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Abstract
Aim: Most	of	the	fundamental	questions	in	conservation	biogeography	require	the	
description	of	species	geographic	boundaries	and	the	identification	of	discrete	bio‐
logical	units	within	these	boundaries.	International	conservation	efforts	and	institu‐
tions	rely	mainly	on	traditional	taxonomic	approaches	for	defining	these	boundaries,	
resulting	in	significant	cryptic	diversity	going	undetected	and	often	extinct.	Here,	we	
combine	high‐throughput	genomic	data	with	publicly	available	environmental	data	
to	identify	cryptic	diversity	in	the	threatened	bird's‐eye	primrose	(Primula farinosa). 
We	aim	to	characterize	evolutionary	lineages	and	test	whether	they	co‐occur	with	
changes	 in	 environmental	 conditions.	 These	 lineages	 can	 be	 used	 as	 intraspecific	
units	 for	conservation	to	enhance	assessments	 regarding	the	status	of	 threatened	
species.
Location: Europe	and	temperate	Asia	(latitude,	40–65°N;	longitude,	10°E–115°W).
Methods: We	genotyped	 93	 individuals	 from	 71	 populations	 at	 1,220	 loci	 (4,089	
SNPs)	across	the	Eurasian	distribution	of	P. farinosa.	We	used	phylogenomic	and	pop‐
ulation	structure	approaches	to	identify	intraspecific	lineages.	We	further	extracted	
statistically	 derived	 and	 remotely	 sensed	 environmental	 information,	 that	 is	 land	
cover,	climate	and	soil	characteristics,	to	define	the	biotic	and	abiotic	environment	
inhabited	by	each	lineage	and	test	for	niche	similarities	among	lineages.	Additionally,	
we	tested	for	isolation	by	distance	among	populations	and	applied	linear	and	polyno‐
mial	regressions	to	identify	lineage‐environment	associations.
Results: Analyses	of	genomic	data	revealed	six	major	lineages	within	P. farinosa cor‐
responding	to	distinct	geographic	areas.	Niche	similarity	tests	indicated	that	lineages	
occupy	distinct	abiotic	and	biotic	space.	Isolation	by	distance	indicated	that	geogra‐
phy	alone	cannot	explain	genetic	divergence	within	P. farinosa,	while	 lineage‐envi‐
ronment	associations	suggested	potential	adaptation	to	different	abiotic	conditions	
across	lineages.	However,	relationships	with	the	land	cover	classes,	a	proxy	for	habi‐
tat,	were	weaker.
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1  | INTRODUC TION

Most	 of	 the	 fundamental	 questions	 in	 conservation	 biogeography	
require	 knowledge	 of	 the	 geographic	 distributions	 and	 ecologi‐
cal	niches	of	 individual	species	 (Riddle,	Ladle,	Lourie,	&	Whittaker,	
2011;	Whittaker	 et	 al.,	 2005).	 This	 knowledge	 is	 essential	 to	 bet‐
ter	 understand	 species	 responses	 in	 a	 rapidly	 changing	world	 and	
prevent	 the	 ever‐increasing	 loss	 of	 their	 diversity	 (Waldron	 et	 al.,	
2017).	However,	 conservation	 biologists	 and	 international	 efforts,	
such	as	the	Red	List	of	the	International	Union	for	Conservation	of	
Nature	 (IUCN),	often	 face	 the	double	challenge	of	describing	 spe‐
cies	geographic	boundaries	and	identifying	discrete	biological	units	
within	these	boundaries	(Keith	et	al.,	2015;	Riddle	et	al.,	2011).	The	
identification	of	subspecific	units	is	of	major	importance	in	order	to	
protect	 both	 evolutionary	 history	 and	 ecological	 processes	 below	
the	species	level	(Faith	et	al.,	2010;	Moritz,	2002;	Palsbøll,	Bérubé,	
&	Allendorf,	2006).

Wide‐range	 species,	 particularly	 those	 with	 limited	 vagility	 or	
dispersal	 potential,	 often	 show	 strong	 phylogeographic	 structure	
across	 their	 distributions	 (Avise,	 2009).	 This	 structure	 has	 been	
mostly	shaped	by	past	geological,	ecological	and	evolutionary	pro‐
cesses,	and	the	resulting	intraspecific	units	(i.e.,	historically	isolated	
groups	of	populations;	hereafter	referred	to	as	“lineages”)	frequently	
display	 distinct	 ecological	 characteristics	 (Allendorf,	 Luikart,	 &	
Aitken,	2013).	Although	 intraspecific	 lineages	have	 long	been	 rec‐
ognized	as	 significant	units	 for	 conservation	 (Moritz,	1994;	Ryder,	
1986),	 relevant	 studies	 have	 focused	 more	 on	 the	 genetic	 (using	
mostly	 a	 few	neutral	markers)	 and	 less	on	 the	ecological	 (and	po‐
tentially	 adaptive)	 distinctiveness	 of	 these	 lineages	 (Funk,	McKay,	
Hohenlohe,	&	Allendorf,	2012;	De	Guia	&	Saitoh,	2007).	However,	
responding	to	recent	and	ongoing	destructive	impacts	of	global	cli‐
mate	change	and	human	activities	on	intraspecific	diversity	(Miraldo	
et	al.,	2016;	Pauls,	Nowak,	Balint,	&	Pfenninger,	2013),	and	therefore	
to	ecosystems	(Des	Roches	et	al.,	2018),	requires	the	integration	of	
genetic	 and	 environmental	 data.	 Conservation	 studies	 integrating	
both	 biodiversity	 aspects	 are	 still	 scarce	 but	 are	 expected	 to	 in‐
crease	as	more	genetic	and	environmental	data	are	becoming	avail‐
able	(Jenkins,	Yannic,	Schaefer,	Conolly,	&	Lecomte,	2018;	Wilting	et	
al.,	2015;	Yannic	et	al.,	2017).

Characterization	of	 intraspecific	diversity	 is	often	 linked	to	the	
identification	 of	 morphologically	 cryptic	 lineages	 (Bickford	 et	 al.,	
2007;	Riddle	et	al.,	2011).	Cryptic	diversity	is	commonly	defined	as	
the	occurrence	of	distinct	evolutionary	lineages	that	are	otherwise	
morphologically	indistinguishable	within	a	nominal	species	(Bickford	

et	al.,	2007;	Struck	et	al.,	2018).	Despite	the	morphological	similari‐
ties,	cryptic	lineages	may	carry	not	only	unique	evolutionary	trajec‐
tories	but	also	the	potential	of	differing	responses	to	ongoing	and	
future	global	change	(Bernardo,	2011;	Feckler	et	al.,	2014;	Paaby	&	
Rockman,	 2014).	 Therefore,	 biodiversity	 assessments	 that	 ignore	
cryptic	lineages,	including	them	in	a	single	species	or	a	single	conser‐
vation	unit,	may	severely	undervalue	current	and	future	biodiversity	
patterns	(Bálint	et	al.,	2011;	Fišer,	Robinson,	&	Malard,	2018;	Riddle	
et	 al.,	 2011).	 Cryptic	 diversity	 is	 typically	 assessed	 using	 genetic	
data,	and	the	advent	of	high‐throughput	sequencing	has	the	poten‐
tial	to	revolutionize	the	discovery	of	cryptic	lineages	across	the	tree	
of	life	(Allendorf,	Hohenlohe,	&	Luikart,	2010;	Benestan	et	al.,	2016;	
Funk	et	al.,	2012).	However,	the	number	of	studies	that	use	genome‐
wide	data	to	uncover	cryptic	diversity	remains	small	(see	Struck	et	
al.,	2018	for	a	review).	Additionally,	there	is	an	ever	growing	need	to	
broaden	the	definition	of	cryptic	diversity	and	incorporate	environ‐
mental	data	when	assessing	intraspecific	cryptic	variation	(Espíndola	
et	al.,	2016;	Freudenstein,	Broe,	Folk,	&	Sinn,	2017;	Sullivan	et	al.,	
2019).

