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Abstract

This work concerns the question of how two important dynamical properties, oscilla-
tions and bistability, emerge in an important biological signaling network. Specifically,
we consider a model for dual-site phosphorylation and dephosphorylation of extracellu-
lar signal-regulated kinase (ERK). We prove that oscillations persist even as the model
is greatly simplified (reactions are made irreversible and intermediates are removed).
Bistability, however, is much less robust – this property is lost when intermediates are
removed or even when all reactions are made irreversible. Moreover, bistability is char-
acterized by the presence of two reversible, catalytic reactions: as other reactions are
made irreversible, bistability persists as long as one or both of the specified reactions
is preserved. Finally, we investigate the maximum number of steady states, aided by
a network’s “mixed volume” (a concept from convex geometry). Taken together, our
results shed light on the question of how oscillations and bistability emerge from a
limiting network of the ERK network – namely, the fully processive dual-site network
– which is known to be globally stable and therefore lack both oscillations and bista-
bility. Our proofs are enabled by a Hopf bifurcation criterion due to Yang, analyses of
Newton polytopes arising from Hurwitz determinants, and recent characterizations of
multistationarity for networks having a steady-state parametrization.

Keywords: chemical reaction network, Hopf bifurcation, oscillation, bistable, Newton
polytope, mixed volume

1 Introduction

In recent years, significant attention has been devoted to the question of how bistability
and oscillations emerge in biological networks involving multisite phosphorylation [14]. Such
networks are of great biological importance [9]. The one we consider is the network, depicted
in Figure 1, comprising extracellular signal-regulated kinase (ERK) regulation by dual-site
phosphorylation by the kinase MEK (denoted by E) and dephosphorylation by the phos-
phatase MKP3 (F ) [40]. This network, which we call the ERK network, has an important
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role in regulating many cellular activities, with dysregulation implicated in many cancers [42].
Accordingly, an important problem is to understand the dynamical properties of the ERK
network, with the goal of predicting effects arising from mutations or drug treatments [21].
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Figure 1: The (full) ERK network, from [40], with notation of [17]. The fully
processive network is obtained by deleting all vertical reactions (those labeled by
kon, koff ,m1,m2,m3, `on, `off , n1, n2, n3). We also consider irreversible versions of the ERK
network obtained by deleting some of the reactions labeled k2, kon,m1, l2, `on, n2 (in blue).
In particular, deleting all six of those reactions yields the fully irreversible ERK network.

The ERK network was shown by Rubinstein, Mattingly, Berezhkovskii, and Shvarts-
man [40] to be bistable and exhibit oscillations (for some choices of rate constants). Rubin-
stein et al. also observed that the ERK network “limits” to a network without bistability or
oscillations. Namely, when the rate constants kcat and `cat are much larger than koff and `off ,
respectively, this yields the “fully processive” network obtained by deleting all vertical ar-
rows in Figure 1, which is globally convergent to a unique steady state [13, 18]. Accordingly,
Rubinstein et al. asked, How do bistability and oscillations in the ERK network emerge from
the processive limit? This question was subsequently articulated as follows [14]:

Question 1.1. When the processivity levels pk := kcat/(kcat + koff) and p` := `cat/(`cat + `off)
are arbitrarily close to 1, is the ERK network still bistable and oscillatory?

One of our main contributions is to lay foundation toward answering Question 1.1. Speci-
fically, we answer a related question, How do bistability and oscillations emerge from simpler
versions of the ERK network? Our main results, summarized in Table 1, are that oscillations
are surprisingly robust to operations that simplify the network, while bistability is lost
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more easily. Specifically, oscillations persist even as reactions are made irreversible and
intermediates are removed (see Section 4.1), while bistability is lost more quickly, when only
a few reactions are made irreversible (Section 4.2). Taken together, our results form a case
study for the problem of model choice – an investigation into the simplifications of a model
that preserve important dynamical properties.

ERK Maximum # Maximum #
network Oscillations? Bistability? steady states over C
Full Yes [40] Yes [40] Conjecture: 3 7
Irreversible Yes* If kon > 0 or `on > 0 1 5*
Reduced Yes No 1 3

Table 1: Summary of results. Yes* indicates that the fully irreversible ERK network exhibits
oscillations (see Figure 3), and 5* indicates that 5 is the maximum number of complex-
number steady states for the network obtained from the full ERK network by setting kon = 0.
For details on results, see Propositions 4.1, 4.5, and 5.9, and Theorem 4.6.

Our focus here – on determining which operations on the ERK network preserve oscil-
lations and bistability – is similar in spirit to the recent approach of Sadeghimanesh and
Feliu [41]. Indeed, there has been significant interest in understanding which operations on
networks preserve oscillations [3], bistability [4, 20, 32], and other properties [24].

A related topic – mentioned earlier – is the question of how dynamical properties arise in
phosphorylation systems. Several works have examined this problem at the level of param-
eters, focusing on the question of which rate constants and/or initial conditions give rise to
oscillations [12] or bistability [10, 11]. Our perspective is slightly different; instead of allowing
parameter values to change, we modify the network itself. Accordingly, our work is similar in
spirit to recent investigations into minimal oscillatory or bistable networks [3, 4, 27, 28, 34].

A key tool we use is a parametrization of the steady states. Such parametrizations have
been shown in recent years to be indispensable for analyzing multistationarity (multiple
steady states, which are necessary for bistability) and oscillations [22, 31, 45]. Indeed, here
we build on results in [10, 12, 17].

Specifically, following [12], we investigate oscillations by employing a steady-state
parametrization together with a criterion of Yang [47] that characterizes Hopf bifurcations
in terms of determinants of Hurwitz matrices. In [12], this approach showed that the Hopf
bifurcations of a mixed-mechanism phosphorylation network lie on a hypersurface defined by
the vanishing of a single Hurwitz determinant. For our ERK networks, however, the prob-
lem does not reduce to the analysis of a single polynomial, and the size of these polynomials
makes the system difficult to solve. To this end, we introduce an algorithm for analyzing
these polynomials, through their Newton polytopes, by using techniques from polyhedral
geometry. Using this algorithm, we succeed in finding, for the reduced ERK network, a Hopf
bifurcation giving rise to oscillations.

Finally, we investigate the precise number of steady states in ERK networks. For general
networks, much has been done for determining which networks admit multiple steady states –
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see e.g. [10, 15, 17, 19, 22, 33, 37] – but there are few techniques for determining a network’s
maximum number of steady states. To this end, we introduce two related measures of a
network, the maximum number of complex-number steady states and the “mixed volume”.
In general, the mixed volume is an upper bound on the number of complex-number steady
states, but we show that these numbers are equal for ERK networks (Section 5).

The outline of our work is as follows. Section 2 contains background on chemical reaction
systems, steady-state parametrizations, and Hopf bifurcations. We present steady-state
parametrizations for the ERK network and the reduced ERK network in Section 3. Section 4
contains our main results on oscillations and bistability. Section 5 investigates the number of
steady states and the relationship to mixed volumes. We end with a Discussion in Section 6.

2 Background

Here we introduce chemical reaction systems (Section 2.1), their steady-state parametriza-
tions (Section 2.2), and Hopf bifurcations (Section 2.3).

2.1 Chemical reaction systems

As in [17], our notation closely matches that of Conradi, Feliu, Mincheva, and Wiuf [10]. A
reaction network G (or network for short) comprises a set of s species {X1, X2, . . . , Xs} and
a set of m reactions:

α1jX1 + α2jX2 + · · ·+ αsjXs → β1jX1 + β2jX2 + · · ·+ βsjXs , for j = 1, 2, . . . ,m ,

where each αij and βij is a non-negative integer. The stoichiometric matrix of G, denoted
by N , is the s ×m matrix with (i, j)-entry equal to βij − αij. Let d = s − rank(N). The
stoichiometric subspace, denoted by S, is the image of N . A conservation-law matrix of G,
denoted by W , is a row-reduced d × s-matrix whose rows form a basis of the orthogonal
complement of S. If there exists a choice of W for which every entry is nonnegative and each
column contains at least one nonzero entry (equivalently, each species occurs in at least one
nonnegative conservation law), then G is conservative.

We denote the concentrations of the species X1, X2, . . . , Xs by x1, x2, . . . , xs, respectively.
These concentrations, under the assumption of mass-action kinetics, evolve in time according
to the following system of ODEs:

ẋ = f(x) := N ·


κ1 x

α11
1 xα21

2 · · ·xαs1
s

κ2 x
α12
1 xα22

2 · · ·xαs2
s

...
κm x

α1m
1 xα2m

2 · · ·xαsm
s

 , (1)

where x = (x1, x2, . . . , xs), and each κj ∈ R>0 is called a reaction rate constant. By consid-
ering the rate constants as a vector of parameters κ = (κ1, κ2, . . . , κm), we have polynomials
fκ,i ∈ Q[κ, x], for i = 1, 2, . . . , s. For ease of notation, we often write fi rather than fκ,i.
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A trajectory x(t) beginning at a nonnegative vector x(0) = x0 ∈ Rs
≥0 remains, for

all positive time, in the following stoichiometric compatibility class with respect to the

total-constant vector c := Wx0 ∈ Rd:

Sc := {x ∈ Rs
≥0 | Wx = c} . (2)

A steady state of (1) is a nonnegative concentration vector x∗ ∈ Rs
≥0 at which the right-hand

sides of the ODEs (1) vanish: f(x∗) = 0. We distinguish between positive steady states x∗ ∈
Rs
>0 and boundary steady states x∗ ∈ Rs

≥0\Rs
>0. Also, a steady state x∗ is nondegenerate if

Im (Jac(f)(x∗)|S) is the stoichiometric subspace S. (Here, Jac(f)(x∗) is the Jacobian matrix
of f , with respect to x, at x∗.) A nondegenerate steady state is exponentially stable if each
of the σ := dim(S) nonzero eigenvalues of Jac(f)(x∗) has negative real part.

A network G is multistationary (respectively, bistable) if, for some choice of positive rate-
constant vector κ ∈ Rm

>0, there exists a stoichiometric compatibility class (2) with two or
more positive steady states (respectively, exponentially stable positive steady states) of (1).
A network is monostationary1 if, for every choice of positive rate constants, there is exactly
one positive steady state in every stoichiometric compatibility class.

