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Abstract
Ecological Niche Models (ENMs) have different performances in predicting potential 
geographic distributions. Here we meta‐analyzed the likely effects of climate change 
on the potential geographic distribution of 1,205 bird species from the Neotropical 
region, modeled using eight ENMs and three Atmosphere‐Ocean General Circulation 
Models (AOGCM). We considered the variability in ENMs performance to estimate 
a weighted mean difference between potential geographic distributions for baseline 
and future climates. On average, potential future ranges were projected to be from 
25.7% to 44.5% smaller than current potential ranges across species. However, we 
found that 0.2% to 18.3% of the total variance in range shifts occurred “within spe‐
cies” (i.e., owing to the use of different modeling techniques and climate models) and 
81.7% to 99.8% remained between species (i.e., it could be explained by ecological 
correlates). Using meta‐analytical techniques akin to regression, we also showed that 
potential range shifts are barely predicted by bird biological traits. We demonstrated 
that one can combine and reduce species‐specific effects with high uncertainty in 
ENMs and also explore potential causes of climate change effect on species using 
meta‐analytical tools. We also highlight that the search for powerful correlates of 
climate change‐induced range shifts can be a promising line of investigation.

K E Y W O R D S

ecological niche modeling, global warming, meta‐analysis, range size, species distribution, 
uncertainty

1  | INTRODUC TION

Evidence supporting human‐induced global warming and its effects 
on biological processes and biodiversity patterns are accumulating 

conspicuously (Parmesan, 2006; Pecl et al., 2017). This evidence 
comes from multiple sources, including studies on phenology 
(e.g., time of leaf unfolding events), shifts in the border of species' 
geographic ranges (Parmesan & Yohe, 2003) and those based on 
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controlled experiments (Walker et al., 2006). Empirical evidence of 
the effects of global warming on biodiversity is so overwhelming 
that the number of synthesis of these impacts is increasing steadily 
(e.g., Ainsworth, Rosenberg, & Wang, 2007 and references therein; 
Halupka & Halupka, 2017).

Following the broad‐scale analyses supporting human‐induced 
climate change, many recent studies evaluated the likely effects of 
climate change on the geographic range of several species belonging 
to large taxonomic groups in different biogeographic regions at vari‐
able spatial extents (Diniz‐Filho et al., 2009; Garcia, Burgess, Cabeza, 
Rahbek, & Araújo, 2012; Jetz, Wilcove, & Dobson, 2007; Lawler, 
Shafer, Bancroft, & Blaustein, 2010; Lawler et al., 2009; Sales, Neves, 
Marco, & Loyola, 2017; Terribile et al., 2012; Thuiller et al., 2011). 
These studies estimated potential range shifts by using one or several 
methods for niche modeling associated with different Atmosphere‐
Ocean General Circulation Models (AOGCM) and Greenhouse Gas 
Emission Scenarios (GES). If one is interested in summarizing these 
results, in principle, the projected range shift of each species could 
be used as an unit of information in a meta‐analysis.

Different issues arise when applying formal meta‐analytic tech‐
niques to summarize niche modeling results, but critical is the uncer‐
tainty associated with range shift estimates. For example, Diniz‐Filho 
et al. (2009) showed that the estimated shifts in species' geographic 
ranges varied broadly, mainly due to the use of different Ecological 
Niche Models (ENMs hereafter). Other sources of uncertainty in‐
clude the choices of AOGCM, GES, parameterization methods and 
rules to transform continuous outputs of models into presence and 
absence estimates (Nenzén & Araújo, 2011). In other words, differ‐
ent model projections are obtained when different combinations of 
ENMs, GES, and AOGCMs are used. Furthermore, the characteris‐
tics of the modeled organisms (e.g., life history and dispersal ability) 
can also influence model outcomes (Buisson, Thuiller, Casajus, Lek, 
& Grenouillet, 2010; Lawler et al., 2010; Thuiller, Guéguen, Renaud, 
Karger, & Zimmermann, 2019).

