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The dynamical assembly of binary black holes (BBHs) in dense star clusters (SCs) is one of the most
promising pathways for producing observable gravitational wave (GW) sources, however several other
formation scenarios likely operate as well. One of the current outstanding questions is how these different
pathways may be distinguished apart. In this paper we suggest a new multimessenger observable that can
be used to constrain the formation of BBH mergers originating from SCs: the electromagnetic signal from
tidal disruptions (TDs) of stars by BBHs. Such TDs will show variability in their light curve from the orbital
motion of the disruptive BBHs, and can therefore be used to map the BBH orbital period distribution, and
thereby also the dynamical mechanisms that eventually drive the BBHs to merger. Using an analytical
approach including general relativistic effects, we find that the orbital period distribution of BBHs within
globular clusters peaks on timescales of days, which we argue is unique to this assembly pathway. We
propose that the search for variable TDs in current and future EM transient surveys might be used to
constrain the merger history of BBHs in SCs.

DOI: 10.1103/PhysRevD.100.043009

I. INTRODUCTION

During the first and second observing runs of the advanced
gravitational-wave detector network, LIGO and VIRGO
detected ten merging binary black holes (BBHs) [1–6],
where upgraded detectors are expected to detect hundreds
of such mergers within the next few years [see, e.g., [7] ].
The origin and distribution of these BBHs is a key scientific
question that remains to be addressed [e.g., [8] ].
Several formation channels have been suggested in the

literature, some of which include: dense stellar clusters
[9–17], field binaries [18–27], active galactic nuclei discs
[28–30], galactic nuclei [31–36], single-single GW cap-
tures of primordial black holes (BHs) [37–40], and very
massive stellar mergers [41–44]. However, there are signi-
ficant uncertainties in the predicted merger rates in these
scenarios due to the complexity of the underlying astro-
physical environments. The mergers observed by LIGO are
in the gravitational-wave dominated regime, and are hence
described only by a few intrinsic parameters, such as the
masses and the spins of the black holes. Given a population
of detected mergers, the distributions of these intrinsic

parameters can hopefully be used to disentangle these
channels. Especially, it currently seems possible to at least
observationally tell if BBHmergers originate from dynami-
cal assembly, isolated binary evolution, or a mix or the two.
For example: BBHs formed in dynamical environments,
such as globular clusters (GCs), galactic nuclei (GN), and
nuclei star clusters (NSCs), are expected to have randomly
oriented spins when exchange interactions are effective
[e.g., [45] ], and a fraction of these are also likely to appear
with measurable eccentricity in both LIGO [31,46–57] and
LISA [e.g., [58,59] ]. In comparison, isolated field BBHs
are likely to have correlated spins, andmerge on near circular
orbits [e.g., [27] ]. However, field BBHs in hierarchical
triple systems [e.g., [23,25,60–63] ] or quadruple systems
[e.g., [64,65] ] can also have their spins re-oriented, and result
in eccentric mergers. Dynamically formed BBHs can also
have their spins reoriented and possibly aligned through
mass accretion following tidal disruptions in dense clusters
[e.g., [66] ]. Binaries of primordial BHs that are formed via
GW-driven single-single capture are also expected to show
signs of eccentricity [e.g., [38] ]. Therefore, despite some
ways of creating overlap, it currently seems that spin- and
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eccentricity measurements [e.g., [67–70] ] provide very
promising ways of distinguishing between dynamical- and
isolated field BBH mergers. Other ways include cosmic
merger evolution [e.g., [71] ], and future multiband GW
observations [e.g., [58,72,73] ].
In this paper, we discuss a new electromagnetic window

into the assembly of BBH mergers in dense stellar clusters
(SCs): tidal disruptions (TDs) of stars by BBHs. Previous
theoretical work on these events suggests that their light-
curves are interrupted on characteristic timescales related
to the orbital period of the disrupting BBHs [e.g., [66,74–
77]]. We propose that populations of such events can be
used to probe the orbital period distribution of BBHs inside
SCs. We explore in detail how the dynamics that drive the
BBHs to merger [53,56,58,78,79] also shape their orbital
period distribution. We use these insights to derive, for the
first time, a simple analytical model of the BBH period
distribution with the inclusion of general relativistic (GR)
effects, and relate the TD and BBH merger rates from SCs.
We find that the orbital period distribution of BBHs

within standard GCs peaks on timescales of days, with only
a weak dependence on BH mass. This period distribution is
entirely different from other theoretical distributions
derived under simple considerations, such as those driven
purely by GWemission [80], and the empirical Opik’s Law
distribution for field binaries [81]. This emboldens us to
suggest that if current and future transient surveys observe
a population of interrupted TDs, the inferred orbital periods
will directly inform us about the dynamical assembly of
BBHs in dense SCs. Provided we properly account for the
observational biases of the surveys andunderstand the factors
governing the detectability of the TDs, such detections can
also constrain the contribution of SCs to the BBH merger
rate in the universe.
The paper is structured as follows. In Sec. II we describe

our GR dynamical model and derive an analytical expres-
sion for the rate distribution of star-BBH TDs as a function
of the BBH orbital time. This is followed by Sec. III, where
we discuss different astrophysical limits on the BBH orbital
distribution. In Sec. IV we summarize our main results
from our dynamical models, where in Sec. V we compare
to numerical data derived using Monte Carlo (MC) tech-
niques. In Sec. VI we discuss prospects and challenges
related to using interrupted TDs to probe the BBH orbital
distribution. We conclude our study in Sec. VII.

