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Abstract
The need for regional-scale integrated hydrological models for the purpose of water resource management is increasing.
Distributed physically based coupled surface-subsurface models are usually complex and contain a large amount of spatio-
temporal information that leads to a relatively long forward runtime. One of the main challenges with regard to regional-scale
inverse modeling relates to parameterization and how to adequately exploit the information embedded in the existing observa-
tional data while avoiding parameter identifiability issues. This study examined and compared the calibration of a Bhighly
parameterized^ model with a Bclassical^ unit-based parameterization scheme in which the dominant geological features were
assumed to be known. The physically based coupled surface-subsurface model MIKE SHE was used for conducting the study of
five river basins (4,900 km2) in central Jutland in Denmark, characterized by heterogeneous geology and a considerable amount
of groundwater flux across topographical catchment boundaries. The results indicated that introducing more flexibility in the
parameter estimation process through a regularized approach significantly improved the model performance, in particular head
and water balance errors. The highly parameterized calibration results additionally provided very useful insights into the model
deficiencies in terms of conceptual model structure and incorrectly imposed boundary conditions. Furthermore, the results from
data-worth analysis indicated that the highly parameterized model has more effectively utilized the information in the dataset
compared to a traditional unit-based calibration approach.
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Introduction

Globally, water resources are under increasing pressure due to
rapidly growing demands and climate change that has led to
an increased competition between ecosystems and socio-
economic sectors (UNESCO 2012). In many regions, ground-
water is the main source of water supply, for instance,
Denmark relies on groundwater abstraction for its entire sup-
ply (Højberg et al. 2013). Thus, groundwater management
should aim at finding a balanced solution between sustainabil-
ity and socioeconomic as well as environmental impacts on all
groundwater-dependent ecosystems. As referred to by

Jakeman et al. (2016), this requires Bthinking beyond the
aquifer^ and considering surface water, economics, energy,
climate, agriculture and environmental issues when managing
water resources. Moreover, there is a growing demand for
management at the regional scale, since only at this scale
can the economic, environmental and social problems that
are linked to water resources be analyzed and solved in an
integrated approach (Barthel and Banzhaf 2016).

Hydrological models are essential tools to support
sustainable-water-resources management (Abbaspour et al.
2015) and integrated hydrological models, including physical-
ly based dynamically coupled groundwater and surface-water
models, are potentially the most suitable tool for integrated-
water-resources management (Refsgaard and Henriksen
2004). However, the application of such models, in particular
at regional scale, is limited by the understanding of the phys-
ical system, data availability, and computational capacity
(Barthel and Banzhaf 2016). Another important challenge
with regard to integrated-water-resource-management, in par-
ticular at the regional scale, is that most of the currently
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existing hydrological models do not contain dynamic physi-
cally based coupling between surface water and groundwater
or unsaturated zone and evapotranspiration processes (Jing
et al. 2017). Even if the groundwater component is included
in the models, they are often calibrated using only surface-
water observations (Barthel 2014) or applied under a steady-
state assumption (Sonnenborg et al. 2003; Meyer et al. 2018),
mainly due to the high computational burden of transient de-
scription. The importance of considering dynamic groundwa-
ter flow for the proper representation of the hydrological pro-
cesses at the catchment scale has been emphasized by many
researchers (e.g., Brunner et al. 2008; Ghasemizade and
Schirmer 2013; Jiang et al. 2017).

Regional-scale groundwater-flow models, in contrast to
surface-water models, do allow for an estimation of subsur-
face flow between topographical subcatchments, which are
typically defined as independent in surface hydrology. In
some regions, groundwater flow across topographical bound-
aries constitutes a significant part of the water budget and, as it
is impossible to measure, its quantification requires modeling.

A major challenge in regional-scale integrated-surface–
subsurface modeling regards the parametrization and optimi-
zation. The classical approach is to build a simplified unit-
based hydrogeological model based on the available geologi-
cal information and to identify the optimal parameter values
for each unit through model calibration, while maintaining the
predefined hydrogeological structure. Another approach is to
utilize pilot points (De Marsily et al. 1984) as a spatial param-
eterization scheme to increase flexibility in the distribution of
parameters while increasing the degrees of freedom and there-
by the computational burden (Doherty 2003; Fienen et al.
2009; Doherty et al. 2010b). Pilot points can also be applied
as a supplement to the traditional unit-based calibration, where
major predefined geological units are preserved, while some
degree of spatial variability is allowed within each unit.

In this study, a transient, coupled subsurface–surface water
flow model for five river catchments in the central part of
Jutland in Denmark has been constructed and calibrated in a
multi-objective framework. The Central Jutland Catchment
(CJC) is characterized by heterogeneous geology,
groundwater-dominated streams and a considerable amount
of groundwater flow across topographical catchment bound-
aries. The land use type in the region is predominantly agri-
culture with extensive irrigation by groundwater. The pres-
ence of a west–east regional groundwater flux across the hy-
drological boundary of the subcatchments has previously been
reported for this region (Højberg et al. 2013); however, so far
it has not been quantified.

The primary objective of the study is to investigate the
suitability of a pilot-point-based optimization scheme across
the entire model domain in comparison to a traditional unit-
based approach. This is addressed by evaluating the model
performances, the degree to which the parametrization

schemes utilize the available observational data set, the sensi-
tivity to different weighting schemes and the effect it has on
internal subsurface fluxes. A limitation to the traditional unit-
based parametrization approach is that its ability to correct
structural errors in the geological model or boundary condi-
tions is constrained by too few parameters (Doherty and
Welter 2010). The predefined aggregation of uniform hydrau-
lic conductivity (K) values within a unit can significantly limit
the ability of the calibration process to utilize the information
available in an abundant observational dataset. In contrast, the
pilot-point-based parameterization method, while allowing a
large degree of freedom, requires precaution regarding
overfitting and interpretation of parameters identifiability is-
sues. The current study evaluates a novel combination of a
highly parameterized, multi-objective pilot point approach
and a transient regional scale surface-subsurface modelling
scheme. The hydraulic conductivity field obtained through
this pilot-point-based optimization can guide the model build-
ing process and help identifying deficiencies in the unit-based
approach while utilizing the information content in the obser-
vational data to a higher degree.

Methods

Study area and observation data

The study area extends over an area of approximately
4,900 km2 in the central part of Jutland in western Denmark
(Fig. 1). The hydrological catchment comprises five river
catchments with the rivers Karup, Storaa and Skjern flowing
towards the west, while the rivers Gudenaa, and Haldsoe flow
towards the north-east (Fig. 1b). The topography is character-
ized by a north–south-oriented divide (Fig. 2) separating the
westward flowing and north-eastward flowing rivers. The
north–south-oriented topographical divide corresponds to the
maximum advancement of the glacier front during the latest
glaciation period. The elevation ranges from 2 m asl in the
west and north east to 162 m asl along the topographical
divide in the central parts. The mean annual temperature is
8.3 C, and the land use in the catchment comprises agriculture
(65%), forest (19%), urban (6%) and others (10%). Irrigation
is more widespread in the western part of the domain, which is
dominated by sandy sediments. Precipitation data used in this
study are based on daily 10-km-gridded data, and reference
evapotranspiration and temperature data used for the calcula-
tion of actual evapotranspiration (ET) by the model are based
on 20-km-gridded cells, all provided by the Danish
Meteorological Institute (DMI). Observation data consist of
groundwater level data from 2,450 wells (Fig. 1a), discharge
measurements at 24 locations (Fig. 1b), and abstraction per-
missions from 4,513 irrigation wells (Fig. 1b). The long-term
discharge–rainfall ratios calculated for all discharge stations
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Fig. 1 Catchment characteristics: a location of catchment, topography, pilot points and head observation wells; b location of discharge stations, river
network, and irrigation wells
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regardless of their time series length are shown in Fig. 2. Very
different ratios varying between 0.2 west and 0.65 east of the
topographical divide are observed. This dissimilarity in the
ratios cannot be explained by a difference in actual evapo-
transpiration, as remote-sensing-based estimates show lower
evapotranspiration in the west compared to the east
(Mendiguren et al. 2017). This strongly suggests that there is
a significant groundwater flow across the north–south topo-
graphical divide from west to east in this region.

