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Abstract

Background

Based on the association of common GLIS3 variants with various forms of diabetes and the

biological role of GLIS3 in beta-cells, we sequenced GLIS3 in non-diabetic and diabetic

Danes to investigate the effect of rare missense variants on glucose metabolism.

Methods

We sequenced 53 patients with maturity-onset diabetes of the young (MODY), 5,726 non-

diabetic participants, 2,930 patients with newly diagnosed type 2 diabetes and 206 patients

with glutamic acid decarboxylase antibody (GADA) -positive diabetes.

Results

In total we identified 86 rare (minor allele frequency < 0.1%) missense variants. None was

considered causal for the presence of MODY. Among patients with type 2 diabetes, we

observed a higher prevalence of rare GLIS3 missense variants (2.5%) compared to non-dia-

betic individuals (1.8%) (odds ratio of 1.37 (interquartile range:1.01–1.88, p = 0.04)). A sig-

nificantly increased HbA1c was found among patients with type 2 diabetes and with GADA-

positive diabetes carrying rare GLIS3 variants compared to non-carriers of rare GLIS3 vari-

ants with diabetes (p = 0.02 and p = 0.004, respectively). One variant (p.I28V) was found to

have a minor allele frequency of only 0.03% among patients with type 2 diabetes compared
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to 0.2% among non-diabetic individuals suggesting a protective function (odds ratio of 0.20

(interquartile range: 0.005–1.4, p = 0.1)), an effect which was supported by publically avail-

able data. This variant was also associated with a lower level of fasting plasma glucose

among non-diabetic individuals (p = 0.046).

Conclusion

Rare missense variants in GLIS3 associates nominally with increased level of HbA1c and

increased risk of developing type 2 diabetes. In contrast, the rare p.I28V variant associate

with reduced level of fasting plasma glucose and may be protective against type 2 diabetes.

Introduction

GLIS3 is encoding a member of the Krüppel-like zinc finger protein subfamily GLI-similar 3

which is a transcription factor playing a critical role both as a repressor and activator of tran-

scription [1]. Human GLIS3 exist in two isoforms: Isoform A which is the longest including a

total of 930 amino acids, and isoform B which is 155 amino acids shorter at the N-terminus

[2]. Isoform A is highly expressed in the pancreas, kidney, and thyroid, whereas the smaller

isoform B is strongly expressed in the heart, liver, kidney, and skeletal muscle [3]. The tran-

scriptional regulation by GLIS3 is mediated through an interaction between GLIS-binding

sites (GLISBS) in the regulatory region of target genes and zinc finger domains in GLIS3 [1, 4].

Globally Glis3 deficient mice have a decreased beta-cell mass and develop neonatal diabetes

in addition to hypothyroidism, and cystic kidney disease [5]. In addition, Glis3 missense vari-

ants identified in Goto-Kakizaki rats have been found to increase basal production of insulin

but reduce the glucose stimulated insulin secretion in INS1-cells [6].

Also in humans, mutations in GLIS3 are a rare cause of neonatal diabetes as well as congen-

ital hypothyroidism and in some cases in combination with polycystic kidney disease, glau-

coma, and hepatic fibrosis in a recessive manner [3, 7]. It has been found for the neonatal

diabetes genes GCK and PDX1, that homozygous mutations are a cause of neonatal diabetes

and heterozygote mutations results in the monogenic form of diabetes called maturity onset

diabetes of the young (MODY) [8, 9]. This may also be the case for GLIS3.

Type 1 diabetes (T1D) and T2D are two genetically distinct diseases, yet GLIS3 is one of the

few genes in which common variants have been found to associate with both forms of diabetes

[10, 11]. In addition, common GLIS3 variants associate with development of gestational diabe-

tes [12], with increased level of fasting glucose [10] and with altered insulin clearance [13].

Thus, GLIS3 appear to be implicated in various diabetes forms.

