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GRAPHICAL MODELS FOR ZERO-INFLATED SINGLE CELL
GENE EXPRESSION

BY ANDREW MCDAVID∗,1, RAPHAEL GOTTARDO†,‡,1,2, NOAH SIMON‡ AND

MATHIAS DRTON‡,§,3

University of Rochester Medical Center∗, Fred Hutchinson Cancer Research
Center†, University of Washington‡ and University of Copenhagen§

Bulk gene expression experiments relied on aggregations of thousands
of cells to measure the average expression in an organism. Advances in mi-
crofluidic and droplet sequencing now permit expression profiling in single
cells. This study of cell-to-cell variation reveals that individual cells lack
detectable expression of transcripts that appear abundant on a population
level, giving rise to zero-inflated expression patterns. To infer gene coreg-
ulatory networks from such data, we propose a multivariate Hurdle model.
It is comprised of a mixture of singular Gaussian distributions. We employ
neighborhood selection with the pseudo-likelihood and a group lasso penalty
to select and fit undirected graphical models that capture conditional inde-
pendences between genes. The proposed method is more sensitive than ex-
isting approaches in simulations, even under departures from our Hurdle
model. The method is applied to data for T follicular helper cells, and a high-
dimensional profile of mouse dendritic cells. It infers network structure not
revealed by other methods, or in bulk data sets. A R implementation is avail-
able at https://github.com/amcdavid/HurdleNormal.

1. Introduction. Graphical models have been used to synthesize high-
throughput gene expression experiments into understandable, canonical forms
(Dobra et al. (2004), Markowetz and Spang (2007)). Although inferring causal
relationships between genes is perhaps the ultimate goal of such analysis, causal
models may be difficult to estimate with observational data, and experimental
manipulation of specific genes has remained costly, and largely inimitable to high-
throughput biology. Many analyses have thus focused on undirected graphical
models (also known as Markov random fields) that capture the conditional inde-
pendences present between gene expression levels. The graph determining such a
model describes each gene’s statistical predictors: each gene is optimally predicted
using only its neighbors in the graph. With gene expression studies serving as key
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motivation, a host of different approaches have been developed for structure learn-
ing and parameter estimation in undirected graphical models (Drton and Maathuis
(2017)).

Characterization of the conditional independences between genes answers a
variety of scientific questions. It can help falsify models of gene regulation,
since statistical dependence is expected, given causal dependence. In immunol-
ogy, polyfunctional immune cells, which simultaneously and nonindependently
express multiple cytokines, are useful predictors of vaccine response (Precopio
et al. (2007)). Simultaneous expression or co-expression of cellular surface mark-
ers potentially define new cellular phenotypes (Lin et al. (2015)), so expanding the
“dictionary” of co-expression allows phenotypic refinements. Graphical models
allow one to study such co-expression at the level of direct interactions.

1.1. Single cell gene expression. Established technology determines gene ex-
pression levels by assaying bulk aggregates of cells assayed through microarrays
or RNA sequencing. Although graphical modeling of the resulting data has seen
profitable applications (see, e.g., Li, Pearl and Jackson (2015)), there is an inher-
itant limitation to what can be inferred from expression levels that are averages
across hundreds or thousands of individual cells, as we discuss in Section 2. In
contrast, recent microfluidic and molecular barcoding advances have enabled the
measurement of the minute quantities of mRNA present in single cells. This new
technology provides a unique resolution of gene co-expression and has the poten-
tial to facilitate more interpretable conclusions from multivariate data analysis and,
in particular, graphical modeling.

At the same time, single cell expression experiments bring about new statisti-
cal challenges. Indeed, a distinctive feature of single cell gene expression data—
across methods and platforms—is the bimodality of expression values (Finak et al.
(2015), Marinov et al. (2014), Shalek et al. (2014)). Genes can be “on,” in which
case a positive expression measure is recorded, or they can be “off,” in which
case the recorded expression is zero or negligible. Although the cause of this zero-
inflation remains unresolved, its properties are of intrinsic interest (Kim and Mar-
ioni (2013)). It has been argued that the zero-inflation represents censoring of ex-
pression below a substantial limit of detection, yet comparison of in silico signal
summation from many single cells, to the signal measured in biological sums of
cells suggest that the limit of detection is negligible (McDavid et al. (2013)). More-
over, the empirical distribution of the log-transformed counts appears rather differ-
ent than would be expected from censoring: the distribution of the log-transformed,
positive values is generally symmetric. Yet the presence of bimodality in techni-
cally replicated experiments (“Pool/split” experiments) implicates the involvement
of technical factors (Marinov et al. (2014)).

Zero-inflation is seen, in particular, in a single cell gene expression experiment
we analyze in Section 6. The experiment concerns T follicular helper (Tfh) cells,
which are a class of CD4+ lymphocytes. B-cells that secrete antibodies require Tfh
cell co-stimulation to become active (Ma et al. (2012)). Tfh cells are defined, and
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identified both through their location in the B-cell germinal centers, as well as their
production of high levels of the proteins CXCR5, PD1 and BcL-6. In the exper-
iment we consider, Tfh cells were identified from cells from lymph node biopsy
producing protein for CD4+CXCR5+PD1+. Figure 1 shows the pairwise RNA ex-
pression distribution of four Tfh marker genes (P < 10−20 compared to non-Tfh
lymph node T-cells, which are not shown). Although the expression of these genes

FIG. 1. Scatter plots of inverse cycle threshold (40-Ct) measurements from a quantitative PCR
(qPCR)-based single cell gene expression experiment (lower panels). The cycle threshold (Ct) is the
PCR cycle at which a predefined fluorescence threshold is crossed, so a larger inverse cycle threshold
corresponds to greater log-expression (McDavid et al. (2013)). Measurements that failed to cross the
threshold after 40 cycles are coded as 0. Marginal expression in Tfh (CXCR5+PD1+) cells of Tfh
marker genes is illustrated in the kernel-density estimates along the diagonal. The lower panels show
the linear relationships between pairs of genes.
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could help discriminant Tfh from non-Tfh cells, the strength of linear relationships
within Tfh cells (upper panels) varies. To identify co-expressing subsets of cells or
to clarify the conditional relationship between genes, estimating the multivariate
dependence structure of expression within Tfh cells is necessary. Figure 1 illus-
trates the issue of zero-inflation. The data are clearly poorly modeled by the linear
regression models whose fit is shown in the lower panels of the figure.