To analyze steady states within a stoichiometric compatibility class, we will use con-
servation laws in place of linearly dependent steady-state equations, as follows. Let
I = {i1 < i2 < · · · < id} denote the indices of the first nonzero coordinate of the rows
of conservation-law matrix W . Consider the function fc,κ : Rs

≥0 → Rs defined by

fc,κ,i = fc,κ(x)i :=

{
fi(x) if i 6∈ I,
(Wx− c)k if i = ik ∈ I.

(3)

We call system (3), the system augmented by conservation laws. By construction, positive
roots of the system of polynomial equations fc,κ = 0 are precisely the positive steady states
of (1) in the stoichiometric compatibility class (2) defined by the total-constant vector c.

2.2 Steady-state parametrizations

Here we introduce steady-state parametrizations (Definition 2.2) and recall from [17] how
to use them to determine whether a network is multistationary (Proposition 2.4). Later we
will see how to use parametrizations to detect Hopf bifurcations (Proposition 4.1).

Definition 2.1. Let G be a network with m reactions and s species, and let ẋ = f(x)
denote the resulting mass-action system. Denote by W a d×s row-reduced conservation-law
matrix and by I the set of indices of the first nonzero coordinates of its rows. Enumerate the
complement of I as follows: [s] \ I = {j1 < j2 < · · · < js−d}. A set of effective parameters
for G is formed by polynomials ā1(κ), ā2(κ), . . . , ām̄(κ) ∈ Q(κ) for which the following hold:

(i) āi(κ
∗) is defined and, moreover, āi(κ

∗) > 0 for every i = 1, 2, . . . , m̄ and for all κ∗ ∈ Rm
>0,

1Some authors define monostationary to be non-multistationary; the two definitions are equivalent for
the ERK networks in this work.
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(ii) the reparametrization map below is surjective:

ā : Rm
>0 → Rm̄

>0 (4)

κ 7→ (ā1(κ), ā2(κ), . . . , ām̄(κ)) ,

(iii) there exists an (s−d)× (s−d) matrix M(κ) with entries in Q(κ) := Q(κ1, κ2, . . . , κm)
such that:

(a) for all κ∗ ∈ Rm
>0, the matrix M(κ∗) is defined and, moreover, detM(κ∗) > 0, and

(b) letting (h̄j`) denote the functions obtained from (fj`) as follows:

(h̄j1 , h̄j2 , . . . , h̄js−d
)> := M(κ) (fj1 , fj2 , . . . , fjs−d

)> , (5)

every nonconstant coefficient in every h̄j` is equal to a rational-number multiple
of some āi(κ).

Given such a set of effective parameters, we consider for ` = 1, 2, . . . , s− d, polynomials
hj` = hj`(a;x) ∈ Q[a1, a2, . . . , am̄][x] (here, the ai’s are indeterminates) such that:

h̄j` = hj` |a1=ā1(κ), ... , am̄=ām̄(κ) . (6)

For i = 1, 2, . . . , s and any choice of c ∈ Rd
>0 and a ∈ Rm̄

>0, set

hc,a(x)i :=

{
hi(a;x) if i /∈ I
(Wx− c)k if i = ik ∈ I.

(7)

We call the function hc,a : Rs
>0 → Rs an effective steady-state function of G.

The “steady-state parametrizations” that we will use in this work belong to a subclass
of the ones introduced in [17]. Thus, for simplicity, Definition 2.2 below is more restrictive
than [17, Definition 3.6]. Specifically, our parametrizations have the form φ(â;x), while those
in [17] are of the form φ(â; x̂).

Definition 2.2. Let G be a network with m reactions, s species, and conservation-
law matrix W . Let fc,κ arise from G and W as in (3). Suppose that hc,a is an ef-
fective steady-state function of G, as in (7), arising from a matrix M(κ), as in (5), a
reparametrization map ā, as in (4), and polynomials hj` ’s as in (6). The positive steady
states of G admit a positive parametrization with respect to hc,a if there exists a function

φ : Rm̂
>0 × Rs

>0 → Rm̄
>0 × Rs

>0, for some m̂ ≤ m̄, which we denote by (â;x) 7→ φ(â;x), such
that:

(i) φ(â;x) extends the vector (â;x). More precisely, there exists a natural projection
π : Rm̄

>0 × Rs
>0 → Rm̂

>0 × Rs
>0 such that π ◦ φ is equal to the identity map.

(ii) Consider any (a;x) ∈ Rm̄
>0 ×Rs

>0. Then, the equality hi(a;x) = 0 holds for every i /∈ I
if and only if there exists â∗ ∈ Rm̂

>0 such that (a;x) = φ(â∗;x).
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We call φ a positive parametrization or a steady-state parametrization.

Definition 2.3. Under the notation and hypotheses of Definition 2.2, assume that the
steady states of G admit a positive parametrization with respect to hc,a. For such a positive
parametrization φ, the critical function C : Rm̂

>0 × Rs
>0 → R is given by:

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) ,

where Jac(hc,a) denotes the Jacobian matrix of hc,a with respect to x.

The following result is a specialization2 of [17, Theorem 3.12]:

Proposition 2.4. Under the notation and hypotheses of Definitions 2.1–2.3, assume also
that G is a conservative network without boundary steady states in any compatibility class.
Let N denote the stoichiometric matrix of G.

(A) Multistationarity. G is multistationary if there exists (â∗;x∗) ∈ Rm̂
>0×Rs

>0 such that

sign(C(â∗;x∗)) = (−1)rank(N)+1 .

(B) Monostationarity. G is monostationary if for all (â;x) ∈ Rm̂
>0 × Rs

>0,

sign(C(â;x)) = (−1)rank(N) .

2.3 Hopf bifurcations

A simple Hopf bifurcation is a bifurcation in which a single complex-conjugate pair of eigen-
values of the Jacobian matrix crosses the imaginary axis, while all other eigenvalues remain
with negative real parts. Such a bifurcation, if it is supercritical, generates nearby oscillations
or periodic orbits [35].

To detect simple Hopf bifurcations, we will use a criterion of Yang that characterizes
Hopf bifurcations in terms of Hurwitz-matrix determinants (Proposition 2.6).

Definition 2.5. The i-th Hurwitz matrix of a univariate polynomial p(λ) = b0λ
n+ b1λ

n−1 +
· · ·+ bn is the following i× i matrix:

Hi =


b1 b0 0 0 0 · · · 0
b3 b2 b1 b0 0 · · · 0
...

...
...

...
...

...
b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 · · · bi

 ,

in which the (k, l)-th entry is b2k−l as long as n ≥ 2k − l ≥ 0, and 0 otherwise.

2As noted earlier, here we consider parametrizations of the form φ(â;x), while [17] allowed those of the
form φ(â; x̂). Also, “conservative” in Proposition 2.4 can be generalized to “dissipative” [17].
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Consider an ODE system parametrized by µ ∈ R:

ẋ = gµ(x) ,

where x ∈ Rn, and gµ(x) varies smoothly in µ and x. Assume that x0 ∈ Rn is a steady
state of the system defined by µ0, that is, gµ0(x0) = 0. Assume, furthermore, that we have
a smooth curve of steady states:

µ 7→ x(µ) (8)

(that is, gµ (x(µ)) = 0 for all µ) and that x(µ0) = x0. Denote the characteristic polynomial
of the Jacobian matrix of gµ, evaluated at x(µ), as follows:

pµ(λ) := det (λI − Jac gµ) |x=x(µ) = λn + b1(µ)λn−1 + · · ·+ bn(µ) ,

and, for i = 1, . . . , n, define Hi(µ) to be the i-th Hurwitz matrix of pµ(λ).

Proposition 2.6 (Yang’s criterion [47]). Assume the above setup. Then, there is a simple
Hopf bifurcation at x0 with respect to µ if and only if the following hold:

(i) bn(µ0) > 0,

(ii) detH1(µ0) > 0, detH2(µ0) > 0, . . . , detHn−2(µ0) > 0, and

(iii) detHn−1(µ0) = 0 and d(detHn−1(µ))
dµ

|µ=µ0 6= 0.

2.4 Using parametrizations to detect Hopf bifurcations

Here we prove a new result on how to use steady-state parametrizations to detect Hopf
bifurcations (Theorem 2.8). The result, which uses Yang’s criterion, is a straightforward
generalization of the approach used in [12]. We include it here to use later in Section 4, and
we also expect it to be useful in future work.

Lemma 2.7. Let G be a network with s species, m reactions, and d conservation laws.
Denote the ODEs by ẋ = f(x), as in (1). Assume that the positive steady states of G admit
a positive parametrization φ with respect to an effective steady-state function for which the
reparametrization map (4) is just the identity map. In other words, the effective parameters
āi are the original rate constants κi, and so we write φ : Rm̂

>0×Rs
>0 → Rm

>0×Rs
>0 as (κ̂;x) 7→

φ(κ̂;x). Assume moreover that each coordinate of φi is a rational function: φi(κ̂;x) ∈ Q(κ̂;x)
for i = 1, 2, . . . , m̂ + s. Then the following is a univariate, degree-(s − d) polynomial in λ,
with coefficients in Q(κ̂;x):

q(λ) :=
1

λd
det (λI − Jac f) |(κ;x) = φ(κ̂;x) . (9)

Proof. This result is straightforward from the fact that the characteristic polynomial of
Jac(f) is a polynomial of degree s and has zero as a root with multiplicity d (because of the
d conservation laws).
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Theorem 2.8 (Hopf-bifurcation criterion). Assume the hypotheses of Lemma 2.7. Let hi
(for i = 1, 2, . . . , s− d) be the determinant of the i-th Hurwitz matrix of q(λ) in (9). Let κj
be one of the rate constants in the vector κ̂. Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ Rm
>0 such that the resulting system (1) exhibits

a simple Hopf bifurcation with respect to κj at some x∗ ∈ Rs
>0, and

(2) there exist κ̂∗ ∈ Rm̂
>0 and x∗ ∈ Rs

>0 such that

(i) the constant term of the polynomial q(λ), when evaluated at (κ̂;x) = (κ̂∗;x∗), is
positive,

(ii) h1(κ̂∗;x∗) > 0, h2(κ̂∗;x∗) > 0, . . . , hs−d−2(κ̂∗;x∗) > 0 , and

(iii) hs−d−1(κ̂∗;x∗) = 0 and ∂hs−d−1

∂κj
|(κ̂;x)=(κ̂∗;x∗) 6= 0.