II. STELLAR DISRUPTIONS BY BINARY
BLACK HOLES

In this section we derive the rate of stars disrupted by
BBHs in SCs per BBH orbital period, as a function of
the BH masses and SC properties. For this, we use our
analytical model presented in [53,58] for describing the GR
dynamical evolution of the BBHs, that we throughout this
work assume are equal mass. This is a reasonable approxi-
mation as both mass-segregation and few-body dynamics

tend to keep equal mass objects together [e.g., [14,17,82] ].
Our derivation is divided into a few separate steps, as
indicated by the following subsections. Below we start by
describing our dynamical model.

A. Dynamical model

In our model we assume that BBHs form at a steady rate
in the SC core, through the interaction of three initially
unbound BHs [e.g., [82–84] ], with their semimajor axes
(SMA) equal to the hard-binary (HB) value [84],

aHB ¼ 3

2

GmBH

v2dis
; ð1Þ

where mBH denotes the mass of one of the (assumed equal
mass) BHs, and vdis is the SC velocity dispersion. After
formation the dynamics of the BBHs is governed by binary-
single interactions involving other (equal mass) BHs. Each
of these interactions leads to a decrease in the SMA of the
interacting BBH from SMA a to δa, a process referred to
as “hardening,”where we assume a constant value δ ¼ 7=9,
which is the mean value for equal mass interactions [53].
Following this approximation, a given BBH will therefore
after n interactions have a SMA equal to

an ¼ aHB × δn: ð2Þ

In this paper we will occasionally refer to a BBH with SMA
an to be in “state n ” or at “hardening step n.” This binary-
single hardening process continues until either the release
of binding energy from a binary-single interaction recoils
the BBH out the cluster [e.g., [9] ], or that the interacting
BBH undergoes a GW merger during [e.g., [47,55,56,85] ]
or in-between [e.g., [53,56,79] ] its binary-single inter-
actions. For further descriptions of this model we refer the
reader to [58]. Information is also provided in Fig. 1.

B. Formulation

We start by considering an ensemble of SCs each with a
constant production rate of BBHs that undergo binary-
single hardening according to our model described in the
above Sec. II A. We consider this distribution of BBHs at a
random point in time—the time of observation—at which
we observe a set of stars disrupted by the BBHs. The
question is, what is the distribution of BBH orbital periods
for the set of BBHs disrupting the stars? For answering this,
we start by writing the differential tidal disruption rate per
log BBH orbital time as a product of the following terms,

dΓTD

d logT
¼ dNBBH

dn
dΓTD

dNBBH

dn
d logT

; ð3Þ

where T is the BBH orbital period, ΓTD is the rate of stars
disrupted by BBHs, n is the nth hardening step, and NBBH
is the number of BBHs present at state n at the time of
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observation. The last term dn=d logT is a simple Jacobian
factor that can be calculated from first using that Tn ∝
a3=2n ∝ δ3n=2, where Tn denotes the BBH orbital period
at state n, which follows from Kepler’s laws and Eq. (2).
This implies that logTn ∝ nð3=2Þ log δ ∝ n, from which
we conclude that dn=d logT simply equals a constant.
In the following subsections we derive the two remaining
terms dNBBH=dn and dΓTD=dNBBH, where our final
expression for dΓTD=d logT is presented in Sec. II E.

C. Distribution of binary black holes

For calculating the term dNBBH=dn, i.e., the number of
BBHs per state n at the time of observation, we start by
factorizing it as,

dNBBH

dn
∝ Wn × PðnÞ; ð4Þ

where Wn is a weight factor that essentially equals the
probability that the BBH is in state n at the time of
observation given that it is not able to undergo any type of
merger inside the cluster (Newtonian term), and PðnÞ is the
probability that the BBH do not merge before and during
state n (GR term). Note that we do not consider the merging
population in our calculations, i.e., we only account for the
BBHs in Eq. (4) that also “survives” state n, although there
is a small probability for the merging BBHs to disrupt stars
during their GW inspiral: This represents an interesting
case, but is beyond what we can study with our semi-
analytical models. In the following two sections we derive
the “observational weight factor”Wn and the term describ-
ing the “depletion from GW mergers” PðnÞ, respectively.

1. Observational weight factor

The factor Wn is proportional to the time the BBH
spends at state n, which in our model equals the time
between binary-single interactions at state n, a time we
denote tbs;n. The factor Wn can therefore be approximated
by [e.g., [86] ],

Wn ∝ tbs;n ≈ ðηBHσbs;nvdisÞ−1 ∝ δ−n; ð5Þ

where ηBH is the number density of single BHs in the SC
core, and σbs;n ∝ mBHan=v2dis is the cross section for a
strong binary-single interaction at state n [e.g., [51] ].

2. Depletion from gravitational wave mergers

To derive PðnÞ we first express it as the following
product,

PðnÞ ¼
Yn
i¼0

Pi ¼
Yn
i¼0

ð1 − P̃iÞ; ð6Þ

where Pi denotes the probability for that the BBH do
not merge at state i, and P̃i that the BBH do merge at state i.
To evaluate this product we first rewrite it as,

lnPðnÞ ¼
Xn
i¼0

lnð1 − P̃iÞ ≈ −
Xn
i¼0

P̃i; ð7Þ

where for the last term we have assumed that P̃i ≪ 1.
The term P̃i denotes the total probability for the BBH to
merge at state i, which in our model either can happen in