1.2. Modeling zero-inflation. In order to accommodate the distributional fea-
tures observed in single cell gene expression, we propose a joint probability density
function f (y) of the form

(1) logf (y) = vy
T Gvy + vy

T Hy − 1

2
yT Ky − C(G,H,K), y ∈ R

m,

for the dominating measure obtained by adding a Dirac mass at zero to the
Lebesgue measure. The vector y ∈ R

m comprises the expression levels of m genes
in a single cell, and the vector vy ∈ {0,1}m is defined through element-wise indica-
tors of nonzero expression, so [vy]i = I{yi �=0} for i = 1, . . . ,m. In the specification
from (1), both binary and continuous versions of gene expression are sufficient
statistics, and interactions thereof are parametrized, with G, H and K being ma-
trices of interaction parameters. Zeros in these interaction matrices indicate condi-
tional independences (and thus, absence of edges in a graph for a graphical model).
Specifically, the ith and j th coordinate are conditionally independent if and only
if all interaction matrices have their (i, j) and (j, i) entries zero (Lauritzen (1996),
Theorem 3.9).

As we discuss in more detail in Section 3, the model given by (1), which we
refer to as the Hurdle model, can be shown to be equivalent to a finite mixture
model of singular Gaussian distributions. In light of the observed symmetry in the
positive single cell expression levels, linking the modeling of zero-inflation with
Gaussian parameters for nonzero observations is both natural and convenient. This
said, it is an interesting topic for future work to develop more refined models of
the continuous expression arising when genes are “on.”

We will base statistical inference in the Hurdle model on so-called neighbor-
hood selection, where the neighborhood of each gene is inferred via penalized
regression methods (Meinshausen and Bühlmann (2006)). Neighborhood selec-
tion is a state-of-the-art method for estimation and inference in potentially high-
dimensional graphical models; see the review in Section 3.4 of Drton and Maathuis
(2017). The main challenge in our setting is determining how to calibrate signal in
the binary versus the continuous part. We solve this problem using an anisometric
group-lasso penalty (Section 4).

1.3. Outline. The remainder of the paper is structured as follows. Section 2
discusses the parameter targeted in single cell gene expression experiments, and
why it is not accessible from traditional bulk experiments. Section 3 develops
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the parametric Hurdle model for single cell gene expression, as specified in (1),
and discusses conditional independence in this setting. Section 4 gives a detailed
account of estimation of graphical models using neighborhood selection via pe-
nalized regression. Section 5 provides a simulation study that demonstrates the
benefits of our approach. In Section 6, we analyze the aforementioned experiment
on Tfh cells. Since the data set contains selected gene profiles that were available
for both single- and several-cell aggregates, we are able to highlight the refined
inferences that can be obtained from single cell data. In Section 7, we analyze data
on mouse dendritic cells, which are of far higher dimensionality than the Tfh cell
data. Our analyses show in particular that modeling the zero-inflation may uncover
distinct networks compared to existing approaches. We conclude with a discus-
sion in Section 8, where we highlight interesting problems for future research, in
particular, in graphical modeling. A supplement, McDavid et al. (2019), contains
expanded derivations and details on simulation scenarios.

2. Single cell versus bulk expression experiments. Protocols for bulk gene
expression experiments, such as for Illumina TrueSeq, call for 100 nanograms of
total mRNA, hence require hundreds to thousands of cells. On the one hand, this
biological “summation” over many of cells is expected to yield sharper inference
on the mean expression level of each gene. However, it can also be expected to
distort any conditional (in-)dependences present between genes.

Let Y1, . . . ,Yn be i.i.d. random vectors taking values in R
m, with Yi represent-

ing the copy numbers of m transcripts present in the ith single cell. Now suppose
the n cells are aggregated, and the total expression is measured using a linear
quantification that reports values proportional to the input counts of mRNA. The
expression observed in this bulk experiment is then

Z ∝
n∑
i

Yi ,

with the constant of proportionality typically a semi-empirical normalization fac-
tor, such as Transcripts Per Million or Fragments Per Kilobase Million. Al-
though most bulk experiments are designed to test for differences in mean ex-
pression due to experimental treatments and lack extensive replication within
a condition, stochastic profiling (Janes et al. (2010)) experiments have pro-
vided i.i.d. replicates of Z suitable for estimating higher order moments. How-
ever, when the distribution of Yi obeys some conditional independence rela-
tionships, in general the distribution of Z does not obey these same relation-
ships.

For example, take m = 3 and suppose that the Yi are i.i.d. samples from a trivari-
ate distribution supported on {0,1}3. Let [Y1, Y2, Y3] be a random vector following
this distribution, and let pijk = P(Y1 = i, Y2 = j,Y3 = k) be the joint probabilities.
Then Y1 and Y3 are conditionally independent given Y2 (in symbols, Y1 ⊥⊥ Y3|Y2)
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if and only if the two matrices (pi0k)ik and (pi1k)ik have rank 1 (Drton, Sturm-
fels and Sullivant (2009), Proposition 3.1.4). Yet even summing over only n = 2
cells, the random vector Z = Y1 + Y2 ≡ [Z1,Z2,Z3] taking values in {0,1,2}3

generally does not have Z1 ⊥⊥ Z3|Z2.
When the Yi are multivariate Normal, the conditional independence structure

is preserved under convolution. Unfortunately, for non-Gaussian distributions this
does not generally hold. As noted in our Introduction, single cell gene expression
is generally bimodal and zero-inflated, so not plausibly described by a multivariate
Normal distribution. Therefore, even though for large enough n the distribution of
the bulk experiment Z might approach multivariate (log-)normality, the networks
estimated from graphical modeling of bulk data will not reflect conditional inde-
pendences that hold among expression levels in single cells.

