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Abstract

Antibacterial surfaces coated with nanomaterials, including silver nanoparticles, are considered effective alternative
antimicrobial agents that can be used instead of antibiotics and chemical agents. However, reports of the potential
toxicity of these materials raise questions about the safety of their use in biomedical applications. The objective of
this research was to reduce the human cell cytotoxicity of silver nanoparticle-coated polyurethane foils by
complexing silver nanoparticles with graphene oxide. The antimicrobial activity of nanoplatforms coated with silver
nanoparticles, graphene oxide and the composite of silver nanoparticles and graphene oxide was assessed with
Salmonella enteritidis. Cytotoxicity was analysed by an analysis of the viability and morphology of human fibroblasts,
human umbilical vein endothelial cells (HUVECs) and chicken embryo chorioallantoic membrane. Additionally, the
synthesis level of inflammatory proteins was examined for fibroblasts cultured on different nanoplatforms. The
nanoplatform coated with the silver nanoparticles and graphene oxide composite showed strongest antibacterial
properties, although nanoplatforms coated with only silver nanoparticles or graphene oxide also resulted in
decreased S. enteritidis growth. Furthermore, a nanoplatform coated with silver nanoparticles and graphene oxide
composite showed limited immunological stimulation and significantly reduced cytotoxicity towards fibroblasts,
HUVECs and chicken embryo chorioallantoic membrane in comparison to the nanoplatform coated only with silver
nanoparticles, due to the higher stability of the nanomaterials in the nanocomposite.
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Introduction
Materials with antibacterial surfaces have been widely ex-
plored for use in medicine and the biomedical industry
[1]. Nanomaterials are considered effective alternative
antimicrobial agents that can be used instead of antibiotics
and chemical agents [2]. Silver nanoparticles (AgNPs) are
most often used for their antibacterial properties [3].
However, nanoparticles that show antimicrobial activity,
including AgNPs, especially at higher concentrations, can
be toxic to human cells and possibly affect human health

[4, 5]. Therefore, in the biomedical industry, the applica-
tion of materials with surfaces coated with nanomaterials
raises questions about their safety and toxicity.
One of the possible ways to minimalise the potential

toxicity of nanomaterials is to limit their mobility without
changing their antimicrobial properties. Firmly attached
nanomaterials used in antibacterial surfaces that do not
detach from the material reduce their toxicity for human
cells [6]. One of the effective methods of coating surfaces
with nanoparticles is ultrasonic technology [7]. Ultrasonic
waves lead to structural changes to the nanomaterials,
resulting in deagglomeration or agglomeration, depending
on the nanomaterial [8]. Ultrasonic technology can also be
used for the synthesis of nanocomposites from different
materials, including metal ions and nanoparticles [9–11].
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Sonication has been used for the assembly of different
nanomaterials, including the decoration of graphene oxide
(GO) flakes with AgNPs and other nanoparticles [12].
The mechanism of the antibacterial activity of nanoparti-

cles varies between the different types of nanoparticle; how-
ever, the main processes responsible for the antimicrobial
properties of nanoparticles are as follows: direct interactions
with the cell components and indirect processes including
oxidation of cell components and disruption of oxidoreduc-
tive processes [3]. AgNP antibacterial activity results from
the direct disruption of the bacterial cell membrane by
AgNPs and the released Ag+ ions, inducing synthesis of re-
active oxygen species (ROS), and the collapse of the plasma
membrane potential, which leads to the depletion of intra-
cellular ATP [13–15]. GO can be cytotoxic for bacterial cells
due to ROS synthesis and direct cell immobilisation on the
GO surface [16, 17], caused by the high adsorption capaci-
ties of GO and GO nanocomposites [18, 19].
However, the toxicity of nanoparticles has not only been

observed in bacterial cells. Generally, human cells are less
vulnerable to nanoparticles than bacteria due to their lar-
ger scale, and their effective repair and defence mecha-
nisms, but cytotoxicity has been observed, especially at
high concentrations. AgNP toxicity in in vitro studies oc-
curs in concentrations of a similar order of magnitude, al-
though they may vary substantially for more complex
different biological systems or organisms [20]. The toxicity
of AgNPs for multicellular organisms is often lower due
to their structural and physiological differences, such as
specialised cellular tissues, including epithelial cells [21].
GO biocompatibility for human cells depends on the con-
centration and sheet morphology. At higher concentra-
tions, GO can lead to plasma membrane penetration and
increased synthesis of ROS [22–24].
In our previous studies, we showed that nanoplatforms

