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Any technology requires precise benchmarking of its components, and the quantum technologies are no
exception. Randomized benchmarking allows for the relatively resource economical estimation of the average
gate fidelity of quantum gates from the Clifford group, assuming identical noise levels for all gates, making use
of suitable sequences of randomly chosen gates. In this work, we report significant progress on randomized
benchmarking, by showing that it can be applied individually on a broad class of quantum gates outside the
Clifford group , even for varying noise levels per quantum gate. This is possible at little overhead of quantum
resources, but at the expense of a significant classical computational cost. At the heart of our analysis is a
representation-theoretic framework which we bring into contact with classical estimation techniques based on
bootstrapping and matrix pencils. We demonstrate the functioning of the scheme at hand of benchmarking
tensor powers of T -gates. Apart from its practical relevance, we expect this insight to be relevant as it highlights
the role of assumptions made on unknown noise processes when characterizing quantum gates at high precision.

Recent years have seen a rapid development in the pre-
cise preparation and manipulation of quantum states. Much
of these advances have been triggered by the progress in
the quantum technologies, anticipating computational quan-
tum devices that outperform classical computers [1]. The in-
creased sophistication of these experiments, however, is ac-
companied by an increased complexity of the task of verifying
that the process has actually been implemented as expected.
Unwanted and usually largely uncharacterized quantum noise
hampers the correct functioning of quantum devices. Without
the knowledge of such noise processes, yet, it is unclear how
to achieve actionable advice on how to improve the experi-
ment or whether the experiment has worked at all. The task of
certifying quantum processes has hence been identified, un-
surprisingly, as a key bottleneck in the field.

There are several strategies that can in principle be em-
ployed to tackle the problem. They can largely be classified in
the assumptions they make about the given unknown process
and the structure they employ. Quantum process tomography
[2, 3] is an option, in principle, in that based on measurement
data alone, an unknown process can be reconstructed. How-
ever, without any further structure or assumptions the scal-
ing of the effort of quantum process tomography is daunting:
for a generic d-dimensional quantum system, Θ(d4) expecta-
tion values must be estimated to great accuracy. Methods ex-
ploiting structure, such as process tomography based on com-
pressed sensing [4, 5] or diamond norm minimization [6] re-
duce the effort significantly. Also, the dynamics of quantum
systems for short times can often be kept track of using ten-
sor network states [7, 8]. Nevertheless, the benchmarking of
large quantum circuits involving a large number of gates is out
of scope in either of these approaches. This challenge is ag-
gravated by the fact that gate errors suitable for fault tolerant
quantum computing [1, 9–11] are extremely small, so that the
characterization needs to be very precise.

Randomized benchmarking [12–18] – introduced in Ref.
[12] – takes a different, more pragmatic route altogether. It
acknowledges that full tomographic knowledge may be too

much to ask for and achieves estimates of quantum gate errors
making use of long sequences of randomly chosen Clifford
gates. This is done to estimate a single quantity, the average
gate fidelity, for a set of operations being the Clifford group
in a large portion of the literature. That is to say, by making
stronger assumptions about the underlying operations, one can
go a long way reliably characterizing noise levels of quantum
gates. The basic idea has been generalised in several ways;
in particular, it has been shown that one does not need to em-
ploy an exact so-called 2-design for randomized benchmark-
ing [13, 19, 20], using instead, for instance, the single-qubit
dihedral group [21]. To allow for extraction of the fidelity of a
specific gate, a scheme called interleaved randomized bench-
marking [22, 23] makes use of random sequences of Clifford
gates interlaced by the particular gate whose noise is to be in-
dividually characterized, but it is still limited to the Clifford
group itself or the T -gate. For protocols based on twirls over
2-design gates sets, such as the Clifford group, it has been re-
cently shown [24] that they allow for strongly gate-dependent
noise levels. However, other schemes which are able to go
beyond the 2-design requirement assume the noise to be gate-
independent [25], or weakly dependent [26]. In several ways
the commonly made assumptions on the underlying processes
are rather strong. For protocols not relying on 2-designs prop-
erty, the premise on uniform noise channel for each gate of the
group may be overly demanding; even if we take into consid-
eration small generating gates sets, it is difficult to postulate
that the noise of a single gate is equal to the one of a product
of several consecutive operators. Here, we will see that some
of these assumptions can be relaxed at little additional cost, as
far as quantum resources are concerned.

In this work, we introduce the notion of randomized bench-
marking for individual quantum gates, one that may be part of
single layers of gate arrays. This work is expected to be signif-
icant in two ways: technically speaking, we introduce meth-
ods able to benchmark quantum gates individually, including
ones that are outside the Clifford group. Since schemes for
universal quantum computing necessarily make use of such
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gates, this seems an important step forward. At the same time,
we do not require twirling over the full Clifford group or a 2-
design, but only over a relatively small local symmetry group
coupled with transpositions gates. It is indeed a favourable
feature of our approach to make use of a small group in con-
trast to large gate sets of previously known schemes.

The novel idea in the present work is to exploit the sym-
metry of the quantum gate itself in an appropriate fashion and
hence reduce the amount of quantum resources and computa-
tional effort. To achieve this goal, we harness advanced tools
from representation theory to arrive at schemes that require
similar physical operations, departing from the paradigm of 2-
designs, but which can make predictions beyond known pre-
scriptions. These ideas are uplifted to functioning schemes
by making use of estimation techniques such as matrix pen-
cils [27]. It is key to the new approach that the demands for
classical estimation are higher, which we accommodate by in-
troducing more sophisticated tools to this task. Using such
methods, we demonstrate that meaningful and experimentally
accessible preparations are sufficient to render the recovery
feasible at hand of randomized benchmarking data.

More conceptually speaking, and putting this contribution
into a broader context, we show that one can interpolate be-
tween common assumptions made when characterizing quan-
tum processes: In other words, there is “room in the mid-
dle” between full quantum process tomography, which is
largely assumption-free but comes along with daunting re-
source requirements, and conventional randomized bench-
marking, which requires significantly less effort and is also
robust against state preparation and measurement (SPAM)
errors, while making strong assumptions. Complementing
this mindset in a very different way, Refs. [5, 28] provide
method to extract tomographic information making use stan-
dard randomized benchmarking protocols, while maintaining
very large data levels. We believe that this conceptual insight
into the ontology of assumptions when characterizing quan-
tum processes subject to quantum noise is equally important.

Exploiting local symmetries in randomized benchmarking.
In the following, we are going to describe a protocol that pro-
vides the average gate fidelity of the noisy channel Λ which
characterizes the imperfect implementation Ũ of a target ideal
unitary gate U ,

E(FŨ,U ) = E(FΛ,I) :=

∫
Haar

Tr [|φ〉 〈φ| Λ(|φ〉 〈φ|)] dφ.

(1)
It is key to our method to explicitly exploit the local and per-
mutation symmetries of U , allowing for a drastic reduction
of the fitting parameters, and also to inherit robustness with
respect to SPAM errors. In this way, fitting models of well-
known randomized benchmarking protocols can be uplifted
to this setting involving fewer assumptions.

Throughout this work, we consider quantum gates acting
on n-qubit systems and we are interested in benchmarking the
accuracy of their implementation in a quantum circuit mak-
ing use of the protocol that we are going to explain in a later
section. The method is particularly suitable for gates consist-
ing of tensor products of local gates, thus admitting additional
symmetries with respect to the exchange of qubit subsystems

and hence it is applicable in those situations of single layers
of local unitary quantum gates. For concreteness, we shall put
emphasis on single layers of circuits whose gates consist of
tensor compositions of the T -gate with other gates belonging
to the Clifford group Cn, namely H , S and CNOT

H =
1√
2

(
1 1
1 −1

)
, T =

(
e−iπ/8 0

0 eiπ/8

)
,

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , S =

(
1 0
0 i

)
, (2)

leading to a universal set. This setting is of paramount impor-
tance in state-of-the-art prescriptions of fault-tolerant quan-
tum computing [1, 9–11]. More generally, the protocol is suit-
able to benchmark tensor products of local gates consisting in
arbitrary rotations around one of the axes of the Bloch sphere.
We will denote with U = U1 ⊗ · · · ⊗ Um the multi-qubit
unitary operator – with Uj one or two qubits each – that we
intend to benchmark, acting as a single layer of a unitary cir-
cuit. At the heart of the analysis will be its symmetry group,
constructed from the symmetries of the local gates Uj com-
posing U and the permutations of qubits which the local gate
acts upon (cfr. Appendix D). More precisely, we choose the
local symmetry group Aj of Uj as the subset of the single-
qubit Clifford group, C1, whose elements commute with Uj .
E.g., for Uj = T = exp(−iπZ/8), the group of local symme-
tries is

AT := {U ∈ C1 : U† Z U = Z } . (3)

This is an abelian group of 4 elements isomorphic to the cyclic
group of order 4, Z4. The set of all possible permutations in-
terchanging qubits affected by the same local gate is another
symmetry group of the target unitary U ; taking a pratical ex-
ample, for the gate U = T ⊗H ⊗ T ⊗H ⊗ T , this group is
isomorphic to S3 × S2, i.e., all permutations of the first, third
and fifth subsystems combined with the transposition of the
second and forth subsystems. The full symmetry group G is
then obtained through the semi-direct product AnoΠ, where
An is the direct product of the local symmetry groupsAj con-
structed by the Kronecker product of the respective elements,
and Π is the representation of the subgroup of Sn consisting
of all allowed permutations of the qubits subsystems.