3. Hurdle models. Univariate Hurdle models arise from modification of a
density through excision of points in the support and assignment of positive masses
to these points. Targeting zero-inflation, our excision point is the origin. Let vy =
I{y �=0} be the indicator function for a nonzero value of the observation y. Then the
Hurdle model derived from a Normal distribution with mean ξ and precision τ 2

has density

f (y) = exp
{
vy

[
1/2 log

(
τ 2/(2π)

) + logp/(1 − p) − ξ2τ 2/2
]

+ yξτ 2 − y2τ 2/2 + log(1 − p)
}

(2)

with respect to the measure λ0 that is the sum of the Lebesgue measure and a
Dirac mass at zero. Here, P(Vy = 1) = p ∈ (0,1) is a mixing weight representing
the chance of observing a nonzero value. Varying p, ξ and τ 2, one obtains an
exponential family with sufficient statistic y, −y2/2 and vy , and associated natural
parameters h = ξτ 2, k = τ 2 and

g = 1/2 log
(
τ 2/(2π)

) + logp/(1 − p) − ξ2τ 2/2.

3.1. Multivariate Hurdle models. A plausible model for the joint distribution
of a random vector Y = [Y1, . . . , Ym] representing single cell gene expression puts
positive mass on every one of the 2m coordinate subspaces (Figure 2), including
the origin when all genes are “off” and the entire space R

m when all genes are
“on.” Assigning positive mass to the coordinate subspaces generalizes the univari-
ate construction from (2). As it is easiest to construct this model conditionally, we
introduce the vector V = [V1, . . . , Vm]T ≡ [I{y1 �=0}, . . . , I{ym �=0}]T that indicates
the nonzero coordinates of Y. Throughout, our notation suppresses the dependence
of V on Y. We emphasize that specification of the distribution of the multivariate
Bernoulli random vector V simply amounts to specification of a 2m probability
table.

For any vector v = [v1, . . . , vm] ∈ {0,1}m, define the subspace R
v = ∏m

i=1 R
vi

where we set R0 = {0}. So, Rv is the coordinate subspace corresponding to the
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FIG. 2. Scatter plots of inverse cycle threshold (40-Ct) measurements y from a quantitative PCR
(qPCR)-based single cell gene expression experiment (lower panels). The cycle threshold (Ct) is
the PCR cycle at which a predefined fluorescence threshold is crossed, so a larger inverse cycle
threshold corresponds to greater log-expression (McDavid et al. (2013)). Measurements that failed
to cross the threshold after 40 cycles are coded as 0. The upper panels show mosaic plots of each
pair of contigency tables that can be formed from the indicator functions [vy]i = I{yi �=0}. On the
lower panels, the linear regression on positive pairs of observations is indicated in blue, while the
conditional mean values are indicated in red.

nonzero entries of v. Similarly, define PD(v) to be the cone of m × m symmetric
matrices that have nonzero entries only in rows and columns indexed by i with
vi = 1, and for which the submatrix given by these rows and columns is positive
definite. Now suppose that the conditional distribution of Y given V is multivariate
Normal and, specifically,

(3) (Y|V = v) ∼ N
(
μ(v),�(v)

)
with mean vector μ(v) ∈ R

v and covariance matrix �(v) ∈ PD(v). The normal
distribution in (3) is singular (see Section 2 in supplement McDavid et al. (2019)
for details) and supported on the subspace R

v.
In the applications, we have in mind the dimension m will be large enough so

that it is infeasible to accurately estimate a general 2m probability table for the
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distribution of V, and a collection of 2m mean vectors and covariance matrices
for the conditional distribution of Y. We thus proceed to formulate a more parsi-
monious pairwise interaction model. While of far lower dimension, the pairwise
model allows one to capture interesting conditional (in-)dependences.

First, we assume V to follow an Ising model with joint probabilities

p(v) ≡ P(V = v) ∝ exp
(
vT Gv

)
, v ∈ {0,1}m,(4)

where G is a symmetric interaction matrix in R
m×m. Second, we assume that the

conditional normal distribution of Y given V = v has log-density

logf (y|V = v) = vT Hy − 1

2
yT Ky − C′(H,K), y ∈ R

v,(5)

with respect to Lebesgue measure restricted to the subspace R
v. In (5), H and K

are two m × m interaction matrices that do not vary with v, and C ′(H,K) is a
normalization constant. The matrix K is symmetric and positive definite, but H
may be arbitrary from R

m×m. Putting the two pieces from (4) and (5) together, the
joint density of Y with respect to the product measure λm

0 simplifies to

(6) f (y) = exp
{

vT Gv + vT Hy − 1

2
yT Ky − C(G,H,K)

}
, y ∈R

m.

We recognize an exponential family with three interaction matrices G, H and K as
natural parameters and the three statistics vvT , vyT and yyT sufficient.