composed of AgNP and GO (Ag-GO) nanocomposite
have a high antimicrobial efficiency towards bacteria
(Escherichia coli, Staphylococcus aureus and Staphylococ-
cus epidermidis) and pathogenic yeast (Candida albi-
cans), which was related with the increased ROS
synthesis and plasma membrane perforation [25]. Ag-
GO showed higher antibacterial activity than the AgNP
or GO nanoplatforms, due to the combined activity of
both nanomaterials. Here, we hypothesised that polyur-
ethane foils coated with Ag-GO nanocomposite would
have lower toxicity towards fibroblasts, human umbilical
vein endothelial cells (HUVECs) and an alternative
in vivo model—chicken embryo chorioallantoic mem-
brane—than foils only coated with AgNPs.

Results
AgNPs and GO Formed a Nanocomposite in Hydrocolloid
The transmission electron microscope (TEM) analysis was
used to evaluate the morphology of the nanomaterials and

their interactions within the Ag-GO composite (Fig. 1).
AgNPs were spherical nanoparticles that had a mean size
of approximately 55 nm. Additionally, TEM images
showed the adhesion of silver nanoparticles to GO
(Fig. 1e). These observations where further confirmed in
the zeta potential analysis. The zeta potential of Ag-GO
indicated that the hydrocolloid was unstable immediately
after sonication, but stabilised after 24 h (zeta potential: −
15.68 and − 27.7mV, respectively; Table 1). In contrast,
the AgNP hydrocolloid was unstable both immediately
after sonication and after 24 h, whereas the GO hydrocol-
loid was quite stable and did not change significantly after
24 h (zeta potential: − 31.11mV and − 28.42mV, respect-
ively). Additionally, dynamic light scattering (DLS) ana-
lysis showed that the Z-average size of AgNPs was 93.1
nm, GO was 1485.0 nm and Ag-GO was 1157.0 nm. The
AgNP size distribution indicated three peaks associated
with agglomerate formation, while the GO and Ag-GO
size distribution indicated one peak (Fig. 1b, d, f).
Raman spectra and Fourier transform infrared spectros-

copy (FT-IR) were used to characterise structural features of
GO (Fig. 2). Figure 2a shows deconvolution of the D, G and
D’ of GO. The position of the D band is 1347 cm− 1 and the
G band 1578 cm− 1; the ID/IG ratio is 1.34. The FT-IR ana-
lysis revealed a broad peak observed at ~ 3500 cm− 1, that is
assigned mainly to water and hydroxyl groups. The peak
around 1600 cm− 1 is assigned to C=C bonds present in
graphitic carbon. Other peaks observed on the FT-IR
spectrum show that GO is rich in groups containing C=O
bonds (mainly carboxyl groups), peaks around 1720 cm− 1

and 915 cm− 1, epoxy (C–O–C) with the visible peak around
1200 cm− 1, and C–H bonds (peak around 2800 cm− 1).

AgNP-, GO- and Ag-GO-Coated Foils Reduced Salmonella
enteritidis Growth
The antibacterial activity of the GO, AgNP and Ag-GO
nanoplatforms was tested with S. enteritidis. The incuba-
tion of bacteria on foils coated with nanomaterials at
37 °C for 24 h resulted in decreased growth (Fig. 3). The
strongest S. enteritidis growth inhibition was observed on
the Ag-GO nanoplatform. However, both the AgNP and
GO nanoplatforms also resulted in decreased S. enteritidis
growth. A comparison of the scanning electron micro-
scope (SEM) images of bacteria incubated on the Ag-GO
nanoplatform to the control group showed a reduced
number of S. enteritidis cells. Additionally, bacteria were
adhered to the nanoplatforms and showed morphological
changes, indicating the disruption of their cell membrane.

AgNP Toxicity Is Inhibited by GO in an Ag-GO Composite-
Coated Nanoplatform
The toxicity of nanoplatforms was investigated by the
direct incubation of fibroblasts and HUVECs for 24 h on
nanoplatforms and uncoated foils (Fig. 4). There were
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significant differences between the viability of both fibro-
blasts and HUVECs on the different nanoplatforms (P =
0.0003 and P = 0.0156, accordingly). GO nanoplatforms
did not change the viability of fibroblasts, compared to the
viability of cells incubated on uncoated foils. Similarly,
there was no significant impact of GO on the viability of
HUVECs. However, coating with AgNPs resulted in a 40–
50% decrease of the viability of both fibroblasts and
HUVECs. The cell viability of fibroblasts and HUVECs
was not changed when they were incubated on nanoplat-
forms coated with Ag-GO nanocomposite, showing the

inhibition of AgNP toxicity. Cell morphology on uncoated
foils showed the typical morphology of fibroblasts grown
in 2D culture conditions (Fig. 4a). Cells incubated on
AgNP-coated foil showed an intensive aggregation of cells.
Cell morphology on the GO- and Ag-GO-coated nano-
platforms showed a reduction of agglomeration tendencies
and cell spreading.
Nanoplatform toxicity was also evaluated using a chicken

embryo chorioallantoic membrane (Fig. 5). Nanoplatforms
were incubated directly on a chorioallantoic membrane, and
its morphology at the place of contact was examined after