Geological, hydrological and numerical models

The geological model of the CJC is comparable to the one
used in the National Water Resource Model of Denmark
(DK model; Henriksen et al. 2003). The model has been de-
veloped based on a voxel-based geological conceptualization,
where the subsurface is discretized into a 1,000 × 1,000 × 10-
m grid and a geological unit is assigned to each grid element.
The geology is classified into five major units: Quaternary
sediments are classified into sand and clay, and pre-
Quaternary sediments into quartz sand, mica sand, and clay
(Stisen et al. 2012). The geological model is subsequently
translated into the hydrological model with four computation-
al layers over the vertical and a horizontal grid size of 500 ×
500 m. The uppermost computational layer has a constant
thickness of 3 m, whereas the computational layers below
have varying spatial thicknesses, depending on the geological

configuration. The boundary condition for the subsurface is
considered to be a no-flow boundary and corresponds to the
topographical divide, while no restriction is applied to the
internal subsurface flow between subcatchments. The simula-
tion period is 1990–2007. The period 1990–2000 is used as a
warm-up period and the calibration period is 2000–2007.

The model code used in this study is the MIKE SHE
modeling system (Abbott et al. 1986). MIKE SHE is an inte-
grated physically based and distributed hydrological model
code, which considers all the major terrestrial processes of
the hydrological cycle and their interactions including precip-
itation, evapotranspiration, surface runoff, groundwater re-
charge, abstraction and irrigation, drainage flow, groundwater
flow and river flow (Højberg et al. 2015; Henriksen et al.
2003; Stisen et al. 2012). The model system allows for differ-
ent formulations of the individual components. The current
model setup is based on a three-dimensional (3-D) groundwa-
ter flow module coupled with a two-layer water balance mod-
ule for one-dimensional (1-D) unsaturated flow. The unsatu-
rated zone is divided into an upper zone representing the root
zone from where evapotranspiration (ET) can occur and an
underlying zone (Yan and Smith 1994). The amount of water
available for evapotranspiration and recharge is respectively
controlled by the soil hydraulic parameters and the root zone
parameters (Butts and Graham 2005). The spatial and seasonal
variation of the applied irrigation is not known and is thus
simulated by an irrigation module that is part of the modelling
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Fig. 2 Discharge-rainfall ratios for the individual sub-catchments. The north–south red line represents the topographical divide between west and east
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system. The scheduling and the amount of applied irrigation is
calculated based on the estimated soil water deficit of the
different crop types which varies depending on the soil char-
acteristics, the soil moisture status of the root zone, and the
climate (Stisen et al. 2011). The river routing is simulated by
applying the kinematic routing method and using the MIKE
HYDRO code integrated into MIKE SHE (Zhang and Ross
2015).

Calibration methodology

The calibration framework used in this study is based on the
nonlinear gradient-based local optimization tool PEST using
the Gauss-Marquardt-Levenberg algorithm (Doherty and
Hunt 2010a). Two main calibration approaches have been
pursued: (1) the unit-based calibration approach in which each
hydrostratigraphic unit is assumed to have uniform hydraulic
properties: the Bclassical^ calibration approach, (2) the pilot-
point-based calibration approach, which introduces pilot
points in the individual units where the hydraulic properties
are estimated: the Bhighly parameterized^ approach.

Unit-based calibration

The unit-based calibration approach is in line with the param-
eterization schemewhich is applied to the DKmodel (Højberg
et al. 2015). In this approach, the geological information
achieved from the geological model is translated and catego-
rized into a limited number of hydrostratigraphic units. The
values of the hydraulic properties of each unit are determined
by calibration. The unit-based approach strives to use a small

number of parameters for the calibration purpose (Doherty
et al. 2010a).

Based on a sensitivity analysis, which has been performed
prior to calibration, 13 parameters have been chosen for the
calibration. Seven of these parameters are the horizontal hy-
draulic conductivity of each unit with their corresponding ver-
tical hydraulic conductivity tied to the horizontal value with a
ratio of 1 to 10. Other calibration parameters are the water
deficit factor for irrigation control, leakage coefficient for
stream–aquifer interaction, drainage time constant and depth,
and root depth. All parameters used for the unit-based calibra-
tion approaches are listed in Table 1.

Pilot point calibration and regularization techniques

The pilot point calibration approach is considered to be a
tradeoff between estimation of the parameter values at each
individual grid of a model and estimation of the parameter
values for a few predefined zones or units (Doherty et al.
2010b). In this approach the hydrogeologic properties, most
commonly hydraulic conductivity, are estimated in the inverse
modeling process at pilot points distributed in the model domain
and subsequently interpolated throughout the grid (Doherty
2003). By applying pilot-point-based calibration a great flexibil-
ity is added to the parameter estimation process; however, with-
out proper care, overfitting, nonunique solutions, and longer
calibration time may occur due to the estimation of higher num-
bers of parameters (Fienen et al. 2009). The introduction of
regularization can constrain the optimization process and pro-
vide stability into the parameter estimation (Moore and Doherty
2006). Regularization falls into two broad categories: Tikhonov

Table 1 Model parameters subject to calibration

Parameter (par. group) Description Unit Calibration strategy

Kh (KS) Saturated horizontal conductivity m s−1 Pilot point based

kx1_ss (KS) Horizontal conductivity of Quaternary sand m s−1 Unit based

kx2_ler (KS) Horizontal conductivity of Quaternary clay m −1 Unit based

kx3_kvartss (KS) Horizontal conductivity of quartz sand m s−1 Unit based

kx4_gs (KS) Horizontal conductivity of mica sand m s−1 Unit based

kx5_gl (KS) Horizontal conductivity of mica clay m s−1 Unit based

kx11_tops (KS) Horizontal conductivity of fractured sand m s−1 Unit based

kx12_topl (KS) Horizontal conductivity of fractured clay m s−1 Unit based

drain_east (drain) Drain leakage coefficient for all cells in the eastern part of the catchment s−1 Unit based/pilot point based

drain_west (drain) Drain leakage coefficient for all cells in the western part of the catchment s−1 Unit based/pilot point based

Leak (leak) River–aquifer leakage coefficient m s−1 Unit based/pilot point based

rd_ww_jb1 (root) Root depth mm Unit based/pilot point based

def_fac_a (defic) Water deficit factor [−] Unit based/pilot point based

Manning (mann) Overland flow roughness coefficient m s−1 Unit based/pilot point based