This pathogenic effect of GLIS3 variants may be related to GLIS3 being instrumental for an

optimal transcriptional activation of Ins2 in conjunction with the transcriptions factors Pdx1,

NeuroD1, and MafA [14]. This has been further verified by the observation that mutations in

the GLISBS of the insulin promoter are responsible for the development of neonatal diabetes

in some patients [14]. However, GLIS3 has also been shown in INS1-cells to stimulate the tran-

scription of genes of importance for apoptosis such as Atg7 and Atg4a [6] as well as the pro-

apoptotic BH3-only protein Bim [15].

In humans common and low frequency GLIS3 variants (MAF > 0.1%) have previously

been investigated in relation to diabetes [10]. Thus, we sequenced the coding region of GLIS3
using next-generation sequencing (NGS) in order to investigate the effect of rare GLIS3 mis-

sense variants in a well characterised Danish population. The sequencing was completed in 53
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MODY patients with an unknown genetic etiology (MODYX), 5,726 non-diabetic individuals,

2,930 patients newly diagnosed with T2D and 206 patients with GADA-positive diabetes with

the aim to investigate 1) if GLIS3 missense variants is involved in MODYX, 2) if rare GLIS3
missense variants increase the risk of T2D development and 3) if rare GLIS3 missense variants

affect measures of glucose metabolism.

Materials and methods

Population

Individuals in the present study include: 1) 53 MODYX probands recruited from the outpa-

tient clinic at Steno Diabetes Center, Copenhagen, Denmark, 2) 5,726 non-diabetic individuals

recruited from the Danish population-based Inter99 study [16, 17] including 1,157 prediabetic

individuals (having impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT))

and 4,569 glucose tolerant individuals (NGT) classified according the WHO 1999 criteria

using a 2-hour oral glucose tolerance test (OGTT) [18]; 3) 2,930 patients with newly-diagnosed

T2D recruited through the DD2-cohort [19]; and 4) 206 patients with GADA-positive diabetes

recruited from the DD2-cohort (n = 85) and at Hospital Lillebaelt, Denmark (n = 121). A clini-

cal description of included individuals can be found in Table 1.

Patients with newly diagnosed T2D were GADA-negative and had a fasting serum C-pep-

tide concentration > 150 pmol/l within 1.5 years from diabetes diagnosis if C-peptide was

available. GADA-positive patients were selected based on a GADA>30 IU/ml.

Prior to participation, written informed consents were obtained from all participants. The

study design was in accordance with the ethical scientific principles of the Helsinki Declaration

II and approved by The Scientific Ethics Committee of the Capital Region of Denmark

(Inter99: KA-98155) and by the Danish National Ethical Committee on Health Research

(DD2: S-20100082).

Anthropometrics measurements

Body weight, height, waist, and hip circumference were measured with light indoor clothes

and without shoes. Body mass index (BMI) was defined as body mass divided by body height

in units of kg/m2.

Metabolic measurements

Inter99 participants and participants recruited at Hospital Lillebaelt, Denmark. The

blood samples were drawn after a 12h fast for measures of glycated hemoglobin (HbA1c), plasma

Table 1. Clinical description of participants.

Trait Glucose tolerant

(Inter99, n = 4,569)

Pre-diabetes

(Inter99, n = 1,157)

T2D patients

(n = 2,930)

GADA-positive diabetes patients

(n = 206)

MODYX probands

(n = 53)

Sex (n) 2,113/2,456 700/457 1,678/1,177 108/95 25/ 28

Age (mean, SD) 45.2 (7.87) 48.8 (7.33) 60.2 (11.1) 49.3 (12.6) 22.4 (14.1)

BMI (kg/m2) 25.5 (4.14) 28.1 (4.97) 31.4 (6.29) 27.2 (5.67) 23.72 (6.16)

Fasting plasma glucose (mmol/l) 5.31 (0.40) 6.00 (0.52) 7.49 (1.73) 10.0 (4.41) 8.47 (2.94)