FIG. 1. Illustration of a stellar cluster composed of a “stellar
halo” and a “BH core.” In the core the number density of BHs
occasionally reaches values that facilitate the formation of BBHs
through random three-body encounters [e.g., [82–84] ]. These
BBHs then undergo binary-single interactions with incoming
objects, particularly including other BHs (“BH”) and stars
(“star”). Each binary-single interaction with other similar mass
BHs leads to a decrease in the BBH’s SMA by a factor δ ≈ 7=9
[e.g., [53] ], as well as resets its eccentricity according to a
thermal distribution PðeÞ ¼ 2e [e.g., [82] ]. The decreasing SMA
and the possibility for entering a high eccentricity state makes it
possible for the BBH to undergo a GW merger inside the cluster
in between its binary-single interactions (“BBH merger”). If the
BBH does not undergo a GW merger in-between or during its
interactions [e.g., [58] ], it will instead get dynamically ejected
and escape the cluster (“escaper”). Since BBHs with a relative
small SMA a are likely to merge inside the cluster due to their
corresponding short GW life time (∝ a4), one expects to see
relative few BBHs with short orbital periods (T ∝ a3=2). There-
fore, if the period distribution of BBHs can be mapped, one will
be able to indirectly constrain the past and current BBH merger
history. In this paper we suggest that the BBH orbital period
distribution can be sampled using interrupted stellar tidal dis-
ruptions (“BBH TD”). This serves as a new ‘multi-messenger
probe’ that connects LIGO signals (‘GW signal’) with electro-
magnetic observations (“EM signal”).
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the time-span before it undergoes its next binary-single
interaction [e.g., [58] ] or during the binary-single inter-
action itself through a two-body GW capture [47]. For SCs
with a velocity dispersion similar or greater to a standard
GC, the probability for undergoing a merger in between
binary-single interactions is generally larger than under-
going a merger doing a binary-single interaction [e.g.,
[53,58] ], therefore, to leading order P̃i is well approxi-
mated by the probability that the BBH at state i has a GW
inspiral life time, tm;i, less than its binary-single encounter
time, tbs;i. Using that the GW inspiral life time can be
written as tm;i ≈ tcm;i × ð1 − e2Þ7=2, where tcm;i denotes the
circular GW inspiral life time for which the BBH eccen-
tricity e ¼ 0 [87], and assuming that the BBH eccentricity
distribution follows that of a so-called thermal distribution
PðeÞ ¼ 2e [82], the probability P̃i can then be written as
[e.g., [51,53] ],

P̃i ≈ ðtbs;i=tcm;iÞ2=7 ¼ P̃HB × εi; ð8Þ

where ε≡ δ−10=7, and P̃HB is the probability that the BBH
merges before its next binary-single interaction at the HB
limit when its SMA ¼ aHB. This probability can be
expressed as,

P̃HB ≈
�
8192

3645π

1

G3c5
v11dis

m3
BHηBH

�
2=7

; ð9Þ

which follows directly from Eq. (5), Eq. (8), and the
relation tcm;i ∝ a4i =m

3
BH given by [87]. Now using the

relation from the above Eq. (8) we can write Eq. (7) as,

lnPðnÞ ≈ −P̃HB

Xn
i¼0

εi: ð10Þ

This sum can be evaluated analytically using the solutionP
n
i¼0 x

i ¼ ð1 − xnþ1Þ=ð1 − xÞ, which follows from the
standard literature on “geometrical series.” With this, we
finally find,

PðnÞ ≈ exp

�
−P̃HB ×

1 − εnþ1

1 − ε

�
: ð11Þ

As seen, the effect from including the possibility for a BBH
to merge in-between its binary-single interactions gives
rise to a BBH depletion that takes the form of a super-
exponential decay. We note here that the BBHs that merge
in between their binary-single interactions, i.e., the pop-
ulation giving rise to the decay, have been shown to
constitute ≈30–50% of the observable BBH merger rate
from GCs [e.g., [56,58,79] ]; the function PðnÞ can there-
fore be directly linked to LIGO/Virgo events. One should
note that the above expressions are only valid for n < nmax,
where nmax is the value of n for which the corresponding
P̃n ¼ 1. Using Eq. (8) we find,

nmax ≈ −
log P̃HB

log ε
: ð12Þ

Figure 2 illustrates the terms Wn, PðnÞ, and the factor
dNBBH=dn ∝ Wn × PðnÞ given by Eq. (4), as a function of
n for values describing a dense SC system (see figure
caption). The maximum value nmax for these values is
nmax ≈ 31, which indeed is where PðnÞ starts to rapidly fall
off. The limit for nmax is not naturally build into the
equations, as we assumed in Eq. (7) that P̃i ≪ 1, which
helped us evaluating the sum. Our main results are not
affected by these small differences. Other upper limits on n
exists as well, some of which will be described in Sec. III.
Finally, we note that in [53] the total probability for a

BBH to merge in-between its binary-single interactions
during hardening from the HB limit to step nwas derived in
the integral-limit using slightly different approximations
(Sec. III.D.2 in [53]), from which it was found that
P̃ðnÞ ≈ ð7=10ÞP̃n=ð1 − δÞ. In certain limits our derived
expression from Eq. (11) should be identical to that
previous result. After some mathematical manipulations,
one indeed finds that P̃ðnÞ ¼ 1 − expð−P̃HBð1 − εnþ1Þ=
ð1 − εÞÞ is ¼ ð7=10ÞP̃n=ð1 − δÞ in the limit where

FIG. 2. The probability that a BBH is present at hardening step
n at the time of observation, is the product of two terms: the
probability that the BBH do not merge before and during state n,
PðnÞ [Eq. (11)], and the probability that we observe it if it is in
state n, Wn [Eq. (5) ]. These two terms are shown in the above
figure with dashed and dotted lines, respectively, where their
product dNBBH=dn ∝ Wn × PðnÞ is shown with a solid line. For
this figure we have assumed mBH ¼ 30 M⊙, vdis ¼ 15 kms−1,
and ηBH ¼ 105 pc−3. As seen, the term PðnÞ takes the form of a
superexponential decay near n ≈ 30. When GR effects are
included BBHs are therefore less likely to be observable at
larger n, which corresponds to lower SMA an or equivalently
lower BBH orbital time Tn. The peak seen in dNBBH=dn maps to
a characteristic BBH orbital period that is unique to stellar
clusters as we show in Fig. 3.
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PðnÞ ≫ 0, P̃n ≫ P̃HB, and δ ≈ 1, all of which were
assumed in [53]. This serves as an excellent check of
the different approaches that so far have been employed to
estimate the probability for a BBH to undergo a GWmerger
during hardening.