Parameter abbreviations as well as their description and their units are listed. (Par. group) is the parameter group name: KS is hydraulic conductivity
group. Calibration strategy states the calibration approaches in which the parameters were used.
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regularization and subspace regularization. In Tikhonov regular-
ization, the geological knowledge can be incorporated as prior
information into the parameter estimation, which allows the in-
clusion of expert knowledge on parameter values and their spa-
tial variability. Mathematically, the prior information adds addi-
tional constraints into the estimation process and can transform
an ill-posed problem to a well-posed one; hence, a unique solu-
tion to the problem can be achieved (Doherty 2015). Employing
the Tikhonov regularization becomes more necessary when the
information available for the parameter estimation is limited.
Although Tikhonov regularization can providemore trustworthy
estimated values, numerical instability can still occur during the
calibration process (Doherty et al. 2010a). The numerical stabil-
ity can be ensured by applying the truncated singular value
decomposition (SVD) regularization (Tonkin and Doherty
2005). Based on the weighted Jacobian matrix (parameter sen-
sitivity matrix), the insensitive and correlated parameters (cali-
bration null space) are truncated from the estimable parameters
(calibration solution space; Doherty et al. 2010a); however, the
high computational burden remains as a limitation of the pilot
point method, especially for transient integrated models. The
computational efficiency of the SVD process can be increased
by using SVD-Assist (SVDA; Tonkin and Doherty 2005) in
which the Jacobian matrix for all the parameters is calculated
just once at their initial values to define the solution and null
subspace. Based on this Jacobian matrix, the so-called Bsuper
parameters^, which are linear combinations of sensitive and
uncorrelated base parameters, are formed (Anderson et al.
2015). The number of Bsuper parameters^ is normally much
fewer than the base parameters; therefore, a significant reduction
in the parameter estimation process can be obtained (Doherty
2015). This procedure is based on the linearity assumption of the
parameter estimation, and its validity can be evaluated by refor-
mulation of the Bsuper parameters^ at any iteration intervals
(Anderson et al. 2015).

The pilot-point-based-calibration approach used in this
study is based on the geological knowledge available from
the DK model in the form of the hydrostratigraphic units
and their associated initial hydraulic conductivity values com-
bined with the flexibility of pilot points in the parameter esti-
mation process. In this setup, 205 pilot points are placed in
each of the four computational layers resulting in 820 pilot
points with regular 5-km spacing (Fig. 1a). Additional param-
eters common to the unit-based approach have been subject to
calibration as well (Table 1). Based on the Jacobian matrix of
all the base parameters at their initial values, a total of 350
Bsuper parameters^ have been defined for the SVDA estima-
tion process. Tikhonov regularization was briefly explored in
the early stages of the study in combination with SVD-Assist,
but the balance between observation fit and reasonable param-
eter fields using only SVD-Assist was adequate, obviating the
need for additional regularization. In addition, it was desired
to explore which K field distribution the pilot point

optimization would suggest based on the observation infor-
mation andwithout any a priori preference to either uniformity
or the initial K field. Interpolation of the values between pilot
points is performed using the kriging method based on an
exponential variogram model and a nugget of zero.

Parameter set

The main parameter groups describing the hydrological con-
ditions of the study area in both calibration approaches include
hydraulic conductivity, drainage characteristics, stream-
aquifer leakage coefficient, and available water content for
evapotranspiration (Table 1). Hydraulic conductivity in the
unit-based calibration approach is categorized into seven
hydro-faces units. The distribution of each of these units dif-
fers from the classical zones in which there is a piecewise
constancy. In the applied unit-based parameterization scheme,
a conductivity unit is not required to be a continuous zone,
though the value is the same across the whole catchment for
the individual unit. In contrast, a spatial variation of the hy-
draulic conductivity within the unit is allowed for the pilot
point approach.

In MIKE SHE code, drainage flow represents both natural
and artificial drainage and is activated whenever the simulated
water table rises above a specified level (Zhou et al. 2013).
The drainage level is a specified parameter, which in this study
is set to 0.5 m below ground throughout the catchment. The
drainage time constant is assumed to be a semidistributed
parameter with one value specified for the western part and
another one for the eastern part. Drainage water is routed to
the nearest surface-water bodies using a linear reservoir de-
scription. The drainage time constants have been included in
both calibration approaches. The stream–aquifer interaction in
the MIKE SHE model is defined by the leakage coefficient,
which is considered uniform for all stream segments.

The available water content (AWC) controls the simulated
actual evapotranspiration (ET). AWC is determined by the
root depth, water content at field capacity and wilting point.
The actual ET is determined as a fraction of reference ET
based on the level of soil moisture in the root zone. In this
study, the root depth has been defined as the only free param-
eter for the calibration, while the other parameters are given
physically realistic values according to the soil type (Stisen
et al. 2012). The seasonal variation of root depth is parame-
trized based on literature values and experience from the DK
Model for the individual vegetation types (Højberg et al.
2015). In the model calibration process, all initial ratios in root
depth between vegetation types are maintained and all root
depths are scaled uniformly.

The simulation of the irrigation amount in the MIKE SHE
model is driven by the water demand of the different crops,
implying that irrigation is applied when the water deficit in the
root zone drops below a certain threshold. The soil moisture
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deficit threshold at which irrigation starts or ends is the main
controlling parameter. This parameter has been selected for
calibration in both approaches.

Objective functions

Calibration by inversion techniques involves minimization of
a weighted model-to-measurement misfit, formulated in an
objective function (Skahill and Doherty 2006). In a water-
resource management context, models are usually designed
for multiple purposes; therefore, by applying a multiple-
objective calibration approach, the models are simultaneously
tuned towards the different aspects for which they are de-
signed (Højberg et al. 2013; Stisen et al. 2018). In this study
the total objective function (Фt) comprises five objective func-
tions (Ф). These Ф components are based on three different
observation data sets: stream discharge, hydraulic head, and
aggregated irrigation records. Table 2 lists the Ф components
and their contributions to the total Фt in different calibration
approaches. The ME–head (Eq. 1) represents the mean simu-
lation error for all 2,450 observation wells (Fig. 1a).

MEhead ¼ 1

n
∑ headobs−headsimð Þ ð1Þ

The Nash-Sutcliffe model efficiency coefficient (NSE; Eq.
2), and water balance error (WBE; Eq. 3) are based on 24 daily
discharge stations:

NSE ¼
∑ Qobs−Qobs

� �2
−∑ Qobs−Qsimð Þ2

∑ Qobs−Qobs

� �2

the objective function to minimize is 1−NSEð Þ

ð2Þ

WBE ¼ 100
Qobs−Qsim

Qobs

ð3Þ

The base flow index (BFI; Gustard et al. 1992) is calculated
as the ratio of the area below the separated base flow line to the
total area below the hydrograph (Riis et al. 2008). The index is
based on 22 discharge stations as two stations did not meet the
observational consistency criteria for BFI. As stated by Gupta
et al. (2009), NSE tends to emphasize peak flows and under-
emphasize low flows. To balance this effect, BFI and WBE
objective functions were also included as components of Фt.
Furthermore, to ensure a correct simulation of the overall irri-
gation amounts and inter-annual variability in the area the
RMSEIrr objective function (Eq. 4) is included in Фt as well.
The irrigation information used in this objective function is the
estimated annual values of irrigation abstraction provided by
different municipalities and is thus aggregated both in space
and time.

