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We consider the random field

M(t) = sup
n≥1

{− logAn + Xn(t)
}
, t ∈ T ,

for a set T ⊂ R
m, where (Xn) is an i.i.d. sequence of centered Gaussian random fields on T and 0 < A1 <

A2 < · · · are the arrivals of a general renewal process on (0,∞), independent of (Xn). In particular, a large
class of max-stable random fields with Gumbel marginals have such a representation. Assume that one
needs c(d) = c({t1, . . . , td }) function evaluations to sample Xn at d locations t1, . . . , td ∈ T . We provide an
algorithm which samples M(t1), . . . ,M(td ) with complexity O(c(d)1+o(1)) as measured in the Lp norm
sense for any p ≥ 1. Moreover, if Xn has an a.s. converging series representation, then M can be a.s.
approximated with error δ uniformly over T and with complexity O(1/(δ log(1/δ))1/α), where α relates to
the Hölder continuity exponent of the process Xn (so, if Xn is Brownian motion, α = 1/2).

Keywords: Brown–Resnick process; exact simulation; Gaussian field; max-stable random fields;
record-breaking

1. Introduction

Let X be a centered Gaussian random field on a set T ⊆ R
m, m ≥ 1 and consider a sequence

(Xn) of independent and identically distributed copies of X. In addition, let (An) be a renewal
sequence independent of (Xn). Under mild regularity conditions on the X, we will provide an
efficient Monte-Carlo algorithm for sampling the field

M(t) = sup
n≥1

{− logAn + Xn(t) + μ(t)
}
, t ∈ T , (1.1)

where μ : T −→ R is a bounded function.
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We will design and analyze an algorithm for the exact simulation of

M(t1), . . . ,M(td) for any choice of distinct locations t1, . . . , td ∈ T ,

and we will show that, in some sense, this algorithm is asymptotically optimal as d → ∞.
The algorithm proposed here shaves off a factor of order (nearly) d from the running time of

any of the existing exact sampling procedures. In particular, we will show that, under mild bound-
edness assumptions on X, it is as hard to sample (M(ti))i=1,...,d as it is to sample (X(ti))i=1,...,d .
Therefore, at least from a simulation point of view, it is not more difficult to work with M than
with X. More precisely, if it takes O(c(d)) units of computing time to sample X at d distinct
locations t1, . . . , td ∈ T , then it takes O(c(d)1+o(1)) units to sample M at the same locations; see
Theorem 2.2 for a precise formulation.

We illustrate this result by considering fractional Brownian motion X on T = [0,1]. Using
the circulant-embedding method (see [4], Section XI.3), we have c(d) = O(d logd) provided
we sample at the dyadic points ti = i/2−m for i = 1, . . . ,2m = d (which we call dyadic points
at level d). In the case of Brownian motion, one even has c(d) = O(d), corresponding to the
simulation of d independent Gaussian random variables. Thus, in the case of fractional Brownian
motion on [0,1] we provide an algorithm for sampling M at the dyadic points at level d in [0,1]
with complexity o(d1+ε) for any ε > 0; see [4], Sec. XI.6.

Moreover, if X has a series representation a.s. converging uniformly on T (such as the Lévy–
Ciesielski representation for Brownian motion, see [21], Section 3.1), we also propose an ap-
proximate simulation procedure for M with a user-defined (deterministic) bound on the error
which holds with probability one uniformly throughout T . More precisely, for any δ > 0, the
procedure that we present outputs an approximation Mδ to M such that

sup
t∈T

∣∣M(t) − Mδ(t)
∣∣ ≤ δ a.s. (1.2)

The results concerning (1.2) are reported in Theorem 7.4. The method of designing a family
(Mδ)δ>0 such that (1.2) holds is known as Tolerance Enforced Simulation (TES) or δ-strong
simulation; see [7] and [20] for details. Note that a TES algorithm enforces a strong (almost
sure) guarantee without knowledge of any specific set of sampling locations. This is a feature
which distinguishes TES from more traditional algorithms in the broad literature on simulation
of random fields and processes.

As will be explained later, the evaluation of Mδ(t) for fixed t takes O(1) units of computing
time while the construction of the process Mδ will often take O(1/(δ log(1/δ))2) units. The
latter result holds under assumptions on the convergence of the series representation of X which,
in particular, are satisfied for Brownian motion X. In the latter case, the proposed procedure
achieves a complexity of order O(d) for the exact sampling of M on the dyadic points at level
d (because the series truncated at level d is exact on the dyadic points at level d). Therefore,
the exact sampling procedure based on Theorem 7.4 applied to the dyadic points at level d is
optimal because it takes O(d) computational cost to sample X at d dyadic points. Moreover, the
convergence rate of the TES algorithm is also optimal in the Brownian case. In order to obtain
a uniform error of order O(δ), one requires to discretize Brownian motion using a grid of size
O(1/(δ log(1/δ))2); see [3].
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Our results are mainly motivated by application to the simulation of max-stable random fields.
Indeed, if (Ai) is the arrival sequence of a unit rate Poisson process on (0,∞), M is a max-
stable process in the sense of de Haan [11]. This means, in particular, that the distribution of
M(t) for any fixed t ∈ T has a Gumbel distribution which is one of the max-stable distributions.
The latter class of distributions consists of the non-degenerate limit distributions for the suitably
centered and scaled partial maxima of an iid sequence; see for example [15]. The non-Gumbel
max-stable processes with Fréchet or Weibull marginals are obtained from the representation
(1.1) by suitable monotone transformations. We also mention that de Haan [11] already proved
that max-stable processes with Gumbel marginals have representation (1.1), where X may have
a rather general dependence structure not restricted to Gaussian X. However, the case of Gaus-
sian X has attracted major attention. The case of Brownian X was treated in [10]. In the paper
[17], the case of a general Gaussian process X with stationary increments was treated, known
as the Brown–Resnick process, including the case of a Gaussian process X defined on a mul-
tidimensional set T often referred to as Smith model. It is used in environmental applications
for modeling storm profiles; see, for example, [23]. General characterizations, including spectral
representations and further properties, have been obtained as well; for example, see [22] and
[17]. However, the explicit joint distribution of the max-stable process is in general not tractable.
Because max-stable processes are generated as weak limits of maxima of i.i.d. random fields,
max-stable models are particularly suited for modeling extremal events in spatio-temporal con-
texts. These include a wide range of applications of environmental type, for example, extreme
rainfall [12] and extreme temperature [25].

Recently, several exact sampling procedures for M have been proposed and studied in the
literature. In [13], an elegant and easy-to-implement procedure was proposed for the case in
which X has stationary increments. Such a procedure has a computational complexity at least of
order O(c(d)d); see Proposition 4 in [14]. So, for example, if X is fractional Brownian motion,
the procedure takes at least O(d2 logd) units of computing time to produce d dyadic points of
M in [0,1].

Another exact simulation method for M was recently proposed in [14]. It also has complex-
ity O(c(d)d) (see Proposition 4 in [14]), thus the procedure in [14] takes O(d2) for fractional
Brownian motion (neglecting the contribution of logarithmic factors). This method is based on
the idea of simulating the extremal functions. It is completely different from the approach taken
here. Additional work concentrates on max-stable processes which satisfy special characteristics.
For example, [22] proposed an exact simulation algorithm for the moving maxima model under
suitable uniformity conditions.

Another recent development is [19], where the authors discuss an exact sampling algorithm
for max-stable fields using the so-called normalized spectral representation. If the normalized
spectral functions can be sampled with cost cNS(d), then the algorithm in [19] samples the max-
stable field exactly with complexity O(cNS(d)). However, for Gaussian-based max-stable fields,
it is an open problem to devise exact sampling algorithms for the normalized spectral function,
and it is unclear how cNS(d) compares with the complexity c(d) of sampling X.

An important difference between our method and those in [13] and [14] is the following: Both
[13] and [14] take advantage of representations or structures which allow to truncate the infinite
max-convolution in (1.1) while preserving the simple Gaussian structure of the number of terms
in the truncation. Because the simple structure of these terms is preserved, the number of terms
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in the truncation increases at least linearly in d . In contrast, we are able to truncate the number
of terms in the infinite max-convolution uniformly in d . While the terms in the truncation have a
slightly more complex structure (they are no longer i.i.d. Gaussian), they are still quite tractable
from a simulation standpoint.

This paper is organized as follows: In Section 2, we present our main result and in Section 3 we
discuss our general strategy, based on milestone events or record-breakers. The record-breaking
strategy is illustrated in Section 4 in the setting of random walks, which is needed in our context
due to the presence of (An) in M . Then we apply the record-breaking strategy to the setting of
maxima of Gaussian random vectors with focus on Section 5: This section describes the main
algorithmic developments of the paper. A complexity analysis is performed in Section 6. We
introduce and analyze a TES algorithm in Section 7. Finally, in Section 8, we conclude our paper
with a series of empirical comparison results.

2. Main result

This section provides a formal statement of the main result and its underlying assumptions. We
assume that (An)n≥0 is a renewal sequence, as mentioned in the Introduction. In particular, A0 =
0, and An = τ1 + · · · + τn, n ≥ 1, where (τi) is an i.i.d. sequence of positive random variables,
independent of (Xn).

