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Abstract
Aim: Most of the fundamental questions in conservation biogeography require the 
description of species geographic boundaries and the identification of discrete bio‐
logical units within these boundaries. International conservation efforts and institu‐
tions rely mainly on traditional taxonomic approaches for defining these boundaries, 
resulting in significant cryptic diversity going undetected and often extinct. Here, we 
combine high‐throughput genomic data with publicly available environmental data 
to identify cryptic diversity in the threatened bird's‐eye primrose (Primula farinosa). 
We aim to characterize evolutionary lineages and test whether they co‐occur with 
changes in environmental conditions. These lineages can be used as intraspecific 
units for conservation to enhance assessments regarding the status of threatened 
species.
Location: Europe and temperate Asia (latitude, 40–65°N; longitude, 10°E–115°W).
Methods: We genotyped 93 individuals from 71 populations at 1,220 loci (4,089 
SNPs) across the Eurasian distribution of P. farinosa. We used phylogenomic and pop‐
ulation structure approaches to identify intraspecific lineages. We further extracted 
statistically derived and remotely sensed environmental information, that is land 
cover, climate and soil characteristics, to define the biotic and abiotic environment 
inhabited by each lineage and test for niche similarities among lineages. Additionally, 
we tested for isolation by distance among populations and applied linear and polyno‐
mial regressions to identify lineage‐environment associations.
Results: Analyses of genomic data revealed six major lineages within P. farinosa cor‐
responding to distinct geographic areas. Niche similarity tests indicated that lineages 
occupy distinct abiotic and biotic space. Isolation by distance indicated that geogra‐
phy alone cannot explain genetic divergence within P.  farinosa, while lineage‐envi‐
ronment associations suggested potential adaptation to different abiotic conditions 
across lineages. However, relationships with the land cover classes, a proxy for habi‐
tat, were weaker.
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1  | INTRODUC TION

Most of the fundamental questions in conservation biogeography 
require knowledge of the geographic distributions and ecologi‐
cal niches of individual species (Riddle, Ladle, Lourie, & Whittaker, 
2011; Whittaker et al., 2005). This knowledge is essential to bet‐
ter understand species responses in a rapidly changing world and 
prevent the ever‐increasing loss of their diversity (Waldron et al., 
2017). However, conservation biologists and international efforts, 
such as the Red List of the International Union for Conservation of 
Nature (IUCN), often face the double challenge of describing spe‐
cies geographic boundaries and identifying discrete biological units 
within these boundaries (Keith et al., 2015; Riddle et al., 2011). The 
identification of subspecific units is of major importance in order to 
protect both evolutionary history and ecological processes below 
the species level (Faith et al., 2010; Moritz, 2002; Palsbøll, Bérubé, 
& Allendorf, 2006).

Wide‐range species, particularly those with limited vagility or 
dispersal potential, often show strong phylogeographic structure 
across their distributions (Avise, 2009). This structure has been 
mostly shaped by past geological, ecological and evolutionary pro‐
cesses, and the resulting intraspecific units (i.e., historically isolated 
groups of populations; hereafter referred to as “lineages”) frequently 
display distinct ecological characteristics (Allendorf, Luikart, & 
Aitken, 2013). Although intraspecific lineages have long been rec‐
ognized as significant units for conservation (Moritz, 1994; Ryder, 
1986), relevant studies have focused more on the genetic (using 
mostly a few neutral markers) and less on the ecological (and po‐
tentially adaptive) distinctiveness of these lineages (Funk, McKay, 
Hohenlohe, & Allendorf, 2012; De Guia & Saitoh, 2007). However, 
responding to recent and ongoing destructive impacts of global cli‐
mate change and human activities on intraspecific diversity (Miraldo 
et al., 2016; Pauls, Nowak, Balint, & Pfenninger, 2013), and therefore 
to ecosystems (Des Roches et al., 2018), requires the integration of 
genetic and environmental data. Conservation studies integrating 
both biodiversity aspects are still scarce but are expected to in‐
crease as more genetic and environmental data are becoming avail‐
able (Jenkins, Yannic, Schaefer, Conolly, & Lecomte, 2018; Wilting et 
al., 2015; Yannic et al., 2017).

Characterization of intraspecific diversity is often linked to the 
identification of morphologically cryptic lineages (Bickford et al., 
2007; Riddle et al., 2011). Cryptic diversity is commonly defined as 
the occurrence of distinct evolutionary lineages that are otherwise 
morphologically indistinguishable within a nominal species (Bickford 

et al., 2007; Struck et al., 2018). Despite the morphological similari‐
ties, cryptic lineages may carry not only unique evolutionary trajec‐
tories but also the potential of differing responses to ongoing and 
future global change (Bernardo, 2011; Feckler et al., 2014; Paaby & 
Rockman, 2014). Therefore, biodiversity assessments that ignore 
cryptic lineages, including them in a single species or a single conser‐
vation unit, may severely undervalue current and future biodiversity 
patterns (Bálint et al., 2011; Fišer, Robinson, & Malard, 2018; Riddle 
et al., 2011). Cryptic diversity is typically assessed using genetic 
data, and the advent of high‐throughput sequencing has the poten‐
tial to revolutionize the discovery of cryptic lineages across the tree 
of life (Allendorf, Hohenlohe, & Luikart, 2010; Benestan et al., 2016; 
Funk et al., 2012). However, the number of studies that use genome‐
wide data to uncover cryptic diversity remains small (see Struck et 
al., 2018 for a review). Additionally, there is an ever growing need to 
broaden the definition of cryptic diversity and incorporate environ‐
mental data when assessing intraspecific cryptic variation (Espíndola 
et al., 2016; Freudenstein, Broe, Folk, & Sinn, 2017; Sullivan et al., 
2019).