Fasting serum- C-peptide (pmol/l) 542.1 (217.2) 731.9 (315.3) 1243 (551.6) 433 (607.1) 503.8 (287.1)

Fasting serum triglyceride (mmol/L) 1.18 (0.94) 1.71 (2.19) 1.98 (1.43) 1.17 (0.69) 1.75 (0.75)

Fasting serum total cholesterol (mmol/

L)

5.43 (1.03) 5.83 (1.14) 4.52 (1.08) 4.50 (0.90) 4.81 (0.78)

Data presented as mean (SD).

https://doi.org/10.1371/journal.pone.0220805.t001
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glucose, serum insulin, serum C-peptide, total cholesterol and serum triglyceride [16, 20]. In

addition, individuals without known diabetes underwent a standard 75g OGTT with samples

drawn at 30, and 120 minutes measured for plasma glucose, serum insulin and C-peptide. Serum

insulin levels (excluding des-31,32 and intact proinsulin) were measured using the AutoDELFIA

insulin kit (Perkin-Elmer, Wallac, Turku, Finland). Plasma glucose was analysed using a glucose

oxidase method (Granutest; Merck, Darmstadt, Germany)[17]. Concentrations of serum triglyc-

erides and total cholesterol were analysed using enzymatic colorimetric methods (GPO-PAP and

CHOD-PAP, Roche Molecular Biochemicals, Germany). HbA1c was measured using ion-

exchange high performance liquid chromatography (normal reference range: 4.1–6.4%) [21].

Participants from the DD2-cohort. Measures of BMI, and routine laboratory measure-

ments such as fasting plasma glucose, fasting serum C-peptide and GADA were extracted

from the Danish Diabetes Database for Adults [22].

Estimates of glucose metabolism

Oral glucose-stimulated insulin response was measured as the insulinogenic index. Homeostatic

model assessment of insulin resistance (HOMA-IR) index measured as previous reported [23].

Targeted resequencing

A customized oligonucleotide probe was designed including all coding regions of GLIS3 as

previously described [24]. Genomic DNA was extracted from human leucocyte nuclei. Target

regions were captured and subsequently underwent library construction. The captured DNA

libraries were sequenced using the Illumina HiSeq2000 as paired-end 90 bp reads (following

the manufacturer’s standard cluster generation and sequencing protocols). GLIS3 was covered

with a minimum depth of over 20X and a mean depth of the target region of 166X. Qualified

reads were aligned to the reference of human genome (UCSC hg19) using the Burrows-

Wheeler Aligner tool (http://bio-bwa.sourceforge.net), and single-nucleotide polymorphisms

and indels were identified using the Genome Analysis Toolkit (https://www.broadinstitute.

org/gatk/). The variants were annotated using Annovar [25] with variants annotated according

to transcript NM_001042413.

The linkage disequilibrium (LD) structure between presently identified and previously

investigated variants was calculated using LDlink [26].

Statistical analysis

The statistical differences in carrier-frequency between cases and controls were calculated

using chi-squared, a kernel-based adaptive cluster (KBAC) test as well as an analysis which col-

lapses and combines rare variants (CMC) [27]. The CMC analysis included adjustment for

principal component 1–4 in order to adjust for population stratification.

However, due to the low number of carriers of each group, the statistical difference between

cases and control for variant p.I28V was calculated using a fisher’s exact test. Quantitative trait

analyses were performed using linear regression using additive genetic models with adjust-

ment for age and sex. Traits were all q-transformed prior to analysis. Statistical analyses were

performed using RStudio software version R-3.4.1 (version 3.2.3; R Foundation for Statistical

Computing, Boston, MA, USA) except KBAC and CMC which was performed using rvtests

[28]. Burden-test for the association between variants in GLIS3 and glucose tolerance status

did not undergo correction for multiple testing as this was a test of our primary hypothesis

and a p-value < 0.05 was considered statistically significant. In contrast, quantitative analyses

were corrected for multiple testing. Thus, for quantitative traits the adjusted level of signifi-

cance is p> 0.006 (0.05/9).
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Estimation of functionality

The pathogenicity of missense variants was evaluated using the Combined Annotation Depen-

dent Depletion (CADD) score where a PHRED-scaled CADD score above 10 predicts patho-

genicity in the top 10 percentile of all variants and a score above 20 predicts the top 1

percentile [29].