We introduce the following technical assumptions applicable to (An):

(A1) For any γ < Eτ1, there exists some θγ > 0 such that E[exp(θγ (γ − τ1))] = 1.
(A2) It is possible to sample step sizes under the nominal probability measure as well as under

the exponentially tilted distribution

E
[
exp

(
θγ (γ − τ1)

)
1(τ1 ∈ dt)

]
.

We also introduce the following assumptions on the Gaussian field (X(t))t∈T .

(B1) E[X(t)] = 0.
(B2) E[exp(p supt∈T X(t))] < ∞ for any p ≥ 1.

Remark 2.1. By Borell’s inequality [1], Thm. 2.1.1, if T is bounded, a sufficient condition for
(B2) is

Var
(
X(s) − X(t)

) ≤ c|s − t |β

for any s, t ∈ T and some c > 0, β > 0. Define σ 2(t) = Var(X(t)). Then, under (B1) and (B2),

sup
t∈T

σ 2(t) = sup
t∈T

E
[
X(t)2] ≤ E

[
sup
t∈T

X(t)2
]

< ∞.

We also assume that sampling (X(ti))i=1,...,d costs c({t1, . . . , td}) ≥ d units of operations. In
this paper, a single operation can be any single arithmetic operation, generating a uniform random
variable, calculating a Gaussian cumulative probability function, comparing any two numbers, or
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retrieving a Gaussian quantile value. For simplicity in the notation, we shall simply write c(d) =
c({t1, . . . , td}). The locations t1, . . . , td will be assumed given throughout our development.

The following is our performance guarantee for our final algorithm, Algorithm M, presented
in Section 6. A crucial part of the theorem is that the points t1, . . . , td for any d ≥ 1 lie in a fixed
set T .

Theorem 2.2. Assume the conditions (A1), (A2), and (B1), (B2). Then Algorithm M outputs
M(t1), . . . ,M(td) without any bias, and the total number R of operations in the execution of this
algorithm satisfies E[Rp] = O(c(d)p+o(1)) for any p ≥ 1.

3. Building blocks for our algorithm

This section serves as a roadmap for the algorithmic elements behind our approach. We start with
a few definitions:

Xn = max
i=1,...,d

Xn(ti), Xn = min
i=1,...,d

Xn(ti).

We shall use X and X to denote generic copies of Xn and Xn, respectively.
Our algorithm relies on three random times which are finite a.s. They depend on parameters

a ∈ (0,1], C ∈R, 0 < γ < E[A1] to be chosen later.

1. NX = NX(a,C): for all n > NX ,

Xn ≤ a logn + C.

A straightforward Borel–Cantelli argument shows that NX is finite.
2. NA = NA(γ ): for all n > NA,

An ≥ γ n. (3.1)

3. Na = Na(γ, a,C): for all n > Na ,

nγ ≥ A1n
a exp(C − X1). (3.2)

Applying the defining properties of these random times, we find that for n > N := max(NA,NX,

Na) and any t ∈ {t1, . . . , td},

− logAn + Xn(t) ≤ − logAn + Xn

≤ − logAn + a logn + C

≤ − log(nγ ) + a logn + C

≤ − logA1 + X1

≤ − logA1 + X1(t).
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We conclude that, for t ∈ {t1, . . . , td},
sup
n≥1

{− logAn + Xn(t) + μ(t)
} = max

1≤n≤N

{− logAn + Xn(t) + μ(t)
}
, (3.3)

and thus we can sample M(t1), . . . ,M(td) with computational complexity Nc(d) plus the over-
head to identify NA and NX .

From an algorithmic point of view, the key is the simulation of the random variables NX , NA,
and Na . If we know how to simulate these quantities, relation (3.3) indicates that we must be
able to simulate the sequences (An) and (Xn) up to and jointly with N which heavily depends
on both sequences.

Remark 3.1. Assumptions (A1) and (A2) can be removed without loss of generality. To see this,
we first observe that for any r > 0, τi(r) = min(τi, r) ≤ τi and, therefore,

An(r) = τ1(r) + · · · + τn(r) ≤ An.

Moreover, we can select r > 0 so that γ < E[τi(r)] < E[τi]. Hence we can use (An(r))n≥1 to
find NA satisfying

An > An(r) > γn.

Because 0 ≤ τn(r) ≤ r , the moment generating function of τn(r) exists on the whole real line.
By convexity, one can always choose θγ which satisfies E[exp(θγ (γ − τ1(r)))] = 1, as long as
Var(τi(r)) > 0 (i.e. if τi > 0 is non-deterministic, by choosing r > 0 large enough). If τi is deter-
ministic, the strategy can be implemented directly, that is, we can simply select NA deterministic.
Once we find NA, we can recover (An)n≤NA

from (An(r))n≤NA
by replacing τn(r) with an inde-

pendent sample of τn given τn ≥ r , for any n ≤ NA such that τn(r) = r , and keeping τn(r) if it is
less than r .

Given our previous discussion, we might concentrate on how to sample from an exponentially
tilted distribution of a random variable with compact support, which may require evaluating the
moment generating function in closed form. Sampling from an exponentially tilted distribution
is straightforward for random variables with finite support. So, the strategy can be implemented
for 	τi(r)

/
 < τi(r), where 	·
 is the round-down operator, picking 
 > 0 sufficiently small
so that E[	τi(r)

/
] > γ . Once 	τi(r)

 is sampled we can easily simulate τi(r) using ac-
ceptance/rejection. The details of this idea are explained in [8].

4. Sampling a random walk up to a last passage time

In this section, we discuss the simulation of the random time NA jointly with the sequence
(An)n≥0. We lead this discussion in the context of a general random walk (Sn)n≥0 starting from
the origin with negative drift. It is eventually negative almost surely. We review an algorithm
from [9] for finding a random time NS such that Sn < 0 for all n > NS . Our aim is to develop
a sampling algorithm for (S1, . . . , SNS+�) for any fixed � ≥ 0. Our discussion here provides a
simpler version of the algorithm in [9] and allows us to provide a self-contained development of
the whole procedure for sampling M(t1), . . . ,M(td).
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The algorithm is based on alternately sampling upcrossings and downcrossings of the level 0.
We write ξ+

0 = 0 and, for i ≥ 1, we recursively define

ξ−
i =

{
inf

{
n ≥ ξ+

i−1 : Sn < 0
}

if ξ+
i−1 < ∞,

∞ otherwise

together with

ξ+
i =

{
inf

{
n ≥ ξ−

i : Sn ≥ 0
}

if ξ−
i < ∞,

∞ otherwise.

As usual, in these definitions the infimum of an empty set should be interpreted as ∞. Writing

NS = sup
{
ξ−
n : ξ−

n < ∞}
,

and keeping in mind that (Sn) starts as zero and has negative drift, we have by construction
0 ≤ NS < ∞ almost surely, and for n > NS , Sn ≤ 0. The random variable NS − 1 is an upward
last passage time:

NS − 1 = sup{n ≥ 0 : Sn ≥ 0}.
We write Px for the distribution of the random walk starting from x ∈ R, so that P = P0. We

assume the existence of Cramér’s root, θ > 0, satisfying E[exp(θS1)] = 1. Also assume that we
can sample a random walk starting from x under Pθ

x , which is defined with respect to Px through
an exponential change of measure: on the σ -field generated by S1, . . . , Sn we have

dPx

dPθ
x

= exp
(−θ(Sn − x)

)
.

Under Pθ
x , the random walk (Sn) has positive drift.

The rest of this section is organized as follows:

• In Section 4.1, we discuss sampling of downcrossing and upcrossing segments of the ran-
dom walk.

• In Section 4.2, we explain how to sample beyond NS .
• In Section 4.3, we presents our full algorithm for sampling (S1, . . . , SNS+�).

4.1. Downcrossings and upcrossings

To introduce the algorithm, we first need the following definitions:

τ− = inf{n ≥ 0 : Sn < 0}, τ+ = inf{n ≥ 0 : Sn ≥ 0}.
For x ≥ 0, it is immediate that we can sample a downcrossing segment S1, . . . , Sτ− under Px

due to the negative drift, and we record this for later use in a pseudocode function. Throughout
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this paper, ‘sample’ in pseudocode stands for ‘sample independently of anything that has been
sampled already.’

Function SAMPLEDOWNCROSSING(x): Samples (S1, . . . , Sτ−) under Px for x ≥ 0

Step 1: Return sample (S1, . . . , Sτ−) under Px .
Step 2: EndFunction

Sampling an upcrossing segment is much more challenging because it is possible that τ+ =
∞, so an algorithm needs to be able to detect this event within a finite amount of computing
resources. For this reason, we understand sampling an upcrossing segment under Px for x < 0 to
mean that an algorithm outputs (S1, . . . , Sτ+) if τ+ < ∞, and otherwise it outputs ‘degenerate.’

Our algorithm is based on importance sampling and exponential tilting, techniques that are
widely used for rare event simulation [4], page 164. Under Assumption (A1), it is well-known
that Eθ

x[τ+] < ∞; for instance, see [2], page 231, Cor. 4.4. In particular, the expected time to
simulate (S1, . . . , Sτ+) is finite under Pθ

x for any x < 0.
The following proposition is the key to our algorithm.

Proposition 4.1. Let x < 0. Suppose there exists some θ > 0 with E[exp(θS1)] = 1. With U

being a standard uniform random variable independent of (Sn) under Pθ
x , we have the following:

1. The law of 1(τ+ < ∞) under Px equals the law of 1(U ≤ exp(−θ(Sτ+ − x))) under Pθ
x .

2. The law of τ+ given τ+ < ∞ under Px equals the law of τ+ given U ≤ exp(−θ(Sτ+ − x))

under Pθ
x .