Assessment of environmental conditions across populations 
has traditionally relied on time‐consuming and costly field obser‐
vations and measurements of relevant ecological variables, with 
time and cost increasing with species range, number of populations 
and number of variables (Albert et al., 2010). However, the ever‐in‐
creasing public availability of spatial environmental data is advanc‐
ing biodiversity research and enables the time‐ and cost‐effective 
discovery of ecological biodiversity patterns across taxonomic and 
spatial scales (Franklin, Serra‐Diaz, Syphard, & Regan, 2017; La Salle, 
Williams, & Moritz, 2016). Data on abiotic variables directly involved 
in species’ physiological limitations and distributions, such as climate 
and soil characteristics, are publicly available from several sources 
either as spatial interpolations of field measurements, satellite ob‐
servations of the earth's surface (i.e., remote sensing) or a combi‐
nation of both (Franklin et al., 2017). Additionally, remote‐sensing 
technologies offer the means to closely approximate local biodi‐
versity patterns and biotic interactions at large to moderate spatial 
scales in the form of land cover classes (He et al., 2015; Lausch et 
al., 2016). Coupled with high‐throughput genomic data, statistically 
derived and remotely sensed environmental data can significantly 
enhance our ability to uncover and document diversity patterns, 
yet studies that integrate these diverse data are lacking (Bush et al., 
2017; Yamasaki et al., 2017).

The bird's‐eye primrose (Primula farinosa L.) represents an ex‐
cellent system to investigate potential patterns of cryptic diversity 

Main conclusion: Our results highlight the need for incorporating intraspecific diver‐
sity in global assessments of species conservation status and the utility of genomic 
and publicly available environmental data in conservation biogeography.

K E Y W O R D S

CHELSA, high‐throughput genomic data, IUCN, land cover, MODIS
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relevant for conservation. Primula farinosa is a cold‐adapted herb in 
the family Primulaceae characterized by having a wide, but disjunct 
distribution in Europe and north‐east Asia (Hambler & Dixon, 2003; 
Krasnoborov, 2000; Roskov et al., 2018; Shishkin & Bobrov, 1952). 
Previous taxonomic treatments based on a wide range of diagnos‐
tic traits suggested that P.  farinosa is largely absent from western 
and central Siberia, where it is replaced by closely related species, 
but it occurs from the east of the Altai mountains through Mongolia 
to eastern Siberia and the Kamchatka peninsula (Fedorov, 2001; 
Krasnoborov, 2000; Richards, 2003; Shishkin & Bobrov, 1952). The 
species shows significant variability with many forms and interme‐
diates over its extended Eurasian distribution (Shishkin & Bobrov, 
1952; Krasnoborov, 2000; Theodoridis, personal observations), and 
the lack of distinct morphological differences among these forms has 
resulted in significant controversy among taxonomists (Hambler & 
Dixon, 2003; Krasnoborov, 2000; Richards, 2003; Shishkin & Bobrov, 
1952). The species grows in calcareous grasslands and alpine streams 
or lakes at altitudes between 400 and 3,000 m a. s.  l. in southern 
Europe (Carpathians, Alps, Iberia) and Mongolia, while in northern 

Europe (British Isles, Baltic region and southern Scandinavia) the 
species grows exclusively in wetlands between 0 and 400 m a.s.l. 
(Figure 1; Hambler & Dixon, 2003; Richards, 2003; Theodoridis, 
Randin, Broennimann, Patsiou, & Conti, 2013). Regarding its con‐
servation status, P. farinosa has gone extinct or is facing extinction 
mainly caused by human‐driven changes in its wetland microhabitats 
and is included in the IUCN Red Lists of several European countries 
(Croatia: Topić & Stančić, 2006; Ukraine: Didukh, 2009; Hungary: 
Salamon‐Albert & Morschhauser, 2003; Poland: Gajewski, Sitek, 
Stolarczyk, Nowak, & Kapała, 2013; Denmark: Sørensen, Larsen, 
Orabi, & ørgaard, 2014; United Kingdom: Cheffings et al., 2005; 
Slovakia: Turis et al., 2014; Romania: Coldea, Stoica, Puşcaş, Ursu, & 
Oprea, 2009). Additionally, the species is predicted to suffer a dra‐
matic reduction in its climatically suitable habitats in certain regions 
across its European range (Theodoridis, Patsiou, Randin, & Conti, 
2018).

Here, we use P. farinosa to (a) identify potential cryptic genetic 
diversity relevant for IUCN conservation status assessments and (b) 
test for environmental correlates of intraspecific cryptic diversity 

F I G U R E  1  Sampling localities of populations of Primula farinosa across its Eurasian range. Altitude is indicated by colour (purple to white) 
at each locality. Pictures represent species morphology and variation of habitat type in four distinct geographic regions
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in species with wide continental distributions. To this end, we use 
previously published and newly generated high‐throughput genomic 
data to identify intraspecific lineages across the species’ range. We 
also extract statistically predicted and remotely sensed environ‐
mental variables to approximate the biotic and abiotic habitat of the 
species. Finally, we test for significant associations between genetic 
groups and environmental variables. By combining genomic with 
publicly available environmental data, we aim at contributing novel 
ways for assessing intraspecific cryptic diversity in conservation 
biogeography.

2  | METHODS

2.1 | Sampling

To estimate genetic structure and ecological diversity within P. fari-
nosa, we sampled 71 populations that encompass most of its known 
Eurasian distribution (Figure 1). Our sampling design aimed at rep‐
resenting most genetic and ecogeographic variation within P.  fari-
nosa (Albert et al., 2010; Gotelli & Stanton‐Geddes, 2015). For its 
European distribution, we used 57 populations reported previously 
(Theodoridis et al., 2018, 2017) and selected one to three individuals 
per population based on the size of the available genomic data (i.e., 
maximizing the total number of sequencing reads per individual). 
For its Asian distribution, we sampled 14 populations for the first 
time (two individuals per population) across Mongolia. All popula‐
tions were sampled during the springs and summers of 2011, 2012, 
and 2013 and were located at least 15 km apart from each other. 
Additional sampling details are provided in Table S1. Distribution and 
sampling maps were created using the Strabo library (https​://github.
com/spyro​stheo​dorid​is/strabo) in JavaScript.