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to κj occurs at x∗

when the vector of rate constants is taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : Rm
>0×Rs

>0 → Rm
>0

is the natural projection.

Proof. Due to the d conservation laws, we apply Yang’s criterion (Proposition 2.6) to:

1

λd
det(λI − Jac f)|x=x∗, κi=κ∗i for all i6=j .

Now our result follows directly from Proposition 2.6 and Definition 2.2.

Remark 2.9. Theorem 2.8 easily generalizes beyond parametrizations of the form φ(κ̂;x)
to those of the form φ(κ̂; x̂) or φ(κ; x̂). Indeed, one of the form φ(κ; x̂) was used in [12] to
establish Hopf bifurcations in a mixed-mechanism phosphorylation system.

3 ERK networks and steady-state parametrizations

Here we introduce steady-state parametrizations for the full ERK network and also irre-
ducible and reduced versions of the network (Propositions 3.1 and 3.3).

3.1 The (full) ERK network

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S00 E F S11F S10F S01F S01E S10E S01 S10 S00E S11

Table 2: Assignment of variables to species for the ERK network in Figure 1.

For the full ERK network shown earlier in Figure 1, we let x1, x2, . . . , x12 denote the
concentrations of the species in the order given in Table 2. The resulting ODE system (1) is

9



as follows:

ẋ1 = −k1x1x2 + k2x11 + `catx5 + n3x6

ẋ2 = −k1x1x2 − konx2x9 −m2x2x10 + k2x11 + kcatx7 + koffx7 +m1x8 +m3x8

ẋ3 = −`1x3x12 − `onx3x10 − n1x3x9 + `2x4 + `catx5 + `offx5 + n2x6 + n3x6

ẋ4 = `1x3x12 − `2x4 − `3x4

ẋ5 = `onx3x10 + `3x4 − `catx5 − `offx5

ẋ6 = n1x3x9 − n2x6 − n3x6

ẋ7 = konx2x9 + k3x11 − kcatx7 − koffx7

ẋ8 = m2x2x10 −m1x8 −m3x8

ẋ9 = −konx2x9 − n1x3x9 + koffx7 + n2x6

˙x10 = −`onx3x10 −m2x2x10 + `offx5 +m1x8

˙x11 = k1x1x2 − k2x11 − k3x11

˙x12 = −`1x3x12 + kcatx7 + `2x4 +m3x8

(10)

There are 18 rate constants ki, `i,mi, ni. The 3 conservation laws correspond to the total
amounts of substrate S, kinase E, and phosphatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = Stot =: c1

x2 + x7 + x8 + x11 = Etot =: c2

x3 + x4 + x5 + x6 = Ftot =: c3.

(11)

A steady-state parametrization for the full ERK network was given in [17, Examples 3.1
and 3.7]. That parametrization, however, can not specialize to accommodate irreversible
versions of the network (in the effective parameters given in [17], two of the denominators
are kon and `on, so we can not set those rate constants to 0). So, in the next subsection, we
give an alternate steady-state parametrization that, although quite similar to the one in [17],
specializes when considering irreversible versions of the network (see Proposition 3.1).

3.2 Irreversible versions of the ERK network

Here we consider networks obtained from the full ERK network (Figure 1) by making some
reversible reactions irreversible. Specifically, we delete one or more of the reactions marked
in blue in Figure 1. Our motivation for removing those specific reactions (the ones with rate
constants k2, kon,m1, `2, `on, n2) rather than any of their opposite reactions is to preserve the
main reaction pathways (from S00 to S11, as well as S10 to S11, S11 to S00, and S01 to S00).
At the same time, we do not remove the reactions for koff or `off , so that we can still pursue
Question 1.1 (which involves koff and `off) in a model with fewer reactions. We instead allow
the removal of reactions kon and `on.

Proposition 3.1 (Steady-state parametrization for full and irreversible ERK networks). Let
N be the full ERK network or any network obtained from the full ERK network by deleting
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one or more the reactions corresponding to rate constants k2, kon,m1, `2, `on, n2 (marked in
blue in Figure 1 ). Let 1k2 denote the indicator function that is 1 if the reaction labeled by
k2 is in N and 0 otherwise; analogously, we also define 1kon, 1m1, 1`2, 1`on, and 1n2. Then
N admits an effective steady-state function hc,a : R12

>0 → R12 given by:

hc,a,1 = x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 − c1 ,

hc,a,2 = x2 + x7 + x8 + x11 − c2 ,

hc,a,3 = x3 + x4 + x5 + x6 − c3 ,

hc,a,4 = a12x3x12 − x4 ,

hc,a,5 = a3x4 − x5 − a2x8 ,

hc,a,6 = a13x3x9 − x6 , (12)

hc,a,7 = a5x11 − a4x6 − x7 ,

hc,a,8 = a11x2x10 − x8 ,

hc,a,9 = a9x7 − 1kona8x2x9 − x6 ,

hc,a,10 = a7x5 − 1`ona6x3x10 − x8 ,

hc,a,11 = a10x1x2 − x11 ,

hc,a,12 = x7 − a1x5 .

Moreover, with respect to this effective steady-state function, the positive steady states of N
admit the following positive parametrization:

φ : R2+1kon+1`on+12
>0 → R13+12

>0

(â; x1, x2, . . . , x12) 7→ (a1, a2, . . . , a13, x1, x2, . . . , x12) ,

given by

a1 :=
x7

x5

a3 :=
a2x8 + x5

x4

a5 :=
a4x6 + x7

x11

a7 :=
1`ona6x3x10 + x8

x5

a9 :=
1kona8x2x9 + x6

x7

a10 :=
x11

x1x2

(13)

a11 :=
x8

x2x10

a12 :=
x4

x3x12

a13 :=
x6

x3x9

.

Here, â = (a2, a4, a6, a8) if N contains the reactions labeled by kon and `on, and â = (a2, a4, a6)
if N contains the reaction `on but not kon, and so on.

Proof. We will show that the map ā : R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 → R11+1kon+1`on

>0 , defined
as follows, is a reparametrization map as in (4):

ā1 = `cat
kcat

, ā2 = m3

`cat
, ā3 = `3

`cat
, ā4 = n3

kcat
, ā5 = k3

kcat
,

ā6 =
1`on`on

m3
, ā7 = `off

m3
, ā8 =

1konkon

n3
, ā9 = koff

n3
, ā10 = k1

1k2
k2+k3

,

ā11 = m2

1m1m1+m3
, ā12 = `1

1`2
`2+`3

, ā13 = n1

1n2n2+n3
.

(14)
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In particular, we remove the effective parameter ā6 (respectively, ā8) if 1`on = 0 (respectively,
1kon = 0). Notice that each āi (if it is not removed) is defined and positive for all κ =

(k1, . . . , n3) ∈ R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 .

We must show that the map ā is surjective. Indeed, given a ∈ R11+1kon+1`on
>0 , it is easy

to check that a is the image under ā of the vector obtained by removing every 0 coordinate
from the following vector:

(k1, k2, k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3) =

((1k2 + a5)a10,1k2 , a5, 1,1kona4a8, a4a9, (1`2 + a1a3)a12,1`2 , a1a3, a1,1`ona1a2a6, a1a2a7,1m1 ,

(1m1 + a1a2)a11, a1a2, (1n2 + a4)a13,1n2 , a4) .

Next, consider the following 9× 9 matrix:

M(κ) =



1
1`2

`2+`3
0 0 0 0 0 0 0 0

0 1
`cat

0 0 1
`cat

0 1
`cat

0 0

0 0 1
1n2

n2+n3
0 0 0 0 0 0

0 0 1
kcat

1
kcat

0 1
kcat

0 0 0

0 0 0 0 1
1m1m1+m3

0 0 0 0

0 0 1
n3

0 0 1
n3

0 0 0

0 0 0 0 1
m3

0 1
m3

0 0

0 0 0 0 0 0 0 1
1k2

k2+k3
0

1
kcat

1
kcat

0 0 1
kcat

0 1
kcat

0 1
kcat


. (15)

It is straightforward to check that detM(κ) is the product of all diagonal terms, and hence

is positive for all κ ∈ R12+1k2
+1kon+1m1+1`2

+1`on+1n2
>0 .

The mass-action ODEs of N are obtained from those (10) of the full ERK network by
replacing the rate constants k2, kon,m1, `2, `on, n2, respectively, by 1k2k2, 1konkon, 1m1m1,
1`2`2, 1`on`on, and 1n2n2, respectively. To the right-hand sides of these ODEs, we apply the
recipe given in equations (5)–(7), using the effective parameters āi in (14), the matrix M(κ)
in (15), and the conservation-law matrix W arising from the conservation laws (11). It is
straightforward to check that the result is the function hc,a(x) given in (12).

Observe that, for the non-conservation-law equations hc,a,4, . . . , hc,a,12 in (12), each non-
constant coefficient is, up to sign, one of the ai’s. Hence, the āi’s in (14) are effective
parameters, and the function in (12) is an effective steady-state function. Finally, the fact
that φ is a positive parametrization with respect to (12) (as in Definition 2.2) follows directly
from comparing equations (12) and (13).

Remark 3.2 (Multistationarity depends on only kon and `on). Proposition 3.1 considers any
network obtained by deleting any (or none) of the six reactions labeled by k2, kon, m1, `2, `on,
n2. Nonetheless, the resulting steady-state parametrization (13) depends on kon and `on but
not any of the other rate constants. Thus, multistationarity for these irreversible networks
depends only on whether the network contains kon and `on (see Theorem 4.6).
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3.3 The reduced ERK network

In the previous subsection, we consider irreversible versions of the ERK network. Now
we further reduce the network by additionally removing some “intermediate complexes”
(namely, S10E and S01F ). These operations yield the reduced ERK network in Figure 2.
Note that in the process of removing intermediates, the reactions m2 and m3 (similarly,
n1 and n3) are collapsed into a single reaction labeled m (respectively, n). A biological
motivation for collapsing these reactions is the fact that intermediates are usually short-
lived, so the simpler model may approximate the dynamics well.