Table 1 Zeta potentials of the evaluated nanomaterials

Nanomaterial Zeta potential after sonication [mV] Zeta potential 24 h after sonication [mV]

Silver nanoparticles − 2.7 − 6.5

Graphene oxide − 31.1 − 28.4

Nanocomposite of silver nanoparticles and graphene oxide − 15.7 − 27.7

Fig. 1 Nanoparticle morphology and size distribution. Transmission electron microscopy images of a silver nanoparticles, c graphene oxide and e
silver nanoparticles and graphene oxide composite. Size distribution of b silver nanoparticles, d graphene oxide and f silver nanoparticles and
graphene oxide composite
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48 h. AgNPs caused morphological changes to the chorio-
allantoic membrane, whereas in the case of the GO and Ag-
GO nanoplatforms, the morphology was comparable to that
of the control group (Fig. 5b). The chorioallantoic mem-
brane, after incubation on the AgNP nanoplatform, showed
a decreased number of capillary vessels, suggesting direct
toxicity to the endothelial and mesenchyme cells.

AgNPs Decreased the Release of Interleukins 6 and 8
An antibody array was used to analyse the cell media con-
tent of 40 inflammatory proteins synthetised by fibroblasts
(Fig. 6). The main inflammatory proteins released by fibro-
blasts were interleukin 8 (IL-8; Fig. 6, dots: E5, F5) and

interleukin 6 (IL-6; Fig. 6, dots: E8, F8). The AgNP and Ag-
GO nanoplatforms significantly decreased the release level
of IL-8, whereas the GO nanoplatform did not have such an
effect. Additionally, both the GO and Ag-GO nanoplatforms
decreased the release level of granulocyte-macrophage
colony-stimulating factor (GM-CSF; Fig. 6, dots: G5, H5).
The GO and Ag-GO nanoplatforms also led to the in-
creased release level of tumour necrosis factor beta (TNF-β;
Fig. 6, dots: A9, B9). Interestingly, AgNP, GO and Ag-GO
nanoplatforms significantly decreased the release level of IL-
6. The level of release of the other analysed proteins was not
changed. An array map with a list of all the analysed cyto-
kines is included in Additional file 1: Figure S1.

Fig. 2 Structural feature analysis of graphene oxide. a Raman spectrum of graphene oxide with proposed deconvolution of the D, G and D’. b
Fourier transform infrared spectroscopy (ATR, attenuated total reflectance) spectrum of graphene oxide with assignment of functional groups

Fig. 3 Nanoplatforms coated with silver nanoparticles and graphene oxide decreased the viability of S. enteritidis. Scanning electron microscope
images of a control S. enteritidis bacteria and b S. enteritidis incubated on a silver nanoparticle- and graphene oxide-coated nanoplatform, after
incubation at 37 °C for 24 h. c Viability of S. enteritidis after incubation on the nanoplatform for 24 h was assessed with a PrestoBlue assay. Values
are expressed as mean ± standard deviation (n = 3, each experiment in triplicate). Statistical significance is indicated by different superscripts (one-
way ANOVA; P < 0.05). Abbreviations: C, control group (foil without nanoparticles); AgNPs, nanoplatform coated with silver nanoparticles; GO,
nanoplatform coated with graphene oxide; Ag-GO, nanoplatform coated with composite of graphene oxide and silver nanoparticles; RU,
relative units

