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SUMMARY

Small cytoplasmic mRNP granules are implicated in
mRNA transport, translational control, and decay.
Using super-resolution microscopy and fluores-
cence correlation spectroscopy, we analyzed the
molecular composition and dynamics of single cyto-
plasmic YBX1_IMP1 mRNP granules in live cells.
Granules appeared elongated and branched, with
patches of IMP1 and YBX1 distributed along
mRNA, reflecting the attachment of the two RNA-
binding proteins in cis. Particles form at the nuclear
pore and do not associate with translating ribo-
somes, so the mRNP is a repository for mRNAs
awaiting translation. In agreement with the average
number of mRNA-binding sites derived from cross-
linked immunoprecipitation (CLIP) analyses, individ-
ual mRNPs contain 5–15 molecules of YBX1 and
IMP1 and a single poly(A) tail identified by PABPC1.
Taken together, we conclude that small cytoplasmic
mRNP granules are mRNA singletons, thus depicting
the cellular transcriptome. Consequently, expression
of functionally related mRNAs in RNA regulons is un-
likely to result from coordinated assembly.

INTRODUCTION

Essential steps from nuclear mRNA processing and export to

cytoplasmic localization, translation, and decay of mRNAs are

implicated in fine-tuning of gene expression. Regulatory steps

are governed by RNA-binding proteins (RBPs), which interact

with mRNA in a sequential manner. Mammalian cells constitute

about 1,500 RBPs, of which nearly half bind to mRNAs (Gerst-

berger et al., 2014), and the majority are widely distributed,

with a minority exhibiting a particular spatial and temporal

expression. Some mRNA-binding proteins shuttle between the

nucleus and the cytoplasm, whereas others are present mainly

in the cytoplasm (Shyu and Wilkinson, 2000), including proteins

such as FMRP, HuD, and YBX1 and the family of insulin-like
736 Cell Reports 29, 736–748, October 15, 2019 ª 2019 The Authors
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growth factor 2 (IGF2) mRNA-binding proteins IMP1, IMP2,

and IMP3 (Darnell and Richter, 2012). Cytoplasmic mRNA-bind-

ing proteins are found in small membrane-less granules. In

contrast to the larger P bodies and stress granules, whichmostly

embody stress-induced condensations of RBPs and mRNA pro-

moted via intrinsic disordered regions in the attached RBPs

(Molliex et al., 2015; Reijns et al., 2008), small cytoplasmic

mRNP granules represent the unperturbed state of cellular

mRNA. Because of their significance in dendritic and axonal

mRNA transport, cytoplasmic mRNP granules are sometimes

referred to as neuronal RNP granules (Anderson and Kedersha,

2006; Kiebler and Bassell, 2006), but mRNP granules are found

in any cell throughout the body at all developmental stages.

Global biochemical analyses have shown that granules contain

ribosomal subunits, translation factors, decay enzymes, heli-

cases, scaffold proteins, andRBPs, but limited data are available

about the molecular composition of individual granules, which

would allow us to understand their function and relation to the

other granular assemblies.

IGF2 mRNA-binding protein 1 (IMP1, IGF2BP1) belongs to a

conserved family of heterochronic mRNA-binding proteins

(IMP1, IMP2, and IMP3) (Hansen et al., 2004; Nielsen et al.,

1999, 2001; Yaniv and Yisraeli, 2002). Together with the cyto-

plasmic mRNA-binding protein Y-box binding protein 1 (YBX1),

which coats mRNAs along their entire length by binding to the

sugar-phosphate backbone (reviewed in Singh et al., 2015),

IMPs form typical cytoplasmic mRNP granules (Eliscovich

et al., 2017; Figure 1). Granules are mobile and widespread in

the cytoplasm, although they exhibit a preponderance for the

perinuclear regions and the lamellipodia in motile cells (Nielsen

et al., 1999; Oleynikov and Singer, 2003). In conventional laser

scanning microscopy (LSM), they exhibit an optical diameter of

about 200–700 nm (Nielsen et al., 2002). Transcriptome-wide

CLIP analyses have shown that both IMP1 and YBX1 associate

with large parts of the transcriptome (Conway et al., 2016; Good-

arzi et al., 2015). Individual mRNAs exhibit numerous IMP1 and

YBX1 attachment sites distributed along the target mRNA (Niel-

sen et al., 2004; Runge et al., 2000; Singh et al., 2015), although it

is unknown whether binding is taking place on the same mRNA

molecule. IMP1 and YBX1 are essential for normal development;

IMP1- and YBX1-deficient mice are both small, with imperfect
.
creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:finn.cilius.nielsen@regionh.dk
https://doi.org/10.1016/j.celrep.2019.09.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2019.09.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


CSD

RRM1 RRM2 KH1 KH2 KH3 KH4

Homo sapiens YBX1 - 324 aa

Homo sapiens IMP1 - 579 aa

1                 75 81            156              195       260     276       343                  405       470     487      553  579

1             51                 129                                                     324   

Low complexity sequence

Figure 1. Schematic Representation of YBX1 and IMP1 RBPs

YBX1 is composed of a cold-shock domain (CSD), depicted in blue, and a

number of predicted low-complexity sequences (LCS), shown in yellow. IMP1

is composed of two RNA recognition modules (RRMs) and four K homology

(KH) domains, the latter being responsible for IMP1 mRNA binding. Moreover,

a short low-complexity sequence is predicted between domains KH2

and KH3.
organ development including neuronal defects (Hansen et al.,

2004; Uchiumi et al., 2006), and at the cellular level both factors

promote cell growth (Bell et al., 2013; Bommert et al., 2013;

Shiota et al., 2008). Moreover, YBX1 and IMP1 have been impli-

cated in a series of complex biological pathways, such as F-actin

formation and protein secretion (Jønson et al., 2007; Uchiumi

et al., 2006), and specifically IMP1 is a participant in the embry-

onal heterochronic network consisting of HMGA2, let-7, and

Lin28BmRNAs (Jønson et al., 2014; Nishino et al., 2013). Finally,

YBX1 plays a role in nodal signaling via sqtRNA localization, pro-

cessing, and translation (Kumari et al., 2013).

To advance our understanding of cytoplasmic mRNP gran-

ules, we used super-resolution and fluorescence correlation mi-

croscopy of YBX1, IMP1, and associated mRNA. In contrast to

the current perception based on conventional light microscopy,

our data show that granules represent irregular branched and

elongated structures composed of alternating patches of IMP1

and YBX1 along a commonmRNA. Formation of the particles re-

quires mRNA, and mRNPs are first observed at the nuclear pore.