RMSEIrr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑ Irrobs−Irrsimð Þ2

r
ð4Þ

To balance the spatial and temporal distribution of head
observations for the parameter estimation, a systematic
weighting strategy is applied. Concerning the temporal distri-
bution of the head observations, it should be noted that in the
ME_head objective function, each observation well is repre-
sented only once by the mean residual even though the obser-
vation well might contain several observations. For each well,
this mean residual is calculated external to PEST and the
Bobservation^ for the well provided in PEST is 0 (zero), as
the target is a mean error of zero. The groundwater head ob-
servation wells further tend to be spatially clustered due to a
higher density of wells in urban areas, around large infrastruc-
tures and in groundwater abstraction zones. Due to uneven
distribution of the head observations in time and space, it is
desired to weight each observation individually in order to

Table 2 Components of the multiple-objective function, number of observations used in each group and their weights in the different calibration
schemes

Ф [unit] Definition No. of observations Weight

Balanced weighting,
pilot-B/unit-B

Discharge-favored
weighting, pilot-D/unit-D

Groundwater heads

MEhead[m] Mean error of hydraulic head for all wells 2,450 47% 17%

Discharge

NSE [−] Nash-Sutcliffe coefficient 24 15% 24%

WBE [%] Water balance error 24 15% 24%

BFI [−] Base flow index error 22 15% 24%

Irrigation

RMSEIrr [MCM] RMSE for annual total irrigation 1 8% 11%
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acknowledge the value of time series and to avoid overfitting
to spatial clusters of wells. In the applied weighting procedure,
the spatial density of observations, defined as the number of
observations in a radius of 2,500 m around each observation
well, is calculated and wells are grouped according to their
density. Likewise, wells are also grouped according to the
number of observations in their time series. Subsequently,
weights for each observation well have been assigned as a
combination of their spatial density and temporal frequency.
Wells with more frequent time series receive higher weights
relative to the wells that only contain one or few measure-
ments. This approach supports the idea that time series with
higher frequency of measurements during the whole calibra-
tion period might contain less measurement uncertainty and
therefore are more trustworthy. Meanwhile, if many wells are
spatially clustered in one area, this area should not dominate
the parameter estimation compared to areas with fewer obser-
vations. The final weighting assigns initial weights between
one (wells with one observation belonging to a spatial cluster)
and nine (wells with several observations located in an area of
low spatial density) to all head observations.

Similar to head observations, the statistics for the objective
functions related to stream flow—i.e. NSE and WBE are cal-
culated external to PEST for each discharge station, and the
observations provided to PEST are one for NSE and zero for
WBE. Observations from all discharge stations are time series
with daily data, and their accuracy are assumed equal. In ad-
dition, the discharge stations do not exhibit spatial clustering
and noweighting scheme has thus been applied to compensate
for temporal or spatial clustering for discharge observations.

Assigning a relative weight between different components
of the objective function is a subjective decision. To avoid a
situation where one or more components of Фt dominate, a
pragmatic approach is to equalize the components that consti-
tute the total objective function (Doherty and Welter 2010). In
order to evaluate the impact of different weighting schemes on
different objective functions, two different weighting strate-
gies are pursued. First, a relatively balanced weighting strate-
gy between head and discharge components of the objective
function has been applied. This is referred to as the balanced
weighting strategy and has been applied to both the unit-based
calibration approach (unit-B) and pilot-point-based calibration
approach (pilot-B). In the next step, a weighting strategy is
pursued in which the discharge components of the objective
function have been favored with higher weights for both the
unit-based approach (unit-D) and the pilot-point-based ap-
proach (pilot-D). All the objective function components and
their initial weights are listed in Table 2.

Linear prediction uncertainty

In order to access the linear uncertainty, including
identifiability, contribution of parameters on prediction

uncertainty, and data-worth analysis for both pilot-D and unit-
D models, a Python-based framework tool, pyEMU (White
et al. 2016) has been utilized. PyEMU is based on first-order,
second-moment (FOSM) theory, which is also known as Bayes
linear theory. FOSM uncertainty analysis relies on the assump-
tions of model linearity and multivariate Gaussian distribution
of the model variability. The predictive uncertainty variances
are therefore calculated as (Fienen et al. 2010).

σ2
s ¼ yTCppy−yTCppX

T XCppX
T þ Cεε

� �−1
XCpp ð5Þ

where σ2s is the postcalibration uncertainty of a prediction
target, y is a vector of the prediction target’s sensitivity to all
the parameters, Cpp is the covariance matrix of the parameter
variability (a priori variance), X is sensitivity of parameters to
the observations (Jacobian matrix), and Cεε is the covariance
matrix of epistemic uncertainty of observations (reflecting the
model structural error and measurement error).

Results

Objective function performances

Фt is noteworthy because this is what the optimizer actually
tries to minimize. Reduction in Ф is a straightforward metric
that can be used as efficiency criteria for evaluating the per-
formances of models during a parameter estimation. In this
case, unit-D is compared with unit-B and pilot-D with pilot-
B, as their initial errors are the same, and further, the final Ф
values are normalized to the initial values (Table 3).

Since the optimization algorithm minimizes the discrepan-
cy between model outputs and observations based on a
weighted least squares method, a relative higher weight on
an objective function group generates a larger contribution
toФt. Consequently, the parameters controlling that particular
observation group become more sensitive. As a matter of fact,

Table 3 Normalized final objective function (Ф) reduction after each
calibration approach [%]

Ф Unit-
B

Unit-
D

Pilot-
B

Pilot-
D

MEhead 23.92 15.00 76.42 71.33

NSE 84.25 85.50 89.75 90.75

WBE 54.25 63.00 96.25 95.50

BFI 73.00 76.75 88.50 92.50

RMSEIrr 75.00 86.00 74.00 69.50

Фt 49.35 65.76 83.19 86.35

Фt total objective function. The values are normalized to their initial
values and shown in percentage
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a higher percentage of reduction in MEhead objective function
group is observed in both unit-B and pilot-B compare to unit-
D and pilot-D. Similarly, all the discharge-related objective
functions (NSE, WBE, and BFI) are reduced more in
discharge-favored weighted calibrations (unit-D and pilot-D)
relative to the balanced calibrations (unit-B and pilot-B).
Interestingly, there is a general tendency for the pilot-point-
based calibrations to be less affected by the weighting scheme
than the unit-based calibrations. This is the case across all Ф
reductions in Table 3.

However, due to the fact that the optimizer minimizes the
squared error of all individual observations (heads or dis-
charge stations), single poorly performing stations or wells
can have a large effect on Фt. Therefore, analyzing actual
model performance by evaluating the performance statistics
for each calibration is perhaps more informative.

Figure 3 illustrates the results for the objective function
components NSE, WBE, BFI and ME_head in absolute
values. The absolute values of model performances in each
calibration approach are ranked from lowest to highest and
shown for each discharge station or observation well. This
presentation of the results establishes a baseline for compari-
son of results from different approaches. The stations are
ranked separately for each calibration approach according to
the absolute values of model performances and their order
does not necessarily coincide with each other in different ap-
proaches. All the discharge stations had the same weights
regardless of their drainage area size.

Regarding the achieved NSE performances, 62% of the
stations in the unit-B calibration had an NSE above 0.6, and
in the unit-D calibration 67% of the stations had NSE above
0.6. In the pilot-B calibration, only 46% of the stations exhib-
ited NSE values above 0.6, while assigning higher weight to

the discharge objective functions in pilot-D increased the per-
centage of the stations with NSE values above 0.6–67%.