Role of abelian groups. In order to apply our full protocol
and combine the group An with Π, all local symmetry groups
Aj must be abelian. This is indeed a necessary condition to
reconstruct the irreducible representations of the full group G
with the sole knowledge of the composing groups, as we will
discuss in the appendix [29]. Fortunately, this is the case for
the centralizer in C1 of the gates in Eq. (2) and all other rota-
tions around one of the Bloch axes. Should the local symme-
try groups not be all abelian, the protocol is still valid setting
G = An, i.e., without considering permutation symmetries.

Assumptions and physical motivation. We denote with
calligraphic letters the channel acting by gate conjugation on
density operators, i.e., U(ρ) := U†ρU and the noisy imple-
mentation of the idealized gate channel U as Ũ := ΛU ◦ U ,
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i.e., we account for a gate-dependent error channel ΛU whose
average fidelity we want to characterize with the proposed
protocol. As randomized benchmarking can be interpreted
as a trade-off between the level of characterization of the
noise channel and the amount of physical and computational
resources needed, we will make the following assumption:
the Pauli-Liouville representation (cfr. Appendix E) of the
twirled noise channel, ΛGU := |G|−1

∑
j∈N|G| G

†
jΛU Gj , is al-

most jointly diagonalizable with the target unitary channel U
(where again we consider it as a matrix in Pauli-Liouville rep-
resentation), in the spirit of Ref. [30]. This means that when
the matrix U is brought to diagonal form by some unitary
transformation V , the off-diagonal element of ΛGU under the
same transformation are small and in particular, ΛGU will ap-
proximately leave the same subspaces invariant. This is true in
two cases. The first possibility is that both U and the twirled
noise ΛGU are diagonalizable simultaneously in a certain ba-
sis, e.g., when the decomposition of the representation of the
symmetry group into irreducible representations has no mul-
tiplicity: in this case, both U and the twirled noise ΛGU are
“forced” to assume a diagonal form with respect to the irre-
ducible subspaces. If this is not the case, then ΛGU assumes a
sparse form with some off-diagonal entries, which have to be
small with respect to the diagonal elements. This is fulfilled
whenever the original noise channel ΛU related to the imple-
mentation of the gate U was almost jointly diagonalizable to
begin with or, put in another perspective [30], it is almost com-
muting. This assumption is valid when the gate U is generated
by a Hamiltonian H applied for some run time t [31], i.e.,
U = e−iHt, which can be perturbed for a small fraction of
the time, or be applied for too much or too little time (please
refer to Section F in the appendix for more details). Further-
more, we ask the gates belonging to the symmetry group G to
be implementable with high accuracy (see Appendix I). These
gates either perform a permutation of the subspaces of the sys-
tem or belong to the Clifford group and so can be for instance
benchmarked with the well-known methods [15, 16, 24].

The protocol. We propose a slightly modified version of
the previous protocols. We apply in succession channels de-
fined by the gate U after the one induced by a gate uniformly
drawn at random from the symmetry group G. In addition,
we can target the different symmetry subspaces that are stabi-
lized by G by choosing an appropriate initial state through the
application of projectors decomposing a density operator into
basis vectors of distinct irreducible subspaces (see Ref. [32]
and Appendix L, Section 2). Note that, unlike previous proto-
cols, the target gate U is not part of the twirling groupG: This
is one of the reason why one can benchmark arbitrarily small
rotations over the Bloch axes with a relatively small number
of gates. For a fixed sequence length ` the protocol consists of
the steps:

(i) Prepare an initial state ρwith support in the target invari-
ant subspace(s).

(ii) Draw a random sequence k` = (k1, . . . , k`) ∈ N`|G|.
(iii) Apply the following operation generated by the sym-

metry operations Gki to the initial state ρ

Ck`
(ρ) = Ginv ◦ U ◦ Gk` ◦ · · · ◦ U ◦ Gk2 ◦ U ◦ Gk1 , (4)

where Ginv := G†k1 ◦ · · · ◦G
†
k`

is the channel given by the com-
position of the inversion of all previous random gates chan-
nels.

(iv) Perform a suitable POVM E, e.g., by applying the pro-
jector used to construct the input state ρ according to Eq.
(21) in the appendix, and measure the survival probability
Fk`

= Tr[E Ck`
(ρ)]. To obtain an appropriate precision for

Fk`
, this step has to be repeated sufficiently often.

(v) Repeat the previous step for sufficiently many (say N )
random sequences k`,1, . . . ,k`,N of length `. Then, calculate
the sequences survival probability

Fseq(`, ρ) =
1

N

∑
k`

Fk`
=

1

N

∑
k`

Tr[E Ck`
(ρ)]. (5)

The number N of random sequences should be chosen such
that

Fseq ≈ Favg , (6)

where Favg is the survival probability averaged over all pos-
sible sequences. The choice can be motivated by an analy-
sis on the variance of the random variable F , with Fk`

being
a realization and Favg the mean of the distribution (see Ap-
pendix J for a bound on the number of samples). Note that,
for a Clifford circuit, one requires a “relatively small” number
of sequences to approximate Favg [17, 33].

(vi) Repeat the previous steps for different lengths `.
(vii) Insert Fseq into the zeroth-order fitting model (whose

derivation is discussed in the next paragraph),

F (0)
avg(`, ρ) =

∑
j

(λj dj)
`ξj (7)

where the sum runs over the eigenvalues { dj }j of the
target matrix U belonging to the space which ρ has support
over, with ξj := Tr[E Λ′(vj)] 〈ρ, vj〉 absorbing the state
preparation and measurement errors and where { vj }j is the
set of the basis vectors diagonalizing U . The set {λj }j corre-
sponds to the diagonal elements of Λ with respect to this basis.

(viii) Subsequently, we retrieve the parameters {λj}, which
characterize the average gate fidelity of Ũ with respect to U
(cfr. Appendix H) according to the relation

E(FΛG,I) =

∑
λj + d

d(d+ 1)
, (8)

using classical estimation techniques.
The fitting model. Considering a noise channel Λ (we now

drop the subscript U to lighten notation) at each implementa-
tion of U ◦ Gk, we can write

Ck` = Λ′ ◦ Ginv©1
t=` Λ ◦ U ◦ Gkt . (9)

Note that the error channel Λ′ characterizing the implementa-
tion of Ginv can be different from the error for the implemen-
tation of U◦Gkt . Now, defining recursively Bkt := Gkt ◦Bkt−1
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with Bk1 = Gk1 , and using the invariance of U under the ac-
tion of G, we can rewrite

Ck` = Λ′©1
t=` B

†
kt
◦ Λ ◦ Bkt ◦ U . (10)

When averaging over all possible sequences, we get
Favg(`, ρ) = Tr[E Cavg(ρ)] with Cavg = Λ′ ©1

t=` ΛG ◦ U ,
where ΛG := |G|−1∑

j∈N|G| B
†
j ◦ Λ ◦ Bj is now like U in-

variant with respect to the action of G. At this point we know
that by Schur’s Lemma (see Appendix C) the Pauli-Liouville
representations of U and ΛG are block-diagonalizable. If the
decomposition of G does not contain any multiplicity for all
distinct irreducible subspaces, the two matrices are simulta-
neously diagonalizable. If conversely multiple of the same
irreducible representations occurs, in general there is no basis
which brings both into a diagonal form and so, when diagonal-
izing U , the matrix representation of ΛG will assume a block
form, where each of these blocks corresponds to an irreducible
representation. For the zeroth-order model, we consider the
diagonal elements of ΛG only, and in particular the set {λj }j
accounted in Eq. (7) denotes the ones belonging to the sup-
port of ρ. Let us write ΛG = Λ0 + Λoff , with Λ0 being jointly
diagonalizable with U and Λoff having smaller matrix entries
due to the previously discussed assumption. Then, in zeroth-
order, we have F

(0)
avg(`, ρ) = Tr[E Λ′

(
©1
t=`Λ0 ◦ U

)
(ρ)],

from which Eq. (7) follows. If one needs to take into consid-
eration off-diagonal entries of ΛG too, a first-order model is
necessary (see Appendix G).

Statistical analysis and bootstrapping. In order to esti-
mate the average fidelity with the help of Eq. (8) we need
to extract the decay rates {λj }j from the measured data.
According to the protocol, this data consists of the survival
probabilities {Fk`,q

} measured for q = 1, . . . , N randomly
chosen sequences of lengths ` = 1, . . . , `max. Let us de-
note by Fseq(`) the average of Fk`,q

with respect to the ran-
domly chosen symmetry-group sequences k`,q for fixed se-
quence length `. The zeroth-order fitting model from Eq. (7)
then tells us that Fseq(`) ≈

∑
j(λjdj)

`ξj and accordingly,
we can extract the parameters {λj }j from the sequence

(Fseq(`))
`max

`=1 with the help of matrix pencil based signal re-
construction (see Appendix L). In order to improve our es-
timates we combine this approach with a bootstrapping pro-
cedure in the following way: To obtain a single bootstrap
sample, we choose from the complete set of measured sur-
vival probabilities {Fk`,q

}N,`max

q=1,`=1, for each sequence length
` a random subset of the sequences k`,q for which we then
compute the average Fseq(`) and extract {λj }j as described
before. Repeating this process for different random samples
of the k`,q , we obtain different estimates for the average fi-
delity, which is then averaged again with respect to the boot-
strap samples in order to produce our final estimate for the
average fidelity.