Here, we propose that the uncertainty of species' range shifts 
can be used as weights in a meta‐analysis. We exemplify our new 
approach using the estimated biogeographical range shifts of 
Neotropical birds to future climate change. Further, in a cross‐spe‐
cies analysis, we asked whether the weighted mean projected shift 
has a negative (loss) or a positive (gain of geographic range) signal. 
Finally, we tested the predictive ability of species‐specific biological 
traits as correlates of range shifts.

2  | MATERIAL AND METHODS

2.1 | Data

We exemplify our analytical framework with the dataset originally 
used by Diniz‐Filho et al. (2009). This dataset includes the extents 
of occurrence (range filling) for 1,205 Neotropical bird species. The 
data were downloaded from the BirdLife (former Nature Serve; 
http://www.dataz one.birdl ife.org) and resampled to a grid of 1° lati‐
tude × 1° longitude.

We used four bioclimatic variables in our ENMs (mean an‐
nual rainfall and variability, average temperature of the warmest 
and coldest months) because they represent the major drivers of 
species diversity in large spatial scales (see Hawkings, Porter, & 
Diniz‐Filho, 2003). We obtained data on bioclimatic variables from 
the World Climate Research Program's (WCRP) Coupled Model 
Intercomparison Project phase 3 (CMIP3) multimodel dataset (Meehl 
et al., 2007; https ://www.esgf‐node.llnl.gov).

We used a subset of the species (n = 1,205) modeled by 
Diniz‐Filho et al. (2009) because we kept only those for which 
the following variables were available (see Appendix S1): altitude 
midpoint, body size, IUCN categories of extinction risk, clutch 
size, and migratory behavior (migrants or non‐migrants). A previ‐
ous study indicated that these traits are important in predicting 
bird extinction risk (Machado & Loyola, 2013). Altitude midpoint 
was defined as the mean between maximum and minimum alti‐
tude within ranges. Data on body size, clutch size, and migratory 
behavior came from different sources (see Machado & Loyola, 
2013). IUCN categories of extinction risk were transformed to 
a discrete scale attributing zero, 1, 2, 3, and 4 to least concern 
(LC), near‐threatened species (NT), vulnerable species (VU), en‐
dangered species (EN), and critically endangered species (CR), re‐
spectively (Cardillo et al., 2004; Purvis, Gittleman, Cowlishaw, & 
Mace, 2000).

We built a majority rule consensus phylogeny (Bryant, 2003) 
among the species with 10,000 random phylogenetic trees with 
“Hackett constraint” for the backbone topology from Jetz, Thomas, 
Joy, Hartmann, and Mooers (2012). For matching, we used the func‐
tion match.phylo.comm of “picante” (Kembel et al., 2010) and the 
function “consensus.edges” of “phytools” R package (Revell, 2012) to 
build the consensus phylogeny.

2.2 | Statistical analyses

Our analyses were divided in three steps. First, for each species, 
we fitted eight ENMs (assuming unlimited dispersal): BIOCLIM, 
Euclidean distance, Random Forest, Generalized Additive Model, 
Generalized Linear Model, Gower distance, Multivariate Adaptive 
Regression Splines and Maxent (see Rangel & Loyola, 2012). Using 
these models, we estimated the potential geographic distribu‐
tions for baseline and future climates, considering three AOGCM 
(CCSM3, CSIRO‐Mk3.0 (CSIRO), and UKMO‐HadCM3 (UKMO); 
see Diniz‐Filho et al., 2009 for details), for the scenario A1 (IPCC, 
2000). In sum, for each species, we generated 24 values of potential 
geographic range size (eight ENMs projected into three AOGCMs), 
both for baseline and future climates (generating a total of 48 pro‐
jections). The eight ENMs listed above were originally selected by 
Diniz‐Filho et al. (2009) to study the variation in the results derived 
from the use of different modeling strategies, from simple (e.g., 
BLIOCLIM) to more computer‐intensive methods (Random Forest). 
Because a key aspect of our approach also consists in measuring the 
variation in range shift and, for comparative purposes, we use the 
same ENMs.