The absolute WBE were generally lower in both pilot-
points-based calibrations—58% of the stations in pilot-B
showed WBE below 5%. WBE was significantly lower in
the pilot-D approach where 79% of the stations had a value
below 5%, whereas in both unit-based calibrations, only 33%
of the stations had WBE value below 5%.

The model performances of the pilot-D calibration ap-
proach for BFI showed that 95% of the stations had an error
below 0.033. For the corresponding unit-based approach
(unit-D), the error corresponding to the 95% threshold was
0.075. Generally, unit-B showed the poorest results for the
BFI among all the calibration approaches.

The performance on the hydraulic head error for the indi-
vidual wells showed that the lowest absolute head error was
achieved through the pilot-B approach. A slightly poorer re-
sult has been achieved through the pilot-D approach.
Generally, the two pilot-point-based approaches showed a
clear improvement of absolute head error compared to unit-
based approaches with approximately 85% of wells with er-
rors below 5 m compared to the unit-based approaches where
70% of the wells had errors below 5 m.

Figure 4 shows the agreement between observed and sim-
ulated head data averaged to monthly values. For the pilot-D
approach a correlation coefficient of 0.97 is obtained while the
unit-D approach resulted in a correlation coefficient of 0.89.
To evaluate the goodness of fit, the measurement noise of the
observations has to be considered. In this study, the weighting
strategy for the head observations has been used to account for
measurement uncertainties.

To summarize the evaluation of the errors, the RMSE of the
heads has been calculated for each layer and compared for

d) c) 

b) a) Fig. 3 Ranked model
performances for four objective
functions: a NSE [−], the dashed
line shows the NSE value of 0.6
used for comparison, b absolute
WBE [%], c absolute BFI [−], and
d absolute mean head residuals
[m]

Hydrogeol J (2019) 27:1929–1947 1937



different calibration approaches (Table 4). Furthermore, aver-
aged NSE, absolute averagedWBE, and absolute average BFI
have been calculated for different calibration approaches
(Table 4).

The results showed that the RMSE of all four layers in both
pilot-point-based calibration approaches are lower compared
to both unit-based calibration approaches. The comparison
between the two unit-based approaches showed that RMSE
of heads in all four layers are lower in the unit-B calibration
approach. However, the RMSE of the first layer in all four
approaches does not seem to be affected as much by the
weighting strategy. The RMSE that resulted from the pilot-B
calibration approach for the layers 2–4 are the lowest com-
pared to other three approaches. The comparison of the abso-
lute average errors in heads and WBE indicated that the per-
formances of pilot-D relative to pilot-B are more similar com-
pared to the difference between performances of unit-D rela-
tive to unit-B.

Figure 5a demonstrates the spatial distribution of mean
absolute head error (MAE_head) differences between the
unit-D and pilot-D calibration approaches (for the second lay-
er which contains the most observation wells). The values
greater than zero (warm colors) represent lower MAE_head
in the pilot-D approach relative to unit-D, i.e. a better

performance of pilot-D, whereas the values less than zero
(cold colors) represent poorer performances in the pilot-D
relative to unit-D calibration approach. It is evident that there
is an overall improvement of MAE_head in the pilot-D cali-
bration approach compared to the unit-D approach. In partic-
ular, there is a systematic improvement of simulated heads
between 1–8 m in the central region of the domain and around
the catchment boundaries between the Karup catchment and
the neighboring catchments (Fig. 5a). The locations of
subcatchments are shown in Fig. 2. The larger MAE_head
in this specific region for the unit-D calibration approach is
likely to be a result of inadequacy in the parameterization of
the unit-D calibration approach and consequently not having
utilized the information embedded in the observational data
set to the extent that the pilot-D approach did. Moreover,
better head simulations of the pilot-D in observations located
adjacent to the external boundaries where a no-flow boundary
condition is assumed are apparent. The overall improvement
of the MAE_head in the pilot-D calibration approach relative
to the unit-D calibration approach is significant (Fig. 5a);
however, this improvement can be expected as a result of
the increased number of adjustable parameters. Often a very
good fit between observed and simulated values can be at an
expense of unrealistic parameter values; therefore, in addition
to statistical evaluation of the results it is also essential to
assess if the estimated parameters have reasonable values
and correspond to prior knowledge of the geology. For a
highly parameterized model it becomes even more crucial to
verify the feasibility of estimated parameter values. As Hill
(2007) points out, increasing the flexibility in the parameter
space may lead to unrealistic estimated parameter values, a so-
called Boverfitting^ issue (Fienen et al. 2009). This issue pri-
marily stems from the fact that if the dimensions of the pa-
rameter space are larger than the number of observations, the
unconstrained parameters may remain uninformed and insen-
sitive to the observations and therefore their values can change
dramatically without any or with minimal effect on the model
outputs, although this is in principle handled by implementing
truncated SVD. In Fig. 5b, the difference in the hydraulic
conductivity field of unit-D relative to pilot-D is shown. The

Fig. 4 Monthly mean observed and simulated head observations shown
for the unit-D and pilot-D calibration approaches

Table 4 Calibration statistics for
head observations, NSE, WBE,
and BFI

Statistic Unit-B Unit-D Pilot-B Pilot-D

RMSE [m] Layer 1 3.08 3.12 2.73 2.72

Layer 2 5.62 5.84 3.38 3.70

Layer 3 4.75 5.46 3.82 4.21

Layer 4 4.95 5.64 4.22 4.78

Absolute average head error [m] – 3.62 4.14 2.67 3.00

Average NSE [−] – 0.58 0.65 0.62 0.65

Absolute average WBE [%] – 9.84 7.51 4.01 3.47

Absolute average BFI error [−] – 2.87 2.66 2.02 1.90
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warm colors indicate an increase and the cold colors indicate a
decrease in the hydraulic conductivity values of pilot-D cali-
bration relative to unit-D. It can also be seen in Fig. 5a,b that
the maximum error reduction generally corresponds to the
maximum deviation in the conductivity field, though these
changes do not exceed more than two orders of magnitude
and mostly remain within one order of magnitude. Changes
in conductivity can therefore be interpreted as being within the
typical range across a geological unit.

Optimized hydraulic conductivity fields

The horizontal hydraulic conductivity field resulting from
pilot-D and unit-D calibration approaches has been displayed
as two cross-sections (Fig. 6) elongated from west to east (a–a
′) and north to south (b–b′). In Fig. 5b, the location of these
cross-sections is shown. Figure 6 provides a general picture of
the geological layering and the distribution of estimated hor-
izontal hydraulic conductivity within each layer. It can be
observed that the thickness of the computational layers and
geological structures, e.g. buried valleys are kept identical for
both calibration approaches, whereas the distribution of K

values within each computational layer has been subject to
the estimation process. There is an overall agreement between
sand and clay formations in both cross-sections for the pilot
points and unit-based calibration; however, there is a higher
variability of the K values in the pilot-D approach, especially
in layers 2 and 4. The pilot-D calibration approach shows a
general tendency of producing a smoother K field relative to
unit-D calibration approach. That is because in the unit-D
approach the K values are categorized into a few distinct units
with sharp interfaces between each units, whereas the values
between pilot points are interpolated and therefore the bound-
aries between different hydrofacies are smoothed out. To in-
spect the variability of the estimated K values in each compu-
tational layer, relative frequency histograms for the pilot-D
and unit-D calibration approaches have been demonstrated
(Fig. 7). In agreement to what has been visually observed in
Fig. 6, the relative frequency histograms show that the spatial
distribution of K values in the unit-D have few distinct fre-
quency peaks. This is a result of the K values originally being
categorized into a few values, in particular corresponding to
pure clay units of low K, whereas in the pilot-D approach the
values have a smooth distribution due to interpolation of K

c) 

b) a) 

d)