Let I ≡ I(V) be the m × m diagonal matrix with (i, i) entry equal to Vi . Then
for any vector x ∈ R

m the product Ix is the vector that has the ith coordinate
replaced by zero for all indices i with Yi = Vi = 0. Similarly, multiplying I from
left and right to a matrix zeros out all but the principal submatrix determined by this
set of indices. Using this notation, the pairwise Hurdle model from (6) corresponds
to the particular choice of

μ(v) = (IKI)−Hv, �(v) = (IKI)−(7)

for the mean vectors and covariance matrices in the conditional specification
from (5). In (7), A− denotes the Moore–Penrose pseudo-inverse of a matrix A.
From the perspective of (7), the pairwise Hurdle model is a mixture of 2m singular
Gaussian distributions whose mean vectors and covariance matrices are derived
from one precision matrix K and an interaction matrix H.

The notation we used in the conditional specification of the multivariate Hurdle
model follows Lauritzen (1996), who describes conditional Gaussian (CG) models
with inhomogeneous, nonsingular precision K(v) that can depend on the discrete
set of covariates in arbitrary, positive-definite fashion. These models have been
considered more recently by Lee and Hastie (2013) and Cheng et al. (2017). Our
formulation differs from the traditional CG models by involving singular distribu-
tions with means and covariance matrices that exhibit structured inhomogeneity.
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3.2. Conditional distributions identify interaction parameters. The normaliz-
ing constant C in equation (6) is a difficult to compute sum of 2m terms. This is
expected as already the distributions in the Ising model from (4) have an intractable
normalization constant for moderately large m. Fortunately, the univariate full
conditional distributions obtained from (6) have tractable normalizing constants
and identify the parameters from a given row/column of the interaction matrices
G = (gab), H = (hab) and K = (kab).

Fix a coordinate b, and define its complement A = {1, . . . ,m} \ {b}. Consider
now the density f (y) from (6) as a function of only yb, that is, yA = [yi : i ∈ A] is
fixed, and write f[b|A] for the conditional density of yb given yA. Then noting that
viyi = yi and v2

i = vi , we have

logf[b|A](y) = vbg[b|A] + ybh[b|A] − 1

2
y2
bk[b|A] − C[b|A], yb ∈ R,(8)

where C[b|A] does not depend on yb and

g[b|A] = gbb + 2gbAvA + hbAyA,(9)

h[b|A] = hbb + hT
AbvA − kbAyA,(10)

k[b|A] = kbb.

The conditional density f[b|A] is thus a univariate Hurdle density as specified in (2)
with natural parameters g[b|A], h[b|A] and k[b|A].

The three natural parameters are obtained from linear predictors that depend on
a design matrix constructed from yA and vA. For example, we may write

g[b|A] = gbb + ∑
a∈A

Xa

[
gba

hba

]

for Xa = [va, ya]. The linear predictor for h[b|A] can be written analogously. We
note that if the data include additional nuisance covariates W0 that describe each
experimental unit then these can be included by augmenting the linear predictor to

(11) g[b|A] = WT
0 gb0 + gbb + ∑

a∈A

Xa

[
gba

hba

]

with gb0 being the parameters capturing the effects of the covariates. From this
perspective, the conditional distribution in (8) defines a vector generalized linear
model, parametrized by three natural parameters g[b|A], h[b|A] and k[b|A], the first
two of which are modeled as a linear function of the expression of other genes.

3.3. Conditional independence graphs. The dependence structure of the ran-
dom vector Y = [Y1, . . . , Ym] may be summarized in its conditional independence
graph. This is an undirected graph G = (V,E) with vertex set V = {1, . . . ,m} and
an edge set E that is determined by the conditional independences in Y. More pre-
cisely, the edges in E are those two-element sets {a, b} ⊂ V for which Ya and Yb
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are conditionally dependent given the remaining variables, that is, YV\{a,b}. In our
case, Y has a density f as in (6). The dominating measure is a product measure,
and f is positive and continuous. Hence, the Hammersley–Clifford theorem as-
sures that the conditional independence graph of Y has an edge {a, b} if and only
if the four possible ab interactions are zero, so

(12) gab = hab = hba = kab = 0;
see Lauritzen (1996), Chapter 3. This fact is also evident from the form of the
conditional distributions detailed in (8), (9) and (10). It motivates the neighborhood
selection procedure developed in the next section.

4. Neighborhood estimation via penalized regression. In the single cell ex-
periments to which we envision applying this method, the number of cell repli-
cates, n, is larger than the sample sizes seen in typical bulk mRNA experiments.
However, it is still often the case that the number of genes m is larger than the
number of cell replicates. We are thus in a setting that benefits from application
of methods from “high-dimensional statistics,” though emerging technologies are
increasing available sample sizes.

4.1. Related work. Under scenarios in which n,m → ∞ while satisfying that
n > Cdφ(logm)ψ , where C,φ and ψ are constants that depend on the model and
d is the maximum vertex degree of the conditional independence graph, penalized
regression has been shown to consistently identify the graph of multivariate Nor-
mal models (Meinshausen and Bühlmann (2006)), of Ising (auto-logistic) models
(Ravikumar, Wainwright and Lafferty (2010)) and of exponential family graphical
models (Chen, Witten and Shojaie (2015), Yang et al. (2014)). While this paper
was in preparation, Tansey and Hernan Madrid Padilla (2015) further extended this
line of work to general vector space graphical models that include the multivari-
ate Hurdle model as a special case. However, the standard (isometric) group-lasso
they propose for estimation of the conditional independence graph does not ac-
count for heterogeneity in the scaling of predictors in the conditional distributions.
The anisometric group-lasso we propose in the following section yields drastic
improvements in finite samples.