2.2 | Sequencing and bioinformatics

DNA extraction and sequencing followed the approach described 
by Theodoridis et al. (2017). Briefly, leaf samples collected from 
93 individuals were preserved in silica gel and DNA was extracted 
using a modified CTAB protocol (Doyle & Doyle, 1990). Genomic li‐
brary preparation was performed by SNPsaurus (http://snpsa​urus.
com/) using nextRAD libraries with the selective primer sequence 
GTGTAGAGC. Single‐end sequencing was performed in three lanes 
of an Illumina HiSeq 2000 (University of Oregon High‐throughput 
Sequencing Core), producing raw reads that were 101 bp long.

Raw DNA sequences were filtered and trimmed following the 
recommendations of Minoche, Dohm, and Himmelbauer (2011) as 
implemented in Gonospy v0.1 package (https​://github.com/spyro​
stheo​dorid​is/gonospy) in Python. Initial analysis of the raw reads 
indicated the existence of a few invariable organellar sites with ex‐
tremely high coverage. Therefore, we further excluded these sites 
by mapping the filtered reads to the chloroplast genome of Primula 
veris and the mitochondrial genome of Vaccinium macrocarpon 
(Ericaceae) using Stampy v1.0.28 (Lunter & Goodson, 2011) and 
applying an expected divergence from the reference (substitution 

rate) of 0.05 substitutions per site. After filtering, our final data‐
set consisted of nuclear reads that were 90 bp long. To identify 
putative homologous loci across all individuals, we employed the 
stacks pipeline v.1.44 (Catchen, Hohenlohe, Bassham, Amores, & 
Cresko, 2013) and applied the following parameter values: we re‐
quired a minimum coverage (m) of five identical reads per stack 
by allowing a maximum of two gaps (max_gaps) between reads; 
we also removed stacks with coverage of more than two standard 
deviations above the mean (Catchen et al., 2013); we allowed a 
maximum distance (M) between stacks of two nucleotides and a 
maximum number of two stacks at a single de novo locus in each 
individual; a maximum of six mismatches (n) and a maximum of four 
gaps (max_gaps) was allowed between putatively homologous loci 
across all individuals.

2.3 | Phylogenomic inference and genetic structure

To assess intraspecific genetic structure and phylogenetic relation‐
ships in P. farinosa, we used the Variant Call Format (VCF) file ex‐
ported by stacks and filtered it using Gonospy to exclude SNPs (a) 
that were represented by ≤5% of the total reads for the correspond‐
ing locus within each individual, (b) with a frequency ≤0.05 across all 
individuals and (c) absent in more than 30% of the sampled individu‐
als. To infer phylogenetic relationships among the sampled individu‐
als of P. farinosa, we used the filtered SNP data (as described above), 
including all SNPs per locus, and a maximum likelihood approach 
implemented in Raxml v8.2.11 (Stamatakis, 2014). Alignment sites 
consisting of only heterozygotes and homozygotes for a single al‐
lele (but not homozygotes for the alternative allele) are considered 
invariant by Raxml; therefore, we further excluded these sites using 
Gonospy. The final filtered data matrix consisted of 4,089 SNPs. To 
account for the lack of invariant sites, we applied an ascertainment 
bias correction (‐‐asc‐corr = lewis) to the likelihood calculations as 
recommended by Leaché, Banbury, Felsenstein, Nieto‐Montes de 
Oca, and Stamatakis (2015). We used the GTR + gamma model of 
sequence evolution determined by the model selection procedure 
implemented in Iq‐tree (Nguyen, Schmidt, von Haeseler, & Minh, 
2015). We also applied the rapid bootstrap algorithm with 1,000 
replicates and performed a full search for the best scoring tree. The 
final tree with associated branch support values was visualized in 
Itol webserver (Letunic & Bork, 2016).

Genetic structure was inferred using the variational Bayesian 
framework implemented in the software fastStructure (Raj, 
Stephens, & Pritchard, 2014). Since fastStructure assumes that the 
investigated loci are unlinked, we selected one random SNP per 
locus and repeated this analysis 20 times to account for the stochas‐
ticity stemming from the random choice of SNPs (Theodoridis et al., 
2017). After filtering, the 20 final data matrices each consisted of 
1,220 randomly chosen SNPs. We ran the analyses for numbers of 
groups, K, ranging from 1 to 10 and further applied the chooseK.
py program to estimate the most likely number of K. For the K val‐
ues that best explained our data, the results of the 20 randomly se‐
lected SNP replicates were combined using the “greedy” algorithm 

https://github.com/spyrostheodoridis/strabo
https://github.com/spyrostheodoridis/strabo
http://snpsaurus.com/
http://snpsaurus.com/
https://github.com/spyrostheodoridis/gonospy
https://github.com/spyrostheodoridis/gonospy
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within Clumpp v1.1.2 (Jakobsson & Rosenberg, 2007). The results of 
the Clumpp analysis were visualized using the D3 JavaScript library 
(Bostock, Ogievetsky, & Heer, 2011).

We further evaluated the degree of genetic divergence among 
the genetic groups identified from the phylogenomic and genetic 
structure analyses using Nei's standard genetic distance (Nei, 1972). 
Following Joly, Bryant, and Lockhart (2015), for each pairwise com‐
parison we first calculated the mean distance of all SNPs within each 
locus and then calculated the genome‐wide distance by estimating 
the mean across all locus distances using custom Python scripts.