S00 + E
k1−−→ S00E

k3−−→ S01E
kcat−−→ S11 + E

←
−−koff

S01 + E

−−
→m

S10 + E

S11 + F
`1−−→ S11F

`3−−→ S10F
`cat−−→ S00 + F

←
−−`off

S10 + F
−−
→n

S01 + F

1

Figure 2: Reduced ERK network.

Our notion of removing intermediates matches that of Feliu and Wiuf [20], who initiated
the recent interest in the question of when dynamical properties are preserved when inter-
mediates are added or removed (e.g., S10 + E � S10E → S11 + E versus S10 → S11). Our
work, therefore, fits into this circle of ideas [7, 36, 41].

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

S00 E S00E S01E S11 S01 S10 F S11F S10F

Table 3: Assignment of variables to species for the reduced ERK network in Figure 2. (Many
of the variables that are also in the full ERK, in Table 2, have been relabeled.)

In the reduced ERK network, the remaining 10 rate constants are as follows:
k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n. Letting x1, x2, . . . , x10 denote the species concentrations
in the order given in Table 3, the resulting mass-action kinetics ODEs are as follows:

ẋ1 = − k1x1x2 + nx6x8 + `catx10 =: f1

ẋ2 = − k1x1x2 + kcatx4 + koffx4 =: f2

ẋ3 = k1x1x2 − k3x3 =: f3

ẋ4 = k3x3 − kcatx4 − koffx4 =: f4

13



ẋ5 = mx2x7 − `1x5x8 + kcatx4 =: f5 (16)

ẋ6 = − nx6x8 + koffx4 =: f6

ẋ7 = −mx2x7 + `offx10 =: f7

ẋ8 = − `1x5x8 + `offx10 + `catx10 =: f8

ẋ9 = `1x5x8 − `3x9 =: f9

˙x10 = − `offx10 + `3x9 − `catx10 =: f10.

The 3 conservation equations are:

x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 = Stot =: c1

x2 + x3 + x4 = Etot =: c2 (17)

x8 + x9 + x10 = Ftot =: c3.

Proposition 3.3 (Steady-state parametrization for reduced ERK network). The reduced
ERK network (Figure 2) admits an effective steady-state function hc,a : R10

>0 → R10 given by:

hc,a,1 = x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 − c1, hc,a,2 = x2 + x3 + x4 − c2,
hc,a,3 = −(kcat + koff)`catx10 + k1kcatx1x2, hc,a,4 = k3x3 − (kcat + koff)x4,
hc,a,5 = `offx10 −mx2x7, hc,a,6 = `1x5x8 − (`cat + `off)x10,
hc,a,7 = `3x9 − (`cat + `off)x10, hc,a,8 = x8 + x9 + x10 − c3,
hc,a,9 = kcatx4 − `catx10, hc,a,10 = koff`catx10 − kcatnx6x8.

(18)

Moreover, with respect to this effective steady-state function, the positive steady states admit
the following positive parametrization:

φ : R3+10
>0 → R10+10

>0 (19)

(kcat, koff , `off , x1, x2, . . . , x10) 7→ (κ1, κ3, kcat, koff ,m, `1, `3, λcat, `off , n, x1, x2, . . . , x10) ,

given by

k1 :=
(kcat + koff)x4

x1x2

k3 :=
(kcat + koff)x4

x3

m :=
`offx10

x2x7

`1 :=
`offx10 + kcatx4

x5x8

`3 :=
`offx10 + kcatx4

x9

`cat :=
kcatx4

x10

n :=
koffx4

x6x8

. (20)

In particular, the image of φ is the following set of pairs of positive steady states and rate
constants:

{(k∗;x∗) ∈ R10+10
>0 | x∗ is a steady state of (16) when k = k∗} .

Here, k denotes the vector (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n).
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Proof. Let W denote the conservation-law matrix arising from the conservation laws (17)
for the reduced ERK network. Then I = {1, 2, 8} is the set of indices of the first nonzero
coordinates of the rows of W . We take Q(kcat, koff)-linear combinations of the fi’s in (16),
where i /∈ I, to obtain the following binomials in the xi’s:

h3 := (kcat + koff)(f5 + f7 + f9 + f10) + kcat(f3 + f4) = − (kcat + koff)`catx10 + k1kcatx1x2

h4 := f4 = k3x3 − (kcat + koff)x4

h5 := f7 = `offx10 −mx2x7

h6 := f9 + f10 = `1x5x8 − (`cat + `off)x10

h7 := f10 = `3x9 − (`cat + `off)x10

h9 := f5 + f7 + f9 + f10 = kcatx4 − `catx10

h10 := kcatf6 − koff(f5 + f7 + f9 + f10) = koff`catx10 − kcatnx6x8.

Consider the (above) linear transformation from fi to hi (i 6∈ I). Let M denote the
corresponding matrix representation (M plays the role of the matrix denoted by M(κ) in
Definition 2.1). It is straightforward to check that detM = k2

cat, which is positive when
kcat > 0.

Consider the reparametrization map ā : R10 → R10 defined by the identity map (and
so is surjective). Then ā, together with the conservation-law matrix W and the matrix M ,
yield (as in Definition 2.13) the effective steady-state function hc,a(x) given in (18).

To show that φ is a positive steady-state parametrization with respect to (18), as in
Definition 2.2, it suffices to show the following claim:
Claim: For every (k∗;x∗) ∈ R10+10

>0 , the steady-state condition holds – namely, hi(k
∗;x∗) = 0

for all i ∈ {3, 4, 5, 6, 7, 9, 10} – if and only if φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗).

For the “⇒” direction, assume hi(k
∗;x∗) = 0 for all i. Then h9(k∗;x∗) = 0 implies that

`∗cat =
k∗catx

∗
4

x∗10

. (21)

In other words, λcat – when evaluated at (kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗) – equals `∗cat.

Next, the equality h3(k∗;x∗) = 0 implies that

k∗1 =
(k∗cat + k∗off)`∗catx

∗
10

k∗catx
∗
1x
∗
2

=
(k∗cat + k∗off)x∗4

x∗1x
∗
2

, (22)

where the final equality follows from equation (21). Thus, the expression for k1 given af-
ter (20) – when evaluated at (kcat, koff , `off ;x) = (k∗cat, k

∗
off , `

∗
off ;x∗) – equals k∗1.

Similarly, the equality h4(k∗;x∗) = 0 (respectively, h5(k∗;x∗) = 0, h6(k∗;x∗) = 0,
h7(k∗;x∗) = 0, or h10(k∗;x∗) = 0) implies that κ3 (respectively, m, `1, `3, or n) – when

3In this case, Definition 2.1(iii)(b) requires every nonconstant coefficient in the effective steady-state func-
tion (18) to be a rational-number multiple of one of the rate constants. However, for the non-conservation-law
equations in (18), many of the non-constant coefficients – such as koff`cat – are not rational-number multiples
of one of the rate constants. Nonetheless, these coefficients are all polynomials in the rate constants, and
the relevant results in [17] hold in that generality.
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evaluated at (kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗) – equals k∗3 (respectively, m∗, `∗1, `∗3, or n∗).

Thus, φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗).

The “⇐” direction is similar. Assume φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗). That is, the expres-

sions for k1, k3, m, `1, `3, `cat, and n evaluate to, respectively, k∗1, k∗3, m∗, `∗1, `∗3, `∗cat, and
n∗, when (kcat, koff , `off ;x) = (k∗cat, k

∗
off , `

∗
off ;x∗). In particular, equation (21) holds, and so

h9(k∗;x∗) = 0. Similarly, hi(k
∗;x∗) = 0 for all other i (here we also use equation (21)).

Remark 3.4. The proof of Proposition 3.3 proceeds by performing linear operations on
the steady-state polynomials to yield binomials gi, and then solving for one kj from each
binomial to obtain the parametrization (19). This is similar in spirit to – but more general
than – the approach prescribed in [17, §4] for “linearly binomial” networks. Also, our linear
operations were found “by hand”, and so an interesting future direction is to develop efficient
and systematic approaches to finding such operations leading to binomials.

Remark 3.5. The proof of Proposition 3.3 shows that the “steady-state ideal” (the ideal
generated by the right-hand sides of the ODEs) of the reduced ERK network is generated
by the binomials gi. This network, therefore has, “toric steady states” [39]. In contrast, the
steady-state ideal of the full ERK network is not a binomial ideal (it is straightforward to
check this computationally, e.g., using the Binomials package in Macaulay2 [23]). As for
the irreversible versions of the ERK network, when the reactions with rate constants kon

and `on are deleted, we see from (12) that the steady-state ideal becomes binomial. Hence,
irreversible ERK networks that are missing both kon and `on are “linearly binomial” as in
[17, §4].

Remark 3.6. All networks considered in this section are conservative, which can be seen
from the conservation laws (11) for the full and irreversible ERK networks, and (17) for the
reduced ERK network. Also for these networks, there are no boundary steady states in any
compatibility class (it is straightforward to check this using results from [1] or [43]).

4 Main Results

Each ERK network we investigated admits oscillations via a Hopf bifurcation (Section 4.1).
Bistability, however, is more subtle (Section 4.2).

4.1 Oscillations

The full ERK system (Figure 1) exhibits oscillations for some values of the rate constants [40].
We now investigate oscillations in the fully irreversible and reduced ERK networks.
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4.1.1 Fully irreversible ERK network

As shown in Figure 3, the fully irreversible ERK network admits oscillations. That figure
was generated using the following rate constants:

(k1, k3, kcat, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (5241, 5314.5, 1291, 76.203, 64.271, (23)

44.965, 924970, 27238, 2.76250× 106,

2.0451, 2.1496× 106, 1.3334) .