Recovery for single T -gate and two T -gates. In order to
check the performance of our proposed protocol, we con-
sider two examples: A single T -gate and the tensor prod-
uct of two T -gates. In the single T -gate case, the generat-
ing Hamilonian is perturbed by an additional σx term and

we write H = π
8σz − εσx, whereas in the two T -gates we

Figure 1. Average fidelity for noisy single T -gate (a) and two T -
gates (b) for different noise-strengths ε extracted from bootstrapping
over N = 100 sequences of length up to ` = 1000 (a) and ` = 1600
(b). Green lines and stars indicate the analytic value of the average
fidelity E(F) for the given noise level, whereas red diamonds the
fitted average fidelity for the zeroth-order model.

consider H = π
8 (σz ⊗ 1+ 1⊗ σz − ε σx ⊗ σx) for varying

perturbation strength ε. Fig. 1 compares the actual values of
the average fidelity E(F), with the ones retrieved by fitting the
zeroth-order model for different values of ε. The details of the
fitting procedure are described in Appendix M. From the two
graphs it can be seen that we obtain very accurate predictions
for the average fidelity already in the regime ε ≈ 0.25.

Conclusions and outlook. In this work, we have proposed
a novel approach to randomized benchmarking, developing a
protocol that allows to estimate individually the average gate
fidelity of a unitary operator whose imperfect implementation
is described by a gate-dependent noise channel, hence lifting
some of the weaknesses related to the well-known protocols
while maintaining robustness against SPAM errors. The key
idea involves the twirl of the noise channel over the symmetry
group of the target gate given by the composition of local sym-
metries with respect to the qubit subsystems and permutations
thereof: This reduces considerably the amount of parameters
that one has to retrieve and also the number of random gates
needed. We have produced numerical simulations showing
the validity of the protocol for a single-qubit and two-qubit
T -gate, which proves to be faithful for relatively large noise
levels. While we do not have an analytical formula for the
scalability of the protocol, also due to the very wide range of
possible gates that can be benchmarked in this way, the ex-
ample of multiple tensor copies of the T -gate in Appendix K
suggests that the number of non-linear parameters in the fit-
ting model is drastically inferior compared to the full matrix
dimension when increasing the number of qubits. Further in-
vestigations in this direction would be certainly of interest.
Another open question concerns the number of different ran-
dom samples needed to approximate the average fidelity with
confidence, and in particular to obtain a bound in the fashion
of Ref. [33]. With this letter, we hope to further stimulate re-
search on randomized benchmarking outside the more estab-
lished domain of the Clifford group and to explore the terri-
tory between randomized benchmarking and more traditional
quantum process tomography.
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Structure of the appendix

This appendix contains technical details for the scheme pro-
posed in the letter and is structured as follows in order to have
some logical flow and help readability. The first Sections A
and B provide the basic theoretic elements for group and rep-
resentation theory, whose most relevant tool to this work is
separately given in Section C. As we mentioned in the main
part of the letter, the core idea of our novel randomized bench-
marking protocol is the coupling of local and permutation
symmetries in order to produce a larger symmetry group of the
target gate; the machinery for retrieving the irreducible char-
acters of a semi-direct product group from the sole knowledge
of the irreducible representations of its constituent subgroups
is illustrated in Section D. After this first part, we focus on
other particular aspects of the protocol. We justify in Sec-
tion F the assumption on almost jointly diagonalizable matrix
representations of the noise and ideal unitary channels, we dis-
cuss in Section G the derivation of a first-order fitting model
to account for off-diagonal terms, in Section H we connect
the retrieved parameters to the average gate fidelity, we de-
scribe how to separate this quantity for the target gate from
the one of the twirling group in Section I and we provide in
Section J a theoretical bound to the number of different ran-
dom sequences needed to approximate the full sample aver-
age. The last part of the appendix is dedicated to a concrete
example, where we apply our protocol to (up to four) tensor
copies of the T -gate. We first make use of the machinery of
Section D to construct the character tables of the symmetry
groups in Section K. We then describe in Section L the re-
covery techniques for the parameters in the zeroth-order fit-
ting model, combining the matrix pencil method with a boot-
strapping approach. Finally, we provide the numerics for the
fidelity estimation in the single and two T -gates cases in Sec-
tion M.

A. Group theory

In this section, we provide the mathematical tools from
group and representation theory which our benchmarking pro-
tocol relies upon; the reader already familiar with this mathe-
matical field can skip the following introductory material.

Definition 1 (Group). A groupG is a set of elements equipped
with a binary operation satisfying the following properties:
Closure: For all g, h ∈ G, g · h ∈ G.
Associativity: For all g, h, k ∈ G, (g · h) · k = g · (h · k).
Identity element: There exist a unique identity element e such

that, for all g ∈ G, e · g = g · e = g.
Inverse: for every element g ∈ G there exist an inverse ele-
ment g−1 such that g−1 · g = g · g−1 = e .

If two groups can be linked by a group isomorphism, they
are said to be isomorphic. They will then have many prop-
erties in common, in particular the same multiplication table
and character table. One can therefore easily obtain informa-
tion about a group if it is possible to find a group isomorphism
connecting it to another well-known group; this is indeed what
we do in our protocol to deal with the local symmetry groups.
A subset H ⊂ G is called subgroup if all above conditions
are still satisfied, e.g., the subset is closed with respect to the
group operation. A subgroup N such that g−1n g ∈ N for all
n ∈ N, g ∈ G is said to be normal and this is denoted by
N CG.

One can define a (left) group action of G on a set M by a
function

φ : G×M →M, (1)
(g,m) 7→ φ(g,m)

that fulfills the following two axioms:
Identity: for all m ∈M, φ(e,m) = m,
Compatibility: for all m ∈ M, g, h ∈ G φ(g, φ(h,m)) =
φ(g · h,m). With this definition, we can furthermore define
the following.

Definition 2 (Orbit). An orbit G.m of an element m ∈ M is
given by all elements in M obtained by the action of G, i.e.,

G.m := {φ(g,m) : g ∈ G } . (2)

The action of G on M induces a partition of the set M
itself, i.e., it regroups the elements into subsets such that every
element m ∈M is contained in one and only one of these.

Definition 3 (Stabilizer subgroup). The stabilizer subgroup of
G with respect to m is the set of all elements on G such that

Gm := { g ∈ G : φ(g,m) = m } . (3)

It is always possible to couple two groups to generate a new
one. This is indeed what we are seeking, having to combine
symmetry of the local gates together with the invariance with
respect to (certain) permutations thereof.

Definition 4 (Direct product). Given two groupsG andH , the
direct product G ×H is a Cartesian product of ordered pairs
(g, h), with g ∈ G, h ∈ G equipped with a binary operation
acting component-wise, that is

(g1, h1) · (g2, h2) = (g1 · g2, h1 · h2). (4)
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This new structure satisfies all axioms of closure, associa-
tivity, existence of identity – given by (eG, eH) – and inverse
element– (g−1, h−1) being the inverse of (g, h) – and so it is
a group. An alternative way to construct a new group from is
given by the semi-direct product.

Definition 5 (Outer semi-direct product). Let N , H be
groups, ϕ : H → Aut(N) be a homomorphism from H to
the set of automorphisms of N . Then the (outer) semi-direct
product with respect to φ, denoted by G = N oϕ H , is the
group whose underlying set are the pairs (n, h) ∈ N × H
equipped with an operation defined as

• : G×G→ G (5)
((n1, h1), (n2, h2)) 7→ (n1, h1) • (n2, h2) (6)

= (n1 · ϕh1(n2), h1 · h2),

where n1, n2 ∈ N,h1, h2 ∈ H .

This structure is again a group according to the defining ax-
ioms, with identity element (eN , eH) and inverse (n, h)−1 =
(ϕh−1(n−1), h−1). Note that the the set {(n, eH) : n ∈ N}
is a normal subgroup of G isomorphic to N .

It is also possible to go the other way around and obtain
from a group G and a normal subgroup N a new group called
quotient group, denoted by G/N . This is the set of all cosets
of N in G, i.e.,

G/N := { gN : g ∈ G } , (7)

where gN is the left coset of N in G , namely

gN := { gn : n ∈ N } . (8)

The latter definitions stands for all subgroup N , not necessar-
ily normal, however when N is normal the left coset and the
right coset (defined analogously) coincide. The set G/N is
then a group under the operation (gN) · (hN) = (gh)N . We
conclude this paragraph with the following definition of the
canonical projection which is involved in the construction of
irreducible representations of a semi-direct product group, as
we will see in the next subsection.

Definition 6 (Canonical projection). Let N C G. The group
homomorphism

τ : G→ G/N, (9)
g 7→ gN (10)

is called canonical projection.

B. Representation theory

We are now going to introduce representations and some
of the most important results involving them. The following
propositions are the mathematical tools at the heart of our ran-
domized benchmarking protocol.

Definition 7 (Representation). A representation of a group G
on a vector space V is a group homomorphism onto the gen-
eral linear group on V ,i.e., a map

π : H → GL(V ), (11)
g 7→ π(g) (12)

such that

π(g) · π(h) = π(g · h). (13)

A representation is said to be faithful if it is injective, and
its dimension corresponds to the dimension of the vector field
V . A subspace W ⊂ V is said to be invariant if, for all g ∈ G
and w ∈W ,

π(g)w ∈W. (14)

Furthermore, a representation is said to be irreducible if the
only invariant subspaces are { 0 } and V itself; often, this is
abbreviated as irrep. Every complex representation of a fi-
nite group is completely reducible, i.e., it can be decomposed
as a direct sum of irreducible representations. This property,
together with Schur’s Lemma, makes irreducible representa-
tions and their characters a central object in the theory and
will also be particularly relevant in our work.

