted that the ochratoxin A exposure level in our study was based on average food 

intake of children only, which means that the actual exposure dose with the 95th percentile might be 

much higher. Among the few reports on exposure of children to ochratoxin A, children aged 4 to 6 

years were found to be the age group with the highest ochratoxin exposure in the Czech Republic 

[30]. Results from a French total diet study showed that the estimated average intake of ochratoxin A 

in children was 4.1 ng/kg bw/day with the 95th percentile exposure being 7.8 ng/kg bw/day [31]. 

Ochratoxin A contamination of raw pork and meat products is detected quite commonly in Europe 

[32–34]. Mycotoxins in meat originate mainly from contaminated feed. In our study, the food groups 

contributing the most to ochratoxin A exposure were rice products (14.2 ng/kg bw/day) followed by 

egg and milk products (10.7 ng/kg bw/day) and beans (9.8 ng/kg bw/day). Thus, a MOE of less than 

10,000 was observed for the five food groups. Taking into account the ochratoxin A exposure level of 

food groups, MOE of the total daily intake was 400, which represents a real risk for renal cancer in 

the study population. 

2.4.3. Fumonisins 

Although fumonisins contamination was the least common of the mycotoxins studied; still, an 

average and highest exposure dose of 1250 and 1929 ng/kg bw/day, equal to 63% and 96% of PTDI 

(2000 ng/kg bw/day), respectively, were observed, using a hepato-carcinogen benchmark dose lower 

limit 10% (BMDL10) of 150 µg/kg bw/day [35]. Assuming that the contamination level of fumonisin 

B1 is 70% of that of total determined fumonisins [17], the MOE of fumonisin B1 in total daily intake 

was 1713, indicating a health risk for the children due to consumption of large portions of various 

food items containing low levels of fumonisins. 

2.4.4. Aged Adjusted MOEs of the Mycotoxins 

Cancer risk assessment methods currently assume that children and adults are equally 

susceptible to exposure to chemicals. However, research indicates that individuals exposed to 

mycotoxins at a young age are at higher risk developing cancer than adults [36]. Consequently, a 

modifying factor may need to be applied to our cancer-risk estimates to ensure risks are not 

underestimated. The US EPA calculated age-dependent adjustment factors (ADAFs) to account for 

that children are more susceptible to carcinogens [28]. These factors, which apply to carcinogens with 

a genotoxic mode of action, are as follows: ADAF is 10 for children <2 years of age; ADAF is 3.16 for 

children aged 2 to <16 years; and there should be no adjustment (ADAF = 1) for children ≥16 years of 

age. The MOEs adjusted by ADFA of aflatoxin B1 and ochratoxin A in total daily intake were 

calculated and are shown in Table 7, while the one of fumonisin B1 was 542. 

2.4.5. Combined Exposure to All Three Mycotoxins 

Co-occurrence of mycotoxins is common worldwide [37]. A study in Tanzania showed that in 

three geographically distant villages, 82% (n = 148) of children aged 12 to 22 months were exposed to 

both aflatoxin and fumonisins [26]. Studies in Asian countries show that aflatoxin and fumonisin are 
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commonly found together in foods [37]. In our study, frequency histograms of the mycotoxins 

showed a skewed distribution and scores were therefore log-transformed. Pairwise correlations 

between the three toxins were high, i.e., correlation coefficients from 0.8457 to 0.9772 document a 

frequent co-exposure to the mycotoxins studied. We know too little about the toxicity associated with 

exposure to multiple mycotoxins, e.g., additive, synergistic or antagonistic toxic effects. 

3. Conclusions 

We estimated exposure to aflatoxin B1, ochratoxin A and fumonisins among children in the Lao 

Cai province using a total dietary study (TDS) approach. Exposures to all three mycotoxins were high 

and exceeded toxicological reference levels. Risk assessments showed a high risk for liver cancer due 

to the consumption of aflatoxin B1 contaminated foods and lower risks for liver cancer due to 

fumonisin exposure and renal cancer due to ochratoxin A exposure. Furthermore, high exposure to 

mycotoxins was associated with impaired child growth when adjusted for age, gender and dietary 

intake. Though the mechanisms are not clear, stunning and the associated compromised immunity 

together with high mycotoxin exposure are likely to further negatively impact child development. 

Locally adapted post-harvest interventions that effectively reduce mycotoxin development in stable 

cereals are needed. 