The mRNPs are not connected to actively translating ribosomes,

which are located in a separate vicinal compartment. Each par-

ticle contains a single mRNA and between 5 and 15 IMP1 and

YBX1molecules, in agreement with the average number of bind-

ing sites in the target mRNAs. Moreover, only a single poly(A) tail

depicted by poly(A) binding protein C1 (PABPC1) staining was

identified in each granule. Taken as a whole, we conclude that

mRNP granules represent singletons and that coordinated

expression of functionally related mRNAs is unlikely to be due

to coordinated assembly.

RESULTS

IMP1 and YBX1 Coexist in mRNPs in an RNA-Dependent
Manner
To provide an overview of the subcellular distribution and struc-

ture of IMP1 and YBX1 mRNPs in vivo, HeLa cells were stained

with anti-IMP1 and anti-YBX1 antibodies and examined using

structured illumination microscopy (SIM). IMP1 and YBX1 were

cytoplasmic and prominent at the perinuclear region and in the

lamellipodia of the cells (Figure 2A, panels 1–3). Granules ap-

peared branched and elongated and ranged from 250 to
800 nm in size and were composed of alternating patches of

IMP1 and YBX1 (Figure 2, panels 4–6). In general, YBX1 was

observed along the entire outline of the particle, whereas IMP1

exhibited a preponderance for projections and ends. Conse-

quently, single mRNP granules were defined by the coherent

pattern of YBX1, which is also one of the most abundant protein

components of mRNP granules (Singh et al., 2015). The associ-

ation between IMP1 and YBX1 in the particles was confirmed by

a statistical test simulating a random distribution of the nearest

neighbor with a cutoff of 200 nm. Simulating the null model

10,000 times, we never observed a number of colocalizations

on par or higher than the experimentally observed (p < 0.00001).

A comparison between the appearance of the mRNP granules

in conventional LSM compared with SIM is moreover shown in

Figure S6A. To visualize the associated mRNA, we performed

fluorescence in situ hybridization (FISH) of ACTB mRNA and

GAPDH mRNA combined with immunostaining of YBX1 and

IMP1 (Figure 2B). ACTBmRNA and GAPDHmRNA were hybrid-

ized to 48 labeled Quasar 570 dye-labeled probes covering the

entire mRNA from the 50 end to the 30 end. Probe staining was

partially masked by the attached RBPs, in particular when

YBX1 was present. No granular overlap between ACTB and

GAPDH mRNAs was observed. To corroborate the putative

RNA-dependent interaction of YBX1 and IMP1, an immunopre-

cipitation of GFP-tagged IMP1 was carried out (Figure 2C).

YBX1 was enriched in the immunoprecipitate, and treatment

with RNase A reduced the amount of immunoprecipitated

YBX1, indicating that IMP1 does not interact directly with

YBX1. In agreement with the observation that the particles

contain multiple IMP1 molecules binding independently to the

mRNA, endogenous IMP1 was also reduced by RNase A (Fig-

ure 2C). The mRNPs were clearly distinct from cytoplasmic P

bodies and stress granules identified by G3BP and DCP1a,

respectively (Figure 2A, panels 7 and 8; Figure S1). The average

size of stress granules was at least an order of magnitude larger

than IMP1_YBX1 mRNPs, which could be distinguished within

the larger bodies.

YBX1 and IMP1mRNP Is Formed in the Nuclear Pore and
Awaits Translation
Because the observed size of the mRNP is difficult to reconcile

with facilitated diffusion of IMP1_YBX1 mRNP particles through

the central nuclear pore channel, whose size limit is regarded to

be about 40 nm (Hoelz et al., 2011), we examined the first

appearance of the mRNP. SIM revealed very faint and almost

non-existent YBX1 and IMP1 nuclear staining, and we failed to

observe any colocalization between the two factors and

mRNA. This led us to image the nuclear pore in closer detail. Nu-

clear pores were visualized by staining of NUP153, and both

IMP1 and YBX1 mRNPs were found to align with the pore (Fig-

ure 3), where mRNPs projected toward the cytoplasm. The cyto-

plasmic distribution and alignment was unaffected by incubation

with leptomycin (data not shown). Consequently, we infer that

IMP1_YBX1 mRNPs are likely to form at the nuclear pore. To

define the relation of the mRNP to the translation apparatus,

we performed a polysome fractionation analysis, which showed

that both IMP1 and YBX1 predominantly sedimented as free

mRNP in monosomal fractions corresponding to 40S-80S
Cell Reports 29, 736–748, October 15, 2019 737
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Figure 2. Structure of IMP1 and YBX1 mRNP Granules

(A) HeLa cells were stained with anti-IMP1 and anti-YBX1 antibodies followed by Alexa Fluor 488 (green) and Alexa Fluor 647 (red) secondary antibodies,

respectively. (A1–A3) Overview of the cell. Scale bars, 5 mm. (A4–A6) Blow-up of IMP1 and YBX1 granules in the indicated area (white square) in (A3). Scale bar,

0.2 mm. (A7) P bodies depicted by DCP1a-EGFP in combination with IMP1 staining and A8, pHcRed-G3BP in stress granules in combination with IMP1 staining.

(B) IMP1 (green, Alexa Fluor 488) and YBX1 (red, Alexa Fluor 647) immunostaining in combination with ACTBmRNA FISH (cyan) using 48 Quasar 570 dye-labeled

oligonucleotides corresponding to the entire ACTBmRNA. (B1–B4) Overview of a HeLa cell. Scale bars, 5 mm. (B5–B9) blow up of ACTBmRNA and IMP1_YBX1

containing granules. Scale bars, 0.2 mm (B5) and 0.1 mm (B6–B9). (B10–B19) IMP1 (green, Alexa Fluor 488) and YBX1 (red, Alexa Fluor 647) immunostaining in

combination with GAPDH mRNA FISH (cyan) using 48 Quasar 570 dye-labeled (cyan) oligonucleotides corresponding to the entire GAPDH mRNA. (B10–B14)

Overview of a HeLa cell. Scale bars, 5 mm. (B15–B19) Blow-up of GAPDH mRNA and IMP1_YBX1 containing granules. Scale bars, 0.2 mm (B15) and 0.1 mm

(B16–B19). (B20 and B21) Double FISH with ACTB mRNA (red, Quasar 670-conjugated probes) and GAPDH mRNA (green, Quasar 570-conjugated probes) in

combination with YBX1 immunostaining (gray, Alexa Fluor 488).

(C) EGFP immunoprecipitation of transiently transfected HeLa cells with pEGFP-C1 (control) and pEGFP-IMP1. Immunodetection of GFP and GFP-IMP1,

endogenous IMP1, YBX1, and GADPH, respectively, was performed in total lysate and immunoprecipitated (IP) fractions without (�) or with (+) RNase A

treatment.
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Figure 3. IMP1 and YBX1 mRNP Formation at the Nuclear Pore

HeLa cells were stained with anti-IMP1, anti-YBX1, and anti-NUP153 primary antibodies followed by Alexa Fluor 488 (green), Alexa 555 (cyan), and Alexa Fluor

647 (red) secondary antibodies, respectively. Moreover, the nucleus was stained with DAPI (deep blue).