Fig. 6 Cross sections a b–b′
north–south cross-section in unit-
D, b b–b′ north–south cross-
section in pilot-D, c a–a′ west–
east cross-section in unit-D, d a–a′
west–east cross-section in pilot-
D. The y-axes show the surface
elevation of each cross-section in
meters. The conductivities are
presented in log-transformed
values. The cross-section loca-
tions a–a′ and b–b′ are shown in
Fig. 5b

Fig. 5 a Differences in mean absolute head errors (MAE_head) [m] between unit-D and pilot-D in layer 2, b differences in horizontal hydraulic
conductivity between unit-D and pilot-D in layer 2
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values. With the exception of the first layer, the range of K
value distributions is approximately an order of magnitude
wider in the pilot-D approach. The K distribution in layer 2,
in both unit-D and pilot-D calibration approaches, exhibits
similar conductivity distributions with a relatively higher fre-
quency of K values around 10−4 m s−1, corresponding to hy-
draulic conductivity of sand; furthermore, both calibrations
indicate a smaller range ofK values relative to the other layers.
The distribution of K values in layers 1, 3 and 4 are gently
skewed toward smaller values of K corresponding to a higher
clay-content conductivity in the pilot-D calibration approach
compared to unit-D.

Estimated cross-boundary groundwater fluxes

The hydrological subcatchment boundaries are defined by the
topographical divides but this may not necessarily be the case
for the groundwater flow. The long-term spatial runoff ratio
information provided in Fig. 2 supports the earlier modeling
efforts (Højberg et al. 2013) and indicates that there is a
groundwater flow across the subcatchments with west–east
orientation. In order to assess the magnitude of cross-
boundary flow relative to other components of the water bal-
ance, a complete water balance analysis has been performed
for each subcatchment based on the model simulations
(Table 5). The computed boundary flow values indicate that
the groundwater cross-boundary fluxes are generally of sig-
nificance and in some cases higher than pumping and irriga-
tion amounts. The inflow flux entering to the catchment
Haldsoe comprises 17% of its discharge in the pilot-D calibra-
tion and 14% of its discharge in the unit-D calibration, where-
as in catchment Storaa, these values are 6 and 5%,

respectively. From the catchments Karup, Storaa, and
Skjern, there is a significant amount of outflow to the neigh-
boring catchments Gudenaa and Haldsoe. Among all catch-
ments, the Karup catchment has the highest amount of water
loss equivalent to 13% of its discharge in the pilot-D calibra-
tion and 11% of its discharge in the unit-D calibration. The
sources of groundwater inflow and outflow for each
subcatchment and the amount of simulated groundwater
fluxes across the north–south topographical boundaries have
been calculated by the model. In Fig. 7, the simulated ground-
water fluxes through subcatchment boundaries have been
shown for both unit-D and pilot-D calibration approaches.
The estimated fluxes are the sum of all four computational
layers averaged in time for the length of the boundaries.
Complementary to the information provided in the Table 5,
it can be seen in both calibration approaches that the ground-
water flow has a dominant west–east orientation where the
catchments Gudenaa and Haldsoe are the main receiving
catchments, while subcatchments Karup, Storaa, and Skjern
are the main losing ones.

Linear model predictive uncertainty analysis

The following sections provides an analysis of pilot-D
identifiability followed by analyses of the contribution of pa-
rameter groups and data worth to predictive uncertainty for
both unit-D and pilot-D models. The predictive uncertainty
analysis is exemplified by using the summer water balance
at the outlet of the Haldsoe catchment (mfbal_210794; Fig.
2) as prediction target. The summer water balance is calculat-
ed as the bias of simulated stream discharge [mm/s] in summer
(June–Sep) for the period of 2000–2007. Based on the

Fig. 7 Relative frequency
histograms of hydraulic
conductivity (log-transformed
values) for the unit-D and pilot-D
approaches for all four layers
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observed discharge–rainfall ratios (Fig. 2) and estimated
cross-boundary groundwater fluxes (Fig. 8), this
subcatchment receives a substantial amount of groundwater
through its boundary and therefore has been nominated as a
prediction target for this study.

Identifiability

In a highly parameterized inversion context, some parameters
may not be uniquely estimated due to either insensitivity of
the model outputs to the parameters or correlation between
parameters, or occurrence of both conditions at the same time
(Doherty and Hunt 2009). Parameter identifiability is a linear
statistic, calculated based on the SVD of the weighted
Jacobian matrix with values ranging between zero
(nonidentifiable) and one (completely identifiable; Doherty
and Hunt 2009). The parameter identifiability analysis helps
to visualize the dimensionality of the inverse problem by sep-
arating the parameters which lie in the solution space from the
ones that lie in the null space (Doherty and Hunt 2010b) and
thereby leads to a better understanding of the algorithm. In this
study, by using the truncated SVD regularization technique for
the pilot-point-based calibration of CJC, the inverse problem
has been efficiently constrained by estimating only the iden-
tifiable parameters (super parameters) on the basis of 350 sin-
gular value cutoff for both pilot-D and pilot-B.

The identifiability analysis of pilot-D calibration approach
indicates that the identifiability of the parameters is to a great
extent in accordance with the spatial distribution of observa-
tions in each computational layer. In all, 265 pilot points out of
820 display an identifiability value higher than 0.8 and have
been defined identifiable for this study, with 97% of all the
identifiable pilot points being located in the second and forth
computational layers which are predominantly sandy and
have a higher concentration of head observations. Due to their
lumped parameterization, the six nonconductivity parameters
show high identifiability values of above 0.97. Figure 9a il-
lustrates the identifiability of 205 pilot points in the second
computational layer overlain on the final errors of hydraulic
head simulations after being calibrated via the pilot-D ap-
proach. The general pattern in the identifiability map is a high
correlation between the identifiability of the pilot points and
the number of observations in the vicinity; however, in spite of
relatively dense head observations in some areas of the Storaa
and Skjern catchments, the pilot points in this area have very
low identifiability values. This can be interpreted as either
indication of parameter insensitivity, parameter correlations
or redundant information in these observations. To investigate
further, the identifiability of the pilot points has been mapped
on the simulated water-table depth averaged over the calibra-
tion period (Fig. 9b). It can be seen that the low identifiable
pilot points in areas with dense coverage of the observations
coincide with areas with shallow water-table depth less than

Table 5 Water balance components for sub-catchments in [mm/year]

Component Gudenaa Storaa Skjern Karup Haldsoe

Pilot-D Unit-D Pilot-D Unit-D Pilot-D Unit-D Pilot-D Unit-D Pilot-D Unit-D

Precipitation 898 898 1,051 1,051 1,010 1,010 980 980 904 904

ET −533 −541 −531 −552 −533 −550 −527 −547 −503 −513
Pumping −9 −11 −22 −24 −21 −27 −19 −24 −18 −21
Discharge −394 −379 −481 −463 −463 −448 −395 −380 −466 −433
Boundary flow 24 22 −24 −21 −14 −12 −53 −43 77 62

Irrigation 3 4 11 13 15 21 15 20 4 6

Storage change 11 7 −4 −4 6 6 −1 −6 2 −5

(b)(a)Fig. 8 Water fluxes [MCM/year]
across boundaries of
subcatchments for a the unit-D
calibration and b the pilot-D cali-
bration. The fluxes shown as ar-
rows and the corresponding
subcatchment boundaries are
shown in matching colors. The
thickness of the arrows is relative
to the volume of the fluxes
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0.5 m; however, the average head errors in these areas are low,
illustrating a good fit to observations.