2.4 | Biotic environment

To approximate the type of biotic environments across P.  farinosa 
populations, we used the Global Consensus Land Cover database 
(Tuanmu & Jetz, 2014) that provides information on the prevalence 
of 12 land cover (including land use) classes at 1‐km resolution 
(http://www.earth​env.org/landc​over.html). We extracted preva‐
lence values for all classes and populations and further excluded 
classes with zero prevalence for all populations. The final matrix 
consisted of the following ten land cover classes: evergreen/decidu‐
ous needleleaf trees, deciduous broadleaf trees, mixed/other trees, 
shrubs, herbaceous vegetation, cultivated and managed vegetation, 
regularly flooded vegetation, snow/ice, barren, open water. We 
subsequently reduced the dimensions of the dataset by performing 
principal components analysis (PCA) implemented in the package 
Matplotlib (Hunter, 2007) in Python.

2.5 | Abiotic environment

We approximated the abiotic conditions of P.  farinosa populations 
using soil, precipitation and temperature variables obtained from two 
different sources (global reanalysis data from CHELSA and remote 
sensed data from MODIS; see below). We combined the above vari‐
ables in two different datasets, one that included the soil, precipita‐
tion and the CHELSA temperature data (hereafter abiotic/CHELSA) 
and a second one that included the soil, precipitation and the MODIS 
temperature data (hereafter abiotic/MODIS). We then reduced the 
dimensions of each of the two datasets by performing principal com‐
ponents analysis as described above (see Biotic environment sec‐
tion). The individual abiotic variables are described below.

2.5.1 | Soil attributes

We characterized soil attributes using six soil variables obtained 
from the web‐based global soil information system (SoilGrids; https​
://soilg​rids.org) made available by the International Soil Reference 
and Information Center (ISRIC) at 250 m resolution (Hengl et al., 
2017). The SoilGrids system provides global predictions for standard 
numeric soil properties and is generated using automated statistical 
mapping and machine learning (Hengl et al., 2017). For each sampled 
population, we extracted information on the following variables: 
Predicted most probable class following the World Reference Base 

(predClass), soil pH in H2O at 0  cm (pH1), soil pH in H2O at 5  cm 
(pH2), absolute depth to bedrock (absDepth), soil organic carbon 
content at 0 cm (carbCont1) and soil organic carbon content at 5 cm 
(carbCont2).

2.5.2 | Temperature and precipitation (CHELSA)

Precipitation and temperature at 2 m above ground for each sam‐
pled population were obtained from CHELSA (Climatologies at high 
resolution for the earth's land surface areas; http://chelsa-clima​
te.org/) at 30 arc sec (c. ~1 km on the equator) resolution (Karger et 
al., 2017). CHELSA includes monthly (mean, maximum and minimum) 
temperature and precipitation patterns for the time period 1979–
2013 derived by downscaling the model output temperature and 
precipitation estimates of the ERA‐Interim climatic reanalysis (i.e., 
downscaled global reanalysis data; Karger et al., 2017). Using the 
monthly temperature and precipitation values, we generated the fol‐
lowing set of seven climatic variables that describe annual and grow‐
ing season climate trends for the sampled populations: minimum 
temperature of growing season (tminGrow), maximum temperature 
of growing season (tmaxGrow), average temperature range during 
growing season (tDiffGrow), average temperature of growing sea‐
son (tmeanGrow), growing degree days (GDD), annual precipitation 
(precAnnual) and precipitation during the growing season (prcGrow). 
Growing season for P. farinosa was defined as the period from March 
to September (Hambler & Dixon, 2003).

2.5.3 | Temperature (MODIS)

In addition to the CHELSA temperature data, we obtained land 
surface (0 m above ground) temperature derived from thermal in‐
frared measurements of the NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) onboard the Terra and Aqua Earth 
Observing System satellites (Wan & Dozier, 1996). MODIS/Terra 
(Wan, Hook, & Hulley, 2015, 2015) and MODIS/AQUA (Wan, Hook, 
& Hulley, 2015, 2015) land surface temperature data are produced 
daily at 1 km spatial resolution. Because year‐round data from both 
satellites are available since the year 2003, we considered the time 
period between 2003 and 2017, and for each population, we down‐
loaded and extracted daily temperature data for the growing season 
(March–September) using the Pymodis v2.0.9 (http://www.pymod​
is.org/) and Chorospy v0.1 (https​://github.com/spyro​stheo​dorid​is/
chorospy) packages in Python. We then merged the data from both 
satellites and calculated mean, maximum and minimum monthly 
temperatures. Subsequently, we used the monthly values to calcu‐
late the same five temperature‐related variables as described above 
(tminGrow, tmaxGrow, tDiffGrow, tmeanGrow and GDD).

2.6 | Niche overlap and niche similarity tests

To assess ecological differentiation within P.  farinosa, we quanti‐
fied climatic niche differences among the identified genetic groups 
using the approach described by Broennimann et al. (2012) in 

http://www.earthenv.org/landcover.html
https://soilgrids.org
https://soilgrids.org
http://chelsa-climate.org/
http://chelsa-climate.org/
http://www.pymodis.org/
http://www.pymodis.org/
https://github.com/spyrostheodoridis/chorospy
https://github.com/spyrostheodoridis/chorospy
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two‐dimensional environmental space (PCA; see also Theodoridis et 
al., 2013). We first calculated niche overlap between genetic groups 
using Schoener's D similarity index (Schoener, 1970), a metric that 
ranges from 0 (completely discordant niches) to 1 (identical niches). 
We then defined a background extent for each genetic group using 
a 20 km buffer zone around the sampling localities (Theodoridis et 
al., 2018) and tested whether the ecological niches of the groups 
tend to be more similar to each other than would be expected by 
chance using background (or niche) similarity tests (Broennimann 
et al., 2011; Warren, Glor, & Turelli, 2008). These tests randomly 
shift the density of occurrences in one range and calculate similarity 
(Schoener's D) using the observed niche from the other range. We 
repeated the process 1,000 times for both ranges under comparison, 
and the observed D value was compared to the distribution of the 
randomized D values in a one‐sided t test (Broennimann et al., 2011). 
The tests were conducted for each environmental category (biotic, 
abiotic/CHELSA, abiotic/MODIS). For each of the two abiotic cat‐
egories, the soil variables (and the CHELSA precipitation variables 
for the abiotic/MODIS) were reprojected and resampled to match 
the projection and resolution of the respective temperature layers 
using the Geospatial Data Abstraction Library v2.3.2 (GDAL, www.
gdal.org). All tests were conducted using the “ecospat” package in R 
(Di Cola et al., 2017).