http://www.datazone.birdlife.org
https://www.esgf-node.llnl.gov
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Second, for each species i, within a given AOGCM and for each 
ENM j, we estimated the proportional difference between potential 
geographic distributions for future and baseline climates (Dij):

where yij is the future potential geographic distribution (number of 
1° × 1° grid cells) for species i according to the ENM j; xij is the baseline 
potential geographic distribution (number of 1° × 1° grid cells) for the 
same species i and ENM j. A negative Dij value suggests that species i 
will lose a proportion in its projected range of occurrence according to 
ENM j. These proportional differences were then averaged across the 
eight ENMs, generating Di. The Di was taken as a measure of effect 

size in our study (difference in geographic distribution; henceforth “ef‐
fect size” for simplicity and to adhere to the standard nomenclature 
for meta‐analysis). The uncertainty in the estimates was evaluated by 
the variance (Vi) over the eight values of Dij for each species within a 
given AOGCM.

Third, the weighted mean range shift (M), summarizing the re‐
sults across the 1,205 bird species, was estimated assuming a ran‐
dom‐effects model, where the weight (Wi) assigned to each species i 
was given by the reciprocal of the Vi plus the between‐species vari‐
ance (T2). In a typical meta‐analysis, T2 is an estimate of the between‐
studies variance in effect sizes (see Borenstein, Hedges, Higgins, & 
Rothstein, 2009; Borenstein, Higgins, Hedges, & Rothstein, 2017). 
In our study, this statistic reflects the variability among the species 
in terms of their likely responses to climate change (difference be‐
tween current and future potential geographic distribution). Thus, 
the larger the variance (Vi) associated to a Di, which, in our study, is 
due to the use of different ENMs, the smaller the weight of a species 
in estimating M. The larger the between‐species variance (T2), the 
larger our uncertainty over M.

Our random‐effects model consisted of a multilevel model with 
bird phylogeny as a random effect (Lajeunesse, 2009; Nakagawa & 
Santos, 2012) and was estimated using the “rma.mv” function in the 
“metafor” R package (Viechtbauer, 2010). We estimated a phyloge‐
netic variance‐covariance matrix describing the expected variance 
(in the diagonal) and the covariances (in the off‐diagonals) of a given 
trait following a Brownian‐motion process (Lajeunesse, 2009), using 
the “vcv” function of “ape” package (Paradis, Claude, & Strimmer, 
2004). We used this phylogenetic variance‐covariance matrix to de‐
scribe the correlation among species' responses in the random‐ef‐
fects multilevel model.

We estimated a T2 statistic of variability between species (T2
s
) 

and due to the phylogenetic random effects (T2
p
) with the multi‐level 

model (Nakagawa & Santos, 2012). We also estimated a statistic 
called I2, which indicates the proportion of variability in the effect 
sizes (i.e., range shifts) that comes from true differences between 
species and, therefore, can likely be explained by species‐level vari‐
ables. We further decomposed I2 into two components: between‐
species heterogeneity (I2

s
) and phylogenetic‐level heterogeneity (I2

p
; 

Nakagawa & Santos, 2012).
To illustrate the possibility of using meta‐analytic tools 

to explore the reasons for the variability in effect sizes (i.e., 
the among‐species variation in range shifts), we evaluated 
whether the magnitude of the effects sizes (Di) was related 
to the following set of variables: altitude midpoint, body size, 
species' IUCN categories of extinction risk, clutch size, and 
migratory behavior. For this, we applied random‐effects mul‐
tilevel meta‐regression models, while controlling for phyloge‐
netic effects (Lajeunesse, 2009; Nakagawa & Santos, 2012). 
For each meta‐regression model, we estimated a quantity 
analogous to the coefficient of determination (pseudo‐R2) fol‐
lowing Borenstein et al. (2009). All analyses were performed 
in the R environment (R Core Team, 2018) using the packages 
cited above (Appendix S2).