Definition 8 (Character of a representation). The character χπ
of a representation π of a group G on V is given by

χπ(g) = Tr[π(g)]. (15)

The dimension of a representation corresponds then to its
character at the identity element, χπ(e). For finite group, the
number of irreducible representations is again finite, and the
following result is useful to check if all irreducible represen-
tations of a given group have been found.

Proposition 9 (Group order and irreducible representations
dimension). The order of a group G and the dimension of its
irreducible representations are linked by

|G| =
∑

α : παirrep

χπα(e)2. (16)

One of the most important properties for character of irre-
ducible representations is the following orthogonality relation.

Proposition 10 (Orthogonality formula). Let {χα }α be the
set of characters of all irreducible representations of a group
G. Then

1

|G|
∑
g∈G

(χα(g))∗χβ(g) =

{
1 if α = β

0 if α 6= β
. (17)

From this, follows one of the key results in representation
theory is the formula for multiplicities, used to decompose a
representation into irreducible ones.
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Proposition 11 (Multiplicity formula). Let χα be the charac-
ter of the irreducible representation πα and φ the character of
the representation π of a group G. Then

1

|G|
∑
g∈G

(χα(g))∗φ(g) = mα, (18)

where mj is the multiplicity of the irreducible representation
πj in the decomposition of π, so that π is similar to a block
diagonal matrix in the form

π(g) '
⊕

πα(g)⊗ 1mα ∀g ∈ G, (19)

with 1mj being the identity matrix on Cmj .

For each irreducible subspace of V we can choose a ba-
sis set { vαj }j where α is a label of the irreducible repre-
sentation (with dimension dimα) decomposing π and j ∈
{ 1, . . . ,dimα }. Each vector v in V can then be written
as their linear combination v =

∑
α

∑dimα
j=1 cαj v

α
j . We can

conversely identify the basis vector components of any vec-
tor v by application of an appropriate projector Pαj , such that
Pαj v = cαj v

α
j , where

Pαj =
dimα

|G|
∑
g∈G

(πα(g))∗j,j π(g). (20)

Note that, in order to construct these projectors, the knowl-
edge of the sole diagonal elements of the corresponding irre-
ducible representation πα is sufficient. By having access to
the character table only, it is still possible to project any vec-
tor onto distinct irreducible subspaces (up to multiplicity) by
using

Pα =
dimα

|G|
∑
g∈G

(χα(g))∗ π(g). (21)

C. Schur’s Lemma

Hereby we write one of the most important results in rep-
resentation theory, namely, Schur’s Lemma. We will restrict it
on finite-dimensional representations case.

Lemma 12 (Schur’s Lemma). Let πα and πβ be two irre-
ducible representations of a finite group G of dimension m
and n respectively, and M an m× n matrix. If

πα(g)M π−1
β (g) = M ∀g ∈ G (22)

then πα and πβ are equivalent irreducible representations or
M = 0.

Furthermore, if

πα(g)M π−1
α (g) = M ∀g ∈ G (23)

then M = µ1, i.e., it is a scalar matrix.

D. Construction of irreducible representations of semi-direct
product groups

It is possible to couple two groups to construct a new one
using direct and semi-direct products. One can also obtain all
their irreducible representations using knowledge about those
of the original two groups alone. For direct products, the pro-
cedure is straightforward.

Theorem 13 ([44], Theorem 10, Chapter 3). Each irreducible
representation of a direct group G1 × G2 is isomorphic to
a representation π1 ⊗ π2 with π1 and π2 being irreducible
representations of group G1 and G2 respectively

For a group generated by a semi-direct product N o H , a
more sophisticated machinery is needed (cfr. Refs. [44, 45]),
and works only if the normal subgroup N is also abelian,
i.e., all elements commute with respect to the group opera-
tion. Assuming N to be abelian, its irreducible representa-
tions {χα }α are 1-dimensional and carry an action of G by

g · χα(a) = χα(g−1ag) ∀a ∈ N and g ∈ G. (24)

Now, consider the orbits of the characters induced by the ac-
tion ofH and choose a set of representatives {χr }r. For each
r, letHr be the stabilizer subgroup of χr inH and then define
Gr = N ·Hr. Now extend χr to Gr by

χr(ah) = χ(a) ∀a ∈ N and h ∈ Hr. (25)

Let θ be an irreducible representation of Hr and lift it to an
irreducible representation θ̃ of Gr through the canonical pro-
jection P : Gr → Gr/N . As a final step, compose the two
representations and obtain a representation ρr,θ̃ of the groupG

by induction, i.e., ρr,θ̃ = IndGGr (χr ·θ̃). From Ref. [44, Propo-
sition 25], we know that the so constructed representations
ρr,θ̃ are irreducible and exhaust all irreducible representations
of G. Since we will only need the characters χρ

r,θ̃
of the irre-

ducible representations ofG to apply Schur’s Lemma, we will
not elaborate what induced representations are. To obtain the
sought characters, it suffices to make use of a Mackey-type
formula,

χρ
r,θ̃

(s) =
1

|Gr|
∑
g∈G

g−1sg∈Gr

χr · χθ̃ (g−1sg). (26)

E. Pauli-Liouville representation

To represent density operators and quantum channel on n
qubits as vectors and matrices respectively, we will make use
of the Pauli-Liouville representation with respect to Pauli ba-
sis. Let us pick

B :=

{
1
√

2
n

n⊗
ν=1

σ̃ν : σ̃ν ∈ {12, X, Y, Z }

}
, (27)

where X,Y, Z are the Pauli matrices, as an orthonormal basis
of GL(C2n) with respect to the Hilbert-Schmidt inner product
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〈A,B〉 := Tr[A†B]. Then we know that we can express any
density operator ρ and quantum channel C respectively as

ρ =

4n∑
j=1

ρjσj and C(ρ) =

4n∑
j=1

C(σj)ρj , (28)

where σj ∈ B and ρj := 〈σj , ρ〉, so that we can represent
them as

|ρ〉 =

 ρ1

ρ2

. . .
ρ4n

 and Cjk = 〈σj , C(σk)〉. (29)

In this way, we may transpose C(ρ) into a matrix-vector mul-
tiplication C |ρ〉 and the concatenation of two channels D and
C into a matrix multiplication DC. Additionally, representing
channels in matrix form will allow us to make use of Schur’s
Lemma for matrix representations. We can analogously write
a POVM E in the form

〈E| = (E1 E2 . . . E4n) with Ej = 〈E, σj〉. (30)

With this, the probability to obtain an outcome described by
E when measuring ρ is p(E|ρ) = Tr[Eρ] = 〈E, ρ〉.

F. Zassenhaus formula

In order to justify our mathematical assumption through
physical motivations, let us consider that the gate Ũ , which
is the physical realization of the ideal gate U , is obtained dur-
ing the application of some Hamiltonian H , perturbed for a
fraction of time ∆t (we denote the perturbed Hamiltonian as
R), i.e., Ũ = e−i(R∆t+HT ). Using the Zassenhaus formula
[46], we can rewrite the implemented gate as

Ũ = e−iHT e−iR∆t
∞∏
n=2

eCn(HT,R∆t) (31)

= e−iHT (1− iR∆t+ §∆t) +O(∆t2), (32)

where

§ :=

∞∑
n=2

cn[H, [H, . . . , [H︸ ︷︷ ︸
n−1 times

, R] . . . ]]Tn−1, (33)

with the Zassenhaus coefficients cn that can be recursively
calculated for instance as in Ref. [46]. This implies that
the off-diagonal elements of the matrix Ũ – computed in the
eigenbasis of U – are of order ∆t, justifying our assumption
on the noise Λ.

G. First-order fitting model

We will now take into account off-diagonal matrix entries.
A feature of the protocol being of great relevance is that, by

twirling the error channel over the symmetry group G, we
reduce the number of these off-diagonal matrix entries and
so we drastically decrease the amount of parameters in the
fitting model. Like in the main part of the letter, we write
ΛG = Λ0 + Λoff , with Λ0 being jointly diagonalizable with
U . Provided Λoff = {µi,j }i6=j to be “small” (i.e., the sec-
ond order perturbation being negligible), we can consider the
first-order model

F (1)
avg(`, ρ) = F (0)

avg(`, ρ) +
∑
i6=j

`−1∑
p=0

(λidi)
p (λjdj)

`−p−1 ζi,j ,

(34)
with ζi,j := µi,jdj Tr[E Λ′(vi)]〈ρ, vj〉 and the indices i, j
labeling the elements within the support of ρ. This expres-
sion may be re-formulated into a simpler form, e.g., using the
geometric series formula we obtain

F (1)
avg(`, ρ) = F (0)

avg(`, ρ) +
∑
i6=j

(λjdj)
` − (λidi)

`

λjdj − λidi
ζi,j . (35)

As already mentioned, since we twirled over the symmetry
group and so ΛG is block-diagonal, a number of µi,j (and
hence the corresponding ζi,j) can be set to 0 in advance. More
precisely, when a representation of the symmetry group is
written as a direct sum of irreducible representations as

π(g) =
⊕
α irrep

1mα ⊗ πα(g), (36)

where mα is the multiplicity of the irreducible representation
πα, two matrices X and Y which are both commuting with
π(g) assume the form

X =
⊕
α

xα ⊗ 1dimα and Y =
⊕
α

yα ⊗ 1dimα, (37)

where xα, yα are square matrices with dimxα = dim yα =
mα. If X is normal, one can then choose a basis such that
all xα are diagonal (so that X will assume a diagonal form),
while Y will maintain a similar form Y =

⊕
α ỹ

α ⊗ 1dimα.
Hence, in our case, while diagonalizing U (from the Pauli-
Liouville representation), ΛG maintains a form as in Eq. (37).