(A) Overview of a triple-stained cell and the area that is shown in the blow-up below. Scale bar, 2 mm.

(B–E) Individual IMP1 (B), YBX1 (C), NUP153 (D), and DAPI (E) stainings.

(F) Composite picture demonstrating the colocalization of NUP153 and the IMP1_YBX1 mRNP. Scale bar, 200 nm. Arrows indicate nuclear pores.
(Figure 4A). In addition, we used O-propargyl-puromycin (OPP)

to depict actively translating ribosomes (Liu et al., 2012). After

fixation, OPP was conjugated to an Alexa Fluor 488 fluorophore

by click chemistry before IMP1 and YBX1were stained by immu-

nofluorescence, and SIM z stacks of the cells were generated.

As shown in Figures 4B and 4C and Figure S3, IMP1_YBX1

mRNP did not colocalize with translating ribosomes, in agree-

ment with the polysome analysis. However, ribosomes were

positioned in close proximity to the mRNPs. Taken together,

the data indicate that mRNPs are not directly associated with

translating ribosomes and that protein synthesis follows unload-

ing of the mRNA.

Dynamics of IMP1_YBX1 mRNPs
To assess the dynamics of cytoplasmic IMP1_YBX1 mRNPs, we

used fluorescence correlation spectroscopy (FCS), which allows
quantification of diffusion time, concentration, and brightness of

molecules (or particles) in solution or in live cells. Wild-type GFP-

tagged IMP1 and YBX1 and a GFP-tagged IMP1 GXXG mutant

(GFP-IMP1_KH1-4mut), with impaired RNA binding (Figure S4),

were expressed in HeLa cells. Moreover, GFP was included

as a reference. As depicted in Figure 5A, GFP and GFP-

IMP1_KH1-4mut exhibited faster lag times than GFP-IMP1 and

GFP-YBX1. Whereas GFP best fitted a one-component model,

the best fit of the experimental autocorrelation curves of GFP-

IMP1_KH1-4mut, GFP-IMP1, andGFP-YBX1was a two-compo-

nent model. The modeling showed that GFP-IMP1_KH1-4mut

could be resolved into two relatively fast diffusion times of

2.9E-04 and 1.2E-03 s, respectively, whereas GFP-IMP1 and

GFP-YBX1 exhibited a fast moving fraction with a lag time of

�10E-03 s and a much slower fraction moving in the range of

10E-01 s (Figure 5C). Compared with GFP, wild-type IMP1 and
Cell Reports 29, 736–748, October 15, 2019 739
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Figure 4. IMP1 and YBX1 mRNP Granules and the Transla-

tional Apparatus

(A) Polysome fractionation analysis and subsequent immunodetection

of IMP1 and YBX1 by western blot. The top panel depicts the A260

sedimentation profile, while the bottom panel shows the corresponding

western blot analysis of the fractions. The sedimentation of 80S

monosomes and ribosomal subunits is indicated, and the polysomes

are numbered according to the number of loaded 80S complexes.

(B) Translating ribosomes were labeled with O-propargyl puromycin

(OPP) followed by puromycin-based click conjugation of Alexa Fluor

488 (cyan; top panel). Controls without the addition of OPP (middle

panel) or presence of 50 mg/ml cycloheximide (bottom panel) were

included. IMP1 and YBX1 were stained with anti-IMP1 and anti-YBX1

antibodies followed by Alexa Fluor 568 (green) and Alexa Fluor 647 (red)

secondary antibodies, respectively. Scale bar, 5 mm.

(C) Blow-up of the individual mRNP and 3D reconstruction of 10

consecutive slices demonstrating the vicinity of ribosomes and mRNP.

Scale bar, 200 nm.
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YBX1 exhibited fractions diffusing 10-fold and a 1,000-fold

slower. In agreement with the pull-down analysis described

above, fluorescence cross-correlation spectroscopy with GFP-

IMP1 or GFP-IMP1_KH1-4mut combined with mCherry-YBX1

demonstrated that the interaction between the two factors in vivo

relies on mRNA binding and not on other factors (Figure 5B). To

further substantiate the FCS data, we visualized the mobility of

the mRNP in the live cell. We used mEos3.2, a photoconvertible

fluorescent protein (Zhang et al., 2012), and expressedmEos3.2-

IMP1. After localized photoactivation at 405 nm, cellular move-

ments of the photoconverted red mEos3.2-IMP1 was followed

by time-lapse microscopy (Figure S4). Both a slow and a rapid

transport (in the range of seconds) was observed. Slow particles

diffused in all directions and migrated at very slow rate of about

0.1 mm/s. Even after 1.5 min, the majority of the granular RNP re-

mained in the center of the photoactivation. In contrast, the rapid

diffusion accumulated quickly at a particular distant site�25 mm

away within seconds after photoconversion, corresponding to a

speed of at least �5 mm/s. The results show that assembly of

granules requires RNA binding and that IMP1_YBX1 mRNP

motility is multidirectional, involves fast and slow trafficking, as

well as regulated anchoring.

Molecular Composition of IMP1_YBX1 mRNP
We analyzed the number of molecules in IMP1_YBX1 mRNP

in vivo by means of FCS and localization microscopy (LM) and

compared the results with available transcriptome-wide IMP1

and YBX1 eCLIP and RNA immunoprecipitation sequencing

(RIP-seq) data. Moreover, the interplay between IMP1 and

YBX1 upon binding to high-affinity RNA targets such as ACTB

and C-MYC mRNAs (Leeds et al., 1997; Ross et al., 1997) was

examined in order to provide a framework for an understanding

of the stoichiometric data (Figure 6).

Figure 6A shows a schematic representation of ACTB and

C-MYC transcripts together with the CLIP-derived number of

cross-linked and immunoprecipitated reads at particular posi-

tions (Conway et al., 2016; Goodarzi et al., 2015). Although

IMP1 exhibits a preponderance for the 30 UTR, and YBX1 binding

is more widespread, some binding sites overlap, and the two

factors may compete for a number of binding sites. The CLIP

data show that YBX1 and IMP1 exhibit strong binding to ACTB

mRNA exon 5 and the ZIP code in the 30 UTR, respectively,
and to the coding region determinant (CRD) region and the 30

UTR of C-MYC, respectively. Because CLIP experiments pro-

vide a global overview of binding sites and are unable to distin-

guish between cis- and trans-attachments, we supplemented

the CLIP data with electrophoretic mobility shift assays (EMSAs)

with these RNAs, shown in Figure 6B. Albeit in vitro, the advan-

tage of EMSA is the ability to examine putative cis-attachments

by identifying supershifts, and the chosen YBX1 and IMP1 con-

centration ratios were according to the protein copy number per
Figure 5. IMP1_YBX1 mRNP Dynamics

GFP- and mCherry-tagged IMP1, YBX1, and IMP1 mutated in the four GXXG lo

behavior was recorded using fluorescence correlation spectroscopy (FCS).