3. For any k ≥ 1, the law of (S1, . . . , Sk) given τ+ = k under Px equals the law of (S1, . . . , Sk)

given U ≤ exp(−θ(Sτ+ − x)) and τ+ = k under Pθ
x .

Proof. For any integer k ≥ 1 and Borel sets B1,B2, . . . ,Bk , we have

Px

(
S1 ∈ B1, . . . , Sk ∈ Bk, τ

+ = k
)

= E
θ
x

[
exp

(−θ(Sk − x)
)
1
(
S1 ∈ B1, . . . , Sk ∈ Bk, τ

+ = k
)]

= E
θ
x

[
1
(
U ≤ exp

(−θ(Sτ+ − x)
))

1
(
S1 ∈ B1, . . . , Sk ∈ Bk, τ

+ = k
)]

.

All claims are elementary consequences of this identity, upon noting that τ+ < ∞ under Pθ
x . �

This proposition immediately yields the following algorithm.

Function SAMPLEUPCROSSING(x): Samples (S1, . . . , Sτ+) under Px for x < 0

Step 1: S ← sample (S1, . . . , Sτ+) under Pθ
x

Step 2: U ← sample a standard uniform random variable
Step 3: If U ≤ exp(−θ(Sτ+ − x))

Step 4: Return S

Step 5: Else
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Step 6: Return ‘degenerate’
Step 7: EndIf
Step 8: EndFunction

4.2. Beyond NS

We next describe how to sample (S1, . . . , S�) from Px conditionally on τ+ = ∞ for x < 0.
Because τ+ = ∞ is equivalent to supk≤� Sk < 0 and supk>� Sk < 0 for any � ≥ 1, after sampling
S1, . . . , S�, by the Markov property we can use SAMPLEUPCROSSING(S�) to verify whether or
not supk>� Sk < 0. This observation immediately yields an acceptance/rejection algorithm that
achieves our goal.

Function SAMPLEWITHOUTRECORDS(x, �): Samples (S1, . . . , S�) from Px given τ+ = ∞
for � ≥ 1, x < 0

Step 1: Repeat
Step 2: S ← sample (S1, . . . , S�) under Px

Step 3: Until sup1≤k≤� Sk < 0 and SAMPLEUPCROSSING(S�) is ‘degenerate’
Step 4: Return S

Step 5: EndFunction

4.3. Sampling a random walk until a last passage time

We summarize our findings in this section in our full algorithm for sampling (S0, . . . , SNS+�)

under P given some � ≥ 0. The validity of the algorithm is a direct consequence of the strong
Markov property.

Algorithm S: Samples (S0, . . . , SNS+�) under P for � ≥ 0. # We use Send to denote the last
element of S.

Step 1: S ← [0]
Step 2: Repeat
Step 3: DowncrossingSegment ← SAMPLEDOWNCROSSING(Send)

Step 4: S ← [S,DowncrossingSegment]
Step 5: UpcrossingSegment ←SAMPLEUPCROSSING(Send)

Step 6: If UpcrossingSegment is not ‘degenerate’
Step 7: S ← [S,UpcrossingSegment]
Step 8: EndIf
Step 9: Until UpcrossingSegment is ‘degenerate’

Step 10: If � > 0
Step 11: S ← [S, SAMPLEWITHOUTRECORDS(Send, �)]
Step 12: EndIf



2958 Liu, Blanchet, Dieker and Mikosch

5. Record-breaker technique for the maximum of a Gaussian
field

After the excursion to random walks in Section 4 we return to the main theme of this paper. In
particular, we stick to the notation and assumptions of Sections 1–3. Define η0 = n0 for some
fixed n0 to be defined later. Let (Xn)n≥1 be i.i.d. copies of X and define, for i ≥ 1, a sequence of
record-breaking times (ηi) through

ηi =
{

inf{n > ηi−1 : Xn > a logn + C} if ηi−1 < ∞,

∞ otherwise.

It is the aim of this section to develop a sampling algorithm for (X1, . . . ,XNX+�) for any fixed
� ≥ 0, where

NX = max{ηi : ηi < ∞}.
Here and in what follows, we write Xi for a sample path at the given points t1, . . . , td ∈ T .

Section 5.1 first discusses an algorithm to sample (Xn) up to a single record. For this algorithm to
work, n0 needs to be large enough so that P(X > a logn + C) is controlled for every n > n0; the
choice of n0 is also discussed in Section 5.1. Section 5.2 describes how to sample (Xn) beyond
the last record-breaking time. Section 5.3 presents our algorithm for sampling (X1, . . . ,XNX+�).

5.1. Breaking a single record

We define for n ≥ 0,

Tn = inf
{
k ≥ 1 : Xk > a log(n + k) + C

}
.

We describe an algorithm that outputs ‘degenerate’ if Tn = ∞ and (X1, . . . ,XTn) if Tn < ∞.
Ultimately, the strategy is based on acceptance/rejection. We will eventually sample Tn given
Tn < ∞ using a suitable random variable K as a proxy with probability mass function gn0 ,
which we discuss later in this subsection. In order to apply this acceptance/rejection strategy, we
need to introduce auxiliary sampling distributions.

Our algorithm makes use of a measure P
(n) that is designed to appropriately approximate the

conditional distribution of X given X > a logn + C, which is defined through

dP(n)

dP
(x) =

∑d
i=1 1(x(ti) > a logn + C)∑d
i=1 P(X(ti) > a logn + C)

.

For any index j ∈ {1, . . . , d} and t ∈ {t1, . . . , td}, define wj(t) = Cov(X(t),X(tj ))/Var(X(tj )).
Since X is centered Gaussian X(t) − wjX(tj ) and X(tj ) are uncorrelated, hence independent.

Now one readily verifies that the following algorithm outputs samples from P
(n). Here and in

what follows, � is the standard normal distribution function.
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Function CONDITIONEDSAMPLEX(a,C,n): Samples X from P
(n)

Step 1: ν ← sample with probability mass function

P(ν = j) = P(X(tj ) > a logn + C)∑d
i=1 P(X(ti) > a logn + C)

Step 2: U ← sample a standard uniform random variable
Step 3: X(tν) ← σ(tν)�

−1(U + (1 − U)�(
a logn+C

σ(tν)
)) # Conditions on X(tν) > a logn + C

Step 4: Y ← sample of X under P
Step 5: Return Y − wνY(tν) + wνX(tν)

Step 6: EndFunction

We are now ready to see how CONDITIONEDSAMPLEX is used to sample until the first record.

Function SAMPLESINGLERECORD(a,C,n): Samples (X1, . . . ,XTn) for a ∈ (0,1], C ∈ R,
n ≥ n0

Step 1: K ← sample from pmf gn0

Step 2: (X1, . . . ,XK−1) ← i.i.d. sample under P
Step 3: XK ← CONDITIONEDSAMPLEX(a,C,n + K)

Step 4: U ← sample a standard uniform random variable
Step 5: If Xk ≤ a log(n + k) + C for k = 1, . . . ,K − 1 and Ugn0(K) ≤ dP/dP(n+K)(XK)

Step 6: Return (X1, . . . ,XK)

Step 7: Else
Step 8: Return ‘degenerate’
Step 9: EndIf

Step 10: EndFunction

The following proposition shows that SAMPLESINGLERECORD achieves the desired goal.

Proposition 5.1. Assume the condition

d∑
i=1

P
(
X(ti) > a log(n0 + k) + C

) ≤ gn0(k) for k ≥ 1. (5.1)

For n ≥ n0, if (X̃1, . . . , X̃T̃ ) has the distribution of the output of SAMPLESINGLERECORD con-
ditioned on not being ‘degenerate,’ then we have

1. the algorithm SAMPLESINGLERECORD returns ’degenerate’ with probability P(Tn = ∞),
2. the length T̃ has the same distribution as Tn given Tn < ∞, and
3. the distribution of (X̃1, . . . , X̃T̃ ) given T̃ = � is the same as the distribution of (X1, . . . ,X�)

given Tn = �.
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Proof. Write Am = {x ∈R
d : maxi xi > a log(n+m)+C} for m ≥ 1. For B1 ⊂ Ac

1, . . . ,Bk−1 ⊂
Ac

k−1 and Bk ⊂ Ak , we have

P(X̃1 ∈ B1, . . . , X̃k−1 ∈ Bk−1, X̃k ∈ Bk, T̃ = k)

= P(K = k)P(X ∈ B1) · · ·P(X ∈ Bk−1)

× P
(n+k)

(
Ugn0(k) ≤ dP

dP(n+k)
(X),X ∈ Bk

)
= P(K = k)P(X ∈ B1) · · ·P(X ∈ Bk−1)

×E
(n+k)

(
1

gn0(k)

dP

dP(n+k)
(X)I (X ∈ Bk)

)
= gn0(k)P(X ∈ B1) · · ·P(X ∈ Bk−1)

P(X ∈ Bk)

gn0(k)

= P(X1 ∈ B1, . . . ,Xk ∈ Bk,Tn = k),

and all claims follow from this identity. The second equality follows from the assumption, which
implies that dP/dP(n+k)(x)/gn0(k) is bounded by 1 for all k ≥ 1 and x ∈R

d . �

Choosing n0 and the density gn0

We start with gn0 , guided by (5.1) and the requirement that we need to sample from gn0 . The
random variable K is a proxy for the first-record epoch Tn0 , the distribution of which we can
approximate with a union-bound. This leads to the idea to use, for k ≥ 1,

gn0(k) =
∫ k

k−1 φ((a log(n0 + s) + C)/σ)ds∫ ∞
0 φ((a log(n0 + s) + C)/σ)ds

, (5.2)

where φ(·) is the density function of the standard normal distribution, σ 2 = maxt∈T Var(X(t)).
The following lemma resolves the sampling question.