Dij=

yij−xij

xij
×100

F I G U R E  1   Variation of effects sizes among different 
atmospheric‐ocean global circulation models projections. The 
vertical solid line indicates effect size equal to zero, and the 
dashed line indicates the weighted effect size for each projection. 
Horizontal lines indicate 95% confidence intervals (95% CI) of each 
effect size. The size of each circle indicates the weight of each 
effect size for the weighted effect size calculation. Negative ES: 
effect sizes which the upper limit of 95% CI does not include zero; 
Positive ES: effect sizes which the lower limit of 95% CI does not 
include zero; Non‐significant ES: effect sizes which 95% CI includes 
zero. For simplicity, we omit six, five, and eight very imprecise 
effects sizes in “a”, “b,” and “c,” respectively
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3  | RESULTS

Projected mean range shifts varied conspicuously among species 
but were consistent across different AOGCMs. Nearly half (or more) 
of the 1,205 species had a projected decrease in their geographic 
range (CCSM3 = 509 species; CSIRO = 509 species; UKMO = 628 
species). For species projected to suffer a reduction in range size, un‐
weighted mean losses were 49.6% (SD = 16.2%), 49.7% (SD = 16.1%), 
and 72.4% (SD = 19.0%) of the current area under CCSM3, CSIRO, 
and UKMO AOGCMs, respectively.

Another ca. 50% of species neither decreased nor increased 
their projected geographic range size (CCSM3 = 663 species; 
CSIRO = 668 species; UKMO = 547 species). Only a small frac‐
tion of species was projected to increase its geographic range size 
(CCSM3 = 33 species; CSIRO = 28 species; UKMO = 30 species), 
with mean increase of 344.8% (SD = 551.6%), 359.8% (SD = 587.4%), 
and 494.1% (SD = 788.1%) of the current area under CCSM3, 
CSIRO, and UKMO, respectively. Across all AOGCM, large range 

shifts tended to be less precise, showing wider confidence intervals 
(Figure 1).

The weighted mean effect size M (i.e., the difference between spe‐
cies potential distributions for baseline and future climates) was es‐
timated to be −24.9% (95% CI = ±6.8%), −24.7% (±6.3%) and −42.6% 
(±17.2%) under CCSM3, CSIRO, and UKMO, respectively (Figure 1). 
There was significant heterogeneity in all AOGCM, and the highest val‐
ues of the heterogeneity (T2) was due to between‐species differences 
(Table 1). According to the coefficient I2

t
, from 81.3% to 99.8% of the 

observed variance can be attributable to real differences among spe‐
cies in terms of geographic range shift (Di). From 65.9% to 74.3% of the 
observed variance in Di can be due to real differences between species, 
and from 7.0% to 34.0% can be due to phylogenetic effects (Table 1). 
The high variability in the differences between potential distributions 
for baseline and future climates suggests that there is much scope for 
the study of correlates of range loss/gain due to climate change.

Meta‐regression models had low predictive power (CCSM3: pseu‐
do‐R2 = 0.07; CSIRO: pseudo‐R2 = 0.09; UKMO: pseudo‐R2 = 0.12). 

AOGCM Q df T2
s

T2
p

I2
t

I2
s

I2
p

CCSM3 6,561.6 1,204 514.9 (±22.7) 57.7 (±7.6) 82.2 73.9 8.3

CSIRO 5,794.4 1,204 500.6 (±22.4) 47.1 (±6.9) 81.3 74.3 7.0

UKMO 23,850.6 1,204 891.9 (±29.9) 459.6 (±21.4) 99.8 65.9 34.0

Note: All Q statistic were significant with p < .01. T2
s
: T2 statistic for species random effects; T2

p
: T2 

statistic for phylogenetic random effects; I2
t
: total I2 statistic; I2

s
: between species I2 statistic; I2

p
: 

phylogenetic effects I2 statistic. Standard errors of T2 estimate are in parentheses.