Wierzbicki et al. Nanoscale Research Letters          (2019) 14:320 Page 4 of 11



Discussion
In biomedical applications, the safety of nanomaterials used
in antimicrobial materials is as important as their efficiency
in killing bacteria. In this study, we showed that coating
materials with GO can efficiently decrease the toxicity of

nanomaterials. Polyurethane foil coated with AgNPs and
GO (Ag-GO) not only increased their antimicrobial proper-
ties, but also decreased their toxicity in human cells.
Raman spectroscopy was used to analyse structural

features of graphene oxide. The G band in the Raman

Fig. 4 Nanoplatforms coated with graphene oxide decreased the cytotoxicity of silver nanoparticles. Morphology of fibroblasts cultured on a
non-coated nanoplatforms, b silver nanoparticle-coated nanoplatforms, c graphene oxide-coated nanoplatforms, d silver nanoparticles and
graphene oxide composite-coated nanoplatforms. Morphology was assessed by light microscopy using phase contrast with × 200 magnification.
Fibroblast (e) and HUVEC (f) viability after 24 h of incubation on the nanoplatforms was determined using a PrestoBlue assay. Values are
expressed as mean ± standard deviation (n = 3, each experiment in triplicate). Statistical significance is indicated by different superscripts (one-way
ANOVA; P < 0.05). Abbreviations: HUVECs, human umbilical vein endothelial cells; C, control group (foil without nanoparticles); AgNPs,
nanoplatform coated with silver nanoparticles; GO, nanoplatform coated with graphene oxide; Ag-GO, nanoplatform coated with a composite of
graphene oxide and silver nanoparticles; RU, relative units

Fig. 5 Graphene oxide decreased the morphological changes of the chorioallantoic membrane caused by silver nanoparticles. The morphology
of the chicken embryo chorioallantoic membrane after 48 h of incubation with the nanoplatforms. a Control group (foil without nanoparticles), b
nanoplatform coated with silver nanoparticles, c nanoplatform coated with graphene oxide, d nanoplatform coated with composite of graphene
oxide and silver nanoparticles
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spectra corresponds to sp2 hybridised carbon-based ma-
terial [26]. The D peak is related to defect or lattice dis-
order due to the binding of oxygen-functional group
[27]. The intensity of the D band is associated with the
size of the sp2 in-plane domains [26]. The additional
bands D’ arise from the defects present in the graphitic
structure of the carbon material. ID/IG ratio (calculated
from the intensity of D and G bands) can be used to char-
acterise the disorder of the graphitic structure in carbon
materials. As demonstrated, GO has a highly disordered
structure due to many functional groups in the structure
formed during the oxidation of graphite powder [28].
The FT-IR spectrum of graphene oxide collected in

the ATR mode revealed that GO has a lot of functional
groups present in the structure, including carboxyl and
epoxy groups, peaks around 1720 cm− 1 and 915 cm− 1,
epoxy (C–O–C) with the visible peak around 1200 cm− 1,
and C–H bonds (peak around 2800 cm− 1). The FT-IR
analysis is in good agreement with XPS measurements
performed for GO where also hydroxyl, carboxyl, epoxy
and carbonyl groups were identified [29].
The coating of nanomaterials was performed with ultra-

sonic technologies, which have been confirmed to be an
effective method of coating various materials with antibac-
terial and fungicidal substances, including AgNPs [30, 31].
Ultrasonic waves utilise cavitation phenomena by generat-
ing and collapsing cavitation bubbles, producing high en-
ergy and pressure [32]. Nanomaterials accelerated to high
velocities collide with the coated material and are

deposited on the surface [33]. However, the effectivity of
nanomaterial deposition can be increased not only by
using a proper coating method, but also by making com-
posites with nanomaterials that can be more easily at-
tached to the surface. GO is a favourable nanomaterial for
creating stable composites with both different nanomater-
ials and surfaces. Due to its unique structure, with carbon
atoms in a hexagonal pattern with numerous oxygen-
containing functional groups in close proximity, including
carboxyl and hydroxyl groups, GO is prone to form cova-
lent bonds or electrostatic interactions [34]. Usually, GO-
nanoparticle composites are synthesised by the attachment
of metal ions or metal nanoparticles to GO surfaces
through electrostatic or covalent interactions. Additionally,
the reduction of metal ions and/or GO is performed to
form covalent bonds [35]. Ag-GO composites have been
made using ultrasonication by the in situ reduction of Ag+

[36, 37], as well by the deposition of AgNPs [12]. In our
previous report, we showed that ultrasonic methods can be
used to synthesise Ag-GO-coated nanoplatforms on poly-
urethane foils [25]. However, sonication not only led to
coating polyurethane foils with nanomaterials, but also to
the formation of an Ag-GO composite. The formation of
the Ag-GO composite, even before coating the foils, could
have result in the greater stability of AgNPs after coating.
In our studies, fibroblasts and HUVECs were used for

cytotoxicity studies followed by analysis of chicken
embryo chorioallantoic membrane. Skin fibroblasts are
considered as a good model for skin irritation studies