(A) Autocorrelation curves of cytoplasmic GFP, GFP-IMP1, GFP-YBX1, and GFP

(B) Cross-correlation curves of cells co-transfected with GFP-IMP1 and mCherry

(C) Autocorrelation curves of the different constructs shown in (A) together with t

742 Cell Reports 29, 736–748, October 15, 2019
HeLa cell, as previously characterized (Singh et al., 2015). YBX1,

IMP1, or both proteins were incubated with the radioactively

labeled RNA targets. The mobility shifts showed that the binding

of each protein to the chosen mRNA segments was mutually

exclusive, as there was no evidence of a supershift with any of

the RNA probes. For C-MYC, we observed that both YBX1 and

IMP1 were able to bind to the CRD and 30 UTR targets. IMP1 ex-

hibited a higher affinity for CRD than YBX1, since at 1:10 of the

YBX1 concentration, IMP1 was able to out-compete YBX1.

The same happened with C-MYC 30 UTR, although in this case

IMP1 was able to achieve a higher degree of multimerization.

Regarding the ACTB segments, we observed that YBX1 had a

very high affinity for exon 5 and showed a high degree of multi-

merization, in accordance with the CLIP data. IMP1 was essen-

tially unable to bind to ACTB exon 5 and could not compete with

YBX1. Both IMP1 and YBX1 were able to bind to the 30 UTR
target, and we observed the same competition pattern as

described for the C-MYC transcripts, although both proteins

exhibited lower affinity. Taken together, we infer that IMP1

and YBX1 compete for shared binding segments, so at a

given time, IMP1 or YBX1 may not occupy all their putative bind-

ing sites.

To determine the number of IMP1, YBX1, and mRNA mole-

cules in the individual mRNP, we used localization microscopy

and FCS. For localization microscopy, HeLa cells were stained

with anti-IMP1 or anti-YBX1 antibodies and Alexa Fluor 568 or

555 secondary antibodies, respectively, or with a set of ACTB

mRNA probes, as shown in Figure 2. The number of secondary

antibodies binding a primary antibody was determined by FCS,

and this showed that two secondary antibodies bind to each pri-

mary antibody (data not shown). Consequently, events (emitted

photons at a particular site) were divided by two (Figure 7C). To

avoid counting the same secondary antibody more than once

because of the presence of multiple fluorophores and to improve

positioning accuracy, a grouping of 5.5 pixels was applied. Fig-

ure 7A shows localization microscopy readings with GAUSS

distributions and crosses. Clustered photons (crosses) corre-

sponding to 50 granules were counted (Figure 7A), and the me-

dian and range are summarized in Figure 7C. The median

number of molecules was 7 for YBX1 (range 2–34) and 6 for

IMP1 (range 2–15) in the RNP. Moreover, we analyzed the num-

ber of ACTB RNA probes in the mRNP granules. As illustrated in

Figure 2, parts of the ACTB mRNA appeared to be masked by

attached RBPs, and we counted on average 11 probes ranging

from 3 to 42 in the mRNP. In no ACTB cluster did we count

more than the maximal number of 48 probes, indicating that

there is only a single ACTB transcript in a particle.

To corroborate the findings described above, we extracted

information regarding the average number of molecules in the

particles in live cells using FCS. Total count rate (kilohertz), cor-

relation, and counts per molecule data were obtained for each
ops (GFP-IMP1_KH1-4mut) were expressed in HeLa cells, and their dynamic

-IMP1_KH1-4mut.

-YBX1 or co-transfected with GFP-IMP1_KH1-4mut and mCherry-YBX1.

he fittings to one- and two-component diffusion models.
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Figure 7. Molecular Composition of IMP1_YBX1 mRNP

The number of IMP1, YBX1, and ACTB mRNA molecules in the mRNP were derived from localization microscopy (LM) or from FCS and compared with the

average number of binding sites in the transcriptome from eCLIP and RNA immunoprecipitation sequencing analysis. For localization microscopy, cells were

stained for IMP1, YBX1, and ACTB mRNA, and following bleaching, mRNP emitted photons were counted as described.

(A) Examples of the localization microscopy images of YBX1 (red), IMP1 (green), and ACTB mRNA (cyan), respectively. Scale bar, 100 nm.

(B) Counts per particle derived from FCS of cells transfected with GFP, GFP-IMP1_KH1-4mut, GFP-IMP1, GFP-YBX1, and with co-transfection of YBX1 30 UTR-
directed siRNA and GFP-YBX1. Laser power was 0.02% in all measurements.

(C) Summary of the data from localizationmicroscopy, FCS, and binding sites predicted from either eCLIP (IMP1) or RNA immunoprecipitation sequencing (YBX1)

experiments.

(D) Immunofluorescence staining of PABPC1 (cyan, Alexa Fluor 488), IMP1 (green, Alexa Fluor 568), and YBX1 (red, Alexa Fluor 647). An overview of a whole HeLa

cell is shown in the panel above (scale bar, 5 mm), and a blow-up image of the triple PABPC1, IMP1, and YBX1 staining of the area squared in the panel above is

shown below (scale bar, 0.2 mm). Positioning of PABPC1 (cyan) in individual mRNPs depicted by YBX1 (red) staining is shown in the panel below (scale bar,

0.1 mm).
measurement. Total count rate refers to the total number of

photons per second collected by a detector and correlation re-

lates to the amplitude of the autocorrelation curve and was

used to estimate concentration. The parameter referred as

counts per molecule (or particle; kilohertz) is defined as the total

count rate (kilohertz) divided by the number of molecules (or

particles) determined by the amplitude of the autocorrelation

curve. Counts per particle from free GFP and GFP-

IMP1_KH1-4mut (monomers) were compared with the wild-

type GFP-IMP1 and GFP-YBX1 in HeLa cells. We could

measure differences in the fluctuations during the recorded

measurements (Figure 7B), and this was also represented in

the amplitude of the autocorrelation curves. Cytoplasmic read-
Figure 6. RNA-Binding Properties of IMP1 and YBX1

(A) YBX1 RNA immunoprecipitation sequencing and IMP1 eCLIP data from ACT

(B) Electrophoreticmobility shift assay (EMSA) of single or combinations of IMP1 a

MYC 30 UTR, ACTB Exon5, or ACTB 30 UTR.
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ings from nine different cells showed that the number of GFP-