Lemma 5.2. Let U be a uniform random variable on (0,1). The quantity⌈
exp

{
σ 2

a2
− C

a
+ σ

a
�

−1
(

U�

(
a logn0 + C

σ
− σ

a

))}
− n0

⌉
has probability mass function gn0 , where �·
 is the round-up operator, � = 1 − �, and �

−1
is

the inverse of �.

Proof. Write fn0(U) for the expression inside the exponential operator. For k ≥ 1, we have

P
(⌈

exp
(
fn0(U)

) − n0
⌉ ≥ k

) = P
(
fn0(U) > log(n0 + k − 1)

)
= �((a log(n0 + k − 1) + C)/σ − σ/a)

�((a logn0 + C)/σ − σ/a)
,



Optimal exact simulation of max-stable and related random fields 2961

so it remains to show that this equals

∑
m≥k

gn0(m) =
∫ ∞
n0+k−1 φ((a logx + C)/σ)dx∫ ∞

n0
φ((a logx + C)/σ)dx

.

To see this, we note that, for y > 0,∫ ∞

y

φ
((

a log(x) + C
)
/σ

)
dx = 1√

2π

∫ ∞

logy

exp

(
− (at + C)2

2σ 2
+ t

)
dt

= e−C/a

√
2πφ(σ/a)/(σ/a)

× �
(
(a logy + C)/σ − σ/a

)
(5.3)

and we thus obtain the claim. �

It is convenient to give the integral encountered on the left-hand side of (5.3) a name: for
y > 0, we set

r(y) =
∫ ∞

y

φ
((

a log(x) + C
)
/σ

)
dx.

The following proposition shows that, for large enough n0, the choice of gn0 as in (5.2) ensures
that (5.1) is satisfied. The proposition also shows how P(Tn < ∞) for n ≥ n0 can be controlled
explicitly.

Proposition 5.3. If n0 satisfies a logn0 +C ≥ σ and dr(n0) ≤ δ for a given δ ∈ (0,1), then (5.1)
is satisfied and SAMPLESINGLERECORD(a,C,n) returns ‘degenerate’ at least with probability
1 − δ.

Proof. Since �(x) ≤ φ(x) for x ≥ 1, dr(n0) ≤ δ, and in view of (5.3) we have

d∑
i=1

P
(
X(ti) > a log(n0 + k) + C

) ≤ d�
((

a log(n0 + k) + C
)
/σ

)
≤ dφ

((
a log(n0 + k) + C

)
/σ

)
≤ d

∫ k

k−1
φ
((

a log(n0 + s) + C
)
/σ

)
ds

= d

∫ ∞

0
φ
((

a log(n0 + s) + C
)
/σ

)
dsgn0(k)

= dr(n0)gn0(k) < δgn0(k). (5.4)

This proves the first claim.
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Applying Proposition 5.1 and (5.4) for every k, the probability that SAMPLESINGLERECORD

does not return ‘degenerate’ is bounded as follows:

∞∑
k=1

P(Tn = k) ≤
∞∑

k=1

d∑
i=1

P
(
X(ti) > a log(n + k) + C

)

≤
∞∑

k=1

d∑
i=1

P
(
X(ti) > a log(n0 + k) + C

)
< δ

∞∑
k=1

gn0(k) = δ,

which proves the second claim. �

5.2. Beyond NX

We next describe how to sample (X1, . . . ,Xn) conditionally on Tn = ∞. As in Section 4.2, we
use an acceptance/rejection algorithm, but we have to modify the procedure slightly because we
work with a sequence of i.i.d. random fields instead of a random walk.

Function SAMPLEWITHOUTRECORDX(n, �): Samples (X1, . . . ,X�) conditionally on Tn =
∞ for � ≥ 1

Step 1: Repeat
Step 2: X ← sample (X1, . . . ,X�) under P
Step 3: Until sup1≤k≤�[Xk − a log(n + k)] < C

Step 4: Return X

Step 5: EndFunction

5.3. The full algorithm

We summarize our findings in this section in our full algorithm for sampling (X1, . . . ,XNX+�)

under P given some � ≥ 0.
The idea is to successively apply SAMPLESINGLERECORD to generate the ηi from the be-

ginning of this section. Starting from η0 = n0 satisfying the requirements in Proposition 5.3,
we generate Tn where n is replaced by each of the subsequent ηi . As a result, we have
P(ηi = ∞|ηi−1 < ∞) ≥ 1 − δ by Proposition 5.3. Thus, the number of records is bounded in
probability by a geometric random variable with parameter 1 − δ.

Algorithm X: Samples (X1, . . . ,XNX+�) given a ∈ (0,1], δ ∈ (0,1), C ∈ R, σ > 0, � ≥ 0.
# n0 must satisfy the requirements in Proposition 5.3.

Step 1: X ← [], η ← n0
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Step 2: X ← sample (X1, . . . ,Xη) under P
Step 3: Repeat
Step 4: segment ← SAMPLESINGLERECORD(a,C,η)

Step 5: If segment is not ‘degenerate’
Step 6: X ← [X, segment]
Step 7: η ← length(X)

Step 8: EndIf
Step 9: Until segment is ‘degenerate’

Step 10: If � > 0
Step 11: X ← [X, SAMPLEWITHOUTRECORDX(η, �)]
Step 12: EndIf

6. Final algorithm and proof of Theorem 2.2

In this section, we give our final algorithm. We also provide the remaining arguments showing
why the algorithm outputs exact samples and prove a bound on the computational complexity.
Together these proofs establish Theorem 2.2.

We start with a description of our final algorithm for sampling M , which exploits that for
Sn = γ n − An and NA = NS , we have Sn < 0 and therefore An ≥ γ n for n > NA.

Algorithm M: Samples (M(t1), . . . ,M(td)) given δ ∈ (0,1), a ∈ (0,1], γ < EA1, C ∈ R, σ .

Step 1: Sample A1, . . . ,ANA
using Steps 1–9 from Algorithm S with Sn = γ n − An.

Step 2: Sample X1, . . . ,XNX
using Steps 1–9 from Algorithm X.

Step 3: Calculate Na with (3.2) and set N = max(NA,NX,Na).
Step 4: If N > NA

Step 5: Sample ANA+1, . . . ,AN as in Steps 10–12 from Algorithm S with Sn =
γ n − An.

Step 6: EndIf
Step 7: If N > NX

Step 8: Sample XNX+1, . . . ,XN as in Steps 10–12 from Algorithm X.
Step 9: EndIf

Step 10: Return M(ti) = max1≤n≤N {− logAn + Xn(ti) + μ(ti)} for i = 1, . . . , d .

The pathwise construction in Section 3 implied that the output of Algorithm M is an exact
sample of {M(t1), . . . ,M(td)}. Thus it remains to study the running time of Algorithm M.

6.1. Computational complexity

We next study the truncation point N in (3.3). Because the number of records is bounded in prob-
ability by a geometric random variable, it is clear that N < ∞ almost surely. As we now explain,
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the number of rejections in Steps 5 and 8 in Algorithm M are also bounded in probability by
geometric random variables. In particular, in Step 5 the sample path is accepted with probabil-
ity no less than P0(τ+ = ∞), while in Step 8 the acceptance probability is bounded below by
P(T0 = ∞). Both bounds are strictly positive, so the total path length generated is on the same
order as N .

Our aim is to study the dependence of our algorithm on the dimension d . The only places
where d enters the algorithm are in the definition of n0 and the measure P

(n). Sampling from the
latter happens at most a geometric number of times with parameter 1 − δ, so the computational
complexity is dominated by the choice of n0.

For any ζ > 0, if d is large enough and if we ignore rounding, the following choice of n0 =
n0(d)

log
(
n0(d)

) = σ 2

a2
− C

a
+ σ

a

√
(2 + ζ ) log

(
de−C/a

δ
√

2πφ(σ/a)/(σ/a)

)
satisfies the assumption dr(n0) ≤ δ of Proposition 5.3.

The following result will be needed for the proof of the second part of Theorem 2.2. Recall
that K is a positive integer-valued random variable with probability mass function gn0 .

Lemma 6.1. For p ≥ 1, we have log(E[Kp]) = O(logn0) as d → ∞.

Proof. Assume n0 sufficiently large. Then

E
[
Kp

] =
∞∑

k=1

kpgn0(k)

≤
∫ ∞

0 (s + n0)
pφ((a log(n0 + s) + C)/σ)ds∫ ∞

0 φ((a log(n0 + s) + C)/σ)ds

= e
p2σ

2a2 − Cp
a

�((a log(n0) + C − pσ 2/a)/σ − σ/a)

�((a log(n0) + C)/σ − σ/a)

≤ e
p2σ

2a2 − Cp
a

1
(a log(n0)+C−pσ 2/a)/σ−σ/a

φ((a log(n0) + C − pσ 2/a)/σ − σ/a)

(a log(n0)+C)/σ−σ/a

((a log(n0)+C)/σ−σ/a)2+1
φ((a log(n0) + C)/σ − σ/a)

≤ 2e
p2σ

2a2 − Cp
a exp

(
−p2σ 2

2a2
+ pσ

a

(
a log(n0) + C

)
/σ − σ/a

)

= 2 exp

(
p log(n0) − pσ 2

a2

)
.