These rate constants (23) come from the ones that Rubinstein et al. showed generate os-
cillations for the full ERK network [40, Table 2] (we simply ignore their rate constants for
the six deleted reactions). The approximate initial species concentrations used to generate
Figure 3 are as follows (see supplementary file ERK-Matcont.txt):

(x1, x2, . . . , x12) ≈ (1.215× 10−5, 4.722× 10−5, 8.777× 10−4, 1.396× 10−3,

6.590× 10−8, 2.698× 10−3, 2.873× 10−4, 1.150× 10−3, (24)

3.072× 10−3, 2.262× 10−6, 0.042, 0.849) .

In Figure 3, we notice some peculiarities in the graphs xi(t) of the species concentra-
tions. The species concentrations x1 and x2 (corresponding to S00 and E, respectively) peak
dramatically, while x3 and x6 (F and S01F) stabilize momentarily at each peak. Also, each
of x1, x2, x3, x4, x5, x10, x11 deplete for some time in each period, whereas x12 (S11) never
depletes. Finally, the graphs of the pairs x1 and x2 are qualitatively similar, and also the
pair x3 and x6, the pair x4 and x5, and the pair x10 and x11.

Going beyond the fully irreversible ERK network, all other irreversible ERK net-
works – those obtained from the full ERK network by deleting one or more the reactions
k2, kon,m1, `2, `on, n2 – also admit oscillations. This claim follows from a result of Banaji
that “lifts” oscillations when one or more reactions are made reversible [3, Proposition 4.1].

4.1.2 Reduced ERK network

We saw in the previous subsection that the fully irreversible ERK network exhibits oscilla-
tions. We now show that a simpler network - the reduced ERK network - also undergoes
oscillations via a Hopf bifurcation. These oscillations are shown in Figure 4, and the rate
constants that yield the corresponding Hopf bifurcation are specified in Theorem 4.3.

Compared to the oscillations for the irreversible ERK network (Figure 3), the oscillations
in the reduced ERK network (Figure 4) are more uniform. Also, the period of oscillation is
much shorter, and the amplitudes for species x3, x8, and x10 are small (this may be due to the
choice of rate constants). Finally, three of the six species shown do not deplete completely,
whereas nearly all the species of the fully irreversible ERK do deplete in each period.

We discovered oscillations by finding a Hopf bifurcation. How we found this bifurcation
– via the Hopf-bifurcation criterion in Section 2.4 – is the focus of the rest of this subsection.

Proposition 4.1 (Hopf criterion for reduced ERK). Consider the reduced ERK network, and
let the polynomials fi denote the right-hand sides of the resulting ODEs, as in (16). Let κ̂ :=
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Figure 3: The fully irreversible ERK network undergoes oscillations when the rate constants
are as in (23) and the initial species concentrations are as in (24). Displayed in this figure are
all species concentrations, except x7, x8, and x9. This figure was generated using MATCONT, a
numerical bifurcation package [16]. For details, see the supplementary file ERK-Matcont.txt.

(kcat, koff , `off) and x := (x1, x2, . . . , x10), and let φ be the steady-state parametrization (19).
Then the following is a univariate, degree-7 polynomial in λ, with coefficients in Q(x)[κ̂]:

q(λ) :=
1

λ3
det (λI − Jac(f)) |(κ;x)=φ(κ̂;x) . (25)

Now let hi, for i = 4, 5, 6, denote the determinant of the i-th Hurwitz matrix of the polyno-
mial q(λ) in (25). Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ R10
>0 such that the resulting system (16) exhibits

a simple Hopf bifurcation, with respect to kcat, at some x∗ ∈ R10
>0, and

(2) there exist x∗ ∈ R10
>0 and κ̂∗ ∈ R3

>0 such that

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and (26)

∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 .
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Figure 4: The reduced ERK network exhibits oscillations when the rate constants are ap-
proximately those in Theorem 4.3 and the initial species concentrations are close to the Hopf
bifurcation. Details are in the supplementary file ERK-Matcont.txt. This figure, generated
using MATCONT, displays all species concentrations, except x3, x4, x6, and x9.

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to kcat occurs at
x∗ when the rate constants are taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : R10

>0 × R10
>0 → R10

>0

is the natural projection to the first 10 coordinates.

Proof. The fact that q(λ) is a degree-7 polynomial follows from Lemma 2.7, and the fact
that its coefficients are in Q(x)[κ̂] follows from inspecting equations (16) and (19). The
rest of the result will follow immediately from Theorem 2.8 and Proposition 3.3, once we
prove that h1, h2, h3, and the constant term of q(λ) are all positive when evaluated at any
(κ̂;x) ∈ R3

>0 × R10
>0. Indeed, this is shown in the supplementary file reducedERK-hopf.mw.

(In fact, even before substituting the parametrization (κ;x) = φ(κ̂;x), the corresponding
Hurwitz determinants are already positive polynomials.)

Remark 4.2. Note that kcat is the only free parameter, so it is the natural bifurcation
parameter.

We now prove that the reduced ERK network gives rise to a Hopf bifurcation.
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Theorem 4.3 (Hopf bifurcation in reduced ERK). The reduced ERK network exhibits a
simple Hopf bifurcation with respect to the bifurcation parameter kcat at the following point:

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) ,

when the rate constants are as follows:

(k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) ≈ (5.562806640× 106, 730, 729, 1, 453.5941390,

3.879519315× 108, 730, 729, 1, 80675.77183)

Here, φ is the parametrization (19), and π̃ is the projection to the first 10 coordinates.

Proof. By Proposition 4.1, we need only show that the inequalities and equality in (26) are
satisfied at x = x∗ (with x∗ given in the statement of the theorem) and κ̂ = κ̂∗ = (9, 1, 1).
These are verified in the supplementary file reducedERK-hopf.mw.

Remark 4.4. The Hopf bifurcation given in Theorem 4.3 was found by analyzing the Newton
polytopes of h4, h5, and h6. The theory behind this approach is presented in Appendix B,
and the steps we took to find the Hopf bifurcation are listed in Appendix C. We include
these appendices for readers who wish to apply similar approaches to other systems.

4.2 Bistability

Although the full ERK network is bistable [40], we now prove that the reduced ERK network
is not bistable (Proposition 4.5). As for irreversible ERK networks, some of them are bistable,
and we show that bistability is controlled by the two reactions kon and `on (Theorem 4.6).

Proposition 4.5. The reduced ERK network is not multistationary, and hence not bistable.

Proof. Let N denote the reduced ERK network. By definition and Proposition 3.3, we
obtain the following critical function for N :

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) , (27)

where â = (kcat, koff , `off), the function hc,a is as in (18), and φ(â;x) is as in (19).
This critical function C(â;x) (see the supplementary file reducedERK-noMSS.mw) is a

rational function, where the denominator is the following monomial: x1x2x3x5x6x7x8x9.
The numerator of C(â;x) is the following polynomial, which is negative when evaluated at
any (â;x) ∈ R3

>0 × R10
>0:

− k3
cat(kcat + koff)2x3

4(kcatx4 + `offx10)2`offkoff(x1x2x8 + x1x3x8 + x1x4x8 + x10x2x5

+ x10x2x6 + x10x2x8 + x2x3x8 + x2x4x8 + x2x5x8 + x2x5x9 + x2x6x8 + x2x6x9

+ x2x7x8 + x2x8x9 + x3x7x8 + x4x7x8) .

Thus, the following holds for all (â;x) ∈ R3
>0 × R10

>0:

sign(C(â;x)) = −1 = (−1)rank(N) ,
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where the final equality uses the fact that the stoichiometric matrix N has rank 10− 3 = 7.
So, by Proposition 2.4 and the fact that N is conservative with no boundary steady

states in any stoichiometric compatibility class (Remark 3.6), N is monostationary. Thus,
N is not multistationary and so, by definition, is not bistable.

Although the reduced ERK network is not bistable (Proposition 4.5), the next result
shows that irreversible versions of the full ERK network are bistable, as long as one of the
reactions labeled by kon and `on is present. That is, this result tells us which reactions can
be safely deleted (in contrast to standard results concerning reactions that can be added)
while preserving bistability.

Theorem 4.6 (Bistability in irreversible ERK networks). Consider any network N obtained
from the full ERK network by deleting one or more of the reactions corresponding to rate
constants k2, kon,m1, `2, `on, n2 (blue in Figure 1). Then the following are equivalent:

(1) N is multistationary,

(2) N is bistable, and

(3) N contains at least one of the reactions labeled by kon and `on.

Proof. By definition, every bistable network is multistationary, so (2) ⇒ (1). We therefore
need only show (1) ⇒ (3) ⇒ (2). (All computations below are found in our supplementary
file irreversibleERK.mw).

For (1)⇒ (3), we will prove ¬(3)⇒ ¬(1): Assume that N contains neither the reaction
labeled by kon nor the reaction `on. Our proof here is analogous to that of Proposition 4.5.
By Proposition 3.1, we obtain a critical function, C(â;x), for N of the form (27), where now
hc,a is as in (12) (with 1kon = 1`on = 0) and φ(â;x) is as in (13) (with â = (a2, a4)).

Here, det Jac(hc,a) is a rational function with denominator equal to koffx2(n2 +
n3)`catl3k3m3, which is always positive. The numerator is a polynomial of degree 5 in the
variables x2, x3, and x9 with coefficients that are always negative (see the supplementary file).
The critical function C(â;x) is obtained by substituting the positive parametrization into
det Jac(hc,a). Hence, for all (â;x) ∈ R2

>0×R12
>0, the equality sign(C(â;x)) = −1 = (−1)rank(N)

holds, because the stoichiometric matrix N has rank 12−3 = 9. So, by Proposition 2.4 (recall
from Remark 3.6 thatN is conservative with no boundary steady states in any stoichiometric
compatibility class), N is not multistationary.

Now we show (3) ⇒ (2), that is, if N contains at least one of the reactions labeled by
kon and `on then N is bistable. By symmetry (from exchanging in the network E, S00, and
S01 with, respectively, F , S11, and S10), we may assume that N contains kon.