IMP1 molecules per particle ranged from 7 to 11, considering

GFP-IMP1_KH1-4mut as the monomer state of the protein,

whereas the results for GFP-YBX1 were unexpectedly low

compared with what we observed in the localization micro-

scopy analysis. Endogenous YBX1 concentration is 10 times

higher than IMP1, and we suspected that GFP-YBX1 counts

per particle were underestimated because of the high levels

of competing endogenous protein. To examine if this was the

case, endogenous YBX1 was knocked down using a small

interfering RNA (siRNA) against the 30 UTR. As observed in Fig-

ure 7, counts per particle during these conditions increased

from 3 to 4 to 8 to 13 YBX1 molecules per particle.
B and C-MYC mRNAs.

nd YBX1 proteinswith 32P-labeledC-MYC coding region determinant (CRD),C-



Finally, we estimated the number of global IMP1 and YBX1

mRNA-binding sites from public eCLIP and RNA immunoprecip-

itation sequencing data (Conway et al., 2016; Goodarzi et al.,

2015) in order to put the localization microscopy and FCS data

in perspective (Figure 7C). Raw CLIP sequencing (CLIP-seq)

data (fastq) were downloaded from the short read archive

(SRA) and aligned to the human genome sequence. Binding sites

were estimated by read islands. The lower detection level was

adjusted to the nearest threshold, where islands in the mock

control samples equaled the total number of transcripts, there-

fore cutoffs of seven and five for IMP1 and YBX1, respectively,

were used. We estimated that the average numbers of IMP1

and YBX1 binding sites per mRNA to be seven and six, respec-

tively. IMP1 has been described to dimerize to form stable RNA-

binding complexes (Nielsen et al., 2004), corroborated by the

electrophoretic mobility shift analysis in Figure 6, and YBX1

has also been shown to multimerize on a single RNA attachment

site (Figure 6B; Skabkin et al., 2004). Taken as a whole, localiza-

tion microscopy and FCS analyses, which provide the molecular

composition of the individual RNP granules in vivo, are in agree-

ment with the transcriptome-wide CLIP estimates, when dimer-

ization of IMP1 and a multimerization of YBX1 on mRNA are

taken into account.

To further substantiate that the particles contained only a sin-

gle mRNA, we used a generic and global approach and deter-

mined the number of poly(A) tails in the particles. This was

done by staining PABPC1, which represents the cytoplasmic

poly(A) binding protein, in combination with YBX1 to depict the

particles (Figure 7D). In no case did we observe more than one

assembly of PABPC1 per mRNP. Moreover, in the majority of

the particles, the PABPC1 staining was characteristically located

at the end of the particles. Using the above-described permuta-

tion test (Monte Carlo simulation) with a cutoff of 200 nm be-

tween YBX1 and PABPC1 and 10,000 permutations, we never

observed a number of colocalizations equal to or higher than

the experimentally observed (p < 0.00001), and within the cutoff

only one PABPC1 assembly was observed. The observation was

further substantiated by FCS measurements of PABPC1

showing that each PABPC1 foci consisted of three or four mole-

cules of PABPC1 (Figure S5). This is in agreement with the length

of poly(A) tails in HeLa cells, which has been determined to

contain from 50 to 100 nt (Chang et al., 2014), and taking into

consideration that PABPC1 binds to a poly(A) tail every 27 nt

(Baer and Kornberg, 1983). The diffusion rate of PABPC1-GFP

was identical to that of YBX1 and IMP1, and cross-correlation

was observed between the factors, indicating an in vivo interac-

tion of the proteins (Figure S5). We therefore conclude that

IMP1_YBX1 mRNPs represent solitary mRNAs with attached

proteins.

DISCUSSION

Cytoplasmic RNP granules have been recognized for several de-

cades, and although we have a relatively deep understanding of

their biochemistry, the molecular composition of individual

mRNPs is incompletely understood. This has been due partly

to the lack of technologies to characterize molecular complexes

in intact and live cells, so we used super-resolution microscopy
and correlation spectroscopy to provide a deeper insight into the

nature of single mRNP granules.

Compared with conventional LSM, where mRNP granules

appear spherical with a size of 200–700 nm (Nielsen et al.,

2002; Figure S6), SIM has a resolution 2–3 times below that of

diffraction-limited instruments, providing a lateral resolution of

about 100 nm (Stelzer, 2014). An average 2 kb mRNA has an

outline of about 300 nm, taking secondary structure into account,

so it is feasible to distinguish RBPs and their position on the same

mRNA using SIM (Milo et al., 2010; http://book.bionumbers.org/

which-is-bigger-mrna-or-the-protein-it-codes-for/), because

the size of the complex is larger than the resolution. IMP1_YBX1

mRNPs were on average 500 nm in length, which is in agreement

with atomic force microscopy of isolated granules (Jønson et al.,

2007). YBX1 and IMP1 stainings were partly overlapping but also

alternating along the mRNP. Moreover, the SIM analysis was

supplemented by EMSA with four RNA targets of about 200 nt,

showing mutually exclusive attachment of YBX1 and IMP1,

implying that the overlapping stainings observed in SIM are

due to the resolution limit of about 100 nm. Whereas YBX1 was

distributed along the entire particle, IMP1 had a preponderance

for projections and ends. YBX1 is one of the core proteins of

mRNPs and has previously been described to coat the entire

mRNA (Singh et al., 2015; Skabkin et al., 2004), whereas IMP1

preferentially binds to single-stranded CA-rich elements in the

30 UTR and loop regions (Conway et al., 2016; Hafner et al.,

2010). As previously described, the embedded mRNAs were to

a large extent masked by the associated proteins (Buxbaum

et al., 2014). In our data, mRNA appeared to be masked, partic-

ularly in regions covered by YBX1, which is in accordance with

the fact that YBX1 acts as a translational repressor (Evdokimova

et al., 2006). Because of the distinct localization of the core pro-

teins in the mRNP, the complete structure was perceived only in

the composite pictures. If focus had been directed toward one of

the factors, we would have failed to recognize the entire size and

shape of the mRNP. Moreover, SIM directly demonstrates that

YBX1 and IMP1 bind in cis like pearls on a string, which is of sig-

nificance for the interpretation of CLIP and immunoprecipitation

analysis that fail to make a distinction between cis and trans. The

pattern of IMP1 and YBX1 in the particle is also in agreement with

the mutually exclusive binding of the factors demonstrated in the

band-shift analysis.