D. Rate of tidal disruptions

To estimate the term dΓTD=dNBBH, i.e., the stellar tidal
disruption rate per BBH, we first factorize it as,

dΓTD

dNBBH
≈

dΓs

dNBBH
× PTD; ð13Þ

where Γs denotes the rate of star-BBH interactions, and PTD
the probability for that a single star-BBH interaction results
in a stellar tidal disruption. The first term dΓs=dNBBH is
∝ ηsσsvdis, where ηs is the number density of stars, and
σs ∝ mBHa=v2dis is the cross section for a star-BBH inter-
action [e.g., [88] ]. The second term PTD is proportional to
the probability for that the incoming star undergoes a
pericenter passage with respect to one of the two BHs
during the star-BBH interaction that is ≲RTD, where RTD ≈
RsðmBH=msÞ1=3 is the stellar disruption distance, and Rs
and ms here refer to the radius and mass of the star in
question, respectively. In the equal mass case estimating
this probability is straightforward and can, e.g., be done by
describing the temporary three-body state as a binary with a
bound single [e.g., [53] ]; however, the relative small mass
of the star in our case will rarely allow it to form a bound
system with any of the BHs. Simulations show that the light
star instead will undergo chaotic single encounters with
each BH on orbits with a wide range of energies and
eccentricities [e.g., [66,77,89,90] ]. Especially, one finds
that the star is highly likely to disrupt on orbits that, relative
to the disrupting BH, are unbound, which is possible since
each BH evolves with a relative high velocity around their
common center-of-mass [e.g., [66] ]. Although one might
be able to develop an analytical description of this limit, we
here make use of the recent work by [89], which indicates
the probability PTD is ∝ RTD=a (we note that this exact
same scaling is found in the equal mass case [e.g.,
[53,88] ]). Using this scaling one now finds,

dΓTD

dNBBH
∝ ηsσsvdis ×

RTD

a
∝
ηsmBHRTD

vdis
: ð14Þ

From this one concludes that dΓTD=dNBBH is independent
of the BBH orbital period T for fixed mBH. The term
dΓTD=dNBBH acts therefore only as a normalization factor,
and plays therefore no role in the calculation of the
functional form for dΓTD=d logT. Finally, we note that
one do expect corrections to this simple picture when the
stellar radius becomes comparable to the BBH SMA a
[e.g., [66] ].

E. Final solution

Using that δn ∝ T2=3
n one can now finally write the

solution to Eq. (3) in terms of T as,

dΓTD

d logT
∝
dNBBH

dn
∝
dNBBH

d logT

∝ T−2=3 exp

�
−P̃HB ×

1 − εðT=THBÞ−20=21
1 − ε

�
;

ð15Þ

where THB denotes the BBH orbital period at the HB limit,

THB ¼ π
ffiffiffiffiffi
27

p

2

GmBH

v3dis
; ð16Þ

which follows from Eq. (1). Note here that in the above
Eq. (15) we have further indicated that the derived
distribution is proportional to the term dNBBH=d logT.
This is a highly useful quantity that will be relevant for
other and future studies. One should also note that the
above Eq. (15) does not include possible lower limits on T,
but this will be discussed in further detail in Sec. III, before
we explore our solution in Sec. IV.
Finally, to check our derivations, we compared our

expression from Eq. (15) with results derived using our
semianalytical MC code described in [58]. We find excel-
lent agreement, which serve as a good validation of our
results so far. In Sec. V we show comparison of our models
to data derived using a Hénon-type MC code.

III. LIMITS ON THE BINARY BLACK HOLE
ORBITAL PERIOD

The upper limit on the BBH orbital period T, denoted by
Tmax, is in our model always set by the HB value given by
Eq. (16); however, different dynamical and astrophysical
effects will determine the lower limit, Tmin. In the following
we discuss the three limits: “time limit” (Tmin;τ), “merger
limit” (Tmin;m), and “ejection limit” (Tmin;ej), so that Tmin ¼
maxð½Tmin;τ; Tmin;m; Tmin;ej�Þ. In the sections below we
quote numbers based on the following “fiducial values”:
mBH ¼ 30 M⊙, vdis ¼ 12 kms−1, vesc=vdis ¼ 5, and
ηBH ¼ 104 pc−3.

A. Time limit

It takes a finite time τ for a BBH to harden from its initial
orbital time THB to some smaller time Tτ. An imposed limit
on τ will therefore map to a corresponding lower value on
T, that we here denote Tmin;τ. The absolute upper limit on τ
is the Hubble time tH. For deriving Tmin;τ, we start by
writing out the time it takes for a BBH to reach state n,
τn ¼ P

i¼n−1
i¼0 tbs;i ¼ tbs;HBð1 − ðTn=THBÞ−2=3Þ=ð1 − 1=δÞ,

where we have used that tbs;i ¼ tbs;HB × δ−i which follows
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from Eq. (5), and tbs;HB refers to the time between binary-
single interactions at the HB limit. This expression can be
rearranged from which we now find,

Tmin;τ ≈ THB × ðtbs;HB=τÞ3=2
�

δ

1 − δ

�
3=2

∝ m−2
BHv

3=2
dis η

−3=2
BH ; ð17Þ

where Tmin;τ ≈ 0.3 days for our chosen fiducial values and
τ ¼ tH. Note here the strong dependence on mBH.