Assessment	 of	 environmental	 conditions	 across	 populations	
has	 traditionally	 relied	 on	 time‐consuming	 and	 costly	 field	 obser‐
vations	 and	 measurements	 of	 relevant	 ecological	 variables,	 with	
time	and	cost	increasing	with	species	range,	number	of	populations	
and	number	of	variables	(Albert	et	al.,	2010).	However,	the	ever‐in‐
creasing	public	availability	of	spatial	environmental	data	is	advanc‐
ing	biodiversity	 research	and	enables	 the	 time‐	and	cost‐effective	
discovery	of	ecological	biodiversity	patterns	across	taxonomic	and	
spatial	scales	(Franklin,	Serra‐Diaz,	Syphard,	&	Regan,	2017;	La	Salle,	
Williams,	&	Moritz,	2016).	Data	on	abiotic	variables	directly	involved	
in	species’	physiological	limitations	and	distributions,	such	as	climate	
and	soil	characteristics,	are	publicly	available	from	several	sources	
either	as	spatial	 interpolations	of	 field	measurements,	satellite	ob‐
servations	of	 the	earth's	 surface	 (i.e.,	 remote	 sensing)	or	 a	 combi‐
nation	of	 both	 (Franklin	 et	 al.,	 2017).	Additionally,	 remote‐sensing	
technologies	 offer	 the	 means	 to	 closely	 approximate	 local	 biodi‐
versity	patterns	and	biotic	interactions	at	large	to	moderate	spatial	
scales	 in	the	form	of	 land	cover	classes	(He	et	al.,	2015;	Lausch	et	
al.,	2016).	Coupled	with	high‐throughput	genomic	data,	statistically	
derived	 and	 remotely	 sensed	 environmental	 data	 can	 significantly	
enhance	 our	 ability	 to	 uncover	 and	 document	 diversity	 patterns,	
yet	studies	that	integrate	these	diverse	data	are	lacking	(Bush	et	al.,	
2017;	Yamasaki	et	al.,	2017).

The	 bird's‐eye	 primrose	 (Primula farinosa	 L.)	 represents	 an	 ex‐
cellent	system	to	investigate	potential	patterns	of	cryptic	diversity	

Main conclusion: Our	results	highlight	the	need	for	incorporating	intraspecific	diver‐
sity	in	global	assessments	of	species	conservation	status	and	the	utility	of	genomic	
and	publicly	available	environmental	data	in	conservation	biogeography.

K E Y W O R D S

CHELSA,	high‐throughput	genomic	data,	IUCN,	land	cover,	MODIS
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relevant	for	conservation.	Primula farinosa	is	a	cold‐adapted	herb	in	
the	family	Primulaceae	characterized	by	having	a	wide,	but	disjunct	
distribution	in	Europe	and	north‐east	Asia	(Hambler	&	Dixon,	2003;	
Krasnoborov,	2000;	Roskov	et	al.,	2018;	Shishkin	&	Bobrov,	1952).	
Previous	taxonomic	treatments	based	on	a	wide	range	of	diagnos‐
tic	 traits	 suggested	 that	P. farinosa	 is	 largely	 absent	 from	western	
and	central	Siberia,	where	 it	 is	replaced	by	closely	related	species,	
but	it	occurs	from	the	east	of	the	Altai	mountains	through	Mongolia	
to	 eastern	 Siberia	 and	 the	 Kamchatka	 peninsula	 (Fedorov,	 2001;	
Krasnoborov,	2000;	Richards,	2003;	Shishkin	&	Bobrov,	1952).	The	
species	shows	significant	variability	with	many	forms	and	interme‐
diates	 over	 its	 extended	Eurasian	 distribution	 (Shishkin	&	Bobrov,	
1952;	Krasnoborov,	2000;	Theodoridis,	personal	observations),	and	
the	lack	of	distinct	morphological	differences	among	these	forms	has	
resulted	 in	significant	controversy	among	taxonomists	 (Hambler	&	
Dixon,	2003;	Krasnoborov,	2000;	Richards,	2003;	Shishkin	&	Bobrov,	
1952).	The	species	grows	in	calcareous	grasslands	and	alpine	streams	
or	 lakes	at	altitudes	between	400	and	3,000	m	a.	s.	 l.	 in	southern	
Europe	 (Carpathians,	Alps,	 Iberia)	and	Mongolia,	while	 in	northern	

Europe	 (British	 Isles,	 Baltic	 region	 and	 southern	 Scandinavia)	 the	
species	grows	exclusively	 in	wetlands	between	0	and	400	m	a.s.l.	
(Figure	 1;	 Hambler	 &	 Dixon,	 2003;	 Richards,	 2003;	 Theodoridis,	
Randin,	 Broennimann,	 Patsiou,	 &	Conti,	 2013).	 Regarding	 its	 con‐
servation	status,	P. farinosa	has	gone	extinct	or	is	facing	extinction	
mainly	caused	by	human‐driven	changes	in	its	wetland	microhabitats	
and	is	included	in	the	IUCN	Red	Lists	of	several	European	countries	
(Croatia:	 Topić	&	 Stančić,	 2006;	Ukraine:	Didukh,	 2009;	Hungary:	
Salamon‐Albert	 &	 Morschhauser,	 2003;	 Poland:	 Gajewski,	 Sitek,	
Stolarczyk,	 Nowak,	 &	 Kapała,	 2013;	 Denmark:	 Sørensen,	 Larsen,	
Orabi,	 &	 ørgaard,	 2014;	 United	 Kingdom:	 Cheffings	 et	 al.,	 2005;	
Slovakia:	Turis	et	al.,	2014;	Romania:	Coldea,	Stoica,	Puşcaş,	Ursu,	&	
Oprea,	2009).	Additionally,	the	species	is	predicted	to	suffer	a	dra‐
matic	reduction	in	its	climatically	suitable	habitats	in	certain	regions	
across	 its	 European	 range	 (Theodoridis,	 Patsiou,	 Randin,	 &	 Conti,	
2018).

Here,	we	use	P. farinosa	to	(a)	 identify	potential	cryptic	genetic	
diversity	relevant	for	IUCN	conservation	status	assessments	and	(b)	
test	 for	 environmental	 correlates	 of	 intraspecific	 cryptic	 diversity	

F I G U R E  1  Sampling	localities	of	populations	of	Primula farinosa	across	its	Eurasian	range.	Altitude	is	indicated	by	colour	(purple	to	white)	
at	each	locality.	Pictures	represent	species	morphology	and	variation	of	habitat	type	in	four	distinct	geographic	regions
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in	species	with	wide	continental	distributions.	To	this	end,	we	use	
previously	published	and	newly	generated	high‐throughput	genomic	
data	to	identify	intraspecific	lineages	across	the	species’	range.	We	
also	 extract	 statistically	 predicted	 and	 remotely	 sensed	 environ‐
mental	variables	to	approximate	the	biotic	and	abiotic	habitat	of	the	
species.	Finally,	we	test	for	significant	associations	between	genetic	
groups	 and	 environmental	 variables.	 By	 combining	 genomic	 with	
publicly	available	environmental	data,	we	aim	at	contributing	novel	
ways	 for	 assessing	 intraspecific	 cryptic	 diversity	 in	 conservation	
biogeography.

2  | METHODS

2.1 | Sampling

To	estimate	genetic	structure	and	ecological	diversity	within	P. fari-
nosa,	we	sampled	71	populations	that	encompass	most	of	its	known	
Eurasian	distribution	(Figure	1).	Our	sampling	design	aimed	at	rep‐
resenting	most	 genetic	 and	 ecogeographic	 variation	within	P. fari-
nosa	 (Albert	et	 al.,	2010;	Gotelli	&	Stanton‐Geddes,	2015).	For	 its	
European	distribution,	we	used	57	populations	reported	previously	
(Theodoridis	et	al.,	2018,	2017)	and	selected	one	to	three	individuals	
per	population	based	on	the	size	of	the	available	genomic	data	(i.e.,	
maximizing	 the	 total	 number	 of	 sequencing	 reads	 per	 individual).	
For	 its	Asian	distribution,	we	sampled	14	populations	 for	 the	 first	
time	 (two	 individuals	 per	population)	 across	Mongolia.	All	 popula‐
tions	were	sampled	during	the	springs	and	summers	of	2011,	2012,	
and	2013	and	were	 located	at	 least	15	km	apart	 from	each	other.	
Additional	sampling	details	are	provided	in	Table	S1.	Distribution	and	
sampling	maps	were	created	using	the	Strabo	library	(https	://github.
com/spyro	stheo	dorid	is/strabo)	in	JavaScript.