Therefore, logE[Kp] ≤ p log(n0) + log 2 − pσ 2/a2. �
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Next, we show that logE[Np
X] = O(

√
logd). We have the decomposition

NX = n0 +
G∑

i=1

Ki,

where Ki are i.i.d. copies of K , G is the last time that the segment is not ‘degenerate’ and the
definition of n0 implies log(n0(d)) = O(

√
logd).

Proposition 5.3 shows that G is bounded by a geometric random variable G′ with parameter
δ almost surely, while G′ is independent of the sequence (Ki). Therefore, we have by Jensen’s
inequality

E
[
N

p
X

] ≤ E

[(
n0 +

G′∑
i=1

Ki

)p]

≤ E

[(
n

p

0 +
G′∑
i=1

K
p
i

)(
1 + G′)p−1

]

= n
p

0E
[(

1 + G′)p−1] +E
[
K

p

1

]
E

[
G′(1 + G′)p−1]

.

Therefore, we have shown that logE[Np
X] = O(

√
logd), which implies that E[Np

X] = O(do(1)).
Clearly, NA or Na do not depend on d . We only need to show E[Np

A] < ∞, and E[Np
a ] < ∞.

Recall that in Section 4 we sample the downcrossing segment of the random walk with the
nominal distribution, then the upcrossing segment with the exponential tilted distribution. We
denote the ith downcrossing segment having length τ−

i , and the ith upcrossing segment having
length τ+

i . Therefore,

NA =
L∑

i=1

(
τ−
i + τ+

i

)
,

where L is the first time that the upcrossing segment is ‘degenerate’. Recall that τ+ denotes the
first upcrossing time of level 0. Because for any x ≤ 0,

Px

(
τ+ = ∞) ≥ P0

(
τ+ = ∞)

> 0,

L is a.s. bounded by a geometric random variable L′ with parameter q < 1.
According to the discussion in Remark 3.1, we may assume without loss of generality that An

has step sizes bounded by r > 0. Therefore, Sτ+
i

≤ γ and Sτ−
i

≥ γ − r . Thus, with Theorem 8.1
in [16], for any p ≥ 1 and ε > 0, there exists some constant V > 0, such that

E
[(

τ−
i

)p(1+ε)]
< V and E

[(
τ+
i

)p(1+ε)]
< V.
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Again using Jensen’s inequality, this time together with Hölder’s inequality, we obtain

E
[
N

p
A

] ≤ E

[(
L′∑

i=1

(
τ−
i + τ+

i

))p]

≤ E

[∑L′
i=1((τ

−
i )p + (τ+

i )p)

2L′
(
2L′)p

]

≤
∞∑
i=1

E
[((

τ−
i

)p + (
τ+
i

)p)
I
(
L′ ≥ i

)(
2L′)p−1]

≤ 2V
1

1+ε
(
E

[(
2L′)(p−1) 1+ε

ε L′]) ε
1+ε < ∞.

The value of Na is only required to satisfy (see (3.2))

Na ≥
(

A1 exp(C − X1)

γ

) 1
1−a

, (6.1)

while a ∈ (0,1). Therefore, for a ∈ (0,1), we have

E
[
N

p
a

] ≤ E

[((
A1 exp(C − X1)

γ

) 1
1−a + 1

)p]

≤ 2p−1
((

E[A
p

1−a

1 ] exp(
pC
1−a

)

γ
p

1−a

)
E

[
exp

(
− pX1

1 − a

)]
+ 1

)
< ∞.

This naturally holds by Assumption (B2). When a = 1, with proper choice of C, (3.2) always
holds.

6.2. Choosing a, C, and γ

Although the values of a ∈ (0,1], γ ∈ (0,E[A1]) and C ∈R do not affect the order of the compu-
tational complexity of our algorithm, we are still interested in discussing some guiding principles
which can be used to choose those parameters for a reasonably good implementation.

First, note that among NX , NA, and Na , only NX would increase to ∞ as the number d

of sampled locations increases to ∞. (Although Na also increases in d , it remains bounded
since X1 decreases to the minimum over T .) Assuming that C has been fixed, we can see that
NX decreases pathwise while a increases, therefore we should try to choose a close to 1. On
the other hand, while a ∈ (0,1), we have (6.1). If A1 exp(C − X1) > γ , then Na ↗ ∞ while
a ↗ 1. This analysis highlights a trade-off between the values of NX and Na with respect to the
choice of a. Because E[NX] is not explicitly tractable, we can have a reasonable balancing of



Optimal exact simulation of max-stable and related random fields 2967

the computational effort by equating n0 with E[Na]. In particular, we look for the largest value
of a ∈ (0,1) satisfying the following equation

exp

(
σ

a
�

−1
(

δ
√

2π
φ(σ/a)

dσ/a

)
+ σ 2

a2
− C

a

)
= E

[(
A1 exp(C − X1)

γ

) 1
1−a

]
. (6.2)

Note that the left-hand side converges to infinity as a ↘ 0 while the right-hand side is bounded,
but the right-hand side converges to infinity as a ↗ 1 while the left-hand side is bounded, so a
solution exists. Such a solution can be obtained by running a pilot run of X1, then search for the
desired a numerically.

Another approach consists of selecting a = 1 and adjusting C so that (3.2) holds true for all
n ≥ 1. Therefore, we choose C = X1 + log(A1/γ ). The value of C is random, but the algorithms
can be modified accordingly, by changing the definition of n0, which depends on C. However,
the expected computational cost has the same order as in the case when C is deterministic.

Similarly, NA increases pathwise while γ increases, while Na decreases if γ increases. One
could get the empirical average value of NA via simulation, and choose γ accordingly such that
NA and Na are balanced.

7. Tolerance enforced simulation

In this section, we illustrate a general procedure which can be applied so that, for any given δ > 0
one can construct a fully simulatable process Mδ , with the property that

P

(
sup
t∈T

∣∣M(t) − Mδ(t)
∣∣ ≤ δ

)
= 1.

For ease of notation we focus on the case T = [0,1]. The technique can be easily adapted to
higher-dimensional sets T , as long as one has an infinite series representation for X which satis-
fies certain regularity conditions.

A TES estimator can be used to easily obtain error bounds for sample-path functionals of the
underlying field. For example, in the context of parametric catastrophe bonds, it is not uncommon
to use the average extreme precipitation over a certain geographical region as the trigger; see [18].
This motivates estimating E[u(

∫
T

M(s) ds)] for some function be consistent: u that is specified
by the contract characteristics of the catastrophe bond. If u is Lipschitz continuous with Lipschitz
constant 1, then one immediately obtains∣∣∣∣E[

u

(∫
T

M(s) ds

)]
−E

[
u

(∫
T

Mε(s) ds

)]∣∣∣∣ ≤ |T |ε.

The form of the TES estimator discussed in this section has the feature that
∫
T

Mε(s) ds can be
evaluated in closed form. Thus, a TES estimator facilitates the error analysis that could otherwise
be significantly more involved.

The technique presented in this section is not limited to Gaussian processes, and we do not
make this assumption here. As a result, we do not use Assumptions (B1) and (B2) in this section,
but we replace them with (C1)–(C4) below. However, Assumptions (A1) and (A2) on the renewal
sequence (An) are in force throughout this section.
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7.1. An infinite series representation

We assume that (Xn(t))t∈T can be expressed as an almost surely convergent series of basis
functions with random weights. We illustrate the procedure with a particularly convenient family
of basis functions.

First, let us write any m ≥ 1 as m = 2j + k for j ≥ 0 and 0 ≤ k ≤ 2j − 1, and note that there is
only one way to write m in this form. We assume that there exists a sequence of basis functions
(�m(·))m≥0, with support on [0,1] (i.e., �m(t) = 0 for t /∈ [0,1]). Moreover, we assume that
|�0(t)|, |�1(t)| ≤ 1 for all t ∈ [0,1], and that for every m ≥ 1,

�m(t) = �1
(
2j

(
t − k/2j

))
.

In other words, for m ≥ 2, each �m(·) is a wavelet with the shape of �1(·), while shrunk hori-
zontally by factor of 2j , and shifted to start at k/2j .

We introduce normalizing constants, λ0 > 0 and λm = λ′2−jα for m ≥ 1, where α ∈ (0,1) and
λ′ > 0. Finally, we assume that

Xn(t) =
∞∑

m=0

Zm,n�m(t)λm,

where the random variables (Zm,n)m≥0,n≥1 are iid. We shall use Z to denote a generic copy of the
Zm,n’s and we shall impose suitable assumptions on the tail decay of Z. The parameter α relates
to the Hölder continuity exponent of the process Xn. For example, if Xn is Brownian motion,
α = 1/2. This interpretation of α will not be used in our development, but it helps to provide
intuition which can be used to inform the construction of a model based on the basis functions
that we consider. For more information on the connection to the Hölder properties implied by α,
the reader should consult [7] and the references therein.