B. Merger limit

In our model it is impossible for a BBH to pass state nmax
given by Eq. (12) through binary-single interactions alone.
Since Tn ∝ ð9=7Þ−3n=2 then the upper limit nmax directly
maps to a lower limit on T, referred to as Tmin;m. This limit
can be found by the use of Eq. (12), or by solving for the
period T that satisfies tbs ¼ tcm, from which follows,

Tmin;m ≈ THB × P̃21=20
HB

∝ m1=10
BH v3=10dis η−3=10BH ; ð18Þ

where Tmin;m ≈ 1.7 days for our chosen fiducial values.
Note that this limit is not automatically included in Eq. (15)
as we assumed that P̃i ≪ 1 in Eq. (7) to evaluate the
summation; however, Eq. (15) does rapidly decline just
around that limit as we later illustrate in Fig. 3.

C. Ejection limit

A BBH undergoing binary-single interactions inside a
stellar cluster receives in each interaction (if no merger
takes place) a dynamical velocity kick vkick that increases
with increasing n, i.e., decreasing SMA an [e.g., [53,91] ].
The BBH in its hardening process will therefore eventually
receive a vkick that exceeds the escape velocity vesc of
the cluster. As shown in [53], the value of the BBH SMA
for which vkick ¼ vesc can be written as aej ¼ ð1=6Þ
ð1=δ − 1ÞmBH=v2esc. This marks a lower limit on the
BBH SMA, as no BBH is able to pass aej without being
ejected from the cluster (see Fig. 1). The corresponding
minimum orbital period Tmin;ej is from Kepler’s laws
given by,

Tmin;ej ≈ THB × ðvesc=vdisÞ−3
�
1 − δ

9δ

�
3=2

∝ mBHv−3dis; ð19Þ

where Tmin;ej ≈ 9.8 days for our chosen fiducial values.
Note here the strong dependence on vdis. Comparing with
the other two considered limits, Tmin;ej takes the largest
value and represents therefore the actual lower limit for our
fiducial values. However, our three considered limits scale

differently with mBH; vdis; ηBH, and the two other limits
might therefore dominate in other cases. We comment
on this below, where we discuss our results including the
derived limits.

IV. RESULTS

The distribution dΓTD=d logT given by Eq. (15) is
plotted in Fig. 3 as a function of log T for individual
BH massesmBH½M⊙� ¼ 5, 10, 20, 30. The solid lines show
our derived solution that includes the possibility for GW
merger during hardening, where the dotted lines show
the Newtonian solution ∝ T−2=3 obtained from setting
P̃HB ¼ 0 in Eq. (15). As seen, the four distributions all
peak near the same orbital time T. Furthermore, the peak
locations are neither located near the minimum (Tmin) nor
the maximum orbital time (THB), but somewhere in
between. The explanation follows from the two terms in
Eq. (4): BBHs with high values of T are less likely to be
observed due to their relative small tbs [Eq. (5)], where the
number of BBHs with low values of T is greatly reduced
due to depletion through mergers during the hardening
[Eq. (11)]. This is in contrast to the Newtonian solution,
which predicts that the T distributions always will peak
near their lowest possible value.

FIG. 3. Steady-state rate of stellar tidal disruptions due to BBHs
as a function of the orbital period of the binaries, derived for our
fiducial values vdis ¼ 12 kms−1, ηBH ¼ 104 pc−3, for various
values of the black hole mass mBH. The solid lines show our
GR solution from Eq. (15) that takes into account that BBHs can
merge in-between their hardening binary-single interactions
(þGW mergers), whereas the dotted lines show the Newtonian
solution ∝ T−2=3 (−GW mergers). The peak of the distribution
depends only weakly on mBH [see Eq. (20)]. The vertical solid
lines in the upper part of the figure show reasonable values of the
lower cutoff of the distribution, set by the Hubble time (top row),
and the probabilities of merger and dynamical ejection (center
and bottom rows), respectively. See Sec. III for details.
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To see how the location of the peak value, Tpeak, scales
with mBH and the cluster parameters, we can solve for the
peak location using the standard procedure by differentiat-
ing dΓTD=d logT with respect to logT, equal the expres-
sion to zero, and then solve for logT. From this we find that
Tpeak can be written as,

Tpeak ¼ THB × P̃21=20
HB

�
10

7

ε

ε − 1

�
21=20

∝ m1=10
BH v3=10dis η−3=10BH ð20Þ

where Tpeak ≈ 8.9 days for our chosen fiducial values.
As seen, the location is indeed almost independent of
mBH due to the suppression 1=10 in the exponent, and only
weakly dependent on vdis and ηBH.
In Fig. 3 we have shown with vertical lines the lower

limits Tmin;tH , Tmin;m, and Tmin;ej, defined in Sec. III.
As seen, for our chosen values, Tmin for BH masses
mBH½M⊙�¼5, 10, 20, 30 is Tmin;τð>TpeakÞ, Tmin;ejð<TpeakÞ,
Tmin;ejð<TpeakÞ, Tmin;ejð>TpeakÞ, respectively. It is clear
that Tmin;ej is likely to be the most relevant limit for
merging BBHs in classical GCs; however, the value of
Tmin;ej depends strongly on vdis as seen in Eq. (19). This
implies, for example, that for our chosen cluster values a
dispersion vdis ≳ 20 kms−1 the lower limit Tmin will instead
be Tmin;m for all our considered values of mBH. In that case
Tpeak=Tmin;m ¼ ðð10=7Þε=ðε − 1ÞÞ21=20 ≈ 5, i.e., the peak
Tpeak is always visible in the high velocity dispersion limit,
and no sources are expected to be found with T ≲ Tpeak=5.
This limit further implies and confirms that in NSCs all
BBHs will merge inside the system before dynamical
ejection takes place [e.g., [34,92] ], which greatly increases
the possibility for repeated mergers and possible build-up
of heavy central objects [e.g., [34,93] ].