TA B L E  1   Heterogeneity measures of 
effect size variation among atmospheric‐
ocean global circulation models (AOGCM)

TA B L E  2   Meta‐regression parameter estimates among atmospheric‐ocean global circulation models (AOGCM)

AOGCM Variable Estimate SE 95% CIlow 95% CIup t p

CCSM3 Intercept −34.66 7.10 −48.58 −20.73 −4.88 <.01

Body size 0.0002 0.001 −0.001 0.002 0.23 .82

Midpoint of altitude 0.0003 0.002 −0.003 0.004 0.15 .88

IUCN categories −5.71 1.32 −8.30 −3.13 −4.33 <.01

Clutch size 1.81 0.64 0.55 3.06 2.82 <.01

Migration(Absence) 4.65 6.06 −7.23 16.54 0.77 .44

CSIRO Intercept −39.36 6.71 −52.52 −26.19 −5.87 <.01

Body size 0.000 0.001 −0.002 0.001 −0.04 .97

Midpoint of altitude −0.001 0.002 −0.005 0.002 −0.69 .49

IUCN categories −6.71 1.26 −9.18 −4.24 −5.33 <.01

Clutch size 1.89 0.62 0.67 3.12 3.04 <.01

Migration(Absence) 10.91 5.74 −0.35 22.18 1.90 .06

UKMO Intercept −80.94 12.55 −105.56 −56.32 −6.45 <.01

Body size 0.001 0.001 −0.002 0.003 0.46 .65

Midpoint of altitude 0.01 0.002 0.01 0.02 4.74 <.01

IUCN categories 6.16 1.84 2.56 9.76 3.36 <.01

Clutch size 4.00 0.90 2.23 5.78 4.43 <.01

Migration(Absence) 13.87 9.19 −4.17 31.90 1.51 .13

Note: Comparisons to “migration” level were conducted with deviation from the reference level (presence).
Abbreviations: 95% CI low and up: lower and upper bound of 95% confidence interval; SE: standard error.
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IUCN categories of extinction risk, clutch size, and altitude midpoint 
(only for UKMO) were the main predictors of differences in species' 
range shifts (Table 2). The higher the risk of extinction the greater 
the reduction in range size under both CCSM3 and CSIRO climate 
models (Figure 2a,c). Further, species with larger clutch size tended 
to have lower reduction in range size under both CCSM3 and CSIRO 
(Figure 2b,d). Using UKMO, species occurring at higher altitudinal 
midpoint, extinction risk, and with larger clutch size had a lower re‐
duction in range size (Figure 3).

4  | DISCUSSION

We examined the potential effects of projected climate change on 
the geographic range sizes of Neotropical birds. Matching results 
obtained by many studies (Parmesan & Yohe, 2003; Walther et al., 
2002; see Parmesan, 2006 for a comprehensive review), which meas‐
ured phenological (e.g., advancement of spring events) and distribu‐
tional changes (e.g., poleward shifts in geographical ranges, range 
contractions or expansions), we projected that effects of climate 
change on the range sizes of Neotropical birds can be negative. The 
negative sign of this forecasted pattern seems to be coherent (sensu 

Parmesan, 2006; Pecl et al., 2017) for the scale of the Neotropics. 
Further, we showed that more than 80% of the observed variance 
in species‐range size change can be attributable to real differences 
between species and, therefore, can potentially be explained by spe‐
cies‐levels (explanatory) variables. However, finding correlates of 
range shift proved to be difficult.

Even under the unrealistic assumption of unlimited dispersal 
(which favors the hypothesis of no effect of climate change on the 
biota), we found that 509 (for CCSM3 and CSIRO) to 628 species 
(for UKMO) from all 1,205 bird species assessed are projected to 
experience range contraction. Further, species that were projected 
to lose less or even to increase their range of occurrence tended to 
present the most imprecise estimates. Our estimates of the relative 
number of bird species suffering more than 50% range contractions 
(4.4%, 3.7% and 27.8% of all bird species considered, respectively for 
CCSM3, CSIRO, and UKMO) are also comparable to those made by 
Jetz et al. (2007), who found that from 4.5% to 20.6% of the species 
analyzed are likely to lose more than 50% of their ranges.