2.2 | Sequencing and bioinformatics

DNA	extraction	 and	 sequencing	 followed	 the	 approach	 described	
by	 Theodoridis	 et	 al.	 (2017).	 Briefly,	 leaf	 samples	 collected	 from	
93	individuals	were	preserved	in	silica	gel	and	DNA	was	extracted	
using	a	modified	CTAB	protocol	(Doyle	&	Doyle,	1990).	Genomic	li‐
brary	preparation	was	performed	by	SNPsaurus	 (http://snpsa	urus.
com/)	using	nextRAD	 libraries	with	 the	selective	primer	sequence	
GTGTAGAGC.	Single‐end	sequencing	was	performed	in	three	lanes	
of	an	 Illumina	HiSeq	2000	 (University	of	Oregon	High‐throughput	
Sequencing	Core),	producing	raw	reads	that	were	101	bp	long.

Raw	DNA	sequences	were	filtered	and	trimmed	following	the	
recommendations	of	Minoche,	Dohm,	and	Himmelbauer	(2011)	as	
implemented in GonoSpy	 v0.1	 package	 (https	://github.com/spyro	
stheo	dorid	is/gonospy)	in	Python.	Initial	analysis	of	the	raw	reads	
indicated	the	existence	of	a	few	invariable	organellar	sites	with	ex‐
tremely	high	coverage.	Therefore,	we	further	excluded	these	sites	
by	mapping	the	filtered	reads	to	the	chloroplast	genome	of	Primula 
veris	 and	 the	 mitochondrial	 genome	 of	 Vaccinium macrocarpon 
(Ericaceae)	 using	 Stampy	 v1.0.28	 (Lunter	 &	 Goodson,	 2011)	 and	
applying	an	expected	divergence	from	the	reference	(substitution	

rate)	of	0.05	substitutions	per	site.	After	filtering,	our	final	data‐
set	 consisted	of	nuclear	 reads	 that	were	90	bp	 long.	To	 identify	
putative	homologous	loci	across	all	 individuals,	we	employed	the	
StacKS	pipeline	v.1.44	 (Catchen,	Hohenlohe,	Bassham,	Amores,	&	
Cresko,	2013)	and	applied	the	following	parameter	values:	we	re‐
quired	 a	minimum	coverage	 (m)	 of	 five	 identical	 reads	 per	 stack	
by	 allowing	 a	maximum	of	 two	 gaps	 (max_gaps)	 between	 reads;	
we	also	removed	stacks	with	coverage	of	more	than	two	standard	
deviations	 above	 the	mean	 (Catchen	 et	 al.,	 2013);	we	 allowed	 a	
maximum	distance	 (M)	between	stacks	of	 two	nucleotides	and	a	
maximum	number	of	two	stacks	at	a	single	de	novo	locus	in	each	
individual;	a	maximum	of	six	mismatches	(n)	and	a	maximum	of	four	
gaps	(max_gaps)	was	allowed	between	putatively	homologous	loci	
across	all	individuals.

2.3 | Phylogenomic inference and genetic structure

To	assess	intraspecific	genetic	structure	and	phylogenetic	relation‐
ships	 in	P. farinosa,	we	used	the	Variant	Call	Format	(VCF)	file	ex‐
ported by StacKS	and	filtered	 it	using	GonoSpy	 to	exclude	SNPs	 (a)	
that	were	represented	by	≤5%	of	the	total	reads	for	the	correspond‐
ing	locus	within	each	individual,	(b)	with	a	frequency	≤0.05	across	all	
individuals	and	(c)	absent	in	more	than	30%	of	the	sampled	individu‐
als.	To	infer	phylogenetic	relationships	among	the	sampled	individu‐
als	of	P. farinosa,	we	used	the	filtered	SNP	data	(as	described	above),	
including	 all	 SNPs	per	 locus,	 and	 a	maximum	 likelihood	 approach	
implemented in raxml	v8.2.11	(Stamatakis,	2014).	Alignment	sites	
consisting	of	only	heterozygotes	and	homozygotes	for	a	single	al‐
lele	(but	not	homozygotes	for	the	alternative	allele)	are	considered	
invariant by raxml; therefore,	we	further	excluded	these	sites	using	
GonoSpy.	The	final	filtered	data	matrix	consisted	of	4,089	SNPs.	To	
account	for	the	lack	of	invariant	sites,	we	applied	an	ascertainment	
bias	correction	(‐‐asc‐corr	=	lewis)	to	the	likelihood	calculations	as	
recommended	by	Leaché,	Banbury,	Felsenstein,	Nieto‐Montes	de	
Oca,	and	Stamatakis	(2015).	We	used	the	GTR	+	gamma	model	of	
sequence	evolution	determined	by	the	model	selection	procedure	
implemented in Iq‐tree	 (Nguyen,	 Schmidt,	 von	 Haeseler,	 &	Minh,	
2015).	We	also	 applied	 the	 rapid	bootstrap	 algorithm	with	1,000	
replicates	and	performed	a	full	search	for	the	best	scoring	tree.	The	
final	 tree	with	associated	branch	support	values	was	visualized	 in	
Itol	webserver	(Letunic	&	Bork,	2016).

Genetic	 structure	 was	 inferred	 using	 the	 variational	 Bayesian	
framework	 implemented	 in	 the	 software	 faStStructure	 (Raj,	
Stephens,	&	Pritchard,	2014).	Since	faStStructure	assumes	that	the	
investigated	 loci	 are	 unlinked,	 we	 selected	 one	 random	 SNP	 per	
locus	and	repeated	this	analysis	20	times	to	account	for	the	stochas‐
ticity	stemming	from	the	random	choice	of	SNPs	(Theodoridis	et	al.,	
2017).	After	 filtering,	 the	20	 final	data	matrices	each	consisted	of	
1,220	randomly	chosen	SNPs.	We	ran	the	analyses	for	numbers	of	
groups,	K,	 ranging	 from	1	 to	10	and	 further	 applied	 the	 chooseK.
py	program	to	estimate	the	most	likely	number	of	K. For the K val‐
ues	that	best	explained	our	data,	the	results	of	the	20	randomly	se‐
lected	SNP	replicates	were	combined	using	the	“greedy”	algorithm	

https://github.com/spyrostheodoridis/strabo
https://github.com/spyrostheodoridis/strabo
http://snpsaurus.com/
http://snpsaurus.com/
https://github.com/spyrostheodoridis/gonospy
https://github.com/spyrostheodoridis/gonospy
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within clumpp	v1.1.2	(Jakobsson	&	Rosenberg,	2007).	The	results	of	
the clumpp	analysis	were	visualized	using	the	D3	JavaScript	 library	
(Bostock,	Ogievetsky,	&	Heer,	2011).

We	further	evaluated	the	degree	of	genetic	divergence	among	
the	 genetic	 groups	 identified	 from	 the	 phylogenomic	 and	 genetic	
structure	analyses	using	Nei's	standard	genetic	distance	(Nei,	1972).	
Following	Joly,	Bryant,	and	Lockhart	(2015),	for	each	pairwise	com‐
parison	we	first	calculated	the	mean	distance	of	all	SNPs	within	each	
locus	and	then	calculated	the	genome‐wide	distance	by	estimating	
the	mean	across	all	locus	distances	using	custom	Python	scripts.