Fig. 6 Antibody array analysis of the inflammatory cytokine release of fibroblasts after 24 h of incubation. a Control group (foil without
nanoparticles), b nanoplatform coated with silver nanoparticles, c nanoplatform coated with graphene oxide, d Ag-GO nanoplatform coated with
composite of graphene oxide and silver nanoparticles. The AgNP and Ag-GO nanoplatforms decreased the release level of IL-8 (dots: E5, F5). Both
the GO and Ag-GO nanoplatforms decreased the synthesis of GM-CSF (dots: G5, H5). Additionally, the GO and Ag-GO nanoplatforms led to the
increased synthesis of TNF-β (dots: A9, B9). The AgNP, GO and Ag-GO nanoplatforms decreased the release level of IL-6 (dots: E8, F8). A full array
map is available in Additional file 1
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compared to in vivo analysis [38], whereas endothelial
cells, including HUVEC cytotoxicity, are often studied
due to probable direct contact of nanoparticles in bio-
medical applications and sensitivity of these cells to
nanoparticles [39, 40]. Chicken embryo chorioallantoic
membrane is an alternative in vivo model to rodent
models for various toxicology studies including material
toxicology and acute toxicological studies [41, 42].
Fibroblasts and HUVECs had higher viability when

grown on Ag-GO than AgNP-coated nanoplatforms. Add-
itionally, the AgNP nanoplatform caused morphological
changes in the chorioallantoic membrane, whereas in the
case of the GO and Ag-GO nanoplatforms, cell morph-
ology was comparable to the control group. The decrease
of toxicity on the Ag-GO nanoplatform could result from
the combined effects of a higher stability of AgNPs in the
complex with GO and a better deposition of AgNPs in the
nanoplatform. The toxicity of animal cells is often more
severe after nanoparticles have entered the cell by direct
penetration or endocytosis [43]. Nanoparticle endocytosis
is size and shape dependent. Bigger particles and compos-
ites are taken up to a lesser extent than particles that are
approximately 45 nm in size [44]. The most noticeable re-
lation between endocytosis and shape or size of nanoma-
terials is characteristic for carbon wall nanotubes.
Nanotubes with length less than 1 μm effectively penetrate
plasma membrane through direct diffusion, whereas
phagocytosis or endocytosis pathways internalise longer
nanotubes and agglomerates [45]. Recently, the Ag-GO
nanocomposite was shown to be internalised by J774 mac-
rophages, approximately 60% less than AgNPs. However,
because Ag-GO induced more ROS, the overall toxicity
for the cells was higher [46]. Additionally, kinetic analysis
of shape-dependent internalisation of nanoparticles shows
that spherical sized nanoparticles are generally interna-
lised much faster than flat particles [47]. Furthermore, the
toxicity of nanoparticles for human cells is usually size
dependent, in which smaller particles show stronger cyto-
toxic properties. In studies on the size-dependent cytotox-
icity of AgNPs for RAW, 264.7 macrophages and L929
fibroblast nanoparticles had lower viability after treatment
with 20-nm AgNPs than after treatment with larger nano-
particles (80, 113 nm) [13]. Therefore, the increased size
of Ag-GO composites and the decreased ability of cells to
uptake nanoparticles resulting from stable deposition to
the surface could be the reason for the observed higher
viability of both HUVECs and fibroblasts cultured on the
Ag-GO nanoplatform.
The AgNP and Ag-GO nanoplatforms significantly de-

creased the release level of IL-8 by fibroblasts. The GO
and Ag-GO nanoplatforms led to an increased release of
TNF-β. Additionally, AgNP, GO and Ag-GO nanoplat-
forms decreased the release of IL-6. Interestingly,
changes in the synthesis of proinflammatory proteins by