However, an important message of our study is that we should 
not attribute the same weight for different species when assessing 
cross‐species differences in potential distributions. This is so be‐
cause, in the context of ensemble forecasting (Araújo & New, 2007), 

F I G U R E  2   Relationship between 
raw mean difference (D, %) and IUCN 
categories of extinction risk (a, c) and 
clutch size (b, d). Top row indicates 
atmospheric‐ocean global circulation 
models projections of CCSM3, and 
bottom row CSIRO. Circle size indicates 
the weight of each effect size to meta‐
regression parameter estimates. Fitted 
lines represent partial effects of each 
moderator variable on D
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different ENMs provide different forecasts of potential distribu‐
tion for the same species (e.g., Buisson et al., 2010; Diniz‐Filho et 
al., 2009; Garcia et al., 2012; Lawler et al., 2009; Rangel & Loyola, 

2012; Sales et al., 2017; Thuiller, 2004). Our results considered these 
differences because we down‐weighted species with variable range 
shifts estimates due to the use of different ENMs. The reason behind 
weighting is that species with low uncertainties in terms of range 
shifts will give estimates of the effects of climate change on geo‐
graphic ranges that are more robust to the choices of ENMs. Also, 
weighting the estimates of range shift accordingly will likely increase 
the likelihood of correctly estimating the potential effects of climate 
changes. If we did not weight the Di values, we would observe a mean 
difference in potential distribution of 6.38% (95% CI = ±12.44%), 
6.28% (±12.49%) and −4.63% (±16.88%) under CCSM3, CSIRO, and 
UKMO projections, respectively. Thus, without taking uncertainty 
into account, our estimates of the effect of climate change on geo‐
graphic range size would be much smaller and, probably, downward 
biased. In general, we believe that taking uncertainty into account, 
while estimating the effects of climate change on species distribu‐
tions, will be an important step in rebutting climate change denialism 
(e.g., Boussalis & Coan, 2016).

Our meta‐analytic approach provides an alternative method to 
quantify the relative variation in estimates of range shifts within (i.e., 
due to the use of different ENMs and AOGCMs) and among species. 
Our results are in line with those reported previously by showing 
that a substantial part of the variation in range shifts (from 25.7% up 
to 34.1%) can be attributed to the use of different ENMs (for a recent 
study, see Thuiller et al., 2019). Further, the geographic range losses, 
as given by the weighted mean effect sizes (M), were estimated to 
be much higher (ca. 57%) under UKMO than under CSIRO. However, 
our findings also highlight that most of the variation in range shifts, 
for a given AOGCM, can be attributable to real differences between 
species and that a small part of this variation is phylogenetically 
structured (except under UKMO). Taken together, our results sug‐
gest that the main question (or source of uncertainty) is not whether 
many Neotropical bird species will lose a large proportion of their 
climatic space (as it has also been projected for northern‐boreal land 
bird; see Virkkala, Heikkinen, Leikola, & Luoto, 2008), but “which 
species will be under most threat” (Sinclair, White, & Newell, 2010).

The search for correlates of range shifts under contemporary 
climate change has been an active research line in ecology (e.g., 
MacLean & Beissinger, 2017; Williams & Blois, 2018). The method 
we used to decompose the variation in range shifts among species 
also allowed us to infer that phylogenetic relatedness is a poor 
predictor of range shifts (but see Comte, Murienne, & Grenouillet, 
2014 for a contrasting result with stream fishes). We found that bird 
species with larger clutch size are expected to lose a smaller range 
of occurrence than species with smaller clutch size. This pattern 
was consistent across all AOGCM and with studies showing that 
species with higher fecundity may be buffered against a decrease in 
their overall range of occurrence (e.g., Amano & Yamamura, 2007). 
Bird species with higher threat of extinction (higher IUCN catego‐
ries of extinction risk values) may lose a larger range of occurrence 
projected for CGCM and CSIRO. For UKMO, these species were 
projected to lose a smaller range of occurrence than species clas‐
sified with a smaller extinction risk. Altitudinal midpoint correlated 