V. COMPARING TO MC SIMULATIONS

In Fig. 4 we compare our analytical derived solutions
from Sec. II E to the BBH orbital period distribution,
dNBBH=d logT, extracted from full-scale GC models
evolved using the MC code, CMC. CMC is a Hénon-type
MC code used to model the long-term evolution of
GCs, incorporating various evolutionary effects including
two-body relaxation, single and binary-star evolution, and
small-N resonant encounters with GR corrections (for a
review and summary of the latest updates to CMC, see
[56,94–103]). The data we compare to is taken from the
CMC models used in [56,59]. We consider here only those
CMC models with N ¼ 2 × 106 particles, as only these have
an initial central velocity dispersion that is close to our
fiducial value of ∼10 kms−1. In order to generate a GC
population representative of the clusters found in the local
universe at present, we use a scheme similar to that of [59]
where the cluster models are assigned weights based on the

present-day GC mass function and metallicity distributions
of [104]. Additionally, cluster ages are drawn from the
metallicity-dependent age distributions of [104]. We per-
form 104 weighted cluster draws from the CMC models and
then extract the orbital parameters of all BBHs found in
each cluster draw at the present-day in order to generate the
CMC orbital period distribution in Fig. 4. The two black
curves in the figure show our solution given by Eq. (15),
with lower cutoffs set by Tmin;ej derived using Eq. (19), for
two different set of cluster parameters (params. 1 and
params. 2), as specified in the caption.
The overlap between the CMC data and our analytical

solution is very good. The distribution dNBBH=d logT
derived from CMC follows exactly our main predictions,
that include an initial rise ∝ T−2=3 with a lower cutoff set
by a combination of dynamical ejection and relativistic
BBH merger depletion. It is important to notice that for
this comparison we have in the CMC dataset only included
BHs with masses in the range 10 M⊙ < mBH < 20 M⊙

FIG. 4. Number of BBHs with orbital period T, as a function of
logT, evaluated at a specific snap-shot in time (the time of
observation) for a population of SCs. The grey-hatched histo-
gram “CMC data” shows data from the Hénon-type MC code
CMC, extracted from a population of GCs all with an initial
number of particles N ¼ 2 × 106 sampled in time according to
their initial metalicity, as further described in Sec. V. Only BBHs
where each BH has a mass 10 M⊙ < mBH < 20 M⊙ has been
included to provide a fair comparison with our equal-mass models.
The black dotted and dash-dotted lines show our analytical
solution from Eq. (15), using two different set of cluster values
“params. 1” (mBH¼15M⊙, vdis ¼ 12 kms−1, vesc=vdis¼5, ηBH ¼
104 pc−3), and “params. 2” (mBH ¼ 15 M⊙, vdis ¼ 10 kms−1,
vesc=vdis ¼ 5, ηBH ¼ 103 pc−3), respectively. Despite our simpli-
fied assumptions compared to the highly complex astrophysical
and dynamical effects taking into account by the CMC code, the
two approaches show excellent overlap, which validates our
presented analytical framework. Further discussions are given in
Sec. V.
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(see caption of Fig. 4), to facilitate a fair comparison
between our equal-mass model and the multimass CMC

approach. However, SCs, such as those modeled with the
CMC code, are known to approach a distribution where
objects with similar mass tend to interact with each other,
which is a result of mass segregation and exchange
interactions [e.g., [105] ]. For example, these effects are
directly responsible for driving the mass ratio of BBH
mergers forming in GCs to ∼1, as seen in [e.g., [14] ].
Therefore, our assumption of equal masses provides in fact
a surprisingly useful test-bed for how BBHs distribute and
later merge in SCs, as the comparison in this section also
indicates.

VI. DISCUSSION

In the previous sections, we derived the distribution of
the orbital periods of BBHs in SCs. Here we start by
comparing this result to the distributions expected in other
astrophysical environments. We finish by discussing the
prospects for and challenges involved in using interrupted
TDs as probes of the BBH orbital time distribution, and
comment on other probes.

A. Orbital distributions

The orbital period distribution of BBHs in SCs is shaped
by the same GR dynamics that also drive the BBHs to
merger. A measure of the orbital period distribution can
therefore be used to indirectly probe the corresponding
BBH merger history. However, this is only possible if the
distribution from SCs is different from those found in other
scenarios. In the paragraphs below we compare our derived
distribution given by Eq. (15),

dNBBH

d logT
∝ T−2=3PðTÞðdynamicsÞ; ð21Þ

to BBHs following Opik’s law and BBHs that evolve
through GW emission only.
The “Opik’s law distribution” suggests that the distri-

bution of binary SMA a follows dNBBH=da ∝ 1=a in the
field [81]. This relation corresponds to an orbital distribu-
tion scaling as,

dNBBH

d logT
∝ const: ðOpik’s lawÞ: ð22Þ

Opik’s distribution corresponds therefore to a flat distri-
bution in logT. This is clearly different from our derived
SC distribution which decreases for increasing logT.
For BBHs evolving by GW radiation only, the steady

state solution in the e ¼ 0 limit can be found from solving a
homogeneous advection equation [80,106]. The solution to
this is dNBBH=dT ∝ T5=3, which corresponds to,

dNBBH

d logT
∝ T8=3 ðe ¼ 0; GWdrivenÞ: ð23Þ

A population of BBHs entirely driven by GW radiation is
therefore expected to have its period distribution increasing
with increasing logT. This behavior is opposite to what is
found in our dynamical driven SC case.
To conclude, our derived dNBBH=d logT distribution of