4.2. Anisometric penalty. Throughout this section, we fix an index b and
consider the conditional distribution Yb given the other variables in YA for
A = {1, . . . ,m} \ {b}. For any a ∈ A, define the parameter vector θa = [gba, hba,

hab, kba]. By (12), Yb ⊥⊥ Ya|YA\{a} if and only if θa = 0.
Let θ = [θa : a ∈ A], and let

(13) Pλ(θ) = λ
∑
a∈A

√
θT
a θa
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be the group lasso penalty for tuning parameter λ ≥ 0. Maximization of the penal-
ized conditional log-likelihood function

logf[b|A](y) − Pλ(θ)

can lead to a solution that is sparse in parameter blocks, that is, some of the sub-
vectors θa are zero. The penalty is equivalent to placing a sequence of independent,
multivariate Laplace priors on blocks of θ and reporting the MAP (Eltoft, Kim and
Lee (2006)).

Viewed as a prior, the standard group-lasso penalty from (13) implicitly assumes
that each variable in each block has a similar effect size. This may be reasonable
if the variables in each block are measured in comparable units, but is problematic
otherwise. For example, if covariate X1 is measured in meters, while covariate X2
in centimeters, then the distribution of effect sizes for X2 would be 100-times more
dispersed than the distribution of effect sizes for X1. In penalized GLMs, this is
typically enforced “at run time” by ensuring covariates are on comparable scales,
or Z-scoring each column of the design matrix if no intrinsic scale exists.

In our setting of a vector regression, terms from linear predictor g[b|A] and linear
predictor h[b|A] end up together in blocks, and these coefficients are not necessarily
comparable, as one specifies log-odds of E(Vb|VA = 0) while the other specifies
conditional expectations of E(Yb|YA). Rescaling does not resolve this, since the
same design matrix Xa = [Va,Ya] is used in each linear predictor, and in any case,
rescaling generally alters the solution (Simon and Tibshirani (2012)). Instead, we
propose replacing the isometric 	2 norm in the sum in (13) so that the penalty is

(14) PH,λ(θ) = λ
∑
a∈A

√
θT
a Haaθa.

Here, H ≡ diag(Haa) is a block-diagonal, positive-definite matrix that allows
terms from the linear predictors to have different scales of penalty. It also accounts
for correlation between components of θa , since columns of the design are corre-
lated due to both va and ya appearing as predictors.

If prior information existed, the matrix H could be chosen accordingly, with
interpretation as a multivariate Laplace prior. Absent prior information, setting
H equal to the Fisher information under a null model θa = 0 for all a results in
variable selection approximately equal to conducting score tests, with exact equiv-
alence holding under a null hypothesis of θa = 0 for all a; see Proposition 1 in
McDavid et al. (2019).

4.3. Computation. In Algorithm 1, we outline the proposed neighborhood se-
lection, allowing for possible nuisance covariates W. The nuisance covariates W
might just be an intercept column, but generally could be any cell-level covariate
deemed relevant. The smooth and concave function in line 7 can be maximized us-
ing any Newton-like algorithm (e.g., BFGS). The objective in line 10 is a sum of a
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Data: Expression matrix Y ∈ R
n×m, nuisance covariates W ∈R

n×q , penalty
path �.

Working parameters: Unpenalized nuisance parameters θ0 ∈ R
2q+1, edge

parameters θ ∈ R
4(m−1).

Result: Neighborhoods ne(i, λ), 1 ≤ i ≤ m, λ ∈ �
1 for b ∈ {1, . . . ,m} do
2 A ← {1, . . . ,m} \ {b} ;
3 X ← [W,YA,VA] ;
4 θ0 ← [gbb,gT

b0, hbb,hT
b0, kbb] ;

5 θ ← [gbA,hbA,hT
Ab,kbA] ;

6 Let logf[b|A](θ0, θ) return the log-density (8) evaluated at [θ0, θ ] with
covariate matrix X.

7 θ̄0 ← argmaxθ0
logf[b|A](θ0, θ = 0) ;

8 H ← ∇2 logf[b|A](θ̄0,0);
9 for λ ∈ � do

10 [θ̂0, θ̂] ← argmaxθ0,θ
logf[b|A](θ0, θ) − PH,λ(θ) ;

11 Let ne(b,λ) contain vertex a whenever any of

ĝbA, ĥAb, ĥbA, k̂Ab �= 0.
12 end
13 end

Algorithm 1: Neighborhood selection

concave, smooth function and a structured concave function and can be efficiently
solved using proximal gradient ascent (Parikh and Boyd (2014)). In particular, one
may exploit the fact that although the proximal operator

prox
γ

(x) = argmax
u

1

γ
‖x − u‖2

2 + ∑
a∈A

√
uT

a Haaua

is not available in the familiar form of a soft-thresholding operator as in the iso-
metric group-lasso, the proximal operator of the anisometric group-lasso can be
efficiently found via a line search after one-time precalculation of the singular
value decomposition of Haa (Foygel and Drton (2010)). Throughout the inner-
loop, warm starts are exploited for θ̂ as λ varies. Active set heuristics using the
strong rules of Tibshirani et al. (2012) yield computational gains for sparse solu-
tions with large m. The algorithm yields, for each node, a sequence of neighbor-
hoods over a sequence of tuning parameters �. These neighborhoods need not be
consistent, in the sense that for some element of � it could be that b ∈ Ne(a) but
a /∈ Ne(b). We resolve that by adopting an “or” rule. In the accompanying soft-
ware,4 the algorithm is written in a combination of R and C++. Timings for the

4Available at https://github.com/amcdavid/HurdleNormal.

https://github.com/amcdavid/HurdleNormal
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FIG. 3. Average timings for graph estimation algorithms as a function of the number of nodes.

proposed method and competitors (described further in Section 5) are shown in
Figure 3.