2.7 | Isolation by distance and ancestry/
environment associations

We evaluated the role of geographic distance in explaining the ge‐
netic divergence across all sampled Eurasian populations of P.  fa-
rinosa. We calculated pairwise genetic distances as the average 
nucleotide differences between populations across all SNPs. For 
each considered SNP that was sampled in both populations under 
any pairwise comparison, we assigned a distance of 1 when popu‐
lations shared no alleles and 0 otherwise. Geographic distances 
among populations were calculated using the haversine formula. To 
test for the significance of the relationship between genetic and ge‐
ographic distance, we performed a Mantel test implemented in the 
scikit‐bio v0.5.5 (http://scikit-bio.org/) library in Python using the 
log‐transformed geographic and genetic distances and the Pearson 
correlation coefficient with 10,000 permutations. To account for 
the large geographic distances between the European and the Asian 
populations, we performed the tests on two different datasets, one 
containing all sampled Eurasian populations and one containing only 
the European populations.

We further tested whether the observed variation in biotic 
and abiotic environmental variables among populations could be 
explained by the ancestry profile (i.e., ancestry probabilities) of 
each individual. Significant ancestry/environment associations 
would be indicative of distinct environmental niches for each in‐
dividual or group of individuals with similar ancestry profiles. To 
this end, we fitted multiple linear and polynomial (quadratic) re‐
gression models with the estimated posterior probabilities of each 
individual belonging to a specific ancestral group as independent 

variables, and each of the three main PCA axes for each variable 
category (biotic, abiotic/CHELSA, abiotic/MODIS) as response 
variables. To avoid collinearity among the independent variables, 
we excluded the last ancestry probability for each individual as lin‐
early dependent (all ancestry probabilities sum up to one). Below, 
we provide the linear regression formula for the general case of K 
identified ancestral groups.

where P1, P2, … Pk−1 are the posterior probabilities of each individual 
belonging to the respective ancestral group (i.e., group one to group 
K − 1) and Ê is the predicted environmental score along the consid‐
ered PCA axis. For populations represented by more than one individ‐
ual (i.e., Balkan and Asian populations), and since all individuals within 
populations showed identical ancestry profiles (see Results), we ran‐
domly selected one individual. Linear and polynomial regression mod‐
els were fitted using the “lm” and “glm” functions in R version 3.4.0 
(R Development Core Team, 2017), respectively. To further test the 
adequacy of linear models in explaining environmental variation across 
populations, we tested for residual spatial autocorrelation in each 
model using Moran's I with kernel distance weights implemented in the 
python package Pysal v.2 (https​://pysal.org/) and 1,000 simulations.

3  | RESULTS

3.1 | Phylogenomic inference and genetic structure

Phylogenomic analyses revealed four major clans/groups (terminol‐
ogy for unrooted trees follows Wilkinson, McInerney, Hirt, Foster, 
& Embley, 2007) separated by long branches with bootstrap sup‐
port of 100 (Figure 2a). These four clans correspond to four major 
regions of the Eurasian distribution of P. farinosa: western–central–
northern Europe, Balkan peninsula, Altai mountains and Khangai–
Khentii mountains in central Mongolia (Figure 2). Additionally, Raxml 
analyses identified three clans within the western–central–northern 
Europe group (branch bootstrap support of 100), corresponding to 
major geographic clades reported in previous studies (Theodoridis 
et al., 2018, 2017), namely the Carpathian, the Iberian and the cen‐
tral‐northern European clade. The results of the genetic structure 
analyses are largely consistent with those obtained from the phy‐
logenomic analyses (Figure 2). Specifically, for ten out of the 20 SNP 
replicates, the chooseK.py program assigned all individuals to five 
groups (K  = 5), while nine fastStructure replicates supported four 
groups and only one replicate supported three ancestral groups. 
Additionally, populations within the clans identified in the Raxml 
unrooted tree showed similar ancestry profiles in the fastStructure 
analyses (Figure 2b). Moreover, and adding further support to the re‐
sults of the phylogenomic analyses, Nei's standard genetic distances 
were lower among the western–central–northern European line‐
ages (0.048–0.098) compared to the distances among all four major 
Eurasian lineages (0.362–0.517; Table 1).

Ê=𝛽0+𝛽1P1+𝛽2P2+…+𝛽k−1Pk−1

http://www.gdal.org
http://www.gdal.org
http://scikit-bio.org/
https://pysal.org/


     |  1463THEODORIDIS et al.

F I G U R E  2  Phylogenomic and population structure analyses of Primula farinosa. (a) Maximum likelihood (RAxML) unrooted tree inferred 
from a matrix of 4,089 variant sites (SNPs). Colours indicate distinct lineages (i.e., groups of populations separated by long branches) and 
correspond to distinct geographic regions (inset map). Numbers on major branches indicate branch support (1,000 bootstrap replicates). 
Branches with <70% bootstrap support were collapsed. (b) The results of the fastStructure analyses based on 20 repetitions of randomly 
chosen SNPs from 1,220 loci. The Balkan and Asian populations are represented by three and two individuals, respectively (separated by 
black inner ticks)

Iberia CN Europe Carpathians Balkans C Mongolia Altai

Iberia – 0.048 0.098 0.483 0.386 0.458

CN Europe – – 0.076 0.463 0.37 0.44

Carpathians – – – 0.466 0.367 0.442

Balkans 0.457 – 0.443 0.517

C Mongolia 0.362 – – 0.381

Altai 0.434 – – –

Iberia + CN Europe + Carpathians

Note: Numbers above the diagonal indicate the distances between all six lineages while num‐
bers below the diagonal (grey box) indicate the distances between the three major lineages (i.e., 
Balkans, C Mongolia and Altai) and the main European lineage after merging the three European 
groups, that is Iberia, CN Europe and Carpathians, into one group