Throughout, we use the following total order among the pairs {(m,n) : m ≥ 0, n ≥ 1}. We say
(m,n) < (m′, n′) if m + n < m′ + n′ and in case m + n = m′ + n′, we say that (m,n) is smaller
than (m′, n′) in lexicographic order. In particular, we have

(0,1) < (0,2) < (1,1) < (0,3) < (1,2) < (2,1) < · · · .

We let θ(m,n) be the position of (m,n) in the total order. We also define η(·) :N→ N∪ {0}×N

to be the inverse function of θ(·), and given θ ∈N, we write

η(θ) = (
ηm(θ), ηn(θ)

)
.

7.2. Building blocks for our algorithm

We now proceed to describe the construction of Mδ , which is adapted from a record-breaking
technique introduced in [6]. An important building block of Mδ is the truncated series

Xn(t;K) =
∑
m≤K

λmZm,n�m(t).
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It is not required that the distribution of Xn(·;K), with K large enough, agrees with the distribu-
tion of X on dyadic points, although this is the case in our primary example of Brownian motion.
We abuse notation by re-using notation such as NX and NA throughout our discussion of TES,
but the random variables are not the same as in the rest of the paper.

Our algorithm relies on three random times.We choose suitable positive functions a, ξ0, ξ1 and
a positive constant γ ; see Proposition 7.2 below for details.

1. NX: for k ≥ NX and n ≥ 1,

sup
t∈T

∣∣Xn(t) − Xn(t; k)
∣∣ ≤ ξ1(k) + ξ0(k)a(n) (7.1)

and, for n ≥ NX ,

sup
t∈T

∣∣Xn(t)
∣∣ ≤ (

a(0)λ0 + ξ1(1)
) + (

λ0 + ξ0(1)
)
a(n). (7.2)

2. NA = NA(γ ): for n ≥ NA,

An ≥ γ n,

and we sample NA jointly with (A1, . . . ,ANA
) using Algorithm S in Section 4.

3. Nξ : for n ≥ Nξ , (
a(0)λ0 + ξ1(1)

) + (
λ0 + ξ0(1)

)
a(n) − log(nγ )

≤ inf
t∈[0,1]X1(t,NX) − log(A1) − ξ1(NX) − ξ0(NX)a(n). (7.3)

We will choose a such that Nξ < ∞ almost surely.

Setting N = max(NX,NA,Nξ ), we have, for t ∈ T and n ≥ N ,

− log(An) + Xn(t) ≤ − logAn + (
a(0)λ0 + ξ1(1)

) + (
λ0 + ξ0(1)

)
a(n)

≤ − log(nγ ) + (
a(0)λ0 + ξ1(1)

) + (
λ0 + ξ0(1)

)
a(n)

≤ − log(A1) + inf
t∈[0,1]X1(t,NX) − ξ1(NX) − ξ0(NX)a(n)

≤ − log(A1) + inf
t∈[0,1]X1(t)

≤ − log(A1) + X1(t),

and therefore, for t ∈ T ,

sup
n≥1

{− logAn + Xn(t) + μ(t)
} = max

1≤n≤N

{− logAn + Xn(t) + μ(t)
}
. (7.4)

If we select an integer Kδ ≥ NX such that ξ1(Kδ) + ξ0(Kδ)a(n) ≤ δ, then

Mδ(t) = max
1≤n≤N

{− logAn + Xn(t;Kδ) + μ(t)
}

satisfies supt∈T |M(t) − Mδ(t)| ≤ δ.
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It remains to explain how to simulate NX jointly with (X1, . . . ,XN) and how to construct ξ0,
and ξ1. For this, we use a variant of the record-breaking technique, but we first need to discuss
our assumptions on the Zm,n’s.

7.3. Assumptions on the Zm,n’s and an example

We introduce some assumptions on the distribution of Z in order to use our record-breaking
algorithm. We write F(·) for the right tail of the distribution of |Z|, that is F(t) = P(|Z| > t)

for t ≥ 0. Assume that we can find: a bounded and nonincreasing function H(·) on [0,∞), an
easy-to-evaluate eventually nonincreasing function �(·) on N, as well as some θ0 > 0, b ∈ (0,1),
and ρ > 0 satisfying the following assumptions with

a(n) = ρ
(
log(n + 1)

)b :

(C1) For (m,n) satisfying θ(m,n) ≥ θ0, we have F(a(m) + a(n)) ≤ H(a(m))H(a(n)).
(C2) We have

∑∞
m=0 H(a(m)) < ∞.

(C3) For r > θ0, we have 1 > �(r) ≥ ∑
(m,n):θ(m,n)>r H(a(m))H(a(n)).

(C4) We have
∑

r rε�(r) < ∞ for some ε > 0.

Assumptions (C1), (C2), and (C3) are needed to run the algorithm, and Assumption (C4) to
bound moments of the computational complexity.

As an example, we now show that these assumptions are satisfied if Xn is Brownian motion.
Similar constructions are possible for fractional Brownian motion (see [5]), but we do not work
out the details here. First, �0(t) = tI (t ∈ [0,1]), �1(t) = 2tI (t ∈ [0,1/2]) + 2(1 − t)I (t ∈
(1/2,1]), α = 1/2, and λ0 = λ′ = 1; see [24]. Second, the Zm,n’s are i.i.d. standard Gaussian
random variables and one can select H(t) = φ(t), the standard normal density, so that we have
Assumption (C1) for θ0 = inf{θ : a(ηm(θ)) + a(ηn(θ)) ≥ 2

√
2π} and (C2) is evident. Moreover,

selecting any ρ > 4 and b = 1/2 allows us to satisfy Assumptions (C3) and (C4). Indeed, note
that ∑

θ(m,n)≥r

H
(
a(m)

)
H

(
a(n)

)
=

∑
θ(m,n)≥r

(
2

π

)
exp

(
−ρ2 log(m + 1) + log(n + 1)

2

)

=
∑

θ(m,n)≥r

(
1

(m + 1)(n + 1)

)ρ2/2

≤
∑

θ(m,n)≥r

(
1

m + n

)ρ2/2

.

The point (m,n) with θ(m,n) = r is one of the �(r) points on the segment between (�(r),0) and
(1, �(r) − 1), where �(r) = �√2r + 1/4 − 1/2
. We therefore continue to bound as follows:∑

k≥�(r)

k1−ρ2/2 ≤
∫ ∞

�(r)−1
x1−ρ2/2 dx = 1

ρ2/2 − 2

(
�(r) − 1

)2−ρ2/2
.
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Thus, in the Brownian case we can define �(r) to be the right-hand side of the preceding display,
so for instance any ρ > 4 implies Assumption (C4).

In the case when Xn is standard Brownian motion we have

2r−1∑
m=0

λmZm,n�m(t) = Xn(t),

for every dyadic point t = j2−r with j = 0,1, . . . ,2r . Therefore, once we fix any δ > 0 (say
δ = 1/2), we can apply the previous strategy to obtain N and we can continue sampling Zm,n for
m ≥ Kδ if needed so that we can return

M(t) = max
1≤n≤N

{
− log(An) +

2r−1∑
m=0

λmZm,n�m(t)

}
.

Consequently, we conclude that at least in the Brownian case the procedure that we present here
can be used to evaluate {M(j/2r )}dj=0 with d = 2r exactly and with expected computational cost
of order O(d ·E[N ]) = O(d) – because E[N ] does not depend on d and is finite; see Theorem 7.4
below.

7.4. Breaking records for the Zm,n’s

Define T0 = 0, and, for k ≥ 1,

Tk = inf
{
θ(m,n) > Tk−1 : |Zm,n| > a(m) + a(n)

}
.

In this subsection, given some integer θ0 ≥ 0, we develop a technique to sample the random
set T = {Tk : Tk < ∞} ∩ {θ0 + 1, . . .} jointly with (Zm,n)m≥0,n≥1. Indeed, given T , the Zm,n

are independent and have the following distributions. For θ(m,n) ≤ θ0, Zm,n has the nominal
(unconditional) distribution. For θ(m,n) ∈ T , Zm,n has the conditional distribution of Z given
{|Z| > a(m)+a(n)}, and if θ(m,n) /∈ T , Zm,n has the conditional distribution of Z given {|Z| ≤
a(m) + a(n)}.

We first note that that only finitely many Tk’s are finite, so that we can once again apply a
record breaking technique, based on the record-breaking epochs Tk . Indeed, applying Assump-
tions (C1) and (C2), we find that

∑
m,n

P
(|Zm,n| > a(m) + a(n)

) ≤
∑
m,n

H
(
a(m)

)
H

(
a(n)

) =
(∑

m

H
(
a(m)

))2

< ∞,

and the claim follows from the Borel–Cantelli lemma.
The function SAMPLERECORDSZ given below, which is directly adapted from Algorithm 2w

in [6], allows one to sequentially sample the elements in {Tk : Tk < ∞} jointly with the Zm,n’s.
The function SAMPLERECORDSZ takes as input θ0 satisfying �(θ0) < 1.
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Function SAMPLERECORDSZ(θ0): Samples the set T = {Tk : Tk < ∞} ∩ {θ0 + 1, . . .}
Step 1: Initialize G ← θ0 and T ← [].
Step 2: u ← 1, d ← 0. V ← U(0,1).
Step 3: While u > V > d

Step 4: G ← G + 1
Step 5: d ← max(d, (1 − �(G)) × u)

Step 6: u ← P(|Z| ≤ a(ηm(G)) + a(ηn(G))) × u

Step 7: EndWhile
Step 8: If V ≥ u, then T ← [T ,G] and go to Step 2.
Step 9: If V ≤ d , stop and return T .