5. Simulations. We consider a series of simulations under several sets of un-
derlying (i) graph topologies, (ii) parametric models, (iii) sample sizes and (iv)
number of vertices. We summarize the considered setups here and defer details
to Section 3 in the Supplementary Material (McDavid et al. (2019)). The num-
ber of observations n varies from 100 to 12,500. In the chain graph topology, the
number of vertices varies from m = 16 to m = 128, while in the e. coli graph topol-
ogy, m = 500. The parametric models include the pairwise hurdle model (6), the
hurdle model under contamination by t8 noise, a logistic/Ising model and a Gaus-
sian/logistic censoring model specified in Supplementary Table 1. The pairwise
hurdle model is said to be complete if for each edge present in the graph, all of the
corresponding entries in each of the three interaction matrices are nonzero. The
pairwise hurdle model is said to be G-minimal when H and K are diagonal matri-
ces and only G contains nonzero off-diagonal entries. In this case, the G-minimal
model is equivalent to a logistic/Ising model.

5.1. Methods compared and default tunings. Six methods were examined to
test graph structure inference, and are described in Supplemental Table 1. The
Hurdle models are fit using the accompanying software HurdleNormal version
0.98.2, while the Logistic, Gaussian and NPN models are fit using the R pack-
age glmnet version 2.0-5 (via the autoGLM function in HurdleNormal). The
Aracne method is fit using package netbenchmark version 1.6.0. For methods
1–5, neighborhoods are stitched together using an “or” rule, that is, vertices a and
b are adjacent if either b ∈ ne(a) or a ∈ ne(b).

In Figure 4, various fixed tunings are shown. In the oracle tuning, the graph
with maximum sensitivity subject to FDR < 10% is shown. This tuning is not
available in practice, but shows the maximum achievable performance of each
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FIG. 4. Dimensional (A) and sample size scaling (B) of six different network inference algorithms
applied to simulated data under oracle FDR tuning. Data are generated from the multivariate hurdle
model (6) under chain graphs (A) and e. coli graph (B). Panel (C) shows network selection consis-
tency of various methods using the Bayesian Information Criterion under various models described
in the Supplementaey Material. The paths trace out the changes in FDR and sensitivity as the sample
size increases geometrically from 100 (1) to 12,500 (4).
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method. With the BIC tuning, we employ the Bayesian Information Criteria on
the pseudo-likelihood

BICλ = ∑
b∈V

−2 logf[b|A](θ̂b,λ) + ‖θb,λ‖0 logn,

where θb,λ is the penalized solution at penalty λ for vertex b, ‖θb,λ‖0 is the num-
ber of nonzero entries, and θ̂b,λ is the (unpenalized) maximum pseudo-likelihood
estimate for the nonzero entries. The BIC solution is the one that minimizes BICλ.
This tuning is available for methods 1–5. In the case of the the Aracne method, the
BIC is unavailable as no likelihood is defined.

5.2. Results. Thirty simulation replicates sufficed to bound the simulation-
induced Monte Carlo standard error of the mean < 5 × 10−3 for FDR and < 0.02
for the sensitivity.

The simulations show that misspecified estimation procedures perform poorly
when model (6) is the data generating distribution. When a FDR-controlling oracle
is available, the anisometric Hurdle model can dominate other methods in edge-
sensitivity (Figure 4A–B). However, when the Hurdle model is over-parameterized
as in the G-sparse scenarios, the minimal Logistic model is superior, though the
anisometric 	1 penalty partially ameliorates this gap. In very simple chain-graph
scenarios, it is nigh-impossible to recover a network using 10-cell data. The e. coli
network provides a counterexample where 10-cell data nearly equals the perfor-
mance available from single cell data. This may be due to the hub-and-spoke na-
ture of the e. coli network, so the effect of marginalization by convolution tends
to only add more connections between the hub and its neighborhood. The e. coli
data and chain-graphs suggest that collecting single cell data, and estimating graph
structure with a method that accommodates zero inflation can accurately discover
a wide variety of network topologies.

More seriously, ignoring zero-inflation confounds use of information criteria
to tune network size (panel C). On the other hand, the Hurdle model is robust
to a variety of model departures, including contamination with t8-distributed er-
rors (labeled with “t”), and data generation under a Gaussian-Logistic censoring
model. When the full solution path is examined (Figure 5), a practitioner who re-
ported only the top few edges would often suffer from a large number of false
positives when using methods not designed for zero-inflated data. For example,
with n = 100 in the e. coli network, all methods, aside from the Hurdle have
FDR exceeding 20%. The simulations also suggest that perfect recovery of gene
networks is impractical at realistic sample sizes, even with a correctly specified
model, motivating a form of meta-analysis on estimated graphs, discussed further
in Section 7.2.
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FIG. 5. Sensitivity vs. FDR for solution paths from methods and scenarios described in Supple-
mental Table 1. The ⊕ symbol indicates the tuning selected by BIC.

6. T follicular helper cells. Our simulations show that depending on the data
generating scenario, the Hurdle method may substantially out-perform, or at least
mimic the performance of other candidate methods. We next sought to see if meth-
ods would tend toward consensus in biologically derived single cell and 10-cell
data, or if it were possible that the Hurdle method might offer unique insights. We
considered co-expression networks in Tfh cells measured in eight healthy donors.
65 genes were selected for profiling via qPCR on the basis of their role in Tfh
signaling and differentiation, generally with sparse expression across single cells
(overall probability of expression 27%). 465 single cell, and 187 10-cell replicates
were taken.

Figure 6 shows networks of approximately 24 edges estimated using Hurdle,
Gaussian (with centered data, see Section 1 McDavid et al. (2019) and Logis-
tic, and Gaussian model using 10-cell aggregates. The size of the network is a
compromise between stability selected (Shah and Samworth (2013)) sizes of each
procedure, which varies from 11 edges (Hurdle) to 32 edges (Gaussian).
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FIG. 6. Networks of 22 edges estimated through neighborhood selection under the Aracne, Hurdle,
logistic, Gaussian model (single cells) and Gaussian model (10 cell aggregates) in T follicular helper
cells. Brown hues indicate estimated negative dependences, while blue-green hues indicate positive
dependences. The edge width and saturation are larger for stronger estimated dependences.