H. Connecting to the average gate fidelity

For a quantum channel E and a unitary operation U , the
gate fidelity between these two quantities for a pure state φ is
given by

FE,U (φ) := Tr [U(|φ〉 〈φ|) E(|φ〉 〈φ|)] (38)

and defining Λ = U† ◦ E one has

FE,U (φ) = FΛ,I(φ) = Tr [|φ〉 〈φ| Λ(|φ〉 〈φ|)] , (39)

hence quantifying the noise channel Λ for the implementation
E of U .
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The average gate fidelity is then obtained by integrating this
quantity over the Haar measure on pure states, that is,

E(FE,U ) = E(FΛ,I) :=

∫
Haar

Tr [|φ〉 〈φ| Λ(|φ〉 〈φ|)] dφ.

(40)
Conversely, the entanglement fidelity of a quantum channel E ,
defined as

Fent(E) := 〈ψ| (I ⊗ E)(|ψ〉 〈ψ|) |ψ〉 , (41)

with |ψ〉 being a maximally entangled state vector, can be
written as [47]

Fent(E) = d−3
∑
j

Tr[V †j E(Vj)], (42)

for any orthonormal basis {Vj }j such that Tr[VjVk] = d δj,k
(in the case of n qubits, d = 2n). The average gate fidelity of
E is then linked to this quantity by [47]

E(FE,I) =
dFent(E) + 1

d+ 1
=

∑
j Tr[V †j E(Vj)] + d2

d2(d+ 1)
, (43)

so that the average gate fidelity of the twirled error channel
ΛG is related to the parameters {λj }j obtained in the fitting
model in Eq. (7) from the main part of the letter by

E(FΛG,I) =

∑
λj + d

d(d+ 1)
. (44)

Now the question is what information about the original noise
channel we can extract from the twirled channeld ΛG. In fact
they are the same, since the entanglement fidelity is invariant
under twirling over the symmetry group G. Let us rewrite

Fent(Λ
G) = d−3

∑
j

Tr[V †j ΛG(Vj)] (45)

=
d−3

|G|

|G|∑
k=1

∑
j

Tr[V †j g
†
kΛ(gkVjg

†
k)gk] (46)

=
d−3

|G|

|G|∑
k=1

∑
j

Tr[(W k
j )†Λ(W k

j )], (47)

where we denote W k
j = gkVjg

†
k and used cyclicity of the

trace. Since W k
j is again an orthogonal basis with respect

to the Hilbert-Schmidt inner product (i.e., Tr[(W k
j′)
†W k

j ] =

d δj′j ∀k), then d−3
∑
j Tr[(W k

j )†Λ(W k
j )] = Fent(Λ) so that

Fent(Λ
G) =

1

|G|

|G|∑
k=1

Fent(Λ) = Fent(Λ) (48)

and hence

E(FΛ,I) = E(FΛG,I). (49)

I. Characterizing the error of the single gate U

In order to recover the fidelity of the gate U from the noise
Λ, which originates from the composition of U and a unitary
gate from the symmetry group G, we first consider the χ ma-
trix representation of E ,

E(ρ) =
∑
i,j

χi,jPiρPj , (50)

where P0 = 1. We can characterize the error of the gate
U , distinguishing it from the one coming from the symme-
try group G, that we consider to be N for all elements in
the group (which can be benchmarked separately using for in-
stance the known methods to benchmark Clifford gates), using
the bound from Ref. [48, Appendix D] (where we set i = 0)

|χΛ◦N
0,0 − χΛ

0,0χ
N
0,0| ≤ 2

(
(1− χΛ

0,0)χΛ
0,0(1− χN0,0)χN0,0

)1/2
+ (1− χΛ

0,0)(1− χN0,0). (51)

For an arbitrary channel E , we know that χE0,0 = Tr[E ]/d2

(cfr. [49, Eq. (2.30)] and Eq. (44)), so that we can recover
the fidelity of the gate U form the ones of the gates belong-
ing to G and from E(F(Λ◦N )G,I) obtained with our protocol.
The bound in particular is valid in the regime χN0,0 ≈ 1, i.e.,
when the gates of the symmetry group can be implemented
with high fidelity.

J. Confidence interval

This section is concerned with uncertainty quantification in
our scheme. To assess the number of different random se-
quences that have to be sampled in order to justify Fseq(`) ≈
Favg(`) for a given sequence length `, Wallman and Flammia
in Ref. [50] provided bounds on the variance for the Clifford
randomized benchmarking protocol described in Ref. [49].
Their results show that a relatively small number of random
samples is needed. We want to show a bound similar to that
of Ref. [50, Theorem 10],

σ2
` =

1

|G|`
∑
k`

F 2
k(`, ρ)− Favg(`, ρ)2. (52)

In Pauli-Liouville representation and using (E|C|ρ)2 =
(E⊗2|C⊗2|ρ⊗2), this can be expressed in terms of a scalar
product in the form

σ2
` =

1

|G|`
∑
k`

(E⊗2|C⊗2
k`
|ρ⊗2)− (E⊗2|C⊗2

avg,`|ρ
⊗2). (53)

Now, we assume to be in the regime Λ = 1+Q∆t, whereQ is
a bounded matrix under additional assumption TrQ = Θ(d2),
and expand the expression for the variance up the second order
in ∆t.
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σ2
` = ∆t2(E⊗2|

∑̀
j=1

1

|G|
∑
B∈G

(U ⊗U)`−j(B†QB⊗B†QB)(U ⊗U)j −
∑̀
j=1

(U ⊗U)`−j(QG⊗QG)(U ⊗U)j |ρ⊗2) +O(`2r2d4).

(54)

The first term can be bounded as in Ref. [50] using diamond
norm properties and Ref. [50, Proposition 9] with 4d(d+1)`r.
Again following that argument, the terms of order O(∆t3Q3)
and O(∆t4Q4) are O(`2r2d4). Knowing the structure of QG

from the analysis of the symmetry group G, we can upper
bound the number of non-zero terms as∑

α

m2
α dα ≤ max αmα

∑
α

mα dα = max αmα d
2. (55)

From now on, we denotem = max αmα and q = max i,jqi,j ,
the largest matrix entry of Q that we assume being indepen-
dent of d. The second term in expression (54) obeys to the
inequality

(E⊗2|
∑̀
j=1

(U⊗U)`−j(QG⊗QG)(U⊗U)j |ρ⊗2) ≤ `q2m2d4.

(56)
Using

Tr[Λ] = d(d+ 1)E(F)− d (57)

follows

∆t = −r d(d+ 1)

Tr[Q]
, (58)

and so ∆t = O(r) since we assumed TrQ = Θ(d2). Hence,
second term of Eq. (54) is O(m2 ` r2d4). Summarizing gives
a bound for the variance as

σ2
` ≤ 4d(d+ 1)`r +O(`2r2d4) +O(m2 ` r2d4), (59)

where the second term dominates the third one for ` � m2,
i.e., in this regime the bound is exactly equivalent to the one
of Ref. [50, Theorem 10]. This bound however is probably
not tight, and we are interested whether a bound similar to the
one provided in Ref. [51] can be obtained.

K. Example of tensor copies of T -gates

Starting from this part of the appendix we will illustrate the
application of our scheme to tensor copies of the T -gate, one
of the most relevant quantum gates, which together with the
H , S and CNOT gates gives rise to a universal quantum cir-
cuit. Specifically within the context of fault tolerant quantum
computing, this situation is of paramount importance. First,
we are going to depict the irreducible decomposition up to
four tensor copies of this gate in order to get a feeling on the
scalability and necessary resources for this method. We give
in the following the step-by-step sequence according to the
procedure described in Appendix D.

[1] Produce the n-Kronecker product group, denoted by
An, of the local abelian symmetry group

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

 1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 ,

 1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

 ,

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 ,

which is isomorphic to the cyclic group of order 4, Z4.

[2] Construct representation of the symmetric group Sn
permuting the local subsystems.

[3] Construct the full symmetry group G as a semi-direct
product of An and Sn by multiplying the respective
4n-dimensional matrix representations. Each g ∈ G
is given by g = a.σ, with a ∈ An, σ ∈ Sn.

[4] From the character table of Z4,

Z4 e γ γ2 γ3

χ0 1 1 1 1
χ1 1 i -1 -i
χ2 1 -1 1 -1
χ3 1 -i -1 i

construct the character table of An by taking the prod-
uct of the respective characters

χc1,c2,...,cn(`1, `2, . . . , `n) := χc1(`1)χc2(`2) . . . χcn(`n) ,
(60)

where `j ∈ Z4 and cj is the label representing the irre-
ducible representation.

[5] Divide the characters of An into orbits with respect to
the action of Sn given by

σ.χ(a)c1,c2,...,cn := χ(σ−1a σ)c1,c2,...,cn . (61)

In this particular case, the action of Sn works as a per-
mutation of the labels of the irreducible representations,
i.e.,

σ.χ(a)c1,c2,...,cn = χ(a)σ(c1,c2,...,cn). (62)

Choose for each orbit a representative element, for in-
stance χ(a)c1,c2,...,cn with c1 ≤ c2 ≤ · · · ≤ cn, build-
ing a set {χj }j .
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[6] For each representative element χj , find the stabilizer
group Hj as a subgroup of Sn.