2.4 | Biotic environment

To	 approximate	 the	 type	of	 biotic	 environments	 across	P. farinosa 
populations,	we	 used	 the	Global	 Consensus	 Land	Cover	 database	
(Tuanmu	&	Jetz,	2014)	that	provides	information	on	the	prevalence	
of	 12	 land	 cover	 (including	 land	 use)	 classes	 at	 1‐km	 resolution	
(http://www.earth	env.org/landc	over.html).	 We	 extracted	 preva‐
lence	 values	 for	 all	 classes	 and	 populations	 and	 further	 excluded	
classes	 with	 zero	 prevalence	 for	 all	 populations.	 The	 final	 matrix	
consisted	of	the	following	ten	land	cover	classes:	evergreen/decidu‐
ous	needleleaf	trees,	deciduous	broadleaf	trees,	mixed/other	trees,	
shrubs,	herbaceous	vegetation,	cultivated	and	managed	vegetation,	
regularly	 flooded	 vegetation,	 snow/ice,	 barren,	 open	 water.	 We	
subsequently	reduced	the	dimensions	of	the	dataset	by	performing	
principal	 components	 analysis	 (PCA)	 implemented	 in	 the	 package	
matplotlIb	(Hunter,	2007)	in	Python.

2.5 | Abiotic environment

We	 approximated	 the	 abiotic	 conditions	 of	P. farinosa	 populations	
using	soil,	precipitation	and	temperature	variables	obtained	from	two	
different	sources	 (global	 reanalysis	data	 from	CHELSA	and	remote	
sensed	data	from	MODIS;	see	below).	We	combined	the	above	vari‐
ables	in	two	different	datasets,	one	that	included	the	soil,	precipita‐
tion	and	the	CHELSA	temperature	data	(hereafter	abiotic/CHELSA)	
and	a	second	one	that	included	the	soil,	precipitation	and	the	MODIS	
temperature	data	(hereafter	abiotic/MODIS).	We	then	reduced	the	
dimensions	of	each	of	the	two	datasets	by	performing	principal	com‐
ponents	 analysis	 as	 described	 above	 (see	 Biotic	 environment	 sec‐
tion).	The	individual	abiotic	variables	are	described	below.

2.5.1 | Soil attributes

We	 characterized	 soil	 attributes	 using	 six	 soil	 variables	 obtained	
from	the	web‐based	global	soil	information	system	(SoilGrids;	https	
://soilg	rids.org)	made	 available	by	 the	 International	 Soil	 Reference	
and	 Information	 Center	 (ISRIC)	 at	 250	m	 resolution	 (Hengl	 et	 al.,	
2017).	The	SoilGrids	system	provides	global	predictions	for	standard	
numeric	soil	properties	and	is	generated	using	automated	statistical	
mapping	and	machine	learning	(Hengl	et	al.,	2017).	For	each	sampled	
population,	 we	 extracted	 information	 on	 the	 following	 variables:	
Predicted	most	probable	class	following	the	World	Reference	Base	

(predClass),	 soil	 pH	 in	H2O	at	0	 cm	 (pH1),	 soil	 pH	 in	H2O at 5 cm 
(pH2),	 absolute	 depth	 to	 bedrock	 (absDepth),	 soil	 organic	 carbon	
content	at	0	cm	(carbCont1)	and	soil	organic	carbon	content	at	5	cm	
(carbCont2).

2.5.2 | Temperature and precipitation (CHELSA)

Precipitation	and	temperature	at	2	m	above	ground	for	each	sam‐
pled	population	were	obtained	from	CHELSA	(Climatologies	at	high	
resolution	 for	 the	 earth's	 land	 surface	 areas;	 http://chelsa‐clima	
te.org/)	at	30	arc sec	(c.	~1	km	on	the	equator)	resolution	(Karger	et	
al.,	2017).	CHELSA	includes	monthly	(mean,	maximum	and	minimum)	
temperature	 and	precipitation	patterns	 for	 the	 time	period	1979–
2013	 derived	 by	 downscaling	 the	model	 output	 temperature	 and	
precipitation	 estimates	 of	 the	ERA‐Interim	 climatic	 reanalysis	 (i.e.,	
downscaled	 global	 reanalysis	 data;	 Karger	 et	 al.,	 2017).	 Using	 the	
monthly	temperature	and	precipitation	values,	we	generated	the	fol‐
lowing	set	of	seven	climatic	variables	that	describe	annual	and	grow‐
ing	 season	 climate	 trends	 for	 the	 sampled	 populations:	 minimum	
temperature	of	growing	season	(tminGrow),	maximum	temperature	
of	 growing	 season	 (tmaxGrow),	 average	 temperature	 range	during	
growing	 season	 (tDiffGrow),	 average	 temperature	of	 growing	 sea‐
son	(tmeanGrow),	growing	degree	days	(GDD),	annual	precipitation	
(precAnnual)	and	precipitation	during	the	growing	season	(prcGrow).	
Growing	season	for	P. farinosa	was	defined	as	the	period	from	March	
to	September	(Hambler	&	Dixon,	2003).

2.5.3 | Temperature (MODIS)

In	 addition	 to	 the	 CHELSA	 temperature	 data,	 we	 obtained	 land	
surface	 (0	m	above	ground)	 temperature	derived	 from	 thermal	 in‐
frared	 measurements	 of	 the	 NASA	Moderate	 Resolution	 Imaging	
Spectroradiometer	 (MODIS)	 onboard	 the	 Terra	 and	 Aqua	 Earth	
Observing	 System	 satellites	 (Wan	 &	 Dozier,	 1996).	 MODIS/Terra	
(Wan,	Hook,	&	Hulley,	2015,	2015)	and	MODIS/AQUA	(Wan,	Hook,	
&	Hulley,	2015,	2015)	land	surface	temperature	data	are	produced	
daily	at	1	km	spatial	resolution.	Because	year‐round	data	from	both	
satellites	are	available	since	the	year	2003,	we	considered	the	time	
period	between	2003	and	2017,	and	for	each	population,	we	down‐
loaded	and	extracted	daily	temperature	data	for	the	growing	season	
(March–September)	 using	 the	 pymodIS v2.0.9	 (http://www.pymod	
is.org/)	 and	 choroSpy	 v0.1	 (https	://github.com/spyro	stheo	dorid	is/
chorospy)	packages	in	Python.	We	then	merged	the	data	from	both	
satellites	 and	 calculated	 mean,	 maximum	 and	 minimum	 monthly	
temperatures.	Subsequently,	we	used	the	monthly	values	to	calcu‐
late	the	same	five	temperature‐related	variables	as	described	above	
(tminGrow,	tmaxGrow,	tDiffGrow,	tmeanGrow	and	GDD).

2.6 | Niche overlap and niche similarity tests

To	 assess	 ecological	 differentiation	 within	 P. farinosa,	 we	 quanti‐
fied	climatic	niche	differences	among	the	identified	genetic	groups	
using	 the	 approach	 described	 by	 Broennimann	 et	 al.	 (2012)	 in	

http://www.earthenv.org/landcover.html
https://soilgrids.org
https://soilgrids.org
http://chelsa-climate.org/
http://chelsa-climate.org/
http://www.pymodis.org/
http://www.pymodis.org/
https://github.com/spyrostheodoridis/chorospy
https://github.com/spyrostheodoridis/chorospy
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two‐dimensional	environmental	space	(PCA;	see	also	Theodoridis	et	
al.,	2013).	We	first	calculated	niche	overlap	between	genetic	groups	
using	Schoener's	D	 similarity	 index	 (Schoener,	1970),	a	metric	 that	
ranges	from	0	(completely	discordant	niches)	to	1	(identical	niches).	
We	then	defined	a	background	extent	for	each	genetic	group	using	
a	20	km	buffer	zone	around	the	sampling	localities	(Theodoridis	et	
al.,	 2018)	 and	 tested	whether	 the	 ecological	 niches	 of	 the	 groups	
tend	 to	be	more	similar	 to	each	other	 than	would	be	expected	by	
chance	 using	 background	 (or	 niche)	 similarity	 tests	 (Broennimann	
et	 al.,	 2011;	Warren,	 Glor,	 &	 Turelli,	 2008).	 These	 tests	 randomly	
shift	the	density	of	occurrences	in	one	range	and	calculate	similarity	
(Schoener's	D)	using	the	observed	niche	from	the	other	range.	We	
repeated	the	process	1,000	times	for	both	ranges	under	comparison,	
and	the	observed	D	value	was	compared	to	the	distribution	of	the	
randomized	D	values	in	a	one‐sided	t	test	(Broennimann	et	al.,	2011).	
The	tests	were	conducted	for	each	environmental	category	(biotic,	
abiotic/CHELSA,	abiotic/MODIS).	For	each	of	 the	 two	abiotic	cat‐
egories,	 the	soil	variables	 (and	 the	CHELSA	precipitation	variables	
for	 the	abiotic/MODIS)	were	 reprojected	and	 resampled	 to	match	
the	projection	and	resolution	of	the	respective	temperature	 layers	
using	the	Geospatial	Data	Abstraction	Library	v2.3.2	(GDAL,	www.
gdal.org).	All	tests	were	conducted	using	the	“ecospat”	package	in	R	
(Di	Cola	et	al.,	2017).