fibroblasts were related to the incubation of cells on
nanoplatforms coated with AgNPs or GO. The synthesis
levels of cells incubated on Ag-GO did not differ from
those incubated on nanoplatforms coated with only one
of these nanomaterials, suggesting that biological activity
did not change after the synthesis of the composite. Fi-
broblasts are important in inflammatory and remodelling
processes by initiating inflammatory responses and pre-
cipitating in the switch from acute inflammation to tis-
sue repair [48, 49]. Therefore, the analysis of fibroblast
secretions of inflammatory cytokines is important to
predict the immunological response to nanoplatforms.
Both IL-6 and IL-8 are one of the key inflammatory cy-
tokines that, after synthesis by fibroblasts, leads to the
activation of the immunological response [50, 51]. The
human epidermal keratinocyte synthesis level of IL-6 de-
creases after treatment with AgNPs [52]. Similarly, the
inhibition of IL-6 release by AgNPs was demonstrated in
Jurcat cells and involves the MAPK pathway. AgNPs also
decrease the synthesis levels of tumour necrosis factor
alpha (TNF-α) [53]. TNF-α and, very similar in structure
and function, TNF-β are inflammatory cytokines that
are important during the acute inflammation phase. Al-
though immune cells are mainly responsible for the re-
lease of those proteins during the acute phase of
inflammation, fibroblasts and different cells are involved
in the synthesis of inflammatory cytokines during the
early process of wound healing [54]. Activity to induce
TNF-α after treatment with GO was demonstrated using
RAW264.7 macrophages [55], which suggests immuno-
logical stimulation. However, in our studies, the release
levels of most of the analysed proinflammatory proteins
were not changed after the cells were cultured on the
GO and Ag-GO nanoplatforms. Therefore, these ana-
lyses suggest that both the GO and Ag-GO nanoplat-
forms possess good biocompatibility and should not lead
to strong immunological reactions.

Conclusions
In conclusion, the presented results show that nanoplat-
forms coated with an Ag-GO composite have showed
stronger growth inhibition of S. enteritidis than AgNP- and
GO-coated nanoplatforms. Moreover Ag-GO composite
significantly reduced cytotoxicity towards fibroblasts,
HUVECs and chicken embryo chorioallantoic membrane,
in comparison to nanoplatforms coated with AgNPs. The
cell viability of fibroblasts and HUVECs was not changed
when they were incubated on nanoplatforms coated with
Ag-GO nanocomposite, showing the inhibition of AgNP
toxicity. These results, together with low immunological
stimulation, suggest that the GO could be used for reduc-
tion of cytotoxicity of different nanomaterials in nanocom-
posites. Furthermore, the results suggest that the Ag-GO
nanoplatform could be considered for use in biomedical
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applications. However, additional studies are needed to
evaluate Ag-GO nanoplatform for specific applications, in-
cluding wound dressings.

Materials and Methods
Preparation and Characterisation of Nanoplatforms
Coated with Nanomaterials
Nanoplatforms made from nanoparticle-coated polyureth-
ane foils were prepared as previously described [25].
Square-shaped polyurethane foils (15 × 15mm, 0.05mm
thick) were covered with suspensions of AgNPs (HydroSil-
ver1000, Amepox, Łódź, Poland) synthetised by chemical
reduction reaction in the presence of polyvinyl alcohol de-
veloped by Amepox and/or GO synthetised by modified
Hummers’ method. Ten grams of graphite powder was
mixed with 230ml of concentrated sulphuric acid (98%)
(Sigma-Aldrich Co., St. Louis, MO, USA) at a temperature
below 10 °C. Subsequently, 4.7 g of sodium nitrate (Sigma-
Aldrich) and 30 g of potassium permanganate (Sigma-Al-
drich) were added to the graphite mixture, while keeping
the temperature below 10 °C. Then, the mixture was
heated to 30 °C and stirred for 2 h. Subsequently, 100ml
of water was added and the mixture was treated with 10
ml of hydrogen peroxide. GO was purified by filtration
and washed with deionised water until the pH of the fil-
trate reached 6.5. Suspensions of GO, AgNPs and the
composite of AgNPs and GO (Ag-GO) were prepared in
deionised water. During coating, the concentrations of
nanomaterials were as follows: GO, 200mg/l; AgNPs, 100
mg/l; Ag-GO, 200mg/l; and AgNPs, 100mg/l. Nanoparti-
cle coating was performed using an ultrasonic horn (Ti
horn, Ø13 mm, 60% efficiency, 20 kHz; Sonics & Mate-
rials, Inc., Newtown, CT, USA) at a temperature of 30 ±
1 °C. The covered samples were flushed in deionised water
and dried in sterile conditions. Nanoplatform characterisa-
tion with a scanning electron microscope (SEM), atomic
force microscope (AFM) and lateral force microscope
(LFM) has been previously reported, showing nanoplat-
forms almost entirely covered with nanomaterials [25].
The nanomaterials used to obtain the nanoplatforms

were imaged using a transmission electron microscope
(TEM). TEM images were acquired using a JEM-1220
microscope (JEOL, Tokyo, Japan) at 80 kV with a Mor-
ada 11-megapixel camera (Olympus Corporation, Tokyo,
Japan). Samples were prepared by placing droplets of hy-
drocolloids onto formvar-coated copper grids (Agar Sci-
entific, Stansted, UK), which were allowed to air-dry
before observations.
Raman spectra were collected using a Renishaw inVia