The next proposition establishes that the output of the function SAMPLERECORDSZ has the
desired distribution.

Proposition 7.1. The output from SAMPLERECORDSZ(θ0) is a sample of the set T = {Tk : Tk <

∞} ∩ {θ0 + 1, . . .}. Moreover, we have E[(max(0, supT ))β ] < ∞ for some β > 1.

Proof. For simplicity, we assume throughout this proof that θ0 = 0. For the first claim, it suffices
to show that SAMPLERECORDSZ(0) returns T = {Tk : Tk < ∞} ∩ {1,2, . . .} without bias. We
write T = T1.

In Steps 3 through 5, the algorithm iteratively constructs the sequences (uj ) and (dj ) given by

uj = uj−1P
(|Z| ≤ a

(
ηm(j)

) + a
(
ηn(j)

))
, dj = max

(
dj−1, uj−1

(
1 − �(j)

))
with u0 = 1 and d0 = 0. It is evident that both sequences are monotone. Moreover, we have
uj = P(T > j) for j ≥ 0 and limj→∞ uj = P(T = ∞). Similarly, because limj→∞ �(j) = 0
we obtain limj→∞ dj = P(T = ∞).

Let n(V ) be the number of times Step 3 is executed before either going to Step 8 or Step 9.
It suffices to check that when Step 8 is executed then the element added to T has the law of T

given T < ∞, and that Step 9 is executed with probability P(T = ∞). For the former, we note
that by definition of n(V ) and because uj ∈ (dj−1, uj ), we have for j ≥ 1

P
(
n(V ) = j |V ≥ un(V )

) = P(V ∈ (dj−1, uj−1),V ≥ uj )

P(V ≥ un(V ))

= P(V ∈ (uj , uj−1))

P(V ≥ un(V ))

= uj−1 − uj

1 − limk→∞ uk

,

which equals P(T = j |T < ∞) as desired. For the latter, we note that

P(V ≤ dn(V )) = 1 − P(V ≥ un(V )) = P(T = ∞).
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In preparation for the proof of the second claim of the proposition, we bound the probability
that the while loop requires more than k ≥ 1 iterations:

P
(
n(V ) > k

) ≤ P
(
V ∈ (dk, uk)

) ≤ P
(
V ∈ (dk, uk−1)

) = uk−1 − dk

= uk−1 − max
{
dk−1, uk−1

(
1 − �(k)

)} ≤ �(k).

As a consequence of the inequality

E
[
n(V )β

] =
∞∑

k=0

(
(k + 1)β − kβ

)
P
(
n(V ) > k

) ≤ 1 +
∞∑

k=1

(
(k + 1)β − kβ

)
�(k),

we find that E[n(V )β ] < ∞ if
∑

k kβ−1�(k) < ∞.
We have a similar finite-moment bound for subsequent calls to the while loop. Writing

ni(V1, . . . , Vi) for the number of iterations in the ith execution of the while loop, where
V1,V2, . . . are the i.i.d. standard uniform random variables generated in subsequent calls to
Step 2. Compared to the above argument for i = 1, this quantity only depends on V1, . . . , Vi−1
through a random shift of �. Because � is eventually nonincreasing, there exists a constant c′
such that, for all i ≥ 1,

E
[
ni(V1, . . . , Vi)

β |V1, . . . , Vi−1
] ≤ c′ ∑

k

kβ−1�(k). (7.5)

To prove a bound on the moment of supT , we first let ϒ be the number of times we execute the
while loop. We then note that, for any random variable G and any β ≥ 1, by Jensen’s inequality,

max(0, supT )β =
(

ϒ−1∑
i=1

ni(V1, . . . , Vi)

)β

=
( ∞∑

i=1

ni(V1, . . . , Vi)I (ϒ > i)

)β

≤
∞∑
i=1

(
ni(V1, . . . , Vi)I (ϒ > i)

P(G = i)

)β

P(G = i)

=
∞∑
i=1

ni(V1, . . . , Vi)
βI (ϒ > i)P(G = i)1−β,

because the right-hand side is finite almost surely.
Because the event {ϒ > i − 1} only depends on V1, . . . , Vi−1, we have by (7.5),

E
[
ni(V1, . . . , Vi)

βI (ϒ > i)
] ≤ E

[
ni(V1, . . . , Vi)

βI (ϒ > i − 1)
]

= E
[
I (ϒ > i − 1)E

[
ni(V1, . . . , Vi)

β |V1, . . . , Vi−1
]]

≤ c′
(∑

k

kβ−1�(k)

)
P(ϒ > i − 1)

≤ c′
(∑

k

kβ−1�(k)

)
P(T1 < ∞)i−1,
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where we use the fact that ϒ is stochastically dominated by a geometric random variable with
success parameter P(T1 = ∞) > 0. Combining the preceding displays, we deduce that, for
β ≥ 1,

E
[
max(0, supT )β

] ≤ c′
(∑

k

kβ−1�(k)

) ∞∑
i=1

P(T1 < ∞)i−1
P(G = i)1−β,

which is seen to be finite for some β > 1 by Assumption (C4) upon choosing G geometric with
a suitably chosen success probability. �

7.5. Truncation error of the infinite series

We next write, for k ≥ 0

Xn(t) = Xn(t; k) +
∑
m>k

λmZm,n�m(t),

and it is our objective to study the truncation error, i.e., the second term.
The next proposition controls the truncation error in terms of functions ξ0 and ξ1 defined for

r ≥ 1 through

ξ0(r) = λ′(1 − 2−α
)−1

2−α	log2(r)
,

ξ1(r) = ρ

log2(e)

(⌊
log2(r)

⌋ + 2−α

1 − 2−α
+ 2

)
ξ0(r).

Note that ξ0(r), ξ1(r) → 0 as r → ∞. We also write

NX = max{supT , θ0 − 1}.

If T is empty, then supT = −∞ and therefore NX = θ0 − 1; otherwise, if T is non-empty, then
supT ≥ θ0 and therefore NX ≥ θ0.

Proposition 7.2. For all k ≥ NX and n ≥ 1, we have (7.1), and for all n ≥ NX , (7.2).

Proof. We observe that∣∣Xn(t) − Xn(t; k)
∣∣ ≤

∑
m>k

λma(m)
∣∣�m(t)

∣∣ + a(n)
∑
m>k

λm

∣∣�m(t)
∣∣.

If m > k ≥ NX , because θ(m,n) ≥ m, we have from the definition of NX , that∣∣λmZm,n�m(t)
∣∣ ≤ λm

(
a(m) + a(n)

)∣∣�m(t)
∣∣.
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We bound the summand of the second sum by noting that, for r ≥ 1,

sup
t∈T

∞∑
m=r

λm

∣∣�m(t)
∣∣ ≤ sup

t∈T

∞∑
j=	log2(r)


2j −1∑
k=0

λ2j

∣∣�2j +k(t)
∣∣ ≤

∞∑
j=	log2(r)


λ′2−αj = ξ0(r).

We similarly bound the summand in the first sum, using the definition of a(·) and the fact that

∞∑
j=k

jsj = sk k(1 − s) + s

(1 − s)2

for |s| < 1. These bounds establish (7.1).
Now we turn to the proof of (7.2). For n ≥ NX ,

∣∣Xn(t)
∣∣ ≤

∞∑
m=0

∣∣λmZm,n�m(t)
∣∣ ≤ (

a(0) + a(n)
)
λ0 +

∞∑
m=1

λm

(
a(m) + a(n)

)∣∣�m(t)
∣∣,

because θ(m,n) ≥ NX for each n ≥ NX . The sum over m is bounded by ξ1(1) + ξ0(1)a(n) as
shown in the proof of (7.1). �

7.6. Construction of Mδ

Now we are ready to provide the final algorithm for computing Mδ .

Algorithm TES: Samples Mδ given δ > 0.

Step 1: T ← Sample SAMPLERECORDSZ(θ0)

Step 2: NX ← max{supT , θ0 − 1}
Step 3: Sample Zm,n from the nominal distribution if θ(m,n) ≤ θ0

Step 4: For 0 ≤ m ≤ NX and θ(m,1) > θ0

Step 5: If θ(m,1) ∈ T : sample Zm,1 from the law of Z given {|Z| > a(m) + a(1)}
Step 6: Else If: sample Zm,1 from the law of Z given {|Z| ≤ a(m) + a(1)}
Step 7: EndFor
Step 8: Sample A1, . . . ,ANA

using Steps 1–8 from Algorithm S with Sn = γ n − An.
Step 9: Compute Nξ , the smallest n for which (7.3) holds, and let N ← max(NX,NA,Nξ )

Step 10: Sample ANA+1, . . . ,AN as in Step 10 from Algorithm S with Sn = γ n − An.
Step 11: Compute the smallest Kδ ≥ NX such that ξ1(Kδ) + ξ0(Kδ)a(N) ≤ δ.
Step 12: For 2 ≤ n ≤ N , 0 ≤ m ≤ Kδ , θ(m,n) > θ0 and also for n = 1, NX < m ≤ Kδ ,

θ(m,n) > θ0

Step 13: If θ(m,n) ∈ T : sample Zm,n from the law of Z given {|Z| > a(m) + a(n)}
Step 14: Else: sample Zm,n from the law of Z given {|Z| ≤ a(m) + a(n)}
Step 15: EndFor
Step 16: Return Mδ(t) = max{Xn(t;Kδ) − log(An)}.
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7.7. Exponential moments of supt∈[0,1] |X(t)|
We need a bound on the exponential moments of supt∈[0,1] |X(t)| in order to analyze Nξ . If X is
Gaussian and continuous, then such a bound immediately follows from Borell’s inequality [1],
Thm. 2.1.1. The following proposition establishes the existence of exponential moments in the
generality of the present section.