2.7 | Isolation by distance and ancestry/
environment associations

We	evaluated	the	role	of	geographic	distance	in	explaining	the	ge‐
netic	 divergence	 across	 all	 sampled	 Eurasian	 populations	 of	P. fa-
rinosa.	 We	 calculated	 pairwise	 genetic	 distances	 as	 the	 average	
nucleotide	 differences	 between	 populations	 across	 all	 SNPs.	 For	
each	considered	SNP	that	was	sampled	 in	both	populations	under	
any	pairwise	comparison,	we	assigned	a	distance	of	1	when	popu‐
lations	 shared	 no	 alleles	 and	 0	 otherwise.	 Geographic	 distances	
among	populations	were	calculated	using	the	haversine	formula.	To	
test	for	the	significance	of	the	relationship	between	genetic	and	ge‐
ographic	distance,	we	performed	a	Mantel	test	implemented	in	the	
scikit‐bio	 v0.5.5	 (http://scikit‐bio.org/)	 library	 in	 Python	 using	 the	
log‐transformed	geographic	and	genetic	distances	and	the	Pearson	
correlation	 coefficient	 with	 10,000	 permutations.	 To	 account	 for	
the	large	geographic	distances	between	the	European	and	the	Asian	
populations,	we	performed	the	tests	on	two	different	datasets,	one	
containing	all	sampled	Eurasian	populations	and	one	containing	only	
the	European	populations.

We	 further	 tested	 whether	 the	 observed	 variation	 in	 biotic	
and	abiotic	environmental	variables	among	populations	could	be	
explained	 by	 the	 ancestry	 profile	 (i.e.,	 ancestry	 probabilities)	 of	
each	 individual.	 Significant	 ancestry/environment	 associations	
would	be	indicative	of	distinct	environmental	niches	for	each	in‐
dividual	or	group	of	 individuals	with	similar	ancestry	profiles.	To	
this	end,	we	 fitted	multiple	 linear	and	polynomial	 (quadratic)	 re‐
gression	models	with	the	estimated	posterior	probabilities	of	each	
individual	belonging	to	a	specific	ancestral	group	as	independent	

variables,	and	each	of	the	three	main	PCA	axes	for	each	variable	
category	 (biotic,	 abiotic/CHELSA,	 abiotic/MODIS)	 as	 response	
variables.	To	avoid	collinearity	among	the	independent	variables,	
we	excluded	the	last	ancestry	probability	for	each	individual	as	lin‐
early	dependent	(all	ancestry	probabilities	sum	up	to	one).	Below,	
we	provide	the	linear	regression	formula	for	the	general	case	of	K 
identified	ancestral	groups.

where P1,	P2,	…	Pk−1	are	the	posterior	probabilities	of	each	individual	
belonging	to	the	respective	ancestral	group	(i.e.,	group	one	to	group	
K	−	1)	and	Ê	 is	 the	predicted	environmental	 score	along	 the	consid‐
ered	PCA	axis.	For	populations	represented	by	more	than	one	individ‐
ual	(i.e.,	Balkan	and	Asian	populations),	and	since	all	individuals	within	
populations	showed	identical	ancestry	profiles	(see	Results),	we	ran‐
domly	selected	one	individual.	Linear	and	polynomial	regression	mod‐
els	were	 fitted	using	 the	 “lm”	and	 “glm”	 functions	 in	R	version	3.4.0	
(R	Development	Core	Team,	2017),	 respectively.	To	 further	 test	 the	
adequacy	of	linear	models	in	explaining	environmental	variation	across	
populations,	 we	 tested	 for	 residual	 spatial	 autocorrelation	 in	 each	
model	using	Moran's	I	with	kernel	distance	weights	implemented	in	the	
python package pySal	v.2	(https	://pysal.org/)	and	1,000	simulations.

3  | RESULTS

3.1 | Phylogenomic inference and genetic structure

Phylogenomic	analyses	revealed	four	major	clans/groups	(terminol‐
ogy	for	unrooted	trees	follows	Wilkinson,	McInerney,	Hirt,	Foster,	
&	 Embley,	 2007)	 separated	 by	 long	 branches	with	 bootstrap	 sup‐
port	of	100	(Figure	2a).	These	four	clans	correspond	to	four	major	
regions	of	the	Eurasian	distribution	of	P. farinosa:	western–central–
northern	Europe,	Balkan	peninsula,	Altai	mountains	 and	Khangai–
Khentii	mountains	in	central	Mongolia	(Figure	2).	Additionally,	raxml 
analyses	identified	three	clans	within	the	western–central–northern	
Europe	group	(branch	bootstrap	support	of	100),	corresponding	to	
major	geographic	clades	 reported	 in	previous	studies	 (Theodoridis	
et	al.,	2018,	2017),	namely	the	Carpathian,	the	Iberian	and	the	cen‐
tral‐northern	European	clade.	The	 results	of	 the	genetic	 structure	
analyses	are	 largely	 consistent	with	 those	obtained	 from	 the	phy‐
logenomic	analyses	(Figure	2).	Specifically,	for	ten	out	of	the	20	SNP	
replicates,	 the	chooseK.py	program	assigned	all	 individuals	 to	 five	
groups	 (K = 5),	while	 nine	 fastStructure	 replicates	 supported	 four	
groups	 and	 only	 one	 replicate	 supported	 three	 ancestral	 groups.	
Additionally,	 populations	 within	 the	 clans	 identified	 in	 the	 raxml 
unrooted	tree	showed	similar	ancestry	profiles	in	the	fastStructure	
analyses	(Figure	2b).	Moreover,	and	adding	further	support	to	the	re‐
sults	of	the	phylogenomic	analyses,	Nei's	standard	genetic	distances	
were	 lower	 among	 the	 western–central–northern	 European	 line‐
ages	(0.048–0.098)	compared	to	the	distances	among	all	four	major	
Eurasian	lineages	(0.362–0.517;	Table	1).