Normalized Hamming distances between the four methods, the Aracne method
and the Gaussian model fit on the “raw,” uncentered data are reported in Table 1.
The Hurdle and Gaussian models are most similar, while the logistic and Gaussian
10-cell network are quite distinct. The Gaussian(raw) model on untransformed
data is similar to the logistic model, as distance of nonzero expression values from
the origin is large compared to the variation among the nonzero values.

In the Hurdle network, the transcription factors NFATC1 (Nuclear factor of acti-
vated T-cells) and BCL6, and the signaling molecule CD154 and chemokine recep-
tor CCR3 are hubs. NFATC1 has been found to promote transcription of cytokines
IL21 (Hermann-Kleiter and Baier (2010)) and signaling molecule CD154 (Lan
et al. (2005)), while BCL6 serves as a transcriptional repressor, and is one of the
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TABLE 1
Dissimilarities (

Hamming Distance
Number of edges ) between networks of size 24 estimated through various methods.

The Gaussian(10) model is a Gaussian model estimated on 10-cell replicates, while the
Gaussian(raw) data is estimated on single cells without centering the data. The remaining models

are described in Section 5

Gaussian(10) Gaussian Gaussian(raw) Hurdle logistic

Aracne 1.00 0.92 0.92 1.00 1.00
Gaussian(10) 1.00 1.00 1.00 1.00
Gaussian 0.92 0.65 1.00
Gaussian(raw) 1.00 0.39
Hurdle 1.00

canonical markers constitutively expressed in Tfh cells. CTLA4 which has been
described to inhibit inflammation, interacts negatively with inflammatory activa-
tor JAK3. The disconnected component of CCR3-CCR4-BTLA-SELL-TNFSF4
may hint at plasticity between Tfh cells and the related T-cell lineages Th1 and
Th2. CCR3 and CCR4 are canonical markers of Th2 cells, while TNFSF4 (cod-
ing for OX40L) promotes Th2 development (de Jong et al. (2002)). Thus co-
expression of these genes may suggest cells transitioning between Tfh and Th1
or Th2 states.

In the Gaussian network, though NFATC1, BCL6 and CD154 remain highly
connected, CD27 now has highest degree and serves as a hub to receptors CXCR4,
IL2Rb, IL2Rg, as well as ITGB2, NFATC1 and FYN. CD3e, the backbone respon-
sible for transducing the T-cell receptor signal is connected with co-receptor CD4,
CD154, IL2Rg, Fyn and ANP32B. The negative interactions between BTLA and
CTLA4 are absent.

The logistic network consists primarily of negative interactions. The strongly
negative BCL6–BLIMP1 edge is consistent with previously described antagonism
between these genes (Johnston et al. (2009)). Interestingly, this edge is absent in
the other networks.

7. Mouse dendritic cells. Shalek et al. (2014) exposed bone marrow-derived
dendritic cells, from mus musculus, to lipopolysaccharide (LPS). LPS is a toxic
compound secreted and structurally utilized by gram-negative bacteria and induces
a cascade of changes in a cell’s expression profile through several pathways. Cells
were sampled after 0, 1, 2, 4 and 6 hours post-exposure. We estimated transcrip-
tion networks using 4431 transcripts expressed in at least 20% of 65 cells sampled
2 hours after LPS exposure, at which interval transcription is expected to be un-
dergoing a variety of dynamic changes. Rather than attempting to perform model
selection on this limited sample size, we consider highly sparse (< 0.01% sparsity)
networks of 700 edges, chosen to provide tractable visualization and illustration of
the method. The BIC tunings (discussed subsequently) are decidedly larger.
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7.1. Selected networks. In a Gaussian model, the network is star-shaped, with
Mx1, Ccl17, Tax1bp3 and Ccl3 as hubs all with degrees ≥ 15, though none are
directly interconnected (Figure 7). In all, 2.5% of nonisolated vertices contribute
50% of the edges in the network. With the exception of Tax1bp3, these hub genes
are all immune-signaling related.

In the Hurdle model (Figure 8), the graph is more chain-like, with maximum
degree 12: 7% of nodes provide 50% of the edges. The strongest hub, Mgl2 (also
known as Cd301b), has been recently described to be involved in uptake and pre-
sentation of glycosylated antigens, such as LPS, by dendritic cells (Denda-Nagai
et al. (2010)). A subconnected set of genes coding for MHC-II antigen presenta-
tion (H2ab1, H2eb1, H2aa) is the densest sub-component, and interconnected to

FIG. 7. Core Gaussian model networks in LPS-treated mouse dendritic cells. Hub genes are shown
in red. Vertex colors indicate gene ontology membership. Disconnected subgraphs with two vertices
are suppressed.
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FIG. 8. Core Hurdle model networks estimated in LPS-treated mouse dendritic cells. Hub genes
are shown in red. Vertex colors indicate gene ontology membership. Disconnected subgraphs with
two vertices are suppressed.

Mgl2 as well as Fabp5. Increased expression of Fabp5 has been shown to increase
expression of cytokines Il7 and Il18, hence is also involved in immune cell stimu-
lation (Adachi et al. (2012)). Many of the neighbors of Mgl2, H2ab1, H2eb1, H2aa
and Fabp5 are neighbors of the hub genes in the Gaussian graph, whereas Mx1,
Ccl17 and Ccl3 are sparsely connected in the Hurdle network. Tax1bp3 is absent.