Consider the network N ′ obtained from the full ERK network by deleting all reactions
marked in blue in Figure 1, except for kon (equivalently, we set k2 = m1 = `2 = `on = n2 = 0).
We will show that the following total constants and rate constants yield bistability:

(c1, c2, c3) = (46, 13, 13) , and

(k1, k3, kcat, kon, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (28)

(2, 1.1, 1, 5, 15, 2, 1.1, 1, 10, 20, 10, 20, 10) .
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Among the resulting three steady states (see the supplementary file), one of them is
approximately:

(20.72107755, 0.2956877203, 3.248789181, 7.821850626, 0.7821850626, 1.147175131,
0.7821850626, 0.7821850626, 0.1765542587, 1.322653950, 11.13994215, 1.324191138) .

At the above steady state, the Jacobian matrix (of the system obtained from (10) by
making the substitutions (28) and k2 = m1 = `2 = `on = n2 = 0) has three zero eigenvalues
(due to the three conservation laws). For the remaining eigenvalues, the real parts are
approximately:

-76.0913958200572, -70.7106617930401 , -16.3022723748274,
-10.9324829878475, -10.9324829878475, -8.81318904794782 ,
-4.88866989801728, -4.88866989801728 , -0.0545784672515179 ,

Thus, the nonzero eigenvalues have strictly negative real part, so the steady state is expo-
nentially stable.

Another steady state is approximately

(0.1782157709, 8.088440520, 0.2275355904, 11.45336411, 1.145336411, 0.1737638914,
1.145336411, 1.145336411, 0.3818389270, 0.07080081803, 2.620886659, 27.68512059) .

At this steady state, the real part of the eigenvalues of the Jacobian matrix of the system
are, in addition to the three zero eigenvalues, approximately as follows:

-163.308657649675, -68.5596972162577 , -57.0205793889569 ,
-16.4435472947534, -12.1029003142539, -9.27515541335710,
-9.27515541335710, -3.08709626767693 , -0.209550347944487.

This steady state is also exponentially stable. (A third steady state, not shown, is
unstable.) Hence, N ′ is bistable. Finally, as N ′ is a subnetwork obtained from N by making
some reversible reactions irreversible, then by [32, Theorem 3.1], bistability “lifts” from N ′
to N . Thus, N is bistable.

We obtain the following immediate consequence of Theorem 4.6.

Corollary 4.7. The fully irreversible ERK network is monostationary.

5 Maximum number of steady states

In the previous section, we saw that the full ERK network and some irreversible ERK
networks (those with kon or `on) are bistable, admitting two stable steady states in a stoi-
chiometric compatibility class. The question arises, Do these networks admit three or more
such steady states? We suspect not (Conjecture 5.10).

As a step toward resolving this problem, here we investigate the maximum number of
positive steady states in ERK networks, together with some related measures we introduce,
the maximum number of (non-boundary) complex-number steady states and the “mixed vol-
ume”. The mixed volume is always an upper bound on the number of complex steady states
(Proposition 5.8), but we show these numbers are equal for ERK networks (Proposition 5.9).
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5.1 Background and new definitions

Here we recall from [34] a network’s maximum number of positive steady states, and then
extend the definition to allow for complex-number steady states.

Definition 5.1. A network admits k positive steady states (for some k ∈ Z≥0) if there exists
a choice of positive rate constants so that the resulting mass-action system (1) has exactly
k positive steady states in some stoichiometric compatibility class (2).

In [34], k =∞ was allowed when there are infinitely many steady states in a stoichiometric
compatibility class. Here we do not allow k =∞ so that we consider isolated roots only (as
in Proposition 5.5 below).

Definition 5.2. Let G be a network with s species, m reactions, and a d×s conservation-law
matrix W , which results in the system augmented by conservation laws fc,κ, as in (3). The
network G admits k steady states over C∗ if there exists a choice of positive rate constants

κ ∈ Rm
>0 and a total-constant vector c ∈ Rd such that the system fc,κ = 0 has exactly k

solutions in (C∗)s = (C \ {0})s.

It is straightforward to check that Definition 5.2 does not depend on the choice of W .

Definition 5.3. The maximum number of positive steady states (respec-
tively, maximum number of steady states over C∗) of a network G is the maximum value
of k for which G admits k positive steady states (respectively, k steady states over C∗).

Next we recall, from convex geometry, the concept of mixed volume, which we will apply
to reaction networks. For background on convex and polyhedral geometry (such as polytopes
and Minkowski sums), we direct the reader to Ziegler’s book [48]. In particular, for a
polynomial f = b1x

σ1 + b2x
σ2 + · · · + b`x

σ` ∈ R[x1, x2, . . . , xs] , where the exponent vectors
σi ∈ Zs are distinct and bi 6= 0 for all i, the Newton polytope of f is the convex hull of its
exponent vectors: Newt(f) := conv{σ1, σ2, . . . , σ`} ⊆ Rs.

Definition 5.4. Let P1, P2, . . . , Ps ⊆ Rs be polytopes. The volume of the Minkowski
sum λ1P1 + λ2P2 + . . . + λsPs is a homogeneous polynomial of degree s in nonnega-
tive variables λ1, λ2, . . . , λs. In this polynomial, the coefficient of λ1λ2 · · ·λs, denoted by
Vol(P1, P2, . . . , Ps), is the mixed volume of P1, P2, ..., Ps.

The mixed volume counts the number of solutions in (C∗)s of a generic polynomial system.

Proposition 5.5 (Bernstein’s theorem [5]). Consider s real polynomials g1, g2, . . . , gs ∈
R[x1, x2, . . . , xs]. Then the number of isolated solutions in (C∗)s, counted with multiplicity,
of the system g1(x) = g2(x) = · · · = gs(x) = 0 is at most Vol(Newt(g1), . . . ,Newt(gs)).

Definition 5.6. Let G be a network with s species, m reactions, and a d×s conservation-law
matrix W , which results in the system augmented by conservation laws fc,κ, as in (3). Let
c∗ ∈ Rd

6=0, and let κ∗ ∈ Rm
>0 be generic. Let P1, P2, . . . , Ps ⊂ Rs be the Newton polytopes of

fc∗,κ∗,1, fc∗,κ∗,2, . . . , fc∗,κ∗,s, respectively. The mixed volume of G (with respect to W ) is the
mixed volume of P1, P2, . . . , Ps.
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A closely related definition is introduced and analyzed by Gross and Hill [25].

Remark 5.7. The mixed volume (Definition 5.6) is well defined. Indeed, it is straightforward
to check that the exponents appearing in fc∗,κ∗ are the same as long as c∗ ∈ Rd

6=0 and κ∗

is chosen generically (so that no coefficients of fc∗,κ∗ vanish, or equivalently certain linear
combinations of the κj’s do not vanish).

5.2 Results

Every positive steady state is a steady state over C∗. Also, the mixed volume pertains
to polynomial systems with the same supports (i.e., the exponents that appear in each
polynomial) as the augmented system fc,κ = 0 (but without constraining the coefficients to
come from a reaction network). We obtain, therefore, the bounds in the following result:

Proposition 5.8. For every network, the following inequalities hold among the maximum
number of positive steady states, the maximum number of steady states over C∗, and the
mixed volume of the network (with respect to any conservation-law matrix):

max # of positive steady states ≤ max # of steady states over C∗ ≤ mixed volume .

Proof. This result follows from Proposition 5.5 and Definitions 5.1–5.3.

We investigate the numbers in Proposition 5.8 for ERK networks in the following result.

Proposition 5.9. Consider four ERK networks: the full ERK network, the full ERK net-
work with the reaction kon removed, the fully irreversible network, and the reduced network.
For these networks, the following numbers (or bounds on them) are given in Table 4: the
maximum number of positive steady states, the maximum number of steady states over C∗,
and the mixed volume of the network (with respect to the consveration laws (11) or (17)).

ERK Max # Max # Mixed
network positive steady states over C∗ volume
Full ≥ 3 7 7
Full with kon = 0 ≥ 3 5 5
Fully irreversible 1 3 3
Reduced 1 3 3

Table 4: Results on ERK networks.

Proof. The results on the mixed volume were computed using the PHCpack [26] package in
Macaulay2 [23]. See the supplementary file ERK-mixedVol.m2.

The mixed volume is an upper bound on the maximum number of steady states over
C∗ (Proposition 5.8), so we need only show that each network admits the number shown in
Table 4 for steady states over C∗.
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The full ERK network admits 7 steady states over C∗ (including 3 positive steady
states) [17, Example 3.18]. Next, we consider the remaining three networks (see the supple-
mentary file ERK-MaxComplexNumber.nb).

For the full ERK network with kon = 0, when (c1, c2, c3) = (1, 2, 3) and (k1, k2,
k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3) = (3, 25, 1, 5, 0, 6, 5, 23, 11, 13,
43, 41, 12, 7, 8, 12, 31, 21), we obtain 5 steady states over C∗, three real and one complex-
conjugate pair, which are approximately as follows:

(21.7475, 1.97705, 2.40601, 2.64849, 0.760404, 0.564871, -24.1306, -0.973762,
-2.51373, -0.28488, -7.81077, -18.495),
(5.4105 + 14.8132 i, 0.491864 + 1.34665 i, 1.97942 - 3.45492 i, 1.66315 - 1.90055 i,
0.189178 + 0.517943 i, 0.140532 + 0.384758 i, -5.88178 - 12.7049 i, 1.00714 + 0.997852 i,
1.13283 + 0.533085 i, 0.470121 + 0.662785 i, -9.72843 - 0.81303 i, -0.749157 - 12.0899 i),
(5.4105 - 14.8132 i, 0.491864 - 1.34665 i, 1.97942 + 3.45492 i, 1.66315 + 1.90055 i,
0.189178 - 0.517943 i, 0.140532 - 0.384758 i, -5.88178 + 12.7049 i, 1.00714 - 0.997852 i,
1.13283 - 0.533085 i, 0.470121 - 0.662785 i, -9.72843 + 0.81303 i, -0.749157 + 12.0899 i)
(9.63546, 0.875951, -0.488295, 0.0430355, 0.336904, 0.250272, -8.02311, 2.36979,
0.45764, 0.173889, -10.4083, 0.123488), and
( 0.163415, 0.0148559, 0.00111949, 0.00756688, 0.00571382, 0.00424455, 1.82061, 2.98247,
0.00616705, 0.00175686, 0.777908, 0.0172524).