Ê=𝛽0+𝛽1P1+𝛽2P2+…+𝛽k−1Pk−1

http://www.gdal.org
http://www.gdal.org
http://scikit-bio.org/
https://pysal.org/
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F I G U R E  2  Phylogenomic	and	population	structure	analyses	of	Primula farinosa.	(a)	Maximum	likelihood	(RAxML)	unrooted	tree	inferred	
from	a	matrix	of	4,089	variant	sites	(SNPs).	Colours	indicate	distinct	lineages	(i.e.,	groups	of	populations	separated	by	long	branches)	and	
correspond	to	distinct	geographic	regions	(inset	map).	Numbers	on	major	branches	indicate	branch	support	(1,000	bootstrap	replicates).	
Branches	with	<70%	bootstrap	support	were	collapsed.	(b)	The	results	of	the	fastStructure	analyses	based	on	20	repetitions	of	randomly	
chosen	SNPs	from	1,220	loci.	The	Balkan	and	Asian	populations	are	represented	by	three	and	two	individuals,	respectively	(separated	by	
black	inner	ticks)

Iberia CN Europe Carpathians Balkans C Mongolia Altai

Iberia – 0.048 0.098 0.483 0.386 0.458

CN	Europe – – 0.076 0.463 0.37 0.44

Carpathians – – – 0.466 0.367 0.442

Balkans 0.457 – 0.443 0.517

C	Mongolia 0.362 – – 0.381

Altai 0.434 – – –

Iberia	+	CN	Europe	+	Carpathians

Note: Numbers	above	the	diagonal	indicate	the	distances	between	all	six	lineages	while	num‐
bers	below	the	diagonal	(grey	box)	indicate	the	distances	between	the	three	major	lineages	(i.e.,	
Balkans,	C	Mongolia	and	Altai)	and	the	main	European	lineage	after	merging	the	three	European	
groups,	that	is	Iberia,	CN	Europe	and	Carpathians,	into	one	group

TA B L E  1  Nei's	standard	genetic	
distances	between	all	identified	genetic	
groups/lineages	from	the	phylogenomic	
and	structure	analyses
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F I G U R E  3  The	distribution	of	the	sampled	populations	of	Primula farinosa	in	biotic	and	abiotic	multivariate	environmental	space.	(a)	
Land	cover	classes:	Evergreen/deciduous	needleleaf	trees	(class1),	deciduous	broadleaf	trees	(class3),	mixed/other	trees	(class4),	shrubs	
(class5),	herbaceous	vegetation	(class6),	cultivated	and	managed	vegetation	(class7),	and	barren	(class11).	(b)	and	(c)	Climate	and	soil	variables	
using	the	CHELSA	and	MODIS	variables,	respectively:	growing	degree	days	(GDD),	minimum	temperature	of	growing	season	(tminGrow),	
maximum	temperature	of	growing	season	(tmaxGrow),	average	temperature	range	during	growing	season	(tDiffGrow),	average	temperature	
of	growing	season	(tmeanGrow),	annual	precipitation	(precAnnual),	precipitation	during	the	growing	season	(prcGrow),	soil	pH	in	H2O at 
0	cm	(pH1),	and	soil	pH	in	H2O	at	5	cm	(pH2),	absolute	depth	to	bedrock	(absDepth),	predicted	most	probable	class	(predClass),	soil	organic	
carbon	content	at	0	cm	(carbCont1),	soil	organic	carbon	content	at	5	cm	(carbCont2)
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3.2 | Multivariate biotic and abiotic space and 
niche similarity

The	results	of	the	PCA	of	the	biotic	(land	use)	dataset	indicated	that	
the	Asian	populations,	particularly	those	in	the	Altai	mountains,	tend	
to	grow	 in	 land	mainly	covered	by	shrubs	and	herbaceous	vegeta‐
tion	 or	 land	 that	 is	mostly	 barren	 or	 snow‐covered	 (Figure	 3a).	 In	
contrast,	 the	 European	 populations,	 especially	 those	 that	 belong	
to	 the	central‐northern	European	group,	 appear	 to	occupy	a	wide	
range	of	land	cover	classes,	from	tree	dominated	land	to	land	that	is	
mainly	cultivated	or	managed	(Figure	3a).	In	the	abiotic	PCA	space,	
populations	 that	 belong	 to	 the	 same	 clan/group	 (i.e.,	 share	 similar	
ancestry	 profiles)	 appear	 to	 grow	 under	 similar	 abiotic	 conditions	
(Figure	3b,c).	Specifically,	 in	both	abiotic	datasets,	 that	 is	CHELSA	
(global	 reanalysis	 temperature	data)	 and	MODIS	 (remotely	 sensed	
temperature	 data),	 the	 Altai	 populations	 experience	 much	 lower	
temperatures	and	wider	temperature	fluctuations	during	the	grow‐
ing	 season,	 followed	 by	 the	 populations	 in	 central	Mongolia.	 The	
Asian	populations	also	appear	to	receive	less	precipitation	both	an‐
nually	and	during	the	growing	season.	Moreover,	our	results	indicate	
that	the	Asian	populations	grow	in	more	alkaline	 (basic)	soils	com‐
pared	to	the	European	populations.

Niche	 overlap	 (Schoener's	 D)	 was	 generally	 slightly	 higher	 in	
biotic	 space	 across	 all	 lineage	 pairwise	 comparisons,	 compared	 to	
abiotic	 space	 (Table	2).	Moreover,	 the	majority	of	 the	background	

similarity	tests	did	not	support	significant	similarities	between	the	
available	habitats	of	the	six	lineages	in	both	biotic	and	abiotic	envi‐
ronments,	suggesting	ecological	divergence	in	P. farinosa	(Table	2).

3.3 | Isolation by distance and ancestry/
environment associations

The	 Pearson	 correlation	 coefficient	 between	 the	 log‐transformed	
geographic	 and	 genetic	 distances	 were	 relatively	 high	 among	 all	
Eurasian	populations	(r	=	0.75,	p	<	0.001;	Figure	4),	a	result	probably	
reflecting	the	large	geographic	distance	separating	the	European	and	
Asian	populations	(Figure	1).	This	correlation	was	much	weaker	when	
considering	only	the	European	populations	(r	=	0.46,	p	<	0.001),	sug‐
gesting	that	geographic	distance	is	a	weak	predictor	of	the	genetic	
divergence	observed	among	populations.

In	 general,	 the	 results	 of	 the	 multiple	 regressions	 indicated	
significant	 associations	 between	 individual	 ancestry	 propor‐
tions	 and	 environment	 (i.e.,	 PCA	 axes),	 with	 varying	 degrees	 of	
fit	across	datasets,	number	of	groups	(K)	and	PCA	axes	(Table	3).	
The	 first	 PCA	 axis	 in	 both	 abiotic	 datasets,	 that	 is	 CHELSA	 and	
MODIS	 (mostly	 representing	 soil	 pH,	 temperature	 range	 during	
the	growing	season,	minimum	and	maximum	temperatures	during	
the	growing	season,	and	annual	precipitation;	Figure	3c),	showed	
the	best	fit	for	K = 5	(adj.	r2	=	0.61),	with	the	linear	model	providing	
a	 slightly	 better	 fit	 (AIC	 =	 240.71	 and	AIC	 =	 239.43	 for	MODIS	

TA B L E  2  Results	of	niche	similarity	(Schoener's	D)	analyses	and	background	(niche)	similarity	tests	in	three	categories	of	multivariate	
environmental	space	for	the	six	lineages	of	Primula farinosa	identified	in	this	study

Lineages

Environmental space

Biotic Abiotic/CHELSA Abiotic/MODIS

D p (1‐2) p (2‐1) D p (1‐2) p (2‐1) D p (1‐2) p (2‐1)