TA B L E  1  Nei's standard genetic 
distances between all identified genetic 
groups/lineages from the phylogenomic 
and structure analyses
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F I G U R E  3  The distribution of the sampled populations of Primula farinosa in biotic and abiotic multivariate environmental space. (a) 
Land cover classes: Evergreen/deciduous needleleaf trees (class1), deciduous broadleaf trees (class3), mixed/other trees (class4), shrubs 
(class5), herbaceous vegetation (class6), cultivated and managed vegetation (class7), and barren (class11). (b) and (c) Climate and soil variables 
using the CHELSA and MODIS variables, respectively: growing degree days (GDD), minimum temperature of growing season (tminGrow), 
maximum temperature of growing season (tmaxGrow), average temperature range during growing season (tDiffGrow), average temperature 
of growing season (tmeanGrow), annual precipitation (precAnnual), precipitation during the growing season (prcGrow), soil pH in H2O at 
0 cm (pH1), and soil pH in H2O at 5 cm (pH2), absolute depth to bedrock (absDepth), predicted most probable class (predClass), soil organic 
carbon content at 0 cm (carbCont1), soil organic carbon content at 5 cm (carbCont2)
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3.2 | Multivariate biotic and abiotic space and 
niche similarity

The results of the PCA of the biotic (land use) dataset indicated that 
the Asian populations, particularly those in the Altai mountains, tend 
to grow in land mainly covered by shrubs and herbaceous vegeta‐
tion or land that is mostly barren or snow‐covered (Figure 3a). In 
contrast, the European populations, especially those that belong 
to the central‐northern European group, appear to occupy a wide 
range of land cover classes, from tree dominated land to land that is 
mainly cultivated or managed (Figure 3a). In the abiotic PCA space, 
populations that belong to the same clan/group (i.e., share similar 
ancestry profiles) appear to grow under similar abiotic conditions 
(Figure 3b,c). Specifically, in both abiotic datasets, that is CHELSA 
(global reanalysis temperature data) and MODIS (remotely sensed 
temperature data), the Altai populations experience much lower 
temperatures and wider temperature fluctuations during the grow‐
ing season, followed by the populations in central Mongolia. The 
Asian populations also appear to receive less precipitation both an‐
nually and during the growing season. Moreover, our results indicate 
that the Asian populations grow in more alkaline (basic) soils com‐
pared to the European populations.

Niche overlap (Schoener's D) was generally slightly higher in 
biotic space across all lineage pairwise comparisons, compared to 
abiotic space (Table 2). Moreover, the majority of the background 

similarity tests did not support significant similarities between the 
available habitats of the six lineages in both biotic and abiotic envi‐
ronments, suggesting ecological divergence in P. farinosa (Table 2).

3.3 | Isolation by distance and ancestry/
environment associations

The Pearson correlation coefficient between the log‐transformed 
geographic and genetic distances were relatively high among all 
Eurasian populations (r = 0.75, p < 0.001; Figure 4), a result probably 
reflecting the large geographic distance separating the European and 
Asian populations (Figure 1). This correlation was much weaker when 
considering only the European populations (r = 0.46, p < 0.001), sug‐
gesting that geographic distance is a weak predictor of the genetic 
divergence observed among populations.

In general, the results of the multiple regressions indicated 
significant associations between individual ancestry propor‐
tions and environment (i.e., PCA axes), with varying degrees of 
fit across datasets, number of groups (K) and PCA axes (Table 3). 
The first PCA axis in both abiotic datasets, that is CHELSA and 
MODIS (mostly representing soil pH, temperature range during 
the growing season, minimum and maximum temperatures during 
the growing season, and annual precipitation; Figure 3c), showed 
the best fit for K = 5 (adj. r2 = 0.61), with the linear model providing 
a slightly better fit (AIC  =  240.71 and AIC  =  239.43 for MODIS 

TA B L E  2  Results of niche similarity (Schoener's D) analyses and background (niche) similarity tests in three categories of multivariate 
environmental space for the six lineages of Primula farinosa identified in this study

Lineages

Environmental space

Biotic Abiotic/CHELSA Abiotic/MODIS

D p (1‐2) p (2‐1) D p (1‐2) p (2‐1) D p (1‐2) p (2‐1)