For the fully irreversible ERK network, when (c1, c2, c3) = (1, 2, 3) and (k1, k3, kcat,
koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (3, 1, 5, 6, 5, 11, 13, 41, 7, 8, 12, 21), there are 3 steady
states over C∗, all real, with approximate values:

(14.199, 1.29082, 2.5444, 2.43721, 0.496468, 0.368805, -16.0342, -0.302478,
-2.13373, -0.181355, -0.295181, -17.7264),
( 0.490202, 0.0445638, 0.0878422, 0.0841415, 0.0171399, 0.0127325, 1.37739, 2.88599,
0.00772073, 0.0728849, 0.118631, 0.0641415), and
(1.9419, 0.176536, 0.34798, 0.33332, 0.0678986, 0.050439, -0.466416, 2.54834,
0.0346375, -0.852654, -1.38782, 0.287758).

For the reduced ERK network, let (c1, c2, c3) = (1, 2, 3) and (k1, k3, kcat, koff ,m, n, `1,
`3, `cat, `off) = (3, 4, 1, 5, 6, 8, 7, 11, 12, 5). We obtain 3 steady states over C∗, all real, which
are approximately:

( -0.843105, -37.1185, 23.4711, 15.6474, -9.92245, -30.6429, -0.0292745, -0.319149,
2.0152, 1.30395),
(0.314129, 1.4361, 0.338341, 0.22556, 0.015463, 0.0477534, 0.0109073, 2.95215,
0.0290494, 0.0187967), and
(-2.47545, -0.954967, 1.77298, 1.18199, 0.087009, 0.268704, -0.0859532, 2.74928,
0.152226, 0.0984989).

Finally, we examine the maximum number of positive steady states. We already saw
that the fully irreversible and reversible networks are monostationary (Corollary 4.7 and
Proposition 4.5, respectively). For the “partially irreversible” network, we saw in the proof
of Theorem 4.6 that it admits 3 positive steady states. As for the full network, as noted
above, 3 positive steady states were shown in [17, Example 3.18].

Table 4 suggests that the mixed volume is a measure of the complexity of a network. The
full ERK network is multistationary, and its mixed volume is 7. The mixed volume drops to
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5 when kon = 0. When the network is further simplified to the fully irreversible, or even to
the reduced ERK network, the mixed volume becomes 3, and bistability is lost as well.

Finally, we conjecture that the bounds in Table 4 are strict, and ask about stability.

Conjecture 5.10. For the full ERK network and the full ERK network with kon = 0, the
maximum number of positive (respectively, positive stable) steady states is 3 (respectively, 2).

6 Discussion

Phosphorylation plays a key role in cellular signaling networks, such as mitogen-activated
protein kinase (MAPK) cascades, which enable cells to make decisions (to differentiate,
proliferate, die, and so on) [8]. This decision-making role of MAPK cascades suggests that
they exhibit switch-like behavior, i.e., bistability. Indeed, bistability in such cascades has
been seen in experiments [2, 6]. Oscillations also have been observed [29, 30], hinting at a role
in timekeeping. Indeed, multisite phosphorylation is the main mechanism for establishing
the 24-hour period in eukaryotic circadian clocks [38, 46].

These experimental findings motivated the questions we pursued. Specifically, we inves-
tigated robustness of oscillations and bistability in models of ERK regulation by dual-site
phosphorylation. Bistability, we found, is quickly lost when reactions are made irreversible.
Indeed, bistability is characterized by the presence of two specific reactions. Oscillations, in
contrast, persist even as the network is greatly simplified. Indeed, we discovered oscillations
in the reduced ERK network. Moreover, this network has the same number of reactions (ten)
as the mixed-mechanism network which Suwanmajo and Krishnan surmised “could be the
simplest enzymatic modification scheme that can intrinsically exhibit oscillation” [44, §3.1].
Our reduced ERK network, therefore, may also be such a minimal oscillatory network.

Returning to our bistability criterion (Theorem 4.6), recall that this result elucidates
which reactions can be safely deleted while preserving bistability – in contrast to standard
results concerning reactions that can be added [4, 20, 32]. We desire more results of this
type, so we comment on how we proved our result. The key was the special form of the
steady-state parametrization. In particular, following [17], our parametrizations allow both
species concentrations and rate constants to be solved (at steady state) in terms of other
variables. Additionally, a single parametrizations specialized (by setting rates to zero for
deleted reactions) to obtain parametrizations for a whole family of networks. Together,
these properties gave us access to new information on how bistability is controlled. We
are interested, therefore, in the following question: Which networks admit a steady-state
parametrization that specializes for irreversible versions of the network?

Our results on oscillations were enabled by new mathematical approaches to find Hopf
bifurcations. Specifically, building on [12], we gave a Hopf-bifurcation criterion for networks
admitting a steady-state parametrization. Additionally, we successfully applied this crite-
rion to the reduced ERK network by analyzing the Newton polytopes of certain Hurwitz
determinants. We expect these techniques to apply to more networks.

Finally, our work generated a number of open questions. First, what are the mixed
volumes of irreversible versions of the ERK network (beyond those shown in Table 4)? In
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particular, is there a mixed-volume analogue of our bistability criterion, which is in terms of
the reactions kon and `on? And, what is the maximum number of (stable) steady states in
the full ERK network (Conjecture 5.10)? Progress toward these questions will yield further
insight into robustness of bistability and oscillations in biological signaling networks.

Acknowledgements

NO, AS, and XT were partially supported by the NSF (DMS-1752672). AT was partially supported by the

Independent Research Fund Denmark. The authors thank Elisenda Feliu for insightful comments on an earlier

draft, and thank Carsten Conradi, Elizabeth Gross, Cvetelina Hill, Maya Mincheva, Stanislav Shvartsman,

Frank Sottile, Elise Walker, and Timo de Wolff for helpful discussions. This project was initiated while AT

was a visiting scholar at Texas A&M University, and while XT was hosted by ICERM. We thank Texas

A&M University and ICERM for their hospitality.

References

[1] David Angeli, Patrick De Leenheer, and Eduardo Sontag. A Petri net approach to
persistence analysis in chemical reaction networks, pages 181–216. Springer-Verlag,
Berlin, 2007.

[2] Christoph P Bagowski and James E Ferrell. Bistability in the JNK cascade. Curr. Biol.,
11(15):1176–1182, 2001.

[3] Murad Banaji. Inheritance of oscillation in chemical reaction networks. Appl. Math.
Comput., 325:191–209, 2018.

[4] Murad Banaji and Casian Pantea. The inheritance of nondegenerate multistationarity
in chemical reaction networks. SIAM J. Appl. Math., 78(2):1105–1130, 2018.

[5] David N. Bernshtein. The number of roots of a system of equations. Functional Analysis
and its Applications (translated from Russian), 9(2):183, 1975.

[6] Upinder S Bhalla, Prahlad T Ram, and Ravi Iyengar. MAP kinase phosphatase as a
locus of flexibility in a mitogen-activated protein kinase signaling network. Science,
297(5583):1018–1023, 2002.

[7] Daniele Cappelletti and Carsten Wiuf. Uniform approximation of solutions by elimi-
nation of intermediate species in deterministic reaction networks. SIAM J. Appl. Dyn.
Syst., 16(4):2259–2286, 2017.

[8] Lufen Chang and Michael Karin. Mammalian MAP kinase signalling cascades. Nature,
410(6824):37–40, 2001.

[9] Philip Cohen. The regulation of protein function by multisite phosphorylation–a 25
year update. Trends Bioch. Sci., 25(12):596–601, 2000.

27



[10] Carsten Conradi, Elisenda Feliu, Maya Mincheva, and Carsten Wiuf. Identifying pa-
rameter regions for multistationarity. PLoS Comput. Biol., 13(10):e1005751, 2017.

[11] Carsten Conradi, Alexandru Iosif, and Thomas Kahle. Multistationarity in the space
of total concentrations for systems that admit a monomial parametrization. Preprint,
arXiv:1810.08152, 2018.

[12] Carsten Conradi, Maya Mincheva, and Anne Shiu. Emergence of oscillations in a mixed-
mechanism phosphorylation system. B. Math. Biol., to appear, 2019.

[13] Carsten Conradi and Anne Shiu. A global convergence result for processive multisite
phosphorylation systems. B. Math. Biol., 77(1):126–155, 2015.

[14] Carsten Conradi and Anne Shiu. Dynamics of post-translational modification systems:
recent progress and future challenges. Biophys. J., 114(3):507–515, 2018.

[15] Gheorghe Craciun and Martin Feinberg. Multiple equilibria in complex chemical reac-
tion networks: extensions to entrapped species models. IEE P. Syst. Biol., 153:179–186,
2006.

[16] Annick Dhooge, Willy Govaerts, and Yuri A. Kuznetsov. MATCONT: A Matlab package
for numerical bifurcation analysis of ODEs. SIGSAM Bull., 38(1):21–22, March 2004.

[17] Alicia Dickenstein, Mercedes Perez Millan, Anne Shiu, and Xiaoxian Tang. Multista-
tionarity in structured reaction networks. B. Math. Biol., to appear, 2019.

[18] Mitchell Eithun and Anne Shiu. An all-encompassing global convergence result for
processive multisite phosphorylation systems. Math. Biosci., 291:1–9, 2017.

[19] Martin Feinberg. Dynamics and Modelling of Reactive Systems, chapter Chemical os-
cillations, multiple equilibria, and reaction network structure, pages 59–130. Academic
Press, 1980.

[20] Elisenda Feliu and Carsten Wiuf. Simplifying biochemical models with intermediate
species. J. R. Soc. Interface, 10(87), 2013.

[21] Alan S. Futran, A. James Link, Rony Seger, and Stanislav Y. Shvartsman. ERK as a
model for systems biology of enzyme kinetics in cells. Curr. Biol., 23(21):R972–R979,
2013.
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A Files in the Supporting Information

Table 5 lists the files in the Supporting Information, and the result/proof each file supports.
All files can be found at the online repository: https://github.com/neeedz/ERK.