Using BIC, both the Gaussian and Logistic models yield networks with more
than 25,000 edges, while the Hurdle selects a network of roughly 12,000 edges.
The additional flexibility available in the Hurdle for modeling inter-node relation-
ships may permit sparser graphs to describe the conditional dependence relation-
ships. We also observe that the Hurdle synthesizes signal from both Gaussian and
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Logistic networks. For sufficiently rich network sizes, the Gaussian and Hurdle and
Logistic and Hurdle networks share 21% and 1% of possible edges, respectively,
compared to only 0.08% of possible edges between the Gaussian and Logistic net-
works (binomial test p < 10−6).

7.2. Graphical geneset edge enrichment. We consider how well the 700 edge
networks recapitulate known relationships between genes using previously de-
scribed functional annotations. The Gene Ontology Consortium (2015) provides a
database of categories to which genes may be annotated if experimentally or com-
putationally they are involved in a biological process. We note that networks may
exhibit intraconnection within GO categories, and that some pairs of categories
may exhibit preferential interconnection.

Each pair (i, j) of GO categories—including self-pairs—induces a coloring of
vertices, coloring the vertices belonging to category i color ci and category j color
cj . Vertices that do not belong to either i or j remain uncolored. Iterating through
the 39872/2 pairs of categories, we test for edge enrichment between colors. Sup-
pose in the inferred graph of 700 edges, nij edges connect ci -colored vertices to
cj vertices. If the colored vertices were completely connected with ni vertices of
color ci and nj vertices of color cj , then there would be mij = ni × nj edges
among them (with the obvious adjustment made for self-edges when i = j ). Fig-
ure 9 depicts the procedure on four nodes. We now define an enrichment statistic
as the hypergeometric tail probability

tij = P(Nij > nij ;700,mij ,4431 × 4430/2),

which is the probability of drawing nij colored balls, given 700 draws from urn
containing 4431 × 4430/2 balls of which mij are colored.

This results in nearly 16 million enrichment statistics on the pairs of categories,
which follow a complicated dependence structure under the series of null hypothe-
ses that the observed edges being connected independent of coloring. The top 200
(smallest in magnitude) enrichment statistics t(k), k < 200 are compared to their
distribution P(t∗) under a Erdős–Rényi random graph model, yielding a Monte

FIG. 9. Overview of geneset edge enrichment analysis. 1. Vertices A and C belong to the blue
category, while vertex B belongs to the red category. Vertex D belongs to neither. 2. There is nij = 1
blue-red intra-connection, while mij = 2 are possible given the 4 edges. 3. The enrichment statistic

is the hypergeometric tail probability tij = P(N = 2;4,2,6) = (2
2)(

4
2)

(6
4)

= 0.4. 4. The significance of

the blue-red enrichment statistic would be ascertained by sampling from the null Erdos–Renyi model
over all possible pairs of categories.
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Carlo p-value for each order statistic. A pair of colors (i, j) with rank rij < 200
is declared significant if P(tij < t∗(rij )) < 0.05 and P(t(r) < t∗(r)) < 0.05 for all
r < rij , that is, it is significant at 5% and all smaller order statistics are also signif-
icant.

7.2.1. Hurdle graphs tend to include intra-category enrichment. In the Gaus-
sian model, more than 100 pairs of categories (colors) are significantly enriched at
an FDR of less than 10%, however in these pairs, only 6 correspond to intracat-
egory enrichment (Figure 10). These are: response to salt stress, potassium chan-
nel regulator activity, extracellular exosome and three genesets containing genes
with significant time-course differential expression in the original experiment. In
the Hurdle model (Figure 11), 13 of 57 significantly enriched pairs form intra-

FIG. 10. Modules enriched at FDR ≤ 10% using graphical geneset edge enrichment in mouse
dendritic cells under Gaussian model.
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FIG. 11. Modules enriched at FDR ≤ 10% using graphical geneset edge enrichment in mouse
dendritic cells under Hurdle model.

connections, including defense response to Gram-negative bacteria, and cell–cell
adhesion and several modules involving extracellular secretion via the Golgi ap-
paratus. Also of particular note, genes annotated to the activation of innate im-
mune response are directly connected to RNA PolII transcription factors, as well
as “detection of lipopolysaccharide”—“endoplasmic reticulum—Golgi intermedi-
ate compartment.” Both of the modules are absent from the Gaussian network. This
suggests that the more appropriate Hurdle model manages to identify transcription
factor-induced expression changes in these regulated genes, a direct method by
which one gene would induce expression changes in another.

No significant enrichment was found in the logistic model.

8. Discussion. Graphical models estimated from single cell data are distinct
from networks estimated from bulk data, or even repeated stochastic samples. In
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simulations, the Hurdle model with anisometric penalty has much greater sensi-
tivity compared to available methods, while in the two data sets here, it yields
substantially different network estimates compared to Gaussian and Logistic mod-
els on these zero-inflated data. When enrichment of gene ontology categories is
considered between vertices in transcriptome-wide data, the enrichment uncovered
with the Hurdle model is consistent with identifying direct effects of transcription
factors on genes undergoing dynamic regulation due to LPS exposure.

In our work, we have utilized methods for sparse neighborhood selection. How-
ever, the zero-inflated parametric model explored here is not limited to this frame-
work, and could serve as a basis for many network inference techniques, including
mutual information-based techniques or to parametrize families of directed net-
works.

Although measuring transcriptome-wide data allows conditional estimation of
direct effects between genes, non-mRNA factors may also greatly affect gene ex-
pression. In this sense, important variables have still been marginalized over, and in
the case of the Tfh data, indeed, most of the transcriptome has been marginalized
over. Extensions that adapt graphical model selection to clustering and/or factor
analytic models would likely be useful and allow greater biological insight with
these data sets.

Acknowledgments. AM thanks Daniel Lu for comments on the networks in
Section 6.

SUPPLEMENTARY MATERIAL

Derivations and methods (DOI: 10.1214/18-AOAS1213SUPP; .zip). Supple-
mental derivations and methods for simulation and data preprocessing.
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