Altai—Balkans 0.001 0.071 0.281 0 1 1 0 1 1

Altai—Carpathians 0 1 1 0 1 1 0 1 1

Altai—C Mongolia 0.0001 0.546 0.322 0 1 1 0 1 1

Altai—CN Europe 0.0025 0.233 0.557 0 1 1 1.11e−16 0.082 0.357

Altai—Iberia 0 1 1 0 1 1 0 1 1

Balkans—Carpathians 0.0007 0.208 0.906 0 1 1 0 1 1

Balkans—C Mongolia 0.0298 0.455 0.605 0 1 1 0 1 1

Balkans—CN Europe 0.107 0.402 0.351 0.0086 0.118 0.638 0.06 0.106 0.568

Balkans—Iberia 0.0004 0.561 0.855 0.3746 0.01 0.057 0.18 0.231 0.171

Carpathians—C 
Mongolia

0.175 0.056 0.147 0 1 1 0 1 1

Carpathians—CN Europe 0.1486 0.035 0.08 0.0363 0.236 0.307 0.3415 0.011 0.027

Carpathians—Iberia 0.218 0.06 0.18 0 1 1 0.0007 0.737 0.662

C Mongolia—CN Europe 0.07 0.072 0.231 0.0179 0.232 0.346 0.0586 0.165 0.092

C Mongolia—Iberia 0.2269 0.116 0.176 0 1 1 0.2298 0.082 0.137

CN Europe—Iberia 0.066 0.265 0.036 0.0193 0.682 0.36 0.0637 0.619 0.069

Note: Backgrounds for the tests were defined by applying a 20 km buffer zone around the sampling localities of each lineage. The background similar‐
ity tests were performed twice for each lineage pair. The second number in the parentheses after the p value indicates the lineage whose background 
was used for the respective similarity tests. Numbers in bold indicate significant p values (<0.05).
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and CHELSA respectively) compared to the quadratic polynomial 
model (AIC = 241.77 and AIC = 243.46; Table 3). Coefficients of 
determination were also significant for the second PCA axis of 
both abiotic datasets (mostly representing soil pH and annual and 
growing season precipitation) and K = 5 (adj. r2 = 0.323 and adj. 
r2 = 0.2945 for abiotic/MODIS and abiotic/CHELSA respectively). 
Significant associations were also observed between ancestry pro‐
portions and the first PCA axis of the biotic dataset (i.e., land cover 
classes), with much lower degrees of fit, however, compared to 
the abiotic datasets (adj. r2 = 0.1727 for K = 4 and adj. r 2 = 0.2747 
for K = 5), and significant residual spatial autocorrelation (Moran's 
I  =  0.32 for K  = 4 and Moran's I  =  0.22 for K  = 5). Overall, the 
abiotic/MODIS dataset showed the best linear fit with no signifi‐
cant spatial autocorrelation in residuals across the top explanatory 
models (PC1 and PC2 for K = 5, PC1 for K = 4; Table 3).

4  | DISCUSSION

Identification of nature's units and the geographic description of bio‐
diversity variation have been central objectives in conservation bio‐
geography ever since the birth of the field (Whittaker et al., 2005; see 
also Riddle et al., 2011). However, challenges related to data availability 
and integration have hindered progress towards these objectives, par‐
ticularly in taxa with little or uninformative morphological variation. 
Here, we conducted field work and took advantage of high‐through‐
put sequencing technologies and publicly available environmental 
data to address the above two objectives in the cold‐adapted and 
threatened plant P. farinosa. We identified six major genetic lineages 
across its Eurasian distribution corresponding to distinct geographic 
regions and found significant associations between these lineages and 

their abiotic environments, indicative of high intraspecific diversity 
and potential local adaptation to different climatic and soil conditions. 
Our results highlight the usefulness of genomic and publicly available 
data in biodiversity research and the need to incorporate intraspecific 
diversity in global assessments of species conservation status.

According to IUCN (http://www.iucnr​edlist.org/detai​ls/20339​
8/1) and the ITIS Catalogue of Life (Roskov et al., 2018), P. farinosa 
is widespread in Europe and temperate Asia. However, the spe‐
cies is threatened or extinct in many European countries, mainly 
because of anthropogenic environmental pressure. While these 
threats are acknowledged by IUCN, the global status assessment 
is summarized as follows: “This species demonstrates declines in 
most of its range, being marked as threatened in several national 
red lists. It suffers from grazing and lack of management in its 
grassland habitats. However, the species is still widespread and 
unlikely to severely decline in the near future towards extinction. 
More information on the current population size, trend and the 
overall rate of decline is needed to review whether it would qualify 
for threatened under Criterion A.” From this report, it is clear that 
by considering P.  farinosa as a widespread species, local extinc‐
tions are overlooked because of its relative abundance globally. 
The countries where the species has already gone extinct or dis‐
plays the most severe declines are Hungary, Poland, Slovakia and 
Romania. Both our current and previous studies (Theodoridis et 
al., 2018, 2017) show that populations in these countries form a 
distinct Carpathian lineage (Figure 2), occupying to a large extent 
an ecological niche distinct from the rest of the Eurasian popula‐
tions (Table 2; Figure 3b,c). Moreover, both the Carpathian and the 
Iberian lineages are projected to experience a severe loss of their 
climatically suitable habitat in the next few decades (Theodoridis 
et al., 2018). These results demonstrate that the projected range 

F I G U R E  4  Correlations (Pearson's r) between geographic distance (log‐transformed km) and genetic distance (log‐transformed average 
nucleotide differences) between all sampled Eurasian populations (a) and only the European populations (b). Significance was assessed using 
Mantel test (p < 0.001 in both cases)

http://www.iucnredlist.org/details/203398/1
http://www.iucnredlist.org/details/203398/1
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reduction of threatened European lineages, such as the Carpathian 
and Iberian lineages, would translate into the loss of populations 
with unique genetic and ecological characteristics, and call for im‐
mediate revision in the conservation status of P.  farinosa in the 
affected European countries. Our results emphasize the need to 
incorporate genomic and environmental data in IUCN assessments 
for securing the protection of unique evolutionary lineages.

Identification of cryptic diversity has traditionally relied on the 
use of a few loci to estimate evolutionary relationships or genetic 
distances among populations within nominal species (Fišer et al., 
2018). Despite the rapid progress in high‐throughput sequencing 

technologies in the last decade, studies that harness the power of 
genomic data remain few (Struck et al., 2018). Moreover, studies 
that integrate genomic with publicly available environmental data, 
that is statistically derived and/or remotely sensed data, to identify 
cryptic diversity are scarce (Dufresnes et al., 2018). In this study, we 
combined genome‐wide polymorphisms (4,089 SNPs) with climate, 
soil and land cover data to identify cryptic genomic diversity and 
its environmental correlates within the cold‐adapted P. farinosa. We 
identified six major lineages (four previously known, two newly dis‐
covered; Figure 2) and significant lineage‐environment associations 
(Table 3). Specifically, we uncovered strong relationships between 

TA B L E  3  Statistical relationships between genetic structure (ancestry; see Figure 2b) of the studied populations and the first three PCA 
axes in their biotic (land cover classes) and abiotic (climate and soil characteristics) environmental space