RBPs associate with and dissociate from the mRNA along its

journey from the nucleus to the translating ribosomes (Singh

et al., 2015). On the basis of the presence of nuclear export sig-

nals in IMP1 andYBX1, the general idea has been that the factors

enter the nucleus and bind their target mRNAs (Jung et al., 2018;

Nielsen et al., 2003; Oleynikov and Singer, 2003). We hardly

observed nuclear IMP1 and YBX1 staining, and proper mRNP

complexes composed of IMP1 and YBX1 and mRNA were only

identified at the cytoplasmic side of the nuclear pore. This obser-

vation supports a recent study, indicating that Actb mRNA first

associates with IMP1 in the nuclear envelope (Wu et al., 2015).

The nuclear pore is flexible and dynamic (Knockenhauer and

Schwartz, 2016), and the largest macromolecular complexes

that have been shown to pass are viral capsids up to �40 nm

diameter. Our data reflect that the mRNA is brought to the

pore by a canonical mRNA export pathway, before IMP1 and
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YBX1 are loaded onto the mRNA. In this way, the nuclear pore

may represent a crucial remodeling step of the mRNP (Singh

et al., 2015). Whether the nuclear export signals in IMP1 and

YBX1 have a function in localization to the nuclear pore remains

to be addressed.

In the cytoplasm, IMP1 protects mRNAs from microRNA

mediated degradation (Jønson et al., 2014) and YBX1 is also

an mRNA stabilizer (Evdokimova et al., 2001), so the mRNP is

considered an mRNA repository/safe house until translation.

Although granules incorporate ribosomal subunits (Krichevsky

and Kosik, 2001), we observed no direct association with trans-

lating ribosomes, which were closely intertwined between the

mRNPs. Our earlier compositional analysis of IMP1 RNPs, which

identified the exon-junction components together with the nu-

clear cap-binding subunit CBP80 and the nuclear poly(A)-bind-

ing protein PABPN1, corroborates the pre-translational status

of these cytoplasmic mRNPs (Jønson et al., 2007). In agreement

with their large composite nature, the majority of the mRNPs ex-

hibited a very slow diffusion rate compared with the IMP1 KH

domain GXXG loop mutant that failed to bind RNA. Particles

migrated in all directions, and judged from the photoconversion

experiments, some were almost immobile, whereas about one-

third of the mRNPs exhibited a faster mobility. The fastest parti-

cles were able to migrate several micrometers per second.

Intriguingly, they accumulated at a particular location, indicating

that they may be subject to a regulated cytoplasmic docking.

Transport may involve simple diffusion but also cytoplasmic

streaming and motors, which are not mutually exclusive mecha-

nisms (Lu et al., 2016; Song et al., 2015; Suzuki et al., 2017).

Moreover, the single photoconverted mRNP was fairly stable,

indicating that fluidity is low in contrast to what is observedwithin

liquid droplets (Courchaine et al., 2016).

We determined the molecular composition of the individual

granules using localization microscopy and FCS. Both methods

led to roughly the same result and showed that particles were

composed of 5–15 molecules of both IMP1 and YBX1. Because

of the masking, the localization microscopy analysis of ACTB

mRNA should obviously be interpreted with some caution. How-

ever, because we never arrived at probe counts exceeding the

total number of applied ACTB probes, it suggested that there

was only one mRNA in the particles, and this was also reinforced

by the observed lack of colocalization of abundant ACTB and

GAPDH mRNAs in the granules. At a more global level, the ob-

servations were finally corroborated by the demonstration of

only one PABPC1 staining focus in the distal parts of the gran-

ules. FCS data showed that each particle contained three or

four PABPC1molecules, in agreement with previous observation

showing that the bulk of poly(A) tails in HeLa cells are 50–100 nt

long (Chang et al., 2014) and that a single PABPC1 occupies 27

nt (Baer and Kornberg, 1983). Finally, the comparative data from

CLIP analysis (Conway et al., 2016; Goodarzi et al., 2015) show,

in agreement with the localization microscopy and FCS data,

that the average numbers of YBX1 and IMP1 mRNA attachment

sites at a global level are six and seven, respectively. The reason

that FCS and localization microscopy provide slightly higher

numbers of IMP1 molecules is because of IMPs’ binding as

dimers and because YBX1 to some extent multimerizes. The

results are in line with findings showing that neuronal mRNAs
746 Cell Reports 29, 736–748, October 15, 2019
travel singly into dendrites (Batish et al., 2012) and that MAP2,

CaMKIIa, and ACTB RNAs localize independently in low copy

numbers (Mikl et al., 2011), thus supporting the ‘‘sushi-belt

model’’ (Doyle and Kiebler, 2011). The findings may also be sup-

ported by a rough estimate. Assuming that a HeLa cell contains

about 200,000 RNA polymerase II transcripts in a volume of

3,000 mm3, then there will be 60 mRNAs/mm3 (Shapiro et al.,

2013). By simple counting of SIM stacks, we observe 30–50

mRNPs/mm3, which is compatible with a single transcript in

each mRNP, considering that some mRNAs may undergo trans-

lation or reside in the nucleus.

RBPs have been proposed to coordinate the production of

functionally related proteins by organizing their mRNAs in regu-

lons (Keene, 2007). The finding that small cytoplasmic mRNP

granules represent singletons implies that coordinate expression

of functionally related mRNAs in RNA regulons is unlikely to

result from coordinated assembly but rather results from regu-

lated docking, as described above, or from selective stabilization

of mRNA in the particles. Small cytoplasmic mRNP granules are

distinct from large stress granules and P bodies, that represent

dynamic mRNP assemblies formed in response to stress and

mRNA decay, respectively. On the basis of our findings, we pro-

pose that smaller cytoplasmic granules should be designated

mRNP singletons rather than granules to clearly distinguish

them from the larger assemblies. Moreover, this would allude

to the fact that stress granules probably incorporate elements

of mRNP singletons.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HeLa cells (ATCC� CCL-2TM, sex: female) were cultured in phenol red-free Dulbecco’s Modified Eagle Medium (DMEM), high

glucose (4.5 g/L) + GlutaMAX and 1 mM sodium pyruvate (Thermo Fisher Scientific) supplemented with 10% Fetal bovine serum

(Tetracycline free, Biowest) and penicillin/streptomycin (Invitrogen). Cells were grown at 37�Cwith 5%CO2 in a humidified incubator.

METHOD DETAILS

Transfections
Vectors

IMP1 was cloned into pEGFP-C2 (Clontech) and pmEos3.2-C1 vector (Addgene). GFP-IMP1_KH1-4mut construct was obtained by

mutating the GXXG loops of the 4 KH domains (Hollingworth et al., 2012) from GK(E/K/G)G to GELG. YBX1 was cloned into

pcDNA3.1+N-EGFP (Genscript) and pmCherry-C1 (Clontech) vectors, inserting a 25 amino acid flexible linker composed of 5x

GlyGlyGlyGlySer between the fluorescent tag and YBX1 to reduce aggregation. PABPC1 was cloned into pEGFP-N1 (Clontech),

thus placing the GFP tag in the C-terminal of the protein. DCP1a and G3BP were cloned into pcDNA3-EGFP and pHcRed1-c1,

respectively.