Altai—Balkans 0.001 0.071 0.281 0 1 1 0 1 1

Altai—Carpathians 0 1 1 0 1 1 0 1 1

Altai—C	Mongolia 0.0001 0.546 0.322 0 1 1 0 1 1

Altai—CN	Europe 0.0025 0.233 0.557 0 1 1 1.11e−16 0.082 0.357

Altai—Iberia 0 1 1 0 1 1 0 1 1

Balkans—Carpathians 0.0007 0.208 0.906 0 1 1 0 1 1

Balkans—C	Mongolia 0.0298 0.455 0.605 0 1 1 0 1 1

Balkans—CN	Europe 0.107 0.402 0.351 0.0086 0.118 0.638 0.06 0.106 0.568

Balkans—Iberia 0.0004 0.561 0.855 0.3746 0.01 0.057 0.18 0.231 0.171

Carpathians—C	
Mongolia

0.175 0.056 0.147 0 1 1 0 1 1

Carpathians—CN	Europe 0.1486 0.035 0.08 0.0363 0.236 0.307 0.3415 0.011 0.027

Carpathians—Iberia 0.218 0.06 0.18 0 1 1 0.0007 0.737 0.662

C	Mongolia—CN	Europe 0.07 0.072 0.231 0.0179 0.232 0.346 0.0586 0.165 0.092

C	Mongolia—Iberia 0.2269 0.116 0.176 0 1 1 0.2298 0.082 0.137

CN	Europe—Iberia 0.066 0.265 0.036 0.0193 0.682 0.36 0.0637 0.619 0.069

Note: Backgrounds	for	the	tests	were	defined	by	applying	a	20	km	buffer	zone	around	the	sampling	localities	of	each	lineage.	The	background	similar‐
ity	tests	were	performed	twice	for	each	lineage	pair.	The	second	number	in	the	parentheses	after	the	p	value	indicates	the	lineage	whose	background	
was	used	for	the	respective	similarity	tests.	Numbers	in	bold	indicate	significant	p	values	(<0.05).
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and	CHELSA	respectively)	compared	to	the	quadratic	polynomial	
model	 (AIC	=	241.77	and	AIC	=	243.46;	Table	3).	Coefficients	of	
determination	 were	 also	 significant	 for	 the	 second	 PCA	 axis	 of	
both	abiotic	datasets	(mostly	representing	soil	pH	and	annual	and	
growing	season	precipitation)	and	K = 5	 (adj.	 r2	=	0.323	and	adj.	
r2	=	0.2945	for	abiotic/MODIS	and	abiotic/CHELSA	respectively).	
Significant	associations	were	also	observed	between	ancestry	pro‐
portions	and	the	first	PCA	axis	of	the	biotic	dataset	(i.e.,	land	cover	
classes),	 with	much	 lower	 degrees	 of	 fit,	 however,	 compared	 to	
the	abiotic	datasets	(adj.	r2	=	0.1727	for	K = 4 and adj. r 2	=	0.2747	
for	K = 5),	and	significant	residual	spatial	autocorrelation	(Moran's	
I	 =	 0.32	 for	K = 4	 and	Moran's	 I	 =	 0.22	 for	K = 5).	Overall,	 the	
abiotic/MODIS	dataset	showed	the	best	linear	fit	with	no	signifi‐
cant	spatial	autocorrelation	in	residuals	across	the	top	explanatory	
models	(PC1	and	PC2	for	K = 5,	PC1	for	K = 4;	Table	3).

4  | DISCUSSION

Identification	of	nature's	units	and	the	geographic	description	of	bio‐
diversity	variation	have	been	central	objectives	 in	conservation	bio‐
geography	ever	since	the	birth	of	the	field	(Whittaker	et	al.,	2005;	see	
also	Riddle	et	al.,	2011).	However,	challenges	related	to	data	availability	
and	integration	have	hindered	progress	towards	these	objectives,	par‐
ticularly	 in	 taxa	with	 little	or	uninformative	morphological	variation.	
Here,	we	conducted	field	work	and	took	advantage	of	high‐through‐
put	 sequencing	 technologies	 and	 publicly	 available	 environmental	
data	 to	 address	 the	 above	 two	 objectives	 in	 the	 cold‐adapted	 and	
threatened plant P. farinosa.	We	identified	six	major	genetic	lineages	
across	 its	Eurasian	distribution	corresponding	to	distinct	geographic	
regions	and	found	significant	associations	between	these	lineages	and	

their	 abiotic	 environments,	 indicative	 of	 high	 intraspecific	 diversity	
and	potential	local	adaptation	to	different	climatic	and	soil	conditions.	
Our	results	highlight	the	usefulness	of	genomic	and	publicly	available	
data	in	biodiversity	research	and	the	need	to	incorporate	intraspecific	
diversity	in	global	assessments	of	species	conservation	status.

According	to	IUCN	(http://www.iucnr	edlist.org/detai	ls/20339	
8/1)	and	the	ITIS	Catalogue	of	Life	(Roskov	et	al.,	2018),	P. farinosa 
is	widespread	 in	 Europe	 and	 temperate	Asia.	However,	 the	 spe‐
cies	 is	threatened	or	extinct	 in	many	European	countries,	mainly	
because	 of	 anthropogenic	 environmental	 pressure.	While	 these	
threats	are	acknowledged	by	IUCN,	the	global	status	assessment	
is	summarized	as	follows:	“This	species	demonstrates	declines	 in	
most	of	its	range,	being	marked	as	threatened	in	several	national	
red	 lists.	 It	 suffers	 from	 grazing	 and	 lack	 of	 management	 in	 its	
grassland	 habitats.	 However,	 the	 species	 is	 still	 widespread	 and	
unlikely	to	severely	decline	in	the	near	future	towards	extinction.	
More	 information	 on	 the	 current	 population	 size,	 trend	 and	 the	
overall	rate	of	decline	is	needed	to	review	whether	it	would	qualify	
for	threatened	under	Criterion	A.”	From	this	report,	it	is	clear	that	
by	 considering	P. farinosa	 as	 a	widespread	 species,	 local	 extinc‐
tions	 are	 overlooked	 because	 of	 its	 relative	 abundance	 globally.	
The	countries	where	the	species	has	already	gone	extinct	or	dis‐
plays	the	most	severe	declines	are	Hungary,	Poland,	Slovakia	and	
Romania.	 Both	 our	 current	 and	 previous	 studies	 (Theodoridis	 et	
al.,	2018,	2017)	show	that	populations	 in	these	countries	form	a	
distinct	Carpathian	lineage	(Figure	2),	occupying	to	a	large	extent	
an	ecological	niche	distinct	from	the	rest	of	the	Eurasian	popula‐
tions	(Table	2;	Figure	3b,c).	Moreover,	both	the	Carpathian	and	the	
Iberian	lineages	are	projected	to	experience	a	severe	loss	of	their	
climatically	suitable	habitat	in	the	next	few	decades	(Theodoridis	
et	al.,	2018).	These	results	demonstrate	that	the	projected	range	

F I G U R E  4  Correlations	(Pearson's	r)	between	geographic	distance	(log‐transformed	km)	and	genetic	distance	(log‐transformed	average	
nucleotide	differences)	between	all	sampled	Eurasian	populations	(a)	and	only	the	European	populations	(b).	Significance	was	assessed	using	
Mantel	test	(p	<	0.001	in	both	cases)

http://www.iucnredlist.org/details/203398/1
http://www.iucnredlist.org/details/203398/1
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reduction	of	threatened	European	lineages,	such	as	the	Carpathian	
and	Iberian	lineages,	would	translate	into	the	loss	of	populations	
with	unique	genetic	and	ecological	characteristics,	and	call	for	im‐
mediate	 revision	 in	 the	 conservation	 status	 of	 P. farinosa in the 
affected	European	countries.	Our	 results	emphasize	 the	need	to	
incorporate	genomic	and	environmental	data	in	IUCN	assessments	
for	securing	the	protection	of	unique	evolutionary	lineages.

Identification	of	cryptic	diversity	has	traditionally	relied	on	the	
use	of	a	 few	 loci	 to	estimate	evolutionary	 relationships	or	genetic	
distances	 among	 populations	 within	 nominal	 species	 (Fišer	 et	 al.,	
2018).	 Despite	 the	 rapid	 progress	 in	 high‐throughput	 sequencing	

technologies	 in	the	 last	decade,	studies	that	harness	the	power	of	
genomic	 data	 remain	 few	 (Struck	 et	 al.,	 2018).	Moreover,	 studies	
that	 integrate	genomic	with	publicly	 available	environmental	data,	
that	is	statistically	derived	and/or	remotely	sensed	data,	to	identify	
cryptic	diversity	are	scarce	(Dufresnes	et	al.,	2018).	In	this	study,	we	
combined	genome‐wide	polymorphisms	(4,089	SNPs)	with	climate,	
soil	 and	 land	 cover	 data	 to	 identify	 cryptic	 genomic	 diversity	 and	
its	environmental	correlates	within	the	cold‐adapted	P. farinosa.	We	
identified	six	major	lineages	(four	previously	known,	two	newly	dis‐
covered;	Figure	2)	and	significant	lineage‐environment	associations	
(Table	3).	 Specifically,	we	uncovered	 strong	 relationships	between	

TA B L E  3  Statistical	relationships	between	genetic	structure	(ancestry;	see	Figure	2b)	of	the	studied	populations	and	the	first	three	PCA	
axes	in	their	biotic	(land	cover	classes)	and	abiotic	(climate	and	soil	characteristics)	environmental	space