Environmental Space Multiple r2 Adjusted r2 AIC linear AIC polynomial Moran's I

Biotic

Land cover

K = 4

PC1 0.2082**  0.1727 257.82 252.09 0.32*** 

PC2 0.0379 −0.0051 244.04 237.13 0.16

PC3 0.0914 0.0507 213.89 216.56 0.16

K = 5

PC1 0.3161***  0.2747 249.41 255.77 0.22** 

PC2 0.1179 0.0643 239.88 237.66 0.1

PC3 0.1289 0.076 212.9 220.55 0.12

Abiotic

Soil, precipitation, temperature (CHELSA)

K = 4

PC1 0.556***  0.5362 251.86 240.63 0.22* 

PC2 0.1106*  0.0707 293.09 274.05 0.4*** 

PC3 0.0599 0.0179 269.47 257.03 0.63*** 

K = 5

PC1 0.6377***  0.6157 239.43 243.46 0.08

PC2 0.3348***  0.2945 274.46 277.11 0.23** 

PC3 0.0858 0.0304 269.49 259.01 0.64*** 

Soil, precipitation, temperature (MODIS)

K = 4

PC1 0.5922***  0.5725 246.88 239.23 0.14

PC2 0.0131*  0.0889 268.57 250.19 0.29*** 

PC3 0.009 −0.038 224.38 220.55 0.73*** 

K = 5

PC1 0.6397***  0.616 240.71 241.77 0.05

PC2 0.365***  0.323 249.86 252.14 0.08

PC3 0.015 −0.049 226.01 222.5 0.73*** 

Note: r2: coefficient of determination obtained using a linear model and significance level (asterisks); Moran's I: residual spatial autocorrelation for the 
linear models and significance level (asterisks); Linear and polynomial models were fitted using the results of the fastStructure analysis (i.e., ancestry 
proportions) for K = 4 and K = 5.
Abbreviation: AIC, Akaike's information criterion.
*p ≤ 0.05 
**p ≤ 0.01 
***p ≤ 0.001 
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individual ancestry proportions and the abiotic environment that 
the individuals occupy. Moreover, the abiotic dataset that includes 
the remotely sensed surface temperature (abiotic/MODIS) showed 
a better linear fit across PCA axes and numbers of ancestral groups 
compared to the abiotic/CHELSA dataset (Table 3). This result 
further stresses the superiority of satellite‐obtained estimates of 
climatic variables to ground station statistical interpolations in cap‐
turing climatic variation in plant species distributions, particularly for 
regions with complex topography or sparse meteorological station 
data (Deblauwe et al., 2016). Although we could not experimentally 
test whether the observed genomic divergence among the Eurasian 
populations is neutral or adaptive, our IBD results (Figure 4) and 
the ancestry/environment associations (Table 3) suggest that geo‐
graphic isolation alone cannot explain the observed differentiation, 
particularly among the European populations, and that ecological 
factors may be driving lineage divergence. These results add further 
evidence for the role of ecological factors in reinforcing cryptic di‐
versity within ecologically diverse plant species (Liu et al., 2013).

Morphological stasis, the tendency of closely related taxa to re‐
tain a high degree of morphological similarity over extended periods, 
has been suggested as a major mechanism to explain high levels of 
cryptic genetic diversity within species despite the lack of noticeable 
intraspecific morphological variation (Bickford et al., 2007; Gould 
& Eldredge, 1977). Taxa experiencing strong selection on traits for 
adaptation to specific environments might not show morphological 
disparity, despite their long temporal and spatial isolation (Davis et 
al., 2014; Estes & Arnold, 2007). Our results show that niche overlap 
(Schoener's D) among lineages is generally higher in the biotic envi‐
ronmental space compared to the abiotic space, albeit no significant 
niche similarities were detected (Table 2). Additionally, we found 
weak relationships between individual ancestry profiles and their 
occupied biotic space (adj. r2 = 0.1727 for K = 4 and adj. r2 = 0.2747 
for K = 5; Table 3), indicative of the low variation in biotic conditions, 
that is land cover types, across lineages, despite the long branches 
separating them (Figure 2a). Although we used a relatively coarse 
resolution land cover dataset (~1 km), these results may explain the 
lack of morphological disparity across the Eurasian lineages, adding 
further evidence for the role of biotic interactions in constraining 
the evolution of diagnostic traits (i.e., stabilizing selection) over large 
spatiotemporal scales (Charlesworth, Lande, & Slatkin, 1982).

While the nature and definition of species boundaries continue 
to be a matter of debate, recent views have focused on the inte‐
gration of various criteria, including intrinsic reproductive isolation, 
morphological diagnosability, monophyly and distinct ecological 
niches (Freudenstein et al., 2017; De Queiroz, 2007). Our results 
address the last two criteria by revealing strong ecological and evo‐
lutionary differentiation among the six P. farinosa lineages, although 
Nei's standard genetic distances between these lineages (Table 1) 
fall within the range of values previously reported for intraspecific 
populations of plant species (Alexander, Poll, Dietz, & Edwards, 
2009; Li, Wang, Liu, Zhuang, & Huang, 2018). Whether the identi‐
fied Eurasian lineages could be assigned to different nominal species 
or not will depend on additional research on intrinsic reproductive 

isolation among them, as well as on phylogenomic analyses including 
closely related and morphologically distinct species within the highly 
diverse Primula sect. Aleuritia Duby clade.

5  | CONCLUSIONS

Identifying discrete biological units within threatened species has 
important implications for conservation. Conservation guidelines 
rely mainly on traditional taxonomic characters in defining conser‐
vation units or species. However, under this approach, significant 
cryptic diversity may go undetected and often extinct. Integrative 
approaches that combine genome‐wide data with easily accessible 
environmental information can provide unprecedented resolution 
below the species level and significantly help conservation agencies 
in their assessments. Our study demonstrates the utility of these 
data in the cold‐adapted and threatened P. farinosa for uncovering 
cryptic genetic diversity and its environmental correlates and fur‐
ther underlines the need for bringing together principles from the 
fields of ecology and evolution in conservation planning.
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