Plasmid transfections

HeLa cells were plated in 35mm glass-bottom dishes (P35G-1.5-14-C, MatTek) and were transfected using FuGENE� 6 (Promega).

For each transfection, 3 ml of FuGENE� 6 and 1.3 mg of plasmid were added to 100 ml of OPTI-MEM Medium (Thermo Fisher Scien-

tific). The mixture was incubated at room temperature for 30 min prior to the addition to the coverslips.

siRNA and plasmid co-transfection

HeLa cells were plated in 35mm glass-bottom dishes (P35G-1.5-14-C, MatTek) and were transfected using Lipofectamine 2000

(Thermo Fisher Scientific). For each transfection, 3 ml of Lipofectamine� 2000, 1 mg of plasmid and siRNA to a final concentration

of 2.5 nM were added to 100 ml of OPTI-MEM Medium (Thermo Fisher Scientific). The mixture was incubated at room temperature

for 30 min prior to the addition to the coverslips.

Western blot analysis

Protein extracts were separated in 10% RunBlue SDS gels and transferred to PVDF membranes (Invitrogen). After blocking, mem-

branes were incubated overnight with a peptide specific rabbit anti-IMP1 antibody (Nielsen et al., 1999) an anti-YBX1 antibody

(ab12148, Abcam), an anti-GFP antibody (ab1218, Abcam) and a GAPDH antibody (FL-335, Santa Cruz) in blocking solution at

4�C before they were washed and incubated with horseradish peroxidase-conjugated anti-rabbit IgG for 1 h at room temperature.

Immunoreactive proteins were detected with SuperSignal chemiluminescence reagents (Thermo Fisher Scientific) according to the

manufacturer’s instructions. Blots were scanned using a C-DiGit Blot Scanner (LI-COR Biosciences).

Immunoprecipitation

HeLa cells were transiently transfected with pEGFP-C1 and pEGFP-IMP1 and cell pellets were collected 48 h after transfection. Cell

pellets containing 13 107 cells were lysed in lysis buffer containing 20mMTris-HCl (pH 7.5), 1.5 mMMgCl2, 140mMKCl, 1 mMDTT,

0.5% NP-40 supplemented with mammalian protease inhibitor cocktail (Sigma). Cell lysates were cleared by centrifugation at

8200 xg for 5min before addition of GFP antibody (ab1218, Abcam) coupled DynabeadsTM Protein G (Invitrogen). Cleared cell lysates

were incubated with the beads for 2 h at 4�C with rotation. After that, samples were washed 3x with lysis buffer and split and treated

with 20 ug/mL RNase A (DNase and protease-free, Thermo Scientific) or RiboLock RNase inhibitor (Thermo Scientific) for 20 min at

room temperature with rotation. Beads were subsequently washed and proteins were eluted directly in 2x SDS buffer.

Polysome fractionation analysis

Polysome analysis was performed as described (Nielsen et al., 2002). Briefly, HeLa cells (53 106 cells) were lysed in 500 mL 20 mM

Tris-HCl (pH 8.5), 1.5 mMMgCl2, 140 mM KCl, 0.5 mMDTT, 0.5% NP-40, 200 U of RNasin (Promega) per mL and 0.1 mM cyclohex-

imide. The lysate was centrifuged at 10,000 xg for 10 min, and the supernatant was applied to a linear 20 to 47% sucrose gradient in

20 mM Tris-HCl (pH 8.0), 140 mMKCl, 5 mMMgCl2. Centrifugation was carried out at 200,000 g for 2 h and 15 min in a Beckman SW

41 rotor. Fractions of 1 mL were collected, followed by protein precipitation with 10% TCA.

Electrophoretic mobility-shift analysis (EMSA)

Electrophoretic mobility-shift analysis was carried out essentially as described previously (Nielsen et al., 2004). RNA targets were

C-MYC CRD (positions 1181-1362 in CDS), C-MYC 30UTR (positions 1-226 in 30UTR), ACTB exon 5, and ACTB 30UTR (positions

1-233). Tag-less recombinant human IMP1 and IMP1_KH1-4mut (with the four GXXG signature loops mutated to GELG) were ex-

pressed and purified as described earlier (Nielsen et al., 2004). Recombinant human YBX1 with a C-terminal FLAG-tag was pur-

chased from OriGene Technologies, Inc.

Immunofluorescence, fluorescence in situ hybridization and Structured Illumination Microscopy (SIM)

HeLa cells were seeded in glass-bottom coverslips (P35G-0.170-14-C, MatTek) and fixed 24 h after with 3.7% formaldehyde solution

in PBS, followed by a permeabilization step with 0.5% Triton X-100 in PBS. Immunofluorescence of IMP1 and YBX1 was performed

using antibodies against IMP1 (E-20, Santa Cruz) and YBX1 (ab12148, Abcam). Nup153 and PABPC1 were detected using anti-

Nup153 antibody (ab24700, Abcam) and anti-PABPC1 antibody (ab6125, Abcam). Coverslips were washed 3x with PBS prior to
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Alexa Fluor conjugated secondary antibodies (Thermo Fisher Scientific) incubation for an hour at RT. Samples were washed 3x with

PBS and mounted in VECTASHIELD mounting media (RI = 1.45).

Structured Illumination Microscopy (SIM) was performed using a Zeiss ELYRA PS.1 microscope and channel correction was

applied using a channel alignment file created by imaging 0.1 mm TetraSpeck Microspheres (Thermo Fisher Scientific). The image

sets comprised 3 rotations and processed images were thresholded in accordance with current standards to remove diffuse back-

ground (honeycombs) caused by stray pollutants or some residual autofluorescence on the SIM reconstructed pictures before con-

trasting. An example is provided in Figure S6 that also provides a comparison between conventional confocal imaging and SIM of the

mRNA granules and image overlays demonstrating the measurements of the granules.

RNA FISH of ACTB mRNA and/or GAPDH mRNA was performed with human ACTB DesignReady Probe Set conjugated with

Quasar� 570 (VSMF-2002-5, LGC Biosearch) or Quasar� 670 Dye (VSMF-2003-5, LGC Biosearch) or human GAPDH ShipReady

Probe set conjugated with Quasar� 570 (SMF-2026-1, LGC Biosearch) following the ‘‘Sequential Stellaris FISH and Immunofluores-

cence using Adherent Cells protocol’’ from LGC Biosearch Technologies (https://biosearchassets.blob.core.windows.net/assets/

bti_custom_stellaris_immunofluorescence_seq_protocol.pdf). Briefly, immunofluroescence of IMP1 and YBX1 was performed as

described above followed by a fixation step with fixation buffer (3.7% formaldehyde in PBS), Wash Buffer A (LGC Biosearch Tech-

nologies) was incubated for 5 min and ACTB probe set was hybridized in for 16 h at 37�C with Hybridization buffer (LGC Biosearch

Technologies). After hybridization, dishes were incubated with Wash Buffer A for 30 min at 37�C followed by addition and incubation

of Wash Buffer B (LGC Biosearch Technologies) for 5 min. Samples were mounted and imaged using the same protocol described

above.