[7] For each irreducible representation π of Hj , write an
irreducible representation of the subgroup Gj := An ·
Hj of G by

ρ̃jπ(a, gj) = χj(a) · π(gj). (63)

[8] Obtain the characters of the representation ρjπ of G in-
duced by ρ̃jπ with the Mackey-type formula,

χρjπ (s) =
1

|Gj |
∑
t∈G

t−1st∈Gj

χρ̃jπ (t−1st), (64)

and obtain the irreducible representation multiplicity
mj
π in the decomposition of the Pauli-Liouville repre-

sentation of G with the formula

mj
π =

1

|G|
∑
g∈G

(
χρjπ (g)

)∗
· φ(g), (65)

where g 7→ φ(g) is the trace of g in Pauli-Liouville
representation.

In case of n = 4, for instance, there are 256 different irre-
ducible representations of A4 and five stabilizer groups: the
full permutation group S4 for the irreducible representations
of the form χa,a,a,a, a ∈ 0, 1, 2, 3, giving rise to 4 · 5 = 20
irreducible representations for G, S3 for the representative ir-
reducible representations of the form χa,a,a,b and χa,b,b,b with
a < b, giving rise to 12 · 3 = 36 new irreducible represen-
tations, S2 × S2 (isomorphic to the Klein four-group) for
representative elements χa,a,b,b with a < b, so that a total
of 6 · 4 = 24 irreducible representations of G are derived,
again representative elements χa,a,b,c, χa,b,b,c, χa,b,c,c with
a < b < c have stabilizer S2, producing additional 12 ·2 = 24
irreducible representations; finally, the single element χ0,1,2,3

represents the sole orbit with trivial stabilizer. Hence, we have
in total 105 different induced irreducible representations of G
whose characters are obtained using Eq. (64). As one can ob-
serve in Table IV, only 22 of these irreducible representations
decompose the twirled noise matrix, and the trivial represen-
tation has the highest multiplicity.

Results for n ≤ 4

We report in Tables I-IV the irreducible decompositions for
up to four tensor copies of the T -gate. The superscripts of
χ label the irreducible representations of An, while after the
semicolon we denote the irreducible representation of the sta-
bilizer group, where e denotes the trivial representation, sgn
the sign representation, std the standard representation for all
subgroups of S4, kera the Kernel a representation of the Klein
four-group isomorphic to S2 × S2, while 2dim denotes the
2-dimensional representation of S4. We note that χ2 never

appears in the decomposition, and that the highest multiplic-
ity, being n + 1, is always related to the trivial representa-
tion of the full group G. Additionally, we note that exploiting
Schur’s Lemma and the above consideration, the number of
distinct λj to be fitted when benchmarking copies of the T -
gate is

∑
α irrepmα, i.e., from 1 to 4 qubits, this number is

4, 11, 24, 46.

L. Classical recovery and estimation methods

In this section, we give details on the our numerical meth-
ods employed to recover the average fidelity from the mea-
surement data provided by our protocol. In principle, we
could try to obtain the parameters directly by a non-linear fit-
ting approach along the lines of the variable projection algo-
rithm that separates fitting of linear and non-linear parameters
[52]. However, given the fact that the quantities we want to
obtain correspond to the estimation of different decay rates
in the data set, we are going to use instead a matrix pencil
method for the extraction of signal poles developed in the con-
text of signal processing [53, 54]. Due to the random nature
of the sampling paths, this is supplemented by a bootstrap-
ping approach in order to get reliable estimates on these pa-
rameters. We will continue describing these two components
of our methodology in detail now, before commenting on the
single and two T -gate examples described in the main text.

1. Matrix pencil methods

Key to the functioning of our scheme is the use of sophisti-
cated methods of estimation which we lay out here. Accord-
ing to (44), we can express the average fidelity E(FΛG,I) of
the twirled channel in terms of the model parameters λj as

E(FΛG,I) =

∑
λj + d

d(d+ 1)
. (66)

The relation between the model parameters λj and the mea-
surement data on the other hand is given by the zeroth-order
fitting model

F (0)
avg(`, ρ) =

4n∑
j=1

(λj dj)
`ξj . (67)

From an abstract point of view this means that up to higher
order terms, for each ` = 1, . . . , `max, the measurement result
F` can be expressed as a sum exponentially decaying terms of
the form

F` =

M∑
j

ξjx
`
j (68)

where we set xj = λjdj . Recovering the parameters xj from
such a noisy data set is a well studied problem in the context of
signal reconstruction going back to the work by Prony. Mod-
ern algorithms known as the Estimation of signal parameters
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Irreducible representation Multip.
χ0 2
χ1 1
χ3 1

Table I. This and the subsequent three tables depict the irreducible decompositions of the symmetry group G of multiple tensor copies of the
T -gate channel. The superscripts of χ label the irreducible representations of An, the word after the semicolon the irreducible representation
of the stabilizer group: e denotes the trivial representation, sgn the sign representation, std the standard representation, kera the Kernel a
representation of the Klein four-group, 2dim the 2-dimensional representation of S4.

Irreducible representation Dim Multip. Irreducible representation Dim Multip.
χ0, χ0; e 1 3 χ0, χ1; e 2 2
χ1, χ1; e 1 1 χ0, χ3; e 2 2
χ3, χ3; e 1 1 χ1, χ3; e 2 1
χ0, χ0, sgn 1 1

Table II. Two T -gates decomposition.

via rotational Invariance Techniques (ESPRIT) rely on feature
extraction via singular value decompositions and matrix pen-
cils [55]. For a recent review and details of the construction
see, e.g., Ref. [56]. In the following, we give a short overview
over the algorithm.

In order to extract at most Mmax signal poles xi from
{F (`)}Lmax−1

`=0 , we first form the 2Lmax−Mmax×Mmax + 1
Hankel matrix H`,k = F (` + k) and compute its singular
value decomposition

H = UDV ∗. (69)

If there were no noise in the data, the number of non-zero sin-
gular values of H would correspond directly to the number
of unique {xi} in (68). However, in the presence of noise,
H will typically feature full rank and we have to fix a thresh-
old σmin for the singular values to obtain a rank M approx-
imation of H in order to extract M ≤ Mmax poles for the
approximation of our measurement data. Let us denote by
W the M × Mmax + 1 matrix formed by the first M rows
of V ∗ and set the Mmax × M matrices V0 and V1 equal to
(Vi)`,k = Mk,`+i, ` = 1, . . . ,Mmax, k = 1, . . . ,M . The es-
timate for the signal poles xi can now be computed as the M
eigenvalues of the matrix (V0)−1 ·V1, where the inverse of V0

is defined as its Moore-Penrose pseudo-inverse. In this way,
we can extract from (67) the parameters {xj} = {λjdj}.

Now in principle, we would be left with the problem of
matching the right xj with the correct dj in order to ob-
tain the parameters λj . However, since typical quantum
gates and in particular the T -gate have eigenvalues which
are close to being roots of unity, we can exploit this prop-
erty to circumvent this problem. Namely, assuming that we
can find an τ such that dτj = 1 for all j, we can partition
our measurement data {F (`)}`max

`=1 into τ subsets of the form
{F (r), F (r + τ), F (r + 2τ), . . . } with r = 1, . . . , τ . In each
of these subsets (67) reads as

Fr(`) =
∑
j

ξjd
r
j

(
dτj
)` (

λτj
)`

=
∑
j

ξ̃j,r
(
λτj
)`
, (70)

which is again of the form (68) with xj = λτj and ξ̃j,r = ξjd
r
j .

Now using the reconstruction method described before, we
can extract from this data λτj and in turn obtain dj by tak-
ing the τs-root. In terms of data collection from an experi-
ment, we now have two options: we can restrict the set of data
points, i.e., measured expectation values, to ` = 1, τ, 2τ, . . .
or we can also collect data at intermediate points and extract
the poles from the combined Hankel matrix [H1, H2, . . . ,Hτ ]
in the way described before according to a multi-channel sig-
nal reconstruction approach [57].

2. Restriction to symmetry subspaces

In this subsection, we will explain how the restriction to
symmetry subspaces will lead to a robust numerical recovery
procedure. Under our standing assumption that the twirled
noise channel ΛGU is almost jointly diagonalizable with the
target unitary channel U , it follows directly that ΛGU will also
approximately preserve the invariant subspaces of the sym-
metry group G. For our protocol this means that by choosing
an appropriate initial states ρ supported on such an invariant
subspace, (ΛGU )`(ρ) will still be approximately located there.
This observation serves us in two ways: On the one hand, we
can get additional information about the performance of the
benchmarked operation with respect to a specific subspace,
i.e., we can identify the subspaces on which the errors occur.
On the other hand, we reduce the number of signal parameters
λj we have to extract from our data considerably if we restrict
the initial state to a particular subspace. This becomes particu-
larly important when we come close to an optimal implemen-
tation where the λj become closer and closer to being degen-
erate. To apply this approach, previously developed to tackle
multi-parameters fitting models for finite groups [57], we first
construct the seven projectors linked to the irreducible repre-
sentations in Table II and then take the corresponding eigen-
vectors as a basis of the invariant subspaces. Subsequently,
we need to construct from these vectors a set of density op-
erators such that we can address each irreducible subspace at
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Irreducible representation Dim Multip. Irreducible representation Dim Multip. Irreducible representation Dim Multip.
χ0, χ0, χ0; e 1 4 χ0, χ0, χ3; e 3 3 χ0, χ0, χ1; sgn 3 1
χ1, χ1, χ1; e 1 1 χ0, χ1, χ1; e 3 2 χ0, χ0, χ3; sgn 3 1
χ3, χ3, χ3; e 1 1 χ1, χ1, χ3; e 3 1 χ0, χ1, χ3; e 6 2
χ0, χ0, χ0; std 2 2 χ0, χ3, χ3; e 3 2
χ0, χ0, χ1; e 3 3 χ1, χ3, χ3; e 3 1

Table III. Three T -gates decomposition.