Parameter contributions to change in predictive uncertainty

The parameter-group contributions to pre- and post-
calibration uncertainty of mfbal_210794 are illustrated in
Fig. 10 for unit-D and pilot-Dmodels. The KS group (hydrau-
lic conductivity) has the largest pre-and post-calibration con-
tribution to uncertainty of mfbal_210794 in both unit-D and
pilot-D models. It is noteworthy that the post-calibration con-
tribution of the Broo^ group (root depth) to the uncertainty of
mfbal_210794 has increased in both unit-D and pilot-D. This

means that the contribution of the Root parameter group to the
uncertainty of mfbal_210794 has not been reduced after cali-
bration to the observation data set. The difference between
pre- and post-calibration uncertainty contribution is much
larger in unit-D (34%) than in pilot-D (5.6%). This can be
explained by the higher degree of flexibility in the pilot-D
model parameter space in comparison to unit-D model. The
simpler parameterization scheme in unit-D might have result-
ed in increasing the compensatory role of the root parameter
group during the calibration process, whereas in pilot-D, as a
result of a more spatial flexible discretization of the hydraulic
conductivities field, this compensation might have occurred
through some of the pilot points.

Observation data worth and impact on prediction uncertainty

The data worth analysis of existing observations in changing
the prediction uncertainty of mfbal_210794 for both pilot-D
and unit-D models were computed through both the addition
and subtraction of excising individual observations/
observation groups (Fig. 11). The data with high worth would
decrease the uncertainty of the prediction when added as a
sole member of the observation data set. Alternatively, the
data with low worth or redundant information would have
no effect or minimum effect on increasing original prediction
uncertainty when removed one by one from the observation
dataset (Fienen et al. 2010; White et al. 2016).

In the unit-D model, all observation groups, except
RMSE_Irr, have reduced the prediction uncertainty of
Mfbal_210794 to the same extent (approximately 99%).
However, the prediction uncertainty of mfbal_210974 does
not increase equally by removal of observation groups. The
ME_head increases the prediction uncertainty the most (72%)
followed by WBE (27%) and BFI (21%).

In the pilot-D model, the ME_head and WBE observation
groups contribute as the most and second-most important
group to the reduction of prediction uncertainty. By removing

Fig. 9 Identifiability of the hydraulic conductivity of the pilot points in the second layer overlain with a a distribution ofmean hydraulic head error for the
individual wells in the second layer and b water-table depth shown as above or below 0.5-m depth respectively

Fig. 10 Normalized contributions of parameter groups to pre- and post-
calibration prediction uncertainty of mfbal_210794 in Haldsoe catchment
shown for a pilot-point-based calibration (pilot-D) and for b unit-based
calibration (unit-D). The X-axes show parameter groups. The description
of each parameter group is given in Table 1
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ME_head andWBE observation groups, the prediction uncer-
tainty increases up to 82 and 41% respectively. The discrep-
ancy between changes in prediction uncertainty when an
observation/observation group is added and subtracted to/
from the data set can reveal the level of redundancy or other-
wise uniqueness of that observation group.

Given that the head observations have a higher frequency
and spatial distribution compared to other observation groups,
it is not surprising that the ME_head group has greater contri-
bution to the reduction of prediction uncertainty for both

models. However, it appears that the removal of the
ME_head increases the prediction uncertainty more in pilot-
D than in unit-D. This suggests that the flexibility in the pa-
rameterization of pilot-D enabled the model to obtain more
unique information from the ME_head observation group. On
the other hand, the pilot-D model utilizes the observation
dataset more than the unit-D model; therefore, additional head
observations might reduce the uncertainty of this prediction
more than in the unit-D model, especially considering the fact
that there is a relation between the level of information that is
provided for the model and the number of super parameters.

Figure 12 depicts the data-worth spatial distribution of in-
dividual head observations in the second layer for the predic-
tion of mfbal_210794 in the pilot-D and unit-D models. It can
be seen that in the pilot-D case, the head observations with
higher contributions to the prediction uncertainty of
mfbal_20026 are mainly located in the upstream part of the
Haldsoe catchment and between the Karup andHaldsoe catch-
ment boundaries, whereas in the unit-D model, the head ob-
servations with higher contribution to prediction uncertainty
of mfbal_210794 are distributed throughout the whole CJC
catchment and show a less physically meaningful pattern. The
resulting differences between spatial data worth pattern of the
two models is considerable. However, taking into account
their hydraulic conductivity parameterization, this is easily
explainable because a given unit in the unit-D model can be
informed by head observations anywhere in the catchments
where that unit exists.

Discussion

A highly parameterized calibration approach is used to cali-
brate a regional-scale, transient, coupled surface–subsurface
model in order to examine the feasibility of introducing a large
number of pilot points in the optimization process given a

Fig. 11 Data worth of observation groups to prediction of mfbal_210794
(summer water balance of Haldsoe catchment) shown for a pilot-point-
based calibration (pilot-D) and b unit-based calibration (unit-D). The
black bars correspond to decrease [%] in uncertainty with adding each
observation group as a sole member of calibration dataset. The gray bars
correspond to increase [%] in uncertainty with removing each observation
group one by one from the calibration dataset. The observation groups are
described in Table 3

Fig. 12 Data worth of each individual head observation in the second
layer for the prediction of mfbal_210794 (summer water balance of
Haldsoe catchment) shown for a unit-D and b pilot-D. The sizes of circles

correspond to the measure of decrease in prediction uncertainty with
adding each individual head observation to the calibration dataset
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comprehensive set of observational data. The current study
introduces pilot points across the entire model domain and
hereby allows the pilot-point-based optimization to generate
the horizontal K field distribution in each model layer. This
parametrization approach is compared to a more traditional
unit-based optimization, where spatial variability of the geo-
logical settings is assumed to be known and where the opti-
mization is limited to identifying the optimal parameter values
for a given geological unit.

In terms of model performance, the pilot-point-based ap-
proaches yield better results by reducing the misfit between all
the observation groups and corresponding model outputs;
however, the improvements are most prominent in the
ME_head and WBE objective functions. The improvement
in the ME_head was expected as a result of increased hetero-
geneity in hydraulic conductivity parameterization, though a
better performance in WBE objective function is also
achieved due to a better representation of groundwater/
surface-water interactions. The less significant improvement
of the NSE objective function relative to the ME_head BFI
and WBE objective functions could be due to lack of flexibil-
ity in the spatial parameterization of overland flow including
roughness coefficient, drainage time constant and leakage co-
efficient, as the main controlling parameters of the surface
system. In addition, the NSE is mainly sensitive to the fit of
discharge peaks and is therefore less dependent on a more
detailed representation of the groundwater system. Due to
spatial discontinuity of overland and unsaturated flow param-
eters and their subsequent insensitivity to the observations,
parameterization of these parameters with the pilot point ap-
proach is challenging (Maneta and Wallender 2013). This is-
sue has not been the focus of the current study and, therefore,
has not been further explored.