F I G U R E  3   Relationship between raw mean difference (D, %) 
and species midpoint of altitude (a), IUCN categories of extinction 
risk (b) and clutch size (c) for atmospheric‐ocean global circulation 
models projections of UKMO. Circle size indicates the weight of 
each effect size to meta‐regression parameter estimates. Fitted 
lines represent partial effects of each moderator variable on D
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positively with differences in range of occurrence. However, studies 
have shown that mountain bird species will lose a greater range of 
occurrence than other species (e.g., La Sorte & Jetz, 2010; Freeman, 
Scholer, Ruiz‐Gutierez, & Fitzpatrick, 2018; see also a meta‐anal‐
ysis by Scridel et al., 2018). A possible reason for the difference 
between our results and those from other studies is that our data‐
set included only 30 species (2.5% from all bird species we consid‐
ered) with distributions restricted to high altitudes (following the 
classification proposed by Stotz, Fitzpatrick, Parker, & Moskovits, 
1996; e.g., Accipter striatus Vieillot, 1808, Microcerculus ustulatus 
Salvin & Godman, 1883, Roraimia adusta (Salvin & Godman, 1884), 
and Trogon personatus Gould, 1842). This unbalance toward species 
with larger range size and not restricted to high altitudes may be the 
reason for the positive relationship between midpoint of altitude 
and difference in potential geographic distribution. Therefore, this 
result should be interpreted with caution, also considering that it 
was detected under UKMO only. In general, our results suggest that 
the choice of AOGCMs is also an important aspect to be considered 
in studies searching for correlates of range shift.

Finally, had we assumed dispersal limitation in our ENMs, our es‐
timates of range shift would be even greater (depicting a more pes‐
simistic scenario) because dispersal limitation would make it difficult 
for species to track their optimal conditions in space (Hof & Allen, 
2019; Wang, He, Thompson, Spetich, & Fraser, 2018). One could also 
argue that our estimates of potential geographic range loss would be 
lower after allowing for adaptation. However, recent studies indicate 
that the effect of adaptation (evolutionary rescue) may be limited 
(Cotto et al., 2017; Diniz‐Filho et al., 2019). Valladares et al. (2014) 
showed that the forecasted effects of climate change on species 
range shifts are expected to even increase when phenotypic plas‐
ticity is incorporated into ENMs. Our estimates of variation in range 
shifts are likely to be conservative because a recent study by Thuiller 
et al. (2019) showed that ENMs differ greatly in predicting future 
distributions even when only ENMs with high predictive accuracies 
are considered in the analyses.

Despite the uncertainties associated with ENMs, which were 
considered in the meta‐analytic approach implemented here, our 
results suggest that the effects of human‐induced global warming 
on the geographic distributions of Neotropical birds are concern‐
ing. We believe that a promising line of investigation would consist 
in finding other species traits with high capability to predict likely 
ranges shifts (as forecasted by ENMs). For instance, an additional 
bird trait not considered here is the extent of breeding seasons. In 
a recent meta‐analysis, Halupka and Halupka (2017), for example, 
found that climate change may extend breeding seasons for multi‐
brooded species and reduce it for single‐breeding species from the 
northern hemisphere. Species reproducing for a longer period may 
increase their population size and consequently the range that this 
species occurs. Finding strong correlates of range shift would help 
policymakers to focus not only where the effects of climate changes 
are likely to be stronger (e.g., Jetz et al., 2007; Lawler et al., 2010; 
Lawler et al., 2009), but also to list the species (as predicted by their 
traits) that are at higher risk.
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