Proposition 7.3. For any p > 0, we have

E exp
(
p sup

t∈[0,1]

∣∣X(t)
∣∣) < ∞.

Proof. We first note that

sup
t∈[0,1]

∣∣Xn(t)
∣∣ ≤ λ0Z0,n +

∞∑
j=1

λ′2−αj max
k=0,...,2j −1

|Z2j +k,n|.

It suffices to prove that the tail of the infinite sum in this expression is ultimately lighter than any
exponential. A union bound leads to, for y ≥ 0,

P

( ∞∑
j=1

λ′2−αj max
k=0,...,2j −1

|Z2j +k,n| > y

)

≤
∞∑

j=1

P

(
λ′2−αj max

k=0,...,2j −1
|Z2j +k,n| >

(
2α/2 − 1

)
2−αj/2y

)

≤
∞∑

j=1

P

(
max

k=0,...,2j −1
|Z2j +k,n| >

(2α/2 − 1)2αj/2

λ′ y

)
.

Assumptions (C1) and (C2) imply that C′ := E exp(|Z/ρ|1/b) < ∞ and therefore we have by
Markov’s inequality, for t ≥ 0,

P

(
max

k=0,...,2j −1
|Z2j +k,n| > 2αj/2t

)
≤ 2j

P
(|Z| > 2αj/2t

) ≤ C′2j e−(t2αj/2/ρ)1/b

.

Select some t0 > 0 and κ ∈ (1,1/b) such that (t2αj/2/ρ)1/b ≥ j + tκ for all j ≥ 1 and t ≥ t0. Us-
ing this bound results in a tail estimate that is summable over j and lighter than any exponential
distribution. �

7.8. Complexity analysis

We conclude this section with the following result which summarizes the performance guarantee
of Algorithm TES. Higher moment bounds on the computational costs are readily found using
the same arguments and a stronger version of Assumption (C4).
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Theorem 7.4. Assume that the conditions (A1), (A2), (C1)–(C4) are in force. Given δ ∈ (0,1),
the output (Mδ(t))t∈T of Algorithm TES satisfies

sup
t∈T

∣∣Mδ(t) − M(t)
∣∣ ≤ δ.

Moreover, we have

E[Kδ] = O
((

δ/ log(1/δ)
)−1/α)

,

where α is determined by the series representation of X. Finally, the total computational costs of
running Algorithm TES has expectation at most O((δ/ log(1/δ))−1/α).

Proof. The first claim follows by construction, see Section 7.2.
From Proposition 7.1, we have E[Nβ

X] < ∞ for some β > 1. In order to analyze Nξ , we use
Proposition 7.3. In fact, Nξ only has to be sufficiently large so that we have

(
λ0 + ξ0(1) + ξ0(NX)

)
ρ
(
log(n + 1)

)b
<

1

2
logn

and

−1

2
logn ≤ inf

t
X1(t,NX) − logA1 − a(0)λ0 − ξ1(1) − ξ1(NX) + logγ

for any n ≥ Nξ . With simple calculations, it follows from Proposition 7.3 and Assumption (A1)
that E[Np

ξ ] < ∞ for every p > 0. We have argued in Section 6 that E[Np
A] < ∞, so we conclude

that E[Nβ ] < ∞. Finally, using the definition of ξ0(r) and ξ1(r) we can see that it there is a
constant κ > 0 such that

Kδ = O

([
δ

(logN)b + κ log(1/δ)

]−1/α)
.

This leads to the bound on the first moment of Kδ . The expected running time of the algorithm
is order E[Kδ × N ], which is finite because E[Nβ ] < ∞. The complexity bound follows. �

8. Numerical results

In this section, we show some simulation results to empirically validate Algorithm M. We also
compare numerically the computational cost of our record-breaking method, noted as RB in the
following charts, with the existing exact sampling algorithm developed in [13] by Dieker and
Mikosch (DM) and the exact simulation algorithm using extremal function proposed in [14]
(EF). We implemented all three algorithms in Matlab. For our algorithm, we choose the values
of a and C according to our discussion in Section 6.2. We let C = 0, then choose the largest
a ∈ (0,1) such that (6.2) holds.

We generated the Brown–Resnick processes, M(t) = supn≥1{− logAn + Xn(t) − σ 2(t)/2},
on compact sets. If X is a Brownian motion it was shown in [10] that M has a stationary sample
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Figure 1. The Brown–Resnick process on [0,1] with Brownian motion input. The grid mesh is 0.001.

path on [0,1]. Figure 1 shows sample paths of M in this case. Figure 2 presents two samples of
the Brown–Resnick random field on [0,1]2 when X is a Brownian sheet.

Next, we will compare the computational cost in CPU time of our algorithm with the algorithm
proposed in [13]. We conducted both algorithms to generate 200 samples of the Brown–Resnick
process M with fractional Brownian motion inputs. We recorded both the average CPU time
for generating a single sample and the 95% confidence interval for the mean based on our 200
samples, for different grid numbers d = 1000,2000,5000 and 10 000, and with different Hurst
parameters H ∈ {1/4,1/2,3/4} of the fractional Brownian motion. The sample estimates and
the 95% confidence intervals for the mean CPU times to generate a single sample are shown
in Table 1. They illustrate that when the number of grids increases, the computational cost of
our algorithm appears to increase almost linearly, while the cost for the algorithm proposed in

Figure 2. The Brown–Resnick field on [0,1]2 with Brownian sheet input. The grid mesh is 0.001.
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Table 1. Comparison of running time of our algorithm (RB) vs. [13] (DM) vs. [14] (EF)

d H = 1/4 H = 1/2 H = 3/4

Average cost per sample (second) (RB) (± half-width of confidence interval)
1000 0.03 ± 0.003 0.03 ± 0.002 0.03 ± 0.001
2000 0.08 ± 0.020 0.06 ± 0.007 0.06 ± 0.002
5000 0.19 ± 0.071 0.13 ± 0.004 0.13 ± 0.008

10 000 0.32 ± 0.027 0.26 ± 0.009 0.27 ± 0.008

Average cost per sample (second) (DM)
1000 0.40 ± 0.04 0.28 ± 0.03 0.43 ± 0.05
2000 1.23 ± 0.13 1.00 ± 0.13 1.37 ± 0.15
5000 7.32 ± 0.88 4.82 ± 0.67 5.97 ± 0.79

10 000 28.98 ± 3.18 21.42 ± 2.64 19.14 ± 2.67

Average cost per sample (second) (EF)
1000 0.15 ± 0.02 0.13 ± 0.02 0.15 ± 0.02
2000 0.49 ± 0.06 0.46 ± 0.05 0.66 ± 0.09
5000 2.83 ± 0.32 2.34 ± 0.28 3.39 ± 0.43

10 000 10.81 ± 1.46 9.67 ± 1.24 12.17 ± 1.70

[13] increases quadratically. Because we are using the circulant embedding method to generate
the fractional Brownian vectors, which has a complexity of order O(d logd), it is consistent
with expectations. It is worth noting that for this method the computational cost to generate a
d-dimensional Gaussian vector is the same as for generating a 2�log2 d
-dimensional Gaussian
vector. However, this consideration will not affect our comparison because we used this method
in both algorithms.

Next, we compare the number of Gaussian vectors generated in our algorithm with the al-
gorithms of [13] and [14]. We generate samples of the Brown–Resnick process with fractional
Brownian motion generator, with H = 3/4. We used the grid numbers d = 1000,3000,5000,

7000,9000. To get comparable relative error, we simulate 1000 times for algorithms DM and EF,
and 10 000 times for RB. We calculated the sample average of the number of Gaussian vectors

Table 2. Comparison of number of Gaussian vectors generated in our algorithm (RB) v.s. [13] (DM) v.s.
[14] (EF), H = 3/4

Number of Gaussian vectors

d RB DM EF

1000 29.5 ± 2.0 1522.1 ± 83.3 1040.4 ± 60.5
3000 28.7 ± 2.1 4440.1 ± 248.9 3101.1 ± 194.2
5000 32.5 ± 4.2 7648.0 ± 436.3 5056.3 ± 298.2
7000 31.4 ± 2.9 10 642.0 ± 638.4 6961.4 ± 423.8
9000 26.5 ± 1.5 13 570.0 ± 796.1 8886.6 ± 510.3
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Figure 3. Comparison of number of Gaussian vectors generated in our algorithm (RB) v.s. [13] (DM) v.s.
[14] (EF), H = 3/4.

generated in each of the algorithms, and the 95% confidence bounds. Table 2 illustrates our main
result. On the left, Figure 3 exhibits the plot corresponding to Table 2 for all three algorithms.
On the right, Figure 3 focuses on the algorithm RB. The number of Gaussian vectors generated
increases linearly in both the algorithms of [13] and [14], with a reduction of constant factor
using the extremal function algorithm from [14]. In our algorithm this number stays roughly at
the same level.
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