Furthermore, in this study, the trade-off between different
weighting strategies of several independent objective func-
tions in both parameterization approaches was investigated.
The comparison of the two weighting strategies in which
higher weights are given either to head or discharge observa-
tion groups, reveals that the performances of the models cal-
ibrated with the pilot point approach are less affected by
changing the weights compared to the traditional calibration
approach. The trade-off between different objective functions
in the pilot-point-based approaches is smaller compare to the
unit-based approaches, which most likely results from an in-
creased capability of the model to accommodate some of the
structural inadequacies.

In the pilot-point-based approach the simulated head biases
improved up to 8 m (compared to the unit-based approach)
around the Karup catchment boundaries with a clear spatial
consistency. This reveals that the unit-based parameterization
scheme does not utilize all the information embedded in the
observations to the extent that the pilot point approach does.
This points out that the level of heterogeneity in the hydraulic

conductivity of the unit-based approach does not allow the
model to represent the observations in those regions as well
as the pilot-point-based approach. Moreover, it can been seen
that the MAE_head around the external boundaries are signif-
icantly improved. This also suggests that the flexibility in the
parameterization of pilot point approach allows the model to
compensate for the boundary conditions which might have
been inaccurately imposed. Compensation for the boundary
conditions is often indispensable in the parameter estimating
process, as referred to by Doherty and Welter (2010). In a
highly parametrized model in which the inverse problem is
appropriately constrained with mathematical regularizations,
model insufficiency can be locally accommodated through
compensatory parameters. Depending on the prediction target,
this does not necessarily lead to a better prediction. In the
estimated hydraulic conductivity fields that resulted from
pilot-point-based approach, some of those compensatory pa-
rameters appear in the close vicinity of the external boundary
conditions where the pilot-point K values deviate the most
from their estimated counterparts resulted from the unit-
based approach. However, these deviations do not exceed
more than one to two orders of magnitude, and therefore it
can be considered feasible as they are in accordance with the
uncertainty of the geology. The general pattern of the estimat-
ed K field in the pilot-point-based calibration is clearly
smoother and has less distinct transition boundaries between
different geological units as an outcome of spatial interpola-
tion between pilot points. The more gradual transitions in the
K field may be considered appropriate for the description of
the sandy outwash plain in the western part of regional-scale
model. However, the lack of distinct shifts in geology might
be less appropriate in other parts of the model domain.
Likewise, the smooth interpolated K-fields resulting from
the pilot point application might work well for estimation of
hydraulic head and regional-scale groundwater fluxes; how-
ever, it can result in significant limitations for other applica-
tions such as solute transport modelling. These limitation of
are mostly related to the application of Kriging interpolation
method which relies on the assumption that the model param-
eters have a multiGaussian distribution (Kerrou et al. 2008).
As expected, the identifiability analysis of pilot-point-based
approaches indicate that the identifiability of the pilot points
depends largely on the availability of the head observations in
their proximity. Another interesting observation from the
identifiability analysis regards the regions where the average
water table is less than half a meter below the surface,
resulting in very low sensitivity of pilot points to the head
observations. This is expected since the drainage depth level
is set to 0.5 m and therefore at this level the groundwater head
is mainly controlled by the drainage time constant and less by
hydraulic conductivity.

In this modeling study, several important features of
groundwater flow across the hydrological subcatchments
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boundaries are characterized. The groundwater flow cross the
north–south topographical boundary is dominantly present in
both calibrated models. Net flux across subcatchments bound-
aries vary little between the two calibration approaches, indi-
cating that the computed general regional flow patterns are
similar; however, as illustrated in Fig. 8, there are some dif-
ferences in the specific sub-catchments exchange fluxes, pri-
marily around the Karup sub-catchment. These differences
coincide with the significant change in simulated groundwater
levels and resulting reduction in head biases using the highly
parameterized approach (Fig. 5). Owing to the lack of exact
measurements of regional groundwater flow, the estimated
cross-boundary fluxes cannot be evaluated explicitly; howev-
er, in areas of abundant head observations, the model that
represents the head observations the best, is assumed to give
the best estimate of head gradients and groundwater fluxes. In
addition, the direction and proximal magnitude of cross-
boundary flow can be indicated by analysis of rainfall–
runoff ratio map. In this study, such a map of observation-
based long-term runoff–rainfall patterns was produced (Fig.
2) and indicated a clear west–east groundwater flow compo-
nent similar to the patterns predicted by the groundwater
models.

The focus of the current study has been on investigating the
benefits, limitations and tradeoffs between a unit-based and a
highly parameterized calibration scheme. The pursued pilot
point approach has been used for a thorough investigation
on the limitations of the unit-based approach, for a re-
evaluation of the conceptual model used in the unit-based
approach, and for effective use of information from the avail-
able calibration dataset to inform the model optimization.
Subsequently, the optimized model has been used to quantify
the groundwater flow across topographical boundaries.

Conclusions

In this study, a regularized inversion approach with 350 iden-
tifiable super-parameters from both surface and subsurface
domains has been evaluated for a transient regional-scale
surface–subsurface flow model covering five topographically
defined river-basins. The limitations of a highly parameterized
calibration including the computational burden and
nonidentifiable parameters have been minimized by applica-
tion of a truncated singular-value-decomposition regulariza-
tion technique. Evaluation of the highly parameterized cali-
bration approach in terms of model performances and feasi-
bility of the estimated parameters indicated that it more effec-
tivity utilized the information in the data compared to a tradi-
tional unit-based calibration approach without extending the
estimated parameter value ranges further than the uncertainty
range of the underlying geology. Especially the model perfor-
mance regarding hydraulic head and stream water balances

improved significantly for the highly parametrized optimiza-
tion, which was expected due to the larger degree of freedom.
Furthermore, the results showed that adopting different
weighting strategies for objective function groups, as an
acknowledgment of model imperfections, has a larger im-
pact on the more parsimonious unit-based model com-
pared to the model based on a more complex parametriza-
tion scheme. This indicates that the more complex param-
etrization, in our case the pilot-point-based approach, can
accommodate the conceptual model deficiencies to some
extent through flexible parameter values. The estimated
hydraulic conductivity fields from the two calibration ap-
proaches exhibited very different distributions due to the
sharp geological boundaries of the unit-based approach
relative to the interpolated fields resulting from the pilot
point approach; however, the values have generally not
changed more than an order of magnitude.

Both approaches have limitations regarding lack of vari-
ability and lack of contrast which has to be considered for
any given application. The regional-scale groundwater-sur-
face water model provided a valuable insight into the com-
plex, regional flow patterns which otherwise would have been
impractical to obtain. In this study, the model was used to
quantify the subsurface flux between topographically delin-
eated subcatchments. The fluxes through all the internal
boundaries constitute from 3 to 16% of the their discharge
amount and are quite significant relative to the pumping;
therefore, it is important for the water management to consider
these cross-boundary flows in the hydrological models as they
might have a big impact on the simulation of the head water
streams. This furthermore highlights the need for regional-
scale coupled surface–subsurface flow models for water man-
agement, since most surface-water models assume zero flux
boundaries between topographical divides. The results from
the data worth study indicates a less physically meaningful
pattern for the unit-based model compared to the pilot-point-
based model. It can be therefore concluded that in order to
identify the spatial worth of observations to a prediction un-
certainty, there should be a certain degree of flexibility and
variability in the model parameterization.
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