Irreducible representation Dim Multip. Irreducible representation Dim Multip. Irreducible representation Dim Multip.
χ0, χ0, χ0, χ0; e 1 5 χ1, χ1, χ1, χ3; e 4 1 χ1, χ1, χ3, χ3; e 6 1
χ1, χ1, χ1, χ1; e 1 1 χ0, χ3χ3, χ3; e 4 2 χ0, χ0, χ1, χ1; kera 6 1
χ3, χ3, χ3, χ3; e 1 1 χ1, χ3χ3, χ3; e 4 1 χ0, χ0, χ3, χ3; kera 6 1

χ0, χ0, χ0, χ0; 2dim 2 1 χ0, χ0, χ0, χ1; std 8 2 χ0, χ0, χ1, χ3; e 12 3
χ0, χ0, χ0, χ0; std 3 3 χ0, χ0, χ0, χ3; std 8 2 χ0, χ1, χ1, χ3; e 12 2
χ0, χ0, χ0, χ1; e 4 4 χ0, χ0, χ1, χ1; e 6 3 χ0, χ1, χ3, χ3; e 12 2
χ0, χ0, χ0, χ3; e 4 4 χ0, χ0, χ3, χ3; e 6 3 χ0, χ0, χ1, χ3; sgn 12 1
χ0, χ1, χ1, χ1; e 4 2

Table IV. Four T -gates decomposition.

least once and target only few of those subspaces in a single
iteration. This choice is clearly not unique; for our numerics,
we selected as input state the density matrices given in Sec-
tion M. It is a key insight to the functioning of the method that
we can address single or a few irreducible subspaces in each
iteration to arrive at a reliable and robust method that is able
to reliably discriminate between close poles.

3. Bootstrapping for parameter estimation

Here, we give further details on the our numerical meth-
ods used to extract the average fidelity from the measurement
data provided by our protocol. The starting point is the ob-
servation that the data obtained experimentally by executing
our scheme contain more information than necessary for the
model: Instead of having access to the observed average sur-
vival probabilities for a given execution length ` solely, our
protocol actually provides this information at the level of each
of the randomly chosen sample paths of length ` individually.
This insights motivates the use of standard methods in statis-
tical estimation called bootstrapping procedures [59] in order
to reliably extract the average fidelity. Bootstrapping tech-
niques refer to random sampling methods with replacement,
designed in order to assign measures of accuracy to sample
estimates.

For this, note that the sampling paths both with respect to
the sequence length ` as well as with respect to the given re-
alization of length ` are chosen independently. Hence, given
the set of measured survival probabilities {Fk`,q}, where 1 ≤
` ≤ `max denotes the circuit length and k`,q the q-th randomly
chosen sample sequence of symmetry gates for length `, we
are going to resample this set of data with respect to `. More
precisely, in order to create a single bootstrap sample, we pick
for each fixed ` a random subset with replacement of m el-

ements from {Fk`,q} and compute their average with respect
to q. For each of these resampled sequences, we compute the
approximated average fidelity, according to our fitting model
and matrix pencil methods described in Appendix L 1. The
final estimate for the averaged fidelity is then obtained as av-
erage over all taken bootstrap samples.

M. Numerical recovery

In this section, we apply the recovery procedure detailed in
Appendix L 1 for two significant examples of practical rel-
evance that are problematic to handle with the common ap-
proach to randomized benchmarking: A single T -gate and the
tensor product of two T -gates.

1. Single T -gate-case

We describe here the numerics reported in the main text in
greater detail. First, we consider the case of a single T -gate
that is generated by the noisy Hamiltonian

Hε =
π

8
σz − ε σx (71)

with noise parameter ε > 0. The four eigenvalues of
the T -gate channel including multiplicities are given by
{1, 1, (1 + i)/

√
2, (1− i)/

√
2}. Accordingly, we have to ex-

tract four decay parameters λj to estimate the average fidelity
from (67). As described in Appendix L 1, we make use of the
fact that the T 8 = 1 and hence we can extract the parameters
λj by described matrix pencil approach. By exploiting the
symmetry of the T -gate, we can obtain information in three
invariant subspaces by running our protocol with the initial
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Figure 1. Dependence of the estimated average fidelity for noisy
single and two T -gate on the maximal sequence length for different
noise-strengths ε extracted from bootstrapping over N = 100 se-
quences of length the given length (b). Green lines and stars indicate
the analytic value of the average fidelity E(F) for the given noise
level.

states

ρ ∈

{
1

2

(
1 0

0 1

)
,

(
1 0

0 0

)
,

1

2

(
1 −i

i 1

)}
(72)

and measuring the corresponding survival probability. Fig. 1
(a) shows the extracted estimates of the average fidelity de-
pending on the strength of the perturbation ε and the maximal
sequence length of the protocol. It can be seen that we achieve
a good agreement with the analytical value of the average fi-
delity even for short protocol sequences in the case of per-
turbations smaller than ε ≤ 0.01. However, by increasing the
sequence length to `max = 1000, we even achieve satisfactory
estimates starting from ε ≤ 0.1.

2. Two T -gate case

In the case of two T -gates applied in parallel to two qubits,
we consider the perturbed Hamiltonian

Hε =
π

8
(σz ⊗ 1+ 1⊗ σz − ε σx ⊗ σx) (73)

with the additional noise-term σx ⊗ σx. In order to extract
the decay parameters λj , we follow the approach of the
single T -gate, the main difference being that we now choose
the initial state among eight density matrices supported on
different symmetry subspaces (they are reported below this
paragraph). In each of these subspaces, we extract the cor-
responding decay parameters λj , which after bootstrapping
leads us to an estimate of the desired average fidelity. Fig. 1
(b) depicts these estimates both in relation to the perturbation
strength ε as well as depending on the maximally protocol
length. Similar to the single T -gate case, we see that ε ≤ 0.01
already `max = 800 gives satisfactory results. However, in
order to obtain meaningful lower bounds for larger values of
ε, we have to double `max to 1600.

We now provide the quantum states used as input for our
numerics. Each of them combines the totally mixed state with
some of the basis vectors obtained by the projectors onto the
irreducible subspaces. To obtain the diagonal elements of Λ
connected to the trivial subspaces, we choose the states

1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4

 ,


1
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
2

 and


1
2 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 0

 .

With the first one we can extract a single pole and with each
of the other two states an additional parameter. With

1
4 0 0 − 1

4

0 1
4 0 0

0 0 1
4 0

− 1
4 0 0 1

4


we retrieve two new parameters (in addition to the one cor-
responding to the trivial representation linked to the totally
mixed state), one for irrep χ1, χ1; e and one for χ3, χ3; e. The
fifth state, 

1
4 0 0 0

0 1
2 0 0

0 0 0 0

0 0 0 1
4

 ,

is a combination of the totally mixed state and the one belong-
ing to the irrep χ0, χ0, sgn. With the first of the following two
density matrices,

1
4 −

i
8 −

i
8 0

i
8

1
4 0 i

8
i
8 0 1

4
i
8

0 − i
8 −

i
8

1
4

 ,


1
4 −

i
8 −

i
8 0

i
8

1
4 0 − i

8
i
8 0 1

4 − i
8

0 i
8

i
8

1
4

 ,

we obtain two poles for χ0, χ1; e and two for χ0, χ3; e (and
again the trivial one). With the second operator with get the
other two poles of these two irreducible representations. The
last density matrix,

1
4 0 0 0

0 1
4

1
4−

i
4√

2
0

0
1
4 + i

4√
2

1
4 0

0 0 0 1
4

 ,

contains the basis vectors of the 2-dim irrep χ1, χ3; e. With
this selection, we cover every irreducible subspace and so we
can extract all the λj elements, addressing at most five of them
at one time.



11

[1] A. Acin, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eis-
ert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr,
M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A. Wall-
raff, I. Walmsley, and F. K. Wilhelm. The European quantum
technologies roadmap. New J. Phys., 20:080201, 2018.

[2] I. L. Chuang and M. A. Nielsen. Prescription for experimental
determination of the dynamics of a quantum black box. J. Mod.
Opt., 44:2455–2467, 1997.

[3] M. Mohseni, A. T. Rezakhani, and D. A. Lidar. Quantum-
process tomography: Resource analysis of different strategies.
Phys. Rev. A, 77:032322, 2008.

[4] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert.
Quantum state tomography via compressed sensing. Phys. Rev.
Lett., 105:150401, 2010.

[5] I. Roth, R. Kueng, S. Kimmel, Y.-K. Liu, D. Gross, J. Eisert,
and M. Kliesch. Recovering quantum gates from few average
gate fidelities. Phys. Rev. Lett., 121:170502, 2018.

[6] M. Kliesch, R. Kueng, J. Eisert, and D. Gross. Improving com-
pressed sensing with the diamond norm. IEEE Trans. Inf. Th.,
62:7445, 2016.

[7] A. Steffens, M. Friesdorf, T. Langen, B. Rauer, T. Schweigler,
R. Hübener, J. Schmiedmayer, C. A. Riofrio, and J. Eisert. To-
wards experimental quantum field tomography with ultracold
atoms. Nature Comm., 6:7663, 2015.