BBHs in SCs is clearly different from what is expected of
BBHs not driven by dynamics. Therefore, if a distribution
is measured that favors short period BBHs with a peak
Tpeak ∼ days, then this would suggest that BBHs in SCs
are present in the nearby universe and contribute to the
observed GW merger rate. However, since the limit Tmin;ej

depends strongly on vdis, it is not entirely clear what the
observed average value and dispersion is of the lower limit
Tmin for a representative GC ensemble. More detailed
GC simulations must be used to provide further insight
into this.

B. Probing the BBH orbital time

Several observational probes exist that can be used to
infer the orbital time distribution of BBHs in SCs. In the
sections below we start by discussing prospects and
challenges for using EM signals following a stellar TD
event, after which we sketch out a few other possibilities.

1. Stellar tidal disruptions

A star disrupted by a BBH is likely to give rise to a EM
signal that initially follows the standard t−5=3 decline
[107,108], after which the orbital motion of the two
BHs gives rise to interruptions after a time titr that is
comparable to the BBH orbital time T. This interestingly
suggests that one is able to infer T from observations of the
interruption time titr [e.g., [66,74,75] ]. This approach was
applied in [75], who studied the TDE J1201+30 which
started out as a canonical TD after which clear interruptions
appeared ≈27 days after discovery. Using a simple N-body
code for resolving the stream dynamics [74], the authors
estimated the orbital time and eccentricity of the disrupting
super-massive BBH (SMBBH) to be ≈150 days and
≈0.3, respectively. The scenario of star-BBH TDs has
been studied for both TDs by SMBBHs (mBH ∼ 107 M⊙)
[e.g., [74,76,77,89] ] and recently by stellar mass BBHs
(mBH ∼ 15 M⊙) [66], and generally it is found that the rate
of accretion indeed is linked to the BBH’s orbital param-
eters. However, it is far from clear to what degree the EM
light-curve actually traces the rate of mass fallback _M,
which often is taken as a proxy for the EM emission from
the TDE [109]. If the emission is beamed through a
relativistic jet, one also expects light-curve variations from
both precession and orbital motion caused by the
companion BH and possible also the spin of the disrupting
BH [e.g., [110,111] ]. As further discussed in [66] and
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briefly below, we are likely only to observe jetted TDEs,
and the jet dynamics for a disrupting stellar mass BBHs
is therefore important to understand. This is a nontrivial
problem and we therefore keep that for a future study.
We now turn to the astrophysical rates of star-BBH TDs

expected from GCs. This rate depends both on the number
density of stars, the absolute number of BBHs, but not
on the distribution of SMA a of the BBHs (see Sec. II D).
A simple “nσv” estimate gives,

ΓBBH
TD

gal:
≈ 10−7 yr−1

�
ηs

104 pc−3

��
mBH

30 M⊙

�
4=3

�
12 kms−1

vdis

�
;

ð24Þ

where this rate is per galaxy (5 BBHs per GC, and 200 GCs
per galaxy) derived for solar type stars (1 M⊙; 1R⊙)
interacting with BBHs of equal mass. We have further
assumed that PTD ¼ 2RTD=a. This rate is on the lower
side compared to both the derived rate of star-SMBH TDs
[e.g., [112–114] ] and long gamma ray burst (GRB) [e.g.,
[66,115] ], but not unreasonably low for being observatio-
nally interesting. However, our derived rate is the rate of
disruptions and not necessarily the rate of observable
events. The observable rate depends further on the TD
luminosity (L) and the energy extraction mechanism,
which still are unsolved problems [e.g., [109,116] ]. If L
is set by the mass fall back rate of the tidal stream, _M, then
L ∝ 1=

ffiffiffiffiffiffiffiffiffi
mBH

p
, which suggests that lighter BHs should

result in a higher L than heavier BHs. However, if L is
Eddington limited, then L ∝ mBH, which immediately
leads to rates that are far below observable limits [66].
One proposed model for how radiation is processed and
escapes involves an Eddington limited accretion disk with a
relativistic launched jet [e.g., [117–119] ]. In this picture
the energy flux carried by the jet can easily exceed the
Eddington limit and will likely scale as ∝ _Mc2, which
would make such events visible at cosmological distances.
However, in this case the observer has to be located near the
cone of the jet opening, which significantly reduces the
probability for detection. Taking this effect into account,
the observed rate is likely 1=50 − 1=100 times smaller
[e.g., [115,120] ] than the disruption rate given by Eq. (24).
However, the jet might cover a larger area on the sky if
precession and movement from the BBH orbital motion is
significant, which would lead to a higher probability for
detection [e.g., [111] ]. All in all, compared to long GRBs,
which have been observed extensively by Swift, our derived
rate of star-BBH TDs from GCs is about two-orders of
magnitude lower. The rate could be higher if the average
number of GCs per galaxy is >200, which could be the
case at higher redshift [e.g., [121] ]. Also, it could be that
a subpopulation of the SCs have central stellar densities
that are >104 pc−3, as in the case of some NSCs and GCs
without a dominating BH core [e.g., [122] ]. Active star

formation in NSCs also leads to a population of stars with
large radii which would lead to enhanced TD rates.
However, our model is not yet suited for describing systems
such as NSCs, as these are not isolated in the same way as
GCs, which leads to great challenges in modeling their
evolution. In addition, in NSCs our approximation P̃i ≪ 1
from Eq. (7) does not hold, which limit us in exploring such
systems further in this paper.
Finally, if both star-BH and star-BBH TDs are observed,

then their number ratio can be used to constrain the fraction
of BBHs in GCs, which play a key role in determining the
BBH merger rate observable by LIGO/Virgo. To see how,
we start by writing the rate of star-BBH TDs from a single
GC as ΓBBH