spectrometer with a 532-nm laser source (Wotton-under-
Edge, UK). To avoid heating of the sample, the laser power
was kept low (0.3mW, calibrated on the sample). The Ra-
man mapping mode was used with a scan area of approxi-
mately 10 × 10 μm, containing 25 spectra). Each spectrum

consisting of two main bands, a G band (~ 1578 cm− 1) and
D band (~ 1347 cm− 1), was fit using Lorentzian line shape.
FT-IR measurements were performed using a Nicolet iS10
spectrometer (Thermo Fisher Scientific, Waltham, USA) in
attenuated total reflectance mode on a diamond crystal.
Graphene oxide suspension was dried on the polyethylene
surface at room temperature to create GO thin foil. The
spectrum was collected in the range 400–4000 cm− 1.
Zeta potential measurements of GO (20mg/l), AgNPs

(10 mg/l) and Ag-GO (GO 20mg/l and AgNPs 10 mg/l)
were carried out with a Nano-ZS90 Zetasizer (Malvern
Instruments, Malvern, UK) at 25 °C, using the Smolu-
chowski approximation. Nanomaterials were sonicated
for 30 min and zeta potential was immediately measured.
Subsequently, nanomaterials were left for 24 h at room
temperature and the zeta potential was measured again.
Each measurement was repeated at least seven times
after 60 s of stabilisation at 25 °C.
The hydrodynamic diameter of nanoparticles in water

and their size distribution were measured with dynamic
light scattering (DLS) using a Nano-ZS90 Zetasizer (Mal-
vern). Similar to for the zeta potential analysis, GO (20
mg/l), AgNPs (10mg/l) and Ag-GO (GO 20mg/l and
AgNPs 10mg/l) were sonicated for 30min and left for 24
h at room temperature. Each sample was measured at
least seven times at 25 °C.

Bacterial Cultivation
Salmonella enteritidis subspecies enterica serovar Enteri-
tidis (ATCC 13076) was obtained from LGC Standards
(Łomianki, Poland). The bacteria were grown on tryptic
soy agar (Merck Millipore, Darmstadt, Germany). The
bacteria, grown on agar plates, were harvested by gently
washing the plates with sterile distilled saline solution.
To calculate the number of bacteria in the cell suspen-
sion, the optical density of the suspensions at 600 nm
(OD600) was measured using a spectrophotometer (Hel-
ios Epsilon, Unicam, Milwaukee, WI, USA). A calibra-
tion curve was prepared by performing serial tenfold
dilutions of bacterial suspensions of a known optical
density, up to 10− 5. After 24 h of incubation at 37 °C,
the number of formed colonies was enumerated and the
number of colony-forming units (CFU) of the original
bacterial suspension was calculated.

Bacteria Viability Assay
Viability was evaluated using a PrestoBlue Cell Viability
Assay (Thermo Fisher Scientific). Bacteria were cultured
onto foils coated with GO, AgNPs and Ag-GO, located on
inserts inserted into six-well plates (200 μl MH broth with
5 × 103 CFU per foil) and incubated for 24 h. Subse-
quently, 90 μl of each sample was transferred to 96-well
plates and 10 μl of PrestoBlue reagent was added to each
well and incubated for an additional 2 h at 37 °C. The
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optical density of each well was recorded at 570 nm using
a microplate reader (Infinite M200, Tecan, Durham, NC,
USA). Bacteria viability was expressed as the relative value
after substitution of the absorbance from the blank sam-
ples. Experiments were repeated three times.

Scanning Electron Microscopy Analysis
Bacteria were incubated on foils with Ag-GO and a sterile
cover glass. Bacteria cultures (100 μl, 106 CFU/ml) were
incubated on foils and a cover glass for 24 h at 37 °C. All
samples were dried and covered with gold. Cells were
fixed with 2.5% glutaraldehyde in phosphate-buffered
saline (PBS, pH 7.2) and contrasted with 1% osmium tet-
roxide (Sigma-Aldrich) and 1% carbohydrazide (Sigma-Al-
drich). Subsequently, cells were dehydrated in increasing
concentrations of hexylene glycol (Sigma-Aldrich). Drying
was performed using a Polaron CPD 7501 critical point
dryer (Quorum Technologies, Laughton, UK). Finally, the
samples were imaged with a SEM (FEI Quanta 200,
Tokyo, Japan) at an acceleration voltage of 15 kV.