Results

The coding regions of GLIS3 were sequenced in 53 MODYX patients, 2,930 patients with T2D,

5,724 non-diabetic individuals and 206 patients with GADA-positive diabetes. A total 88 mis-

sense variants were identified of which three were common variants (MAF >1%), six were low

frequency variants (MAF between 1% and 0.1%) and the vast majority (n = 79) were rare

(MAF<0.1%) (S1 Table).

Three variants were found among the patients having MODYX. These included the common

variants p.G313A and p.D512E and the rare variant p.V916L. However, the rare variant p.

V916L was also found among three patients with T2D and five glucose tolerant individuals

(Table 1), thus, none of these variants can be considered causal for the development of MODY.

Among the remaining patients with T2D and participants without diabetes, we found three

common variants (p.G313A, p.P456Q, p.D512E) and six low frequency variants (p.P282A, p.

S298Y, p.P364S, p.Q397H, p.H400R and p.E515D) which have previously been investigated in

a large GWAS study combining GWAS data from close to 900,000 individuals [30]. Thus, we

did not further investigate the effect of neither common nor low frequency variants but

focussed on the previously un-investigated effect of rare variants in GLIS3.

A total of 79 rare variants were found among 100 non-diabetic individuals including three

individuals carrying two variants and among 70 patients with T2D of whom two individuals

are carrying two variants. Thus, the prevalence of rare GLIS3 variants was 2.4% among patients

with T2D compared to 1.7% among non-diabetic individuals revealing a slight enrichment of

rare GLIS3 variants in patients having T2D with odds ratio (OR) of 1.37 (IQR: 1.01–1.85,

p = 0.04, Table 2).

The effect of GLIS3 mutations on glucose metabolism was further explored and in patients

with T2D, levels of HbA1c were nominally elevated to 7.20% (SD:1.69) among carriers of rare

Table 2. The prevalence of rare (MAF<0.1%) GLIS3 missense mutations among non-diabetic individuals (IGT+IFG), patients with T2D.

Non-diabetic (n = 5,726) T2D patients

(n = 2,930)

Non-diabetic versus T2D patients:

Carriers of GLIS3 variants 100 70 Fishers exact

OR

(95% CI),

p-value

Kbac CMC

Non-carriers of GLIS3 variants 5,626 2,860 1.37

(1.01–1.88) p = 0.04 p = 0.02 p = 0.04

Non-diabetic (n = 5,726) T2D

(n = 2,930)

Non-diabetic versus T2D patients:

Carriers of GLIS3 variants excluding p.I28V 90 69 Fishers exact

OR

(95% CI),

p-value

Kbac

p-value

CMC

p-value

Non-carriers of GLIS3 variants 5,626 2,860 1.51

(1.08–2.09) p = 0.01 p = 0.01 p = 0.01

OR (Odds ratios) and p-values are adjusted for age and sex. CI: 95% confidence interval.

https://doi.org/10.1371/journal.pone.0220805.t002
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GLIS3 variants compared to 6.80% (SD:1.23) among non-carriers, p = 0.02 (Table 3). As vari-

ants in GLIS3 also have been found to associate with T1D, we investigated the effect of rare

GLIS3 variants in among patients classified as T2D, yet being GADA-positive (n = 206). Three

carriers of GLIS3 variants were found with two carriers of the p.P96L and one carrier of p.

P703S (S1 Table). Among these, a significantly higher level of HbA1c (11.37%, SD: 2.99) com-

pared to non-carriers (7.62%, SD: 1.40), p = 0.004 was also found (Table 3).