4. Materials and Methods 

4.1. Study Area 

The study took place in and covered the entire Lao Cai province, which consists of nine sub-

regions; Lao Cai city itself, together with eights districts (Figure 1). 

 

Figure 1. Map of nine districts of the Lao Cai province. 
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4.2. Anthropometric Measurement 

An anthropometric study was conducted in the Ta Phoi and Hop Thanh communes, Lao Cai 

district, where the inhabitants represented five ethnic groups, i.e., Dao, Giay, Xapho, Tay and Kinh. 

From a list of 300 households, all 119 children aged 13 to 59 months were selected. Children were 

weighed and measured once while wearing light-weight clothing following WHO’s instructions [38]. 

Children younger than 24 months of age were laid horizontally and weighed using a children scale. 

Their length was also measured using a measuring tape. Children aged 24 to 59 months were weighed 

barefoot using an electronic scale. The height of these children was measured using a stadiometer 

while standing straight on a horizontal surface with their heels together and eyes straight forward. 

4.3. Daily Food Intake Surveillance 

The food consumed by the children studied was estimated based on information collected from 

24 h recall food intake interviews conducted on three consecutive days combined with actual 

weighing of the reported consumptions [39]. The mother or grandmother was interviewed on the 

types of dishes consumed during the last day, including information about all ingredients used for 

food preparation. Supporting tools, such as spoon, table spoon, bowl and cups, were used to activate 

the household member’s memory and to allow subsequent weighing of the foods. Accordingly, 

available foods were weighted for confirming amount stated by household members using a Tanita 

electronic scale (, Tokyo, Japan). 

For collecting further information about feeding practices of children, five focus group 

discussions were carried out with mothers or caregivers. Eight to 10 mothers belonging to the same 

ethical group were invited to discuss about breast feeding, complementary feeding, food safety 

practice and taking care of sick children. 

4.4. Mycotoxins Exposure Risk Assessment 

The guidance for Total Dietary Study (TSD) approach issued by EFSA, WHO and FAO [40] was 

employed to assess dietary exposure of the aflatoxin B1, ochratoxin A and fumonisins of children 

younger than 5 years old. 

4.4.1. Food Sample Collection and Analysis 

Data collected in the daily food intake surveillance came up with a list containing 89 food items. 

Of these, 40 were selected for the TDS (Table 1). The selection was made on the basis that these food 

items were most commonly consumed and probably could be contaminated with one or more of the 

three mycotoxins analyzed. In each of the nine sub-regions, three retail markets were selected. 

Choosing one retailer at each market made up a total of 27 retailers. At each of the 27 retailers, three 

independent samples of about 100 g size were collected for each of the 40 pre-selected food items. 

Thus, 1080 individual foods samples were collected (40 food items × 9 sub-regions × 3 retail markets). 

For each of the 40 composite food items, samples taken were compounded in the following way. 

The three 100 g samples from a given retailer were mixed, and from the 300 g of the resulting mixed 

sample a 100 g sub-sample were taken. The nine sub-samples of 100 g, representing each of the nine 

sub-regions, were then mixed, to give a sample of 900 g representing the province. Three hundred 

grams of this sample was taken for preparation and cooking according to the most common local 

cooking practices. The means of preparation and cooking complied with the EFSA/FAO/WHO 

guidance in kitchen preparation [40]. In total, this procedure resulted in 40 composite cooked samples 

each representing one food item as “averaged” over the whole of the province. Each of these 40 food 

item samples were analyzed for the three mycotoxins mentioned above as describe in the following. 

4.4.2. Mycotoxin Contamination Analysis 

ELISA-based methods with aflatoxin B1, ochratoxin A and fumonisin B1 as standards and 

commercially available detection kits (AgraQuant®, Romer Labs, Inc., Newark, DE, USA) were used 

for aflatoxin B1 (COKAQ 8000, limit of detection is 2 ng/g), ochratoxin A (COKAQ 2000, limit of 



Toxins 2019, 11, x FOR PEER REVIEW 4 of 19 

 

detection is 1.9 ng/g), and fumonisins (COKAQ 3000, limit of detection is 0.2 µg/g) analyses according 

to the manufacturer’s instructions and as reported previously [23]. Briefly, for each sample, one 

extract was produced then duplicate determinations of the toxin were performed. Standard curves 

were plotted using standard aflatoxin B1, ochratoxin A and fumonisin B1. The concentration of 

aflatoxin B1, ochratoxin A and fumonisins were calculated on a dry weight basis according to the 

specifications of the manufacturer. The sample moisture content was measured by drying 10.0 g in 

an oven at 105 °C for 17 h [41]. 