TD ∝ NBBH × 4ηsmBHRTD=vdis, which follows
from the arguments given in Sec. II D, and where we have
assumed thatPTD ¼ 2RTD=a. Similarly, the total rate of star-
BH TDs can be written as ΓBH

TD ∝ NBH × ηsmBHRTD=vdis
[123]. The ratio between the two rates is therefore given
by ΓBBH

TD =ΓBH
TD ≈ 4NBBH=NBH ¼ 4fBBH, where fBBH is the

number of BBHs compared to single BHs. There are many
uncertainties here, such as single BHs and BBHs do not
necessarily cluster in the same way throughout the core
region, and not all star-BBH TDs will be observationally
different from star-BH TDs, but our simple relation does
suggests that important astrophysical properties may be
extracted from BH and BBH stellar TDs.

2. Alternative probes

Other ways of observing the BBH orbital distribution
includes micro-lensing [e.g., [124–126] ], periodic self-
lensing if the BBHs accrete matter [e.g., [127,128] ], and
GW emission [e.g., [59,86] ]. The possibility for detecting
accreting BBHs through self-lensing is especially interest-
ing, as this allows one to observe the remnant system of
a star-BBH TD over a timespan comparable to the life time
of the accretion disks, which is orders of magnitude longer
than the TD flares and jets we have discussed so far.
The probability for observing such systems is proportional
to their life time, and accreting BBHs will therefore in
principle have a much higher probability for being
detected; however, for self-lensing to be efficient one
has to observe near the orbital plane of the BBH, which
puts strong constrains on the geometry in a similar way as
for the jetted TDs. It is not yet clear if such requirements
will reduce the number of sources below observable limits.
Other approaches for indirectly probing a possible central
population of BHs is to look for correlations with the GC
stellar properties [e.g., [122,129–131] ], for which machine
learning algorithms might be particular useful [e.g., [132] ].

VII. CONCLUSIONS

The orbital time distribution of BBHs in SCs is tightly
linked to the GR dynamics that also drive the BBHs to
merger. Therefore, if the BBH orbital distribution can be
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probed, then one will in principle be able to indirectly
constrain the current BBHmerger rate from SCs observable
by LIGO/Virgo, as well as the dynamical environment of
the BBHs. In this paper we propose that the BBH orbital
time distribution might be indirectly probed using inter-
rupted stellar TDs [e.g., [74] ]. The main idea behind this
“multimessenger” observable is that light-curves from star-
BBH TDs are expected to show interruptions after a
timescale comparable to the BBH orbital time due to
deflections of the tidal stream by the BHs.
Using a novel analytical framework for describing the

dynamical evolution of BBHs in SCs, including the
possibility for GW merger during hardening, we have
shown that the corresponding BBH orbital time distribution
have a near universal shape that peaks at a time-scale of
days (Sec. IV). The distribution differs significantly from
other astrophysical scenarios not driven by dynamics,
including the Opik’s law distribution (flat in logT), purely
GW driven BBHs (increasing with logT), and SMBBH
TDEs (distribute at timescales of 102 days). This suggests
that if interrupted TDs are observed with breaks in their
light-curves appearing after a time of hours to days (the
time of interruption is usually found to be ≪ T [74]), then
this would indicate a nearby dynamical driven population
of BBHs embedded in a halo of stars, such as a GC.
Actively searching for interrupted TD light-curves in
current and upcoming EM surveys might therefore help
us indirectly constrain the dynamical formation of BBH
mergers in nearby SCs. In addition, the fraction of BBHs to
single BHs can also be determined by probing the relative
rate of star-BBH to star-BH TDs (Sec. VI).
We acknowledge that there are several uncertainties

related to our proposed method, where the greatest is
likely related to the TD luminosity and thereby the
observable rate. As discussed in Sec. VI, super
Eddington accretion is clearly needed to create rates that
are within observable limits [see also: [66,123] ]; however,
exactly how a TD is powered even for single BH TDs
is still an open question [e.g., [133] ]. Despite this,
the encouraging results from both the SMBBH limit

[e.g., [75] ] and the stellar mass BBH limit [66] make
our proposed method an interesting possibility, and we do
hope that our work will inspire groups to perform
complementary studies of both the rate of star-BBH
interactions in dense SCs as well of the accretion process
itself.
Finally, this paper also presents the first GR analytical

solution to the orbital time distribution of BBHs in dense
SCs (Sec. II E). We have compared our analytical solution
to both a semi-analytical MC approach (Sec. II E) and to
data extracted from the Hénon-typeMC code CMC (Sec. V).
We find excellent agreement. As shown in Sec. IV, our
inclusion of GR effects (representing the possibility for
GW merger inside the cluster before ejection) gives rise to
significant changes compared to the purely Newtonian limit
(Fig. 3). This clearly illustrates the need for GR numerical
methods for describing the distribution of BBHs even in
classical GC systems [e.g., [56] ]. We hope our derived
distribution will turn out to be useful for other studies
related to BBHs in dense SCs and their detectability.
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