OP-puromycin protein synthesis assay

HeLa cells were seeded in glass-bottom coverslips (Mattek) and Click-iT� Plus OPP Alexa Fluor� 488 Protein Synthesis Assay Kit

was used to localize nascent polypeptides following the manufacturers protocol. Cycloheximide (50 mg/mL) was added prior to OPP

to one sample as a negative control. After the click reaction, immunofluorescence detection of IMP1 and YBX1 was performed as

described previously. Samples were mounted in Vectashield mounting medium and images were acquired using a Zeiss ELYRA

3.2 microscope (Structured Illumination Microscopy).

Photoconversion of mEos3.2-IMP1 for in vivo protein tracking

HeLa cells were plated in 35mmglass-bottom dishes (P35G-1.5-14-C,MatTek) and transfectedwith pmEos3.2-IMP1with FuGENE 6

as described above in ‘‘Plasmid transfection’’ section. Photoconversion was performed using a Zeiss LSM780 microscope with a

Plan-Apochromat 63x/1.4 Oil objective using a 405 laser pulse in a selected area in the cytoplasm. Cells were imaged before and

after photoconversion and photoconverted mEos3.2-IMP1 was monitored every 10 s and followed throughout the cytoplasm.

Localization Microscopy

HeLa cells were stained with either IMP1 and YBX1 antibodies and Alexa Fluor 568 and Alexa Fluor 555 secondary antibodies,

respectively, or withACTBQuasar-570 probes (LGCBiosearch Technologies). Samples weremounted in non-hardening Vectashield

mountingmediumwith a refraction index of 1.45 (Olivier et al., 2013). Localization Microscopy was performed on a Zeiss ELYRA PS.1

microscope using an alpha-Plan-Apochromat 100x/1.46 objective. Total internal reflectionmicroscopy (TIRF) with a excitation wave-

length of 561 nm and appropriate emission filters (BP 570-650) was used in all localization microscopy experiments and ZEN 2012

software was used to analyze and filter the data obtained in a total of 80.000 frames acquired. Frames were corrected for drift over a

timescale of 36 min 13 s (Model-based correction), and grouping was applied in the antibody stained samples in order to compile all

the events that came from a single antibody. Frames corresponding to the bleaching period of the sample were discarded for the final

counting.

Fluorescence correlation spectroscopy (FCS) and Fluorescence Cross Correlation Spectroscopy (FCCS)

FCSmeasurements were performed with a Zeiss LSM 780 confocal microscope. HeLa cells were transfected with pEGFP-C1 (GFP),

GFP-IMP1, GFP-IMP1_KH1-4mut, GFP-YBX1 (-/+ cotransfection with YBX1 30UTR siRNA) or PABPC1-GFP, as described above in

the Plasmid transfection and siRNA and plasmid cotransfection sections and incubated for�16 h and 48 h respectively before mea-

surementswere conducted. Argon laser with a 488 excitation wavelengthwas usedmaking sure that the count rate was linear at each

particular laser power used. Transfected cells were located and FCS measurements were performed in a Zeiss LSM780 confocal

microscope using a C-Apochromat 40x/1.2 W Corr M27 objective. Measurements were recorded in 10 s intervals during a total

time of 60 s choosing arbitrary points in the cytoplasm and experimental autocorrelation curves were obtained. Intervals showing

bleaching were discarded for the average. GFP-IMP1, GFP-IMP1_KH1-4mut or PABPC1-GFP were co-transfected with mCherry-

YBX1, and FCCS measurements were performed following the same procedure as with FCS.

CLIP-seq analysis

Five public datasets were acquired by use of fastq-dump (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software) using

the parameters: ‘‘skip-technical,’’ ‘‘readids,’’ ‘‘read-filter pass,’’ ‘‘dumpbase,’’ ‘‘split-files,’’ and ‘‘clip.’’ Fastq files were aligned

with STAR (version 2.5.2b) (Dobin et al., 2013) to the GRCh38 release 87 genome assembly as provided by ENSEMBL with corre-

sponding annotation (ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapiens.GRCh38.87.gtf.gz), using an over-

hang of 50 for all samples. Aligned reads (bam files) were imported into GenomicAlignments (Lawrence et al., 2013) in R, and single

end reads were resized to the estimated fragment length (300bp) (Jothi et al., 2008). A standard peak calling algorithm could not be

applied (e.g., MACS2) because of lack of a paired input sample. Hence, peaks were estimated from read pile-up (islands), where the

lower boundary was estimated to be a cutoff where the mock samples proximate one island per transcript (closest number). In one
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case a mock was not available with the sample, and the lower boundary was estimated from median of mocks from ENCODE. All

mock samples analyzed required a cut-off lower than 9 reads in order to proximate one island per transcript. Crosslinked immuno-

precipitation of endogenous YBX1 followed by high-throughput sequencing (CLIP-seq) in human MDA-parental breast cancer cells,

YBX1 were acquired from the short read archive (SRA) with accession numbers: SRR1662159, SRR1662160, and SRR1662161

(Goodarzi et al., 2015). Enhanced CLIP-seq for IGF2BP1/IMP1 was acquired from SRA, accession numbers: SRR5112331 and

SRR5112330 (ENCODE Project Consortium, 2012).

QUANTIFICATION AND STATISTICAL ANALYSIS

We set up a statistical test to quantify how likely it was that we by chance observe the experimentally observed number of co-local-

izations or more in the SIM images. The dimension of the images used was 5000 3 5000 nm. Our null hypothesis model makes the

following assumptions: the foci (red and green) are represented by points randomly distributed on the 2D field of view and our test

statistic is the nearest neighbor distance between a red and a green dot. We simulate from the null model using the same field of view

dimensions, number of experimentally observed red and green dots and co-localization distance cut-off. The p value is then the frac-

tion of simulations of the null model where the number of co-localizations is equal or greater than the experimentally observed

number.

Taking into account that YBX1 focis are elongated, distances between PABPC1 or IMP1 (green) and YBX1 (red) weremeasured by

calculating the distance between a PABPC1/IMP1 foci and the nearest YBX1 signal.

DATA AND CODE AVAILABILITY

The Jupyter notebook implementation is available upon request.
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