30

https://github.com/neeedz/ERK


Name File type Result
ERK-Matcont.txt text file with MATCONT instructions Figures 3 and 4
irreversibleERK.mw Maple Theorem 4.6
reducedERK-noMSS.mw Maple Proposition 4.5
reducedERK-hopf.mw Maple Theorem 4.3
reducedERK-cones.sws Sage Theorem 4.3
ERK-mixedVol.m2 PHCPack Proposition 5.9
ERK-MaxComplexNumber.nb Mathematica Proposition 5.9

Table 5: Supporting Information files and the results they support.

B Newton-polytope method

Here we show how analyzing the Newton polytopes of two polynomials can reveal whether
there is a positive point at which one polynomial is positive and simultaneously the other is
zero (Proposition B.2 and Algorithm 1). In Appendix C, we show how we used this approach,
which we call the Newton-polytope method, to find a Hopf bifurcation leading to oscillations
in the reduced ERK network (in Theorem 4.3).

Notation B.1. Consider a polynomial f = b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈ R[x1, x2, . . . , xs],

where the exponent vectors σi ∈ Zs≥0 are distinct and bi 6= 0 for all i. A vertex σi of
Newt(f), the Newton polytope of f , is a positive vertex (respectively, negative vertex) if
the corresponding monomial of f is positive, i.e., bi > 0 (respectively, bi < 0). Also, Nf (σ)
denotes the outer normal cone of the vertex σ of Newt(f), i.e., the cone generated by the
outer normal vectors to all supporting hyperplanes of Newt(f) containing the vertex σ.
Finally, for a cone C, let int(C) denote the relative interior of the cone.

For an extensive discussion on polytopes and normal cones, see [48].

Proposition B.2. Let f, g ∈ R[x1, x2, . . . xs]. Assume that α is a positive vertex of Newt(f),
β+ is a positive vertex of Newt(g), and β− is a negative vertex of Newt(g). Then, if
int(Nf (α))∩ int(Ng(β+)) and int(Nf (α))∩ int(Ng(β−)) are both nonempty, then there exists
x∗ ∈ Rs

>0 such that f(x∗) > 0 and g(x∗) = 0.

To prove Proposition B.2 we use the following well-known lemma and its proof.

Lemma B.3. For a real, multivariate polynomial f = b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈

R[x1, x2, . . . , xs], if σi is a positive vertex (respectively, negative vertex) of Newt(f), then
there exists x∗ ∈ Rs

>0 such that f(x∗) > 0 (respectively, f(x∗) < 0).

Proof. Let σi be a vertex of Newt(f). Pick w = (w1, w2, . . . , ws) in the relative interior of the
outer normal cone Nf (σi), which exists because σi is a vertex. Then, by construction, the
linear functional 〈w,−〉 is maximized over the exponent-vectors σ1, σ2, . . . , σ` at σi. Thus,
we have the following univariate “polynomial with real exponents” in t:

f(tw1 , tw2 , . . . , tws) = b1t
〈w,σ1〉 + b2t

〈w,σ1〉 + · · ·+ b`t
〈w,σ`〉 = bit

〈w,σi〉 + lower-order terms .

So, for t large, sign(f(tw1 , tw2 , . . . , tws)) = sign(bi). Note that (tw1 , tw2 , . . . , tws) ∈ Rs
>0.
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Our proof of Proposition B.2 is constructive, through the following algorithm, where we
use the notation fw(t) := f(tw1 , tw2 , . . . , tws), for t ∈ R and w = (w1, w2, . . . , ws) ∈ Rs.

Algorithm 1: Newton-polytope method

input : polynomials f, g, and vertices α, β+, β−, as in Proposition B.2
output: a point x∗ ∈ Rs

>0 s.t. f(x∗) > 0 and g(x∗) = 0
1 define C0 := int(Nf (α)) ∩ int(Ng(β+)) and C1 := int(Nf (α)) ∩ int(Ng(β−));
2 pick ` = (`1, `2, . . . , `s) ∈ C0 and m = (m1,m2, . . . ,ms) ∈ C1;
3 define f`(t) := f(t`1 , t`2 , . . . , t`s); define fm(t); define g`(t); define gm(t);
4 define τ` := inf{t∗ ∈ R>0 | f`(t) > 0 and g`(t) > 0 for all t > t∗};
5 define τm := inf{t∗ ∈ R>0 | fm(t) > 0 and gm(t) < 0 for all t > t∗};
6 define T := max{τ`, τm}+ 1;
7 define h(r) := fr`+(1−r)m(T );
8 while min{h(r) | r ∈ [0, 1]} ≤ 0 do
9 T := 2T ;

10 h(r) := fr`+(1−r)m(T );

11 define r∗ := argmin{
(
gr·`+(1−r)m(T )

)2 | r ∈ [0, 1]} (pick one r∗ if there are multiple);

return : T r
∗`+(1−r∗)m :=

(
T r

∗`1+(1−r∗)m1 , T r
∗`2+(1−r∗)m2 , . . . , T r

∗`s+(1−r∗)ms
)

Proof of Proposition B.2. Let a+x
α be the term of f corresponding to the vertex α of

Newt(f), and similarly let b+x
β+ (respectively, b−x

β−) be the term of g correspond-
ing to the vertex β+ (respectively, β−) of Newt(g). Thus, a+ > 0, b+ > 0, and
b− < 0. Let {a1, a2, . . . , ad} ⊆ R denote the remaining set of coefficients of f , so that
f = a+x

α + (a1x
σ1 + a2x

σ2 + · · ·+ adx
σd), for some exponent vectors σi ∈ Zs≥0.

Algorithm 1 terminates: First, ` and m in line 2 exist by hypothesis. Also, τ` and τm
in lines 4–5 exist by the proof of Lemma B.3 and by construction. Next, minh(r) in line 8
exists because h is a continuous univariate function defined on a compact interval.

By construction and because cones are convex, the vector r` + (1 − r)m, which is a
convex combination of ` and m, is in the relative interior of Nf (α) for all r ∈ [0, 1]. Thus,
〈r`+ (1− r)m, α− σi〉 > 0 for all i = 1, 2, . . . , d and for all r ∈ [0, 1]. This (together with a
straightforward argument using continuity and compactness) implies the following:

δ := inf
r∈[0,1]

min
i=1,2,...,d

〈r`+ (1− r)m, α− σi〉 > 0.

Next, let β := infr∈[0,1]〈r`+ (1− r)m, α〉. Then, for all r ∈ [0, 1] and t > 0,

fr`+(1−r)m(t) = a+t
〈r`+(1−r)m),α〉 +

(
a1t
〈r`+(1−r)m),σ1〉 + · · ·+ adt

〈r`+(1−r)m),σd〉
)

> a+t
β − (|a1|+ |a2|+ · · ·+ |ad|)tβ−δ =: f̃(t) . (29)

In f̃(t), the term a+t
β dominates the other term, for t large, so there exists T ∗ > 0 such that

f̃(t) ≥ 0 when t ≥ T ∗. So, by (29), the while loop in line 8 ends when T ≥ T ∗ (or earlier).

Algorithm 1 is correct: For T fixed, the minimum of ψ(r) :=
(
g(T r`+(1−r)m)

)2
over the

compact set [0, 1] is attained, because ψ is continuous. Next we show that this minimum
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value is 0, or equivalently that for χ(r) := g(T r`+(1−r)m) there exists some r∗ ∈ (0, 1) such
that χ(r∗) = 0. Indeed, this follows from the Intermediate Value Theorem, because χ is
continuous, χ(0) = g(Tm) < 0 (because T > τm), and χ(1) = g(T `) > 0 (because T > τ`).

Finally, the inequality f(T r
∗`+(1−r∗)m) > 0 holds by construction of T , so defining x∗ :=

T r
∗`+(1−r∗)m ∈ Rs

>0 yields the desired vector satisfying f(x∗) > 0 and g(x∗) = 0.

C Using the Newton-polytope method

Here we show how we used Algorithm 1 to find the Hopf bifurcation in Theorem 4.3.
(For details, see the supplementary files reducedERK-hopf.mw and reducedERK-cones.sws).
Recall from the proof of that theorem, that our goal was to find some x∗ ∈ R10

>0 and
κ̂∗ = (k∗cat, k

∗
off , `

∗
off) ∈ R3

>0 satisfying the following conditions from Proposition 4.1:

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and
∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 . (30)

Step One. Specialize some of the parameters: set koff = `off = 1 and x3 = x4 = x6 =
x7 = x9 = x10 = 1. (Otherwise, h5 and h6 are too large to be computed.)

Step Two. Do a change of variables: let yi = 1/xi for i = 1, 2, 5, 8. These variables xi
were in the denominator, so switching to the variables yi yield polynomials.

LetH4,H5, andH6 denote the resulting polynomials in Q[kcat, y1, y2, y5, y8] after perform-
ing Steps One and Two. Accordingly, our updated goal is to find (k∗cat, y

∗
1, y
∗
2, y
∗
5, y
∗
8) ∈ R5

>0

at which H4 and H5 are positive and H6 is zero. (In a later step, we must also check the
partial-derivative condition in (30).)

Step Three. Apply (a straightforward generalization of) Algorithm 1 as follows.

(i) Find a positive vertex of H4 and a positive vertex of H5 whose outer normal cones
intersect (denote the intersection by C), and a positive vertex and a negative vertex
of H6 (denote their outer normal cones by D+ and D−, respectively) for which:

(a) the intersection D+ ∩D− is 4-dimensional, and

(b) the intersections C ∩D+ and C ∩D− are both 5-dimensional.

(ii) By Proposition B.2, a vector (k∗cat, y
∗
1, y
∗
2, y
∗
5, y
∗
8) that accomplishes our updated goal,

is guaranteed. To find such a point, we follow Algorithm 1 to obtain k∗cat = 729, y∗1 ≈
16.79978292, y∗2 ≈ 453.5941389, y∗5 ≈ 6.587368051, and y∗8 ≈ 80675.77181.

Recall the specializations in Step One and change of variables in Step Two, to obtain
κ̂ = (729, 1, 1) and

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) .

Step Four. Verify that the conditions in (30) hold.
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