Table 3. Quantitative analysis of rare GLIS3 variants in 5,726 non-diabetic individuals, 2,930 patients with T2D

and 206 patients with GADA-positive diabetes.

Trait Non-carriers Carriers p-value

Non-diabetic individuals (n = 5,726)

n (men/women) 2,763/2,863 50/50 NA

Age (years) 45.9 (7.61) 47.5 (7.11) 0.1

BMI (kg/m2) 26.0 (4.43) 26.5 (4.75) 0.5

Waist/hip ratio 0.85 (0.09) 0.86 (0.09) 0.6

Glycated hemoglobin (HbA1c %) 5.79 (0.40) 5.83 (0.42) 0.7

Glycated hemoglobin (HbA1c mmol/mol) 39.8 (4.35) 40.3 (4.61) 0.7

HOMA-IR 1.67 (1.14) 1.83 (1.22) 0.1

Fasting plasma glucose (mmol/l) 5.45 (0.51) 5.47 (0.51) 0.9

30-min plasma glucose (mmol/l) 8.56 (1.70) 8.60 (1.78) 0.8

2-h plasma glucose (mmol/l) 5.94 (1.53) 5.90(1.45) 0.7

0-min serum C-peptide (pmol/l.min) 579.8 (251.1) 616.6 (302.3) 0.3

30-min serum C-peptide (pmol/l.min) 2001 (712.0) 2076 (884.6) 0.5

2-h serum C-peptide (pmol/l.min) 2253 (975.5) 2311 (1030) 0.7

Fasting serum insulin (pmol/l) 40.8 (26.4) 44.3 (27.6) 0.5

30-min serum insulin (pmol/l) 290.6 (180.9) 302.5 (215.7) 0.09

2-h serum insulin (pmol/l) 203.8 (193.1) 226.2 (248.9) 0.5

Insulinogenic Index 29.7 (19.3) 30.8 (22.3) 0.5

T2D patients

n (men/women) 1638/1151 40/26 NA

Age (years) 60.7 (11.6) 60.2 (10.2) 0.5

BMI (kg/m2) 31.4 (6.29) 31.1 (5.52) 0.9

W/H ratio 0.98 (0.094) 0.97 (0.076) 0.6

Glycated hemoglobin (HbA1c %) 6.80 (1.23) 7.20 (1.66) 0.02

Glycated hemoglobin (HbA1c mmol/mol) 50.8 (13.5) 55.2 (18.1) 0.02

Onset (years) 59.3 (11.65) 59.1 (10.2) 0.9

Fasting plasma glucose (mmol/l) 7.49 (1.74) 7.24 (1.57) 0.3

Fasting serum C-peptide (pmol/l.min) 1246 (553.6) 1116 (441.7) 0.1

GADA-positive diabetes patients

n (men/women) 106/94 2/1 NA

Age (years) 47.2 (11.8) 31.9 (4.37) 0.1

BMI (kg/m2) 27.2 (5.66) 24.4 (6.71) 0.3

W/H ratio 0.92 (0.082) 0.87 (0.097) 0.3

Glycated hemoglobin (HbA1c %) 7.62 (1.40) 11.37 (2.99) 0.004

Glycated hemoglobin (mmol/mol) 59.8 (15.3) 100.8 (32.7) 0.004

Onset (years) 36.4 (16.8) 29.7 (9.72) 0.4

Fasting plasma glucose (mmol/l) 9.88 (4.36) 16.7 (1.05) 0.07

Fasting serum C-peptide (pmol/l.min) 436.2 (610.9) 201.7 (177.3) 0.7

Data presented as mean (SD). P-values are adjusted for sex and age.

https://doi.org/10.1371/journal.pone.0220805.t003
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In contrast to the overall prevalence of rare variants, one of the identified rare variants (p.