4.4.3. Mycotoxins Exposure 

The deterministic (or single point) approach was adopted to estimate the dietary mycotoxin 

exposure [39]. According to these recommendations, half of the limit of detection (LOD) was used for 

all results of aflatoxin B1 less than LOD, since concentration of the mycotoxin was below LOD in less 

than 60% of samples. In contrast, since the contamination level of ochratoxin A and fumonisins in 

more than 60% of samples were lower than LOD, then two estimates using zero (lower bound) and 

LOD (upper bound) for all results less than LOD were applied. 

The chronic daily exposure to each of the mycotoxins was calculated based on the mycotoxin 

contamination level of each TDS food group (ng/kg food) and the daily intake (kg food/day) of this 

food group using an 11.3 kg mean of body weight of children. 

4.4.4. Risk Characterization 

As recommended by EFSA and JEFCA, the MOEs of all three mycotoxins were calculated [18,19]. 

The MOE was given by the ratio between the benchmark dose level that caused a 10% increase in 

cancer incidence in animal (BMDL 10) and the total intake (MOE = BMDL10/total intake) [18]. For 

estimation of MOE, BMLD 10 of developing hepatocellular carcinoma HCC (170 ng/kg bw/day and 

150 µg/kg bw/day; 95% lower confidence limit) were applied for aflatoxin B1 [6] and fumonisins [35], 

respectively. For ochratoxin A, a MOE based on the lowest BMDL10 associated with an increase in 

renal cancer (21 µg/kg bw/day) by exposure to ochratoxin A was determined [27]. MOE values lower 

than 10,000 may indicate a public health concern [18]. 

The mycotoxin of most concern is aflatoxin B1, which has been reported to increase liver cancer 

among people infected with hepatitis virus. Risk assessment for aflatoxin B1 was performed based on 

the dietary exposure to aflatoxin B1 and its potency using the prevalence of individuals being hepatitis 

B surface antigen- (HbsAg) positive and having a primary liver cancer potency of 0.3 cancers per year 

per 100,000 population per ng aflatoxin B1/kg body weight (kg bw)/day and the negative individuals 

set to have 0.01 cancers per year per 100,000 population per ng AFB1/kg bw/day [12,42]. In this study, 

we assumed that 1% of children younger than five years old were HbsAg-positive [14] 

4.5. Data Analysis 

The WHO standards were used to determine the nutritional status of children, i.e., weight for 

age (WAZ), height (length) for age (HAZ or LAZ) and weight for height (WHZ) z-scores [20]. 

Descriptive statistics for these growth indicators, selected variables on dietary intake and mycotoxin 

exposure were summarized by gender and age group (13–23 months versus 24–59 months). The two 

age groups, however, were represented with very different sample sizes and in subsequent analyses 

age in months was used. Linearity of the associations between various outcome variables and age in 

month was tested by polynomial regression [43]. 

The dietary variables could all be potential correlates of the growth indicators. Correlation 

coefficients between pairs of dietary variables ranged from −0.14 to 0.94. The 50, 75 and 90 percentile 

of all possible pairwise correlations among the dietary variables (n = 528) were 0.38, 0.61 and 0.76, 

respectively. Therefore, we conducted a Principal Component Analysis (PCA) on these variables. The 

number of components retained was based on a scree plot, the retained components were then 

submitted to a varimax rotation [44] and the factor scores were used as predictors in the regression 

analysis. 
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Correlates of the growth indicators were tested using multiple linear regression, where age 

(months) and gender were entered as well. Regression models were either specified by us or using a 

backwards stepwise regression procedure (p for removal = 0.051; p for entry = 0.050), but with some 

factors (see results) forced into the model. Mycotoxin species were tested individually as correlates 

of the growth indicators, and since these toxins were all correlated, they were also tested as a 

combined score based on the principal component score. 

4.6. Ethical clearance 

Mother or caregivers of all 119 subjects gave their informed consent for their attendance before 

they participated in the study. The study was conducted in accordance with the Declaration of 

Helsinki, and the protocol was approved by the Ethics Committee of the National Institute of 

Nutrition, Hanoi, Vietnam (ID 6 VDD 2009, dated 8 September 2009). 
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