Human Cell Lines
Human umbilical vein endothelial cells (HUVECs; cata-
logue number: C0035C) and human fibroblasts (catalogue
number: C0135C) were obtained from Thermo Fisher
Scientific. HUVECs were maintained on low-serum
Medium 200 basal media supplemented with Large Vessel
Endothelial Supplement (Thermo Fisher Scientific) and
1% penicillin/streptomycin (Thermo Fisher Scientific),
whereas fibroblasts were cultured in low-serum Medium
106 (Thermo Fisher Scientific) supplemented with Low
Serum Growth Supplement (Thermo Fisher Scientific)
and 1× penicillin/streptomycin (Thermo Fisher Scientific).
Cells were maintained at 37 °C in a humidified atmos-
phere of 5% CO2/95% air.
To analyse biological interactions, the nanoplatforms

were put into six-well plates. After detachment from the
cell culture flask, HUVECs or fibroblasts were placed
directly on the nanoplatform with 100 μl of growth
media. To avoid the media drying during incubations,
plates were kept in humidity chambers.

Analysis of Nanoplatform Toxicity to HUVECs and
Fibroblasts
To analyse HUVEC and fibroblast viability on the nano-
platforms, cells were cultured in the droplet directly on
the nanoplatforms or uncoated foil (1 × 104 cells in 100 μl
growth media). After 24 h of incubation, cell viability was
analysed using a PrestoBlue assay (Thermo Fisher Scien-
tific). PrestoBlue reagent was incubated with assessed cells
for 2 h in a cell culture incubator. Subsequently, 50 μl of
growth media with PrestoBlue reagent was transferred to
a 96-well plate where fluorescence (excitation λ = 560 nm,
emission λ = 590 nm) was analysed using a Tecan Infinite

200 microplate reader (Tecan, Durham, USA). Cell viabil-
ity was expressed as the relative value after substitution of
the fluorescence from blank samples. Experiments were
repeated three times.
Fibroblast morphology was observed using an inverted

optical microscope (Olympus Corporation) using phase
contrast. Fibroblasts were seeded in 35-mm diameter
Petri dishes directly on the nanoplatforms (1 × 104 cells
in 100 μl growth media). Images were taken after 24 h of
incubation.

Chorioallantoic Membrane Assay
Fertilised eggs from Ross 308 hens were obtained from a
certified hatchery and kept for 4 days at 12 °C. The eggs
were cleaned, sterilised with UVC light and divided into
four groups (4 × 20 eggs). Embryos were incubated at
standard conditions (temperature 37 °C, humidity 60%
and turned once per hour). At 8 days of embryonic de-
velopment, small holes (1 cm2) were made in the shell
above the air space, the inner membrane was gently
striped off and the nanoplatforms were placed on the
chicken embryo chorioallantoic membrane. Subse-
quently, chicken embryos were incubated for the next
48 h, when nanoplatforms were cut out with the chorio-
allantoic membrane that was directly below the nano-
platform. The chorioallantoic membrane on the
nanoplatforms was imaged using a stereoscopic micro-
scope (SZX10, Olympus Corporation).

Antibody Array Analysis
An analysis of inflammation cytokines in fibroblast
growth medium was performed using an antibody array
(Abcam, Cambridge, UK; catalogue number ab134003).
Fibroblast cells (1 × 104) were incubated on nanoplat-
forms coated with AgNPs, GO, Ag-GO and uncoated
foil with 100 μl of media. After 24 h, 80 μl of growth
medium was collected. For each experimental group, the
growth medium from six foils was used for analysis.
Pooled growth medium from the six experiments was
centrifuged (1600 rpm for 5 min), and 500 μl of growth
media was diluted in 500 μl of PBS. Therefore, 1 ml of
diluted growth media was used per each analysed mem-
brane. The assay was performed in accordance with the
manufacturer’s instructions. Diluted growth media was
incubated with the membranes for 24 h at 4 °C. Subse-
quently, antibodies conjugated with biotins were added
and incubated for the next 24 h at 4 °C. In the next step,
the membranes were incubated with streptavidin conju-
gated with horseradish peroxidase for 2 h at room
temperature. Membranes were visualised after the
addition of the provided horseradish peroxidase sub-
strate using a ChemiDoc imaging system (Bio-Rad,
Hercules, USA).
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Statistical Analysis
Data were analysed using one-way analysis of variance
with GraphPad Prism 8 (GraphPad Software, San Diego,
CA, USA). Differences between groups were tested with
Tukey’s HSD post hoc tests. Results are shown as means
with standard deviations. Differences at P < 0.05 were
considered significant.

Supplementary information
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1186/s11671-019-3166-9.
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