[8] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz,
C. Hempel, P. Jurcevic, I. Dhand, A. S. Buyskikh, A. J. Daley,
M. Cramer, M. B. Plenio, R. Blatt, and C. F. Roos. Efficient to-
mography of a quantum many-body system. arXiv:1612.08000.

[9] J. Preskill. Fault-tolerant quantum computation. arXiv:quant-
ph/9712048, 1997.

[10] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N.
Cleland, and J. M. Martinis. Superconducting quantum circuits
at the surface code threshold for fault tolerance. Nature, 508,
2014.

[11] J. M. Chow, J. M. Gambetta, E. Magesan, S. J. Srinivasan,
A. W. Cross, D. W. Abraham, N. A. Masluk, B. R. Johnson,
C. A. Ryan, and M. Steffen. Implementing a strand of a scal-
able fault-tolerant quantum computing fabric. Nature Comm.,
5:4015, 2014.

[12] J. Emerson, R. Alicki, and K. Zyczkowski. Scalable noise esti-
mation with random unitary operators. J. Opt. B, 7:S347–S352,
2005.

[13] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact and
approximate unitary 2-designs and their application to fidelity
estimation. arXiv:0606161, 2006.

[14] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland.
Randomized benchmarking of quantum gates. Phys. Rev. A,
77:012307, 2008.

[15] E. Magesan, J. M. Gambetta, and J. Emerson. Characterizing
quantum gates via randomized benchmarking. Phys. Rev. A,
85:042311, 2012.

[16] E. Magesan, J. M. Gambetta, and J. Emerson. Robust ran-
domized benchmarking of quantum processes. Phys. Rev. Lett.,
106:042311, 2011.

[17] J. J. Wallman and S. T. Flammia. Randomized benchmarking
with confidence. New. J. Phys., 16:103032, 2014.

[18] K. Boone, A. Carignan-Dugas, J. J. Wallman, and J. Emer-

son. Randomized benchmarking under different gatesets.
arXiv:1811.01920.

[19] D. Gross, K. Audenaert, and J. Eisert. Evenly distributed uni-
taries: on the structure of unitary designs. J. Math. Phys.,
48:052104, 2007.

[20] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M.
Gambetta. Scalable randomised benchmarking of non-Clifford
gates. npj Quant. Inf., 2, 2016.

[21] C. A. Dugas, J. Wallman, and J. Emerson. Characterizing
universal gate sets via dihedral benchmarking. Phys. Rev. A,
92:060302, 2015.

[22] E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M.
Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Roth-
well, T. A. Ohki, M. B. Ketchen, and M. Steffen. Efficient
measurement of quantum gate error by interleaved randomized
benchmarking. Phys. Rev. Lett., 109:080505, 2012.

[23] R. Harper and S. T. Flammia. Estimating the fidelity of T gates
using standard interleaved randomized benchmarking. Quant.
Sc. Tech., 2:015008, 2017.

[24] J. J. Wallman. Randomized benchmarking with gate-dependent
noise. Quantum, 2:47, 2018.

[25] D. S. Franca and A. K. Hashagen. Approximate randomized
benchmarking for finite groups. J. Phys. A, 51:395302, 2018.

[26] W. G. Brown and B. Eastin. Randomized benchmarking with
restricted gate sets. Phys. Rev. A, 97:062323, 2018.

[27] Y. Hua and T. K. Sarkar. Matrix pencil method for estimat-
ing parameters of exponentially damped/undamped sinusoids
in noise. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 38:814–824, May 1990.

[28] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and
T. Ohki. Robust extraction of tomographic information via ran-
domized benchmarking. Phys. Rev. X, 4:011050, 2014.

[29] The supplements cite Refs. [44–57, 59].
[30] K. Glashoff and M. M. Bronstein. Almost-commuting matrices

are almost jointly diagonalizable, 2013. arXiv:1305.2135.
[31] B. E. Anderson, H. Sosa-Martinez, C. A. Riofrio, I. H. Deutsch,

and P. S. Jessen. Accurate and robust unitary transforma-
tions of a high-dimensional quantum system. Phys. Rev. Lett.,
114:240401, 2015.

[32] J. Helsen, X. Xue, L. M. K. Vendersypen, and S. Wehner. A new
class of efficient randomized benchmarking protocols, 2018.
arXiv:1806.02048.

[33] J. Helsen, J. Wallman, S. T. Flammia, and S. Wehner. Multi-
qubit randomized benchmarking using few samples, 2017.
arXiv:1701.04299.

[34] J.-P. Serre. Linear representations of finite groups. Springer,
1996.

[35] R. Berndt. Representations of linear groups. Vieweg, first edi-
tion edition, 2007.

[36] F. Casas, A. Murua, and M. Nadinic. Efficient computation of
the Zassenhaus formula. Comp. Phys. Comm., 183:2386–2391,
2012.

[37] M. A. Nielsen. A simple formula for the average gate fidelity
of a quantum dynamical operation. Phys. Rev. A, 303:249–252,
2002.

[38] D. P. O’Leary and B. W. Rust. Variable projection for nonlin-
ear least squares problems. Computational Optimization and
Applications, 54:579–593, 2013.

[39] Y. Hua and T. K. Sarkar. Matrix pencil method for estimat-
ing parameters of exponentially damped/undamped sinusoids in
noise. IEEE Trans. Ac. Sp. Sig. Proc., 38:814–824, May 1990.



12

[40] T. K. Sarkar and O. Pereira. Using the matrix pencil method
to estimate the parameters of a sum of complex exponentials.
IEEE Ant. Prop. Mag., 37:48–55, Feb 1995.

[41] D. Potts and M. Tasche. Parameter estimation for nonincreasing
exponential sums by prony-like methods. Linear Algebra and
its Applications, 439:1024 – 1039, 2013. 17th Conference of
the International Linear Algebra Society, Braunschweig, Ger-
many, August 2011.

[42] J.-M. Papy, L. De Lathauwer, and S. Van Huffel. Common pole
estimation in multi-channel exponential data modeling. Signal
Processing, 86:846 – 858, 2006.

[43] D. S. Moore, G. P. McCabe, and B. A. Craig. Introduction to
the practice of statistics. W. H. Freeman, 2016.

[44] J.-P. Serre. Linear representations of finite groups. Springer,
1996.

[45] R. Berndt. Representations of linear groups. Vieweg, first edi-
tion edition, 2007.

[46] F. Casas, A. Murua, and M. Nadinic. Efficient computation of
the Zassenhaus formula. Comp. Phys. Comm., 183:2386–2391,
2012.

[47] M. A. Nielsen. A simple formula for the average gate fidelity
of a quantum dynamical operation. Phys. Rev. A, 303:249–252,
2002.

[48] S. Kimmel, M. P. da Silva, C. A. Ryan, B. R. Johnson, and
T. Ohki. Robust extraction of tomographic information via ran-
domized benchmarking. Phys. Rev. X, 4:011050, 2014.

[49] E. Magesan, J. M. Gambetta, and J. Emerson. Characterizing
quantum gates via randomized benchmarking. Phys. Rev. A,
85:042311, 2012.

[50] J. J. Wallman and S. T. Flammia. Randomized benchmarking

with confidence. New. J. Phys., 16:103032, 2014.
[51] J. Helsen, J. Wallman, S. T. Flammia, and S. Wehner. Multi-

qubit randomized benchmarking using few samples, 2017.
arXiv:1701.04299.

[52] D. P. O’Leary and B. W. Rust. Variable projection for nonlin-
ear least squares problems. Computational Optimization and
Applications, 54:579–593, 2013.

[53] Y. Hua and T. K. Sarkar. Matrix pencil method for estimat-
ing parameters of exponentially damped/undamped sinusoids in
noise. IEEE Trans. Ac. Sp. Sig. Proc., 38:814–824, May 1990.

[54] T. K. Sarkar and O. Pereira. Using the matrix pencil method
to estimate the parameters of a sum of complex exponentials.
IEEE Ant. Prop. Mag., 37:48–55, Feb 1995.

[55] Y. Hua and T. K. Sarkar. Matrix pencil method for estimat-
ing parameters of exponentially damped/undamped sinusoids
in noise. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 38:814–824, May 1990.

[56] D. Potts and M. Tasche. Parameter estimation for nonincreasing
exponential sums by prony-like methods. Linear Algebra and
its Applications, 439:1024 – 1039, 2013. 17th Conference of
the International Linear Algebra Society, Braunschweig, Ger-
many, August 2011.

[57] J.-M. Papy, L. De Lathauwer, and S. Van Huffel. Common pole
estimation in multi-channel exponential data modeling. Signal
Processing, 86:846 – 858, 2006.

[58] J. Helsen, X. Xue, L. M. K. Vendersypen, and S. Wehner. A new
class of efficient randomized benchmarking protocols, 2018.
arXiv:1806.02048.

[59] D. S. Moore, G. P. McCabe, and B. A. Craig. Introduction to
the practice of statistics. W. H. Freeman, 2016.


	Randomized benchmarking for individual quantum gates
	Abstract
	References

	Supplemental material: Randomized benchmarking for individual quantum gates
	Structure of the appendix
	Group theory
	Representation theory
	Schur's Lemma
	Construction of irreducible representations of semi-direct product groups
	Pauli-Liouville representation
	Zassenhaus formula
	First-order fitting model
	Connecting to the average gate fidelity
	Characterizing the error of the single gate U
	Confidence interval
	Example of tensor copies of T-gates
	Results for n 4
	Classical recovery and estimation methods
	Matrix pencil methods
	Restriction to symmetry subspaces
	Bootstrapping for parameter estimation

	Numerical recovery
	Single T-gate-case
	Two T-gate case


	References