I28V) was far more frequent among non-diabetic individuals compared to patients with T2D

with ten carriers among non-diabetic individuals and only one carrier with T2D. These non-

diabetic carriers had a slightly lower level of fasting plasma glucose compared to non-diabetic

individuals not carrying this variant (p = 0.047, S2 Table). The prevalence of this variant was

further investigated in a larger publically available dataset where we observed an excess of five

carriers among non-diabetic individuals (n = 9,335) in contrast to only one carriers among

patients with T2D (n = 9,121) [31] which in a meta-analysis combined with our data disclose a

combined OR of 0.20 (IQR: 0.046–0.90), p = 0.04. The publically available online data also

identifies a significantly lower level of fasting glucose among carriers of this variant (beta =

-0.21, p = 0.02) [31], an analysis which is performed in more than 75,000 individuals.

Discussion

We investigated the effect of rare missense variants within GLIS3 on risk of T2D and on mea-

sures of glucose homeostasis. Since amino acids 1–156 are only present in isoform A, 17 of the

identified variants are only affecting this longer transcript. However, the longer isoform A is

expressed in the pancreas, thus, we assume that all of the identified variants may have potential

effect on glucose metabolism.

A slightly elevated prevalence of rare GLIS3 missense variants was observed among patients

with T2D compared to non-diabetic individuals. Supporting this observation, levels of HbA1c

were also elevated among patients with T2D carrying rare GLIS3 missense variants compared

to patients not carrying such variants.

Despite the known function of GLIS3 in beta-cell function, we did not observe any effect of

GLIS3 mutations neither on circulating levels of C-peptide nor levels of insulin. Thus, we were

unable to determine the cause of elevated HbA1c measuring the long-term glycaemic control.

Our observations are well in line with GWAS, finding that common GLIS3 variants are associ-

ated with T2D and elevated levels of fasting glucose, however, no other measures of glucose

homeostasis have been found to be affected by common GLIS3 variants.

It is puzzling that GLIS3 variants, do not appear to affect insulin secretion in human studies

as GLIS3 has been found to be: 1) directly implemented in the transcription of INS [14], 2)

been found to be involved in pancreas maturation [7], 3) been found to be involved in beta-

cell apoptosis [32] and 4) the physiological consequence of GLIS3 mutations results in diabetes.

Yet, direct effects of the mutations on the protein and on beta-cell function are still

undisclosed.

One of the identified variants (p.I28V) was less prevalent among patients with T2D and

associated with reduced levels of fasting plasma glucose both in our data and in online avail-

able data. This suggests a protective effect of this variant on the development of hyperglycae-

mia. This potential protective variant is only present in Europeans (MAF = 0.1%) and to a

smaller extend in the Hispanic population (MAF = 0.02%), indicating that this is mutation is a

de novo mutations arisen in Europeans. In a Japanese study, a GLIS3 variant (p.A908V) pro-

tecting against T1D was found among approximately 3,000 Japanese patients with T1D and

control individuals [33], indicating that variants in GLIS3 may not only have a deleterious

effects on diabetes.

Thus, there appear to be large differences in the pathogenicity of variants within GLIS3.

Within the current population, we do not encounter variants having a highly detriment effect

leading to the development of monogenic diabetes. The combined effect of rare missense vari-

ant only results in a modest increased risk of T2D and only a slight increase in level of HbA1c.
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In contrast, a possible protective variant was encountered. The effect of the identified GLIS3
mutations must be further investigated in functionality studies of each encountered variant.

Due to the central role of GLIS3 in glucose metabolism, GLIS3 may be considered a poten-

tial treatment target and two studies have found compounds able to significantly diminish the

apoptotic effect of GLIS3. These compounds may be developed further into anti-diabetic treat-

ments in the future [15, 32].

In conclusion, we find that rare missense variants in GLIS3 may increase risk of diabetes

and elevate levels of plasma glucose. However, we also find a rare missense variant which likely

protects against the development of diabetes. Thus, variants in GLIS3 may explain a fraction of

heterogeneity in susceptibility to T2D.
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