Environmental Space Multiple r2 Adjusted r2 AIC linear AIC polynomial Moran's I

Biotic

Land	cover

K = 4

PC1 0.2082**  0.1727 257.82 252.09 0.32*** 

PC2 0.0379 −0.0051 244.04 237.13 0.16

PC3 0.0914 0.0507 213.89 216.56 0.16

K = 5

PC1 0.3161***  0.2747 249.41 255.77 0.22** 

PC2 0.1179 0.0643 239.88 237.66 0.1

PC3 0.1289 0.076 212.9 220.55 0.12

Abiotic

Soil,	precipitation,	temperature	(CHELSA)

K = 4

PC1 0.556***  0.5362 251.86 240.63 0.22* 

PC2 0.1106*  0.0707 293.09 274.05 0.4*** 

PC3 0.0599 0.0179 269.47 257.03 0.63*** 

K = 5

PC1 0.6377***  0.6157 239.43 243.46 0.08

PC2 0.3348***  0.2945 274.46 277.11 0.23** 

PC3 0.0858 0.0304 269.49 259.01 0.64*** 

Soil,	precipitation,	temperature	(MODIS)

K = 4

PC1 0.5922***  0.5725 246.88 239.23 0.14

PC2 0.0131*  0.0889 268.57 250.19 0.29*** 

PC3 0.009 −0.038 224.38 220.55 0.73*** 

K = 5

PC1 0.6397***  0.616 240.71 241.77 0.05

PC2 0.365***  0.323 249.86 252.14 0.08

PC3 0.015 −0.049 226.01 222.5 0.73*** 

Note: r2:	coefficient	of	determination	obtained	using	a	linear	model	and	significance	level	(asterisks);	Moran's	I:	residual	spatial	autocorrelation	for	the	
linear	models	and	significance	level	(asterisks);	Linear	and	polynomial	models	were	fitted	using	the	results	of	the	fastStructure	analysis	(i.e.,	ancestry	
proportions)	for	K = 4 and K = 5.
Abbreviation:	AIC,	Akaike's	information	criterion.
*p	≤	0.05	
**p	≤	0.01	
***p	≤	0.001	
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individual	 ancestry	 proportions	 and	 the	 abiotic	 environment	 that	
the	individuals	occupy.	Moreover,	the	abiotic	dataset	that	 includes	
the	remotely	sensed	surface	temperature	(abiotic/MODIS)	showed	
a	better	linear	fit	across	PCA	axes	and	numbers	of	ancestral	groups	
compared	 to	 the	 abiotic/CHELSA	 dataset	 (Table	 3).	 This	 result	
further	 stresses	 the	 superiority	 of	 satellite‐obtained	 estimates	 of	
climatic	variables	to	ground	station	statistical	interpolations	in	cap‐
turing	climatic	variation	in	plant	species	distributions,	particularly	for	
regions	with	complex	topography	or	sparse	meteorological	station	
data	(Deblauwe	et	al.,	2016).	Although	we	could	not	experimentally	
test	whether	the	observed	genomic	divergence	among	the	Eurasian	
populations	 is	 neutral	 or	 adaptive,	 our	 IBD	 results	 (Figure	 4)	 and	
the	ancestry/environment	associations	 (Table	3)	 suggest	 that	geo‐
graphic	isolation	alone	cannot	explain	the	observed	differentiation,	
particularly	 among	 the	 European	 populations,	 and	 that	 ecological	
factors	may	be	driving	lineage	divergence.	These	results	add	further	
evidence	for	the	role	of	ecological	factors	in	reinforcing	cryptic	di‐
versity	within	ecologically	diverse	plant	species	(Liu	et	al.,	2013).

Morphological	stasis,	the	tendency	of	closely	related	taxa	to	re‐
tain	a	high	degree	of	morphological	similarity	over	extended	periods,	
has	been	suggested	as	a	major	mechanism	to	explain	high	levels	of	
cryptic	genetic	diversity	within	species	despite	the	lack	of	noticeable	
intraspecific	morphological	 variation	 (Bickford	 et	 al.,	 2007;	 Gould	
&	Eldredge,	1977).	Taxa	experiencing	strong	selection	on	traits	for	
adaptation	to	specific	environments	might	not	show	morphological	
disparity,	despite	their	long	temporal	and	spatial	isolation	(Davis	et	
al.,	2014;	Estes	&	Arnold,	2007).	Our	results	show	that	niche	overlap	
(Schoener's	D)	among	lineages	is	generally	higher	in	the	biotic	envi‐
ronmental	space	compared	to	the	abiotic	space,	albeit	no	significant	
niche	 similarities	 were	 detected	 (Table	 2).	 Additionally,	 we	 found	
weak	 relationships	 between	 individual	 ancestry	 profiles	 and	 their	
occupied	biotic	space	(adj.	r2	=	0.1727	for	K = 4 and adj. r2	=	0.2747	
for	K = 5;	Table	3),	indicative	of	the	low	variation	in	biotic	conditions,	
that	is	land	cover	types,	across	lineages,	despite	the	long	branches	
separating	 them	 (Figure	2a).	Although	we	used	a	 relatively	 coarse	
resolution	land	cover	dataset	(~1	km),	these	results	may	explain	the	
lack	of	morphological	disparity	across	the	Eurasian	lineages,	adding	
further	 evidence	 for	 the	 role	of	 biotic	 interactions	 in	 constraining	
the	evolution	of	diagnostic	traits	(i.e.,	stabilizing	selection)	over	large	
spatiotemporal	scales	(Charlesworth,	Lande,	&	Slatkin,	1982).

While	the	nature	and	definition	of	species	boundaries	continue	
to	 be	 a	matter	 of	 debate,	 recent	 views	have	 focused	on	 the	 inte‐
gration	of	various	criteria,	including	intrinsic	reproductive	isolation,	
morphological	 diagnosability,	 monophyly	 and	 distinct	 ecological	
niches	 (Freudenstein	 et	 al.,	 2017;	 De	Queiroz,	 2007).	 Our	 results	
address	the	last	two	criteria	by	revealing	strong	ecological	and	evo‐
lutionary	differentiation	among	the	six	P. farinosa	lineages,	although	
Nei's	 standard	genetic	distances	between	 these	 lineages	 (Table	1)	
fall	within	the	range	of	values	previously	reported	for	intraspecific	
populations	 of	 plant	 species	 (Alexander,	 Poll,	 Dietz,	 &	 Edwards,	
2009;	Li,	Wang,	Liu,	Zhuang,	&	Huang,	2018).	Whether	the	identi‐
fied	Eurasian	lineages	could	be	assigned	to	different	nominal	species	
or	not	will	depend	on	additional	research	on	intrinsic	reproductive	

isolation	among	them,	as	well	as	on	phylogenomic	analyses	including	
closely	related	and	morphologically	distinct	species	within	the	highly	
diverse	Primula	sect.	Aleuritia Duby clade.

5  | CONCLUSIONS

Identifying	 discrete	 biological	 units	within	 threatened	 species	 has	
important	 implications	 for	 conservation.	 Conservation	 guidelines	
rely	mainly	on	traditional	taxonomic	characters	 in	defining	conser‐
vation	 units	 or	 species.	However,	 under	 this	 approach,	 significant	
cryptic	diversity	may	go	undetected	and	often	extinct.	 Integrative	
approaches	that	combine	genome‐wide	data	with	easily	accessible	
environmental	 information	 can	 provide	 unprecedented	 resolution	
below	the	species	level	and	significantly	help	conservation	agencies	
in	 their	 assessments.	Our	 study	 demonstrates	 the	 utility	 of	 these	
data	 in	the	cold‐adapted	and	threatened	P. farinosa	 for	uncovering	
cryptic	 genetic	 diversity	 and	 its	 environmental	 correlates	 and	 fur‐
ther	underlines	 the	need	 for	bringing	 together	principles	 from	the	
fields	of	ecology	and	evolution	in	conservation	planning.
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