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WISH-R– a fast and efficient tool for
construction of epistatic networks for
complex traits and diseases
Victor A. O. Carmelo1,2, Lisette J. A. Kogelman2,3, Majbritt Busk Madsen4 and Haja N. Kadarmideen1,2*

Abstract

Background: Genetic epistasis is an often-overlooked area in the study of the genomics of complex traits.
Genome-wide association studies are a useful tool for revealing potential causal genetic variants, but in this context,
epistasis is generally ignored. Data complexity and interpretation issues make it difficult to process and interpret
epistasis. As the number of interaction grows exponentially with the number of variants, computational limitation is
a bottleneck. Gene Network based strategies have been successful in integrating biological data and identifying
relevant hub genes and pathways related to complex traits. In this study, epistatic interactions and network-based
analysis are combined in the Weighted Interaction SNP hub (WISH) method and implemented in an efficient and
easy to use R package.

Results: The WISH R package (WISH-R) was developed to calculate epistatic interactions on a genome-wide level
based on genomic data. It is easy to use and install, and works on regular genomic data. The package filters data based
on linkage disequilibrium and calculates epistatic interaction coefficients between SNP pairs based on a parallelized
efficient linear model and generalized linear model implementations. Normalized epistatic coefficients are analyzed in a
network framework, alleviating multiple testing issues and integrating biological signal to identify modules and
pathways related to complex traits. Functions for visualizing results and testing runtimes are also provided.

Conclusion: The WISH-R package is an efficient implementation for analyzing genome-wide epistasis for complex
diseases and traits. It includes methods and strategies for analyzing epistasis from initial data filtering until final data
interpretation. WISH offers a new way to analyze genomic data by combining epistasis and network based analysis in
one method and provides options for visualizations. This alleviates many of the existing hurdles in the analysis of
genomic interactions.
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Background
High throughput genotyping data have been used exten-
sively in many contexts to explain phenotypic variation
of complex traits in a wide range of Genome Wide As-
sociation Studies (GWAS). GWAS can however, only
partially explain observed phenotypic variation [1], and
phenotypic variation has been shown to eclipse

genotypic variation in the same population [2]. For ex-
ample, in a large study of inflammatory bowel disease
(IBD) only 8.2–13.1% of the variance in disease liability
was explained using GWAS [3]. Several factors can ex-
plain the missing heritability of complex traits [4], but
one often overlooked aspect is epistasis which can con-
tribute to genetic variation in complex traits. Epistasis
can have at least two definitions [5], but here we mean
the use of genome-wide multi locus genetic interactions
to predict phenotypic variation. Epistasis commonly af-
fects phenotypes [6] and is observed in type 1 and type
2 diabetes [7, 8] and IBD [9] risk loci. Thus, quantifica-
tion of epistasis can improve our understanding of
causal genomic variation.
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Calculation of epistasis is a computational challenge,
even on modern computing facilities. To calculate first
order epistatic interactions, that is, interaction between
pairs of genotypes, of N loci, it is necessary to do mini-

mum � N2

2 estimates. In the case of a 700 k SNP array,
this leads to and order of 2.5 × 1011 computations and a
large memory consumption, both generally intractable.
Therefore, it is important to have strategies to properly
filter and reduce input data dimensionality. In general,
when analyzing a specific trait it is assumed that most
variants are not causal or associated with the trait. Fur-
thermore, many variants will be in high linkage disequi-
librium (LD) when using modern high-density
genotyping arrays, meaning that their resulting interac-
tions will be highly correlated. Thus, it is not only neces-
sary to filter the input space due to computational
issues, but also meaningful from an analysis perspective.
Beyond computational issues, interpretation of epi-

static interactions can also be difficult. As the number of
tests increases to the square of the input, multiple test-
ing correction will be very stringent, making it difficult
to rely on individual interactions. From a biological per-
spective, it would be useful to look at groups of genes
and pathways instead of focusing on single variants. One
way of integrating and combining signal from multiple
sources is to use network-based strategies. Using
networks-based methods is a useful and successful ap-
proach in identifying pathways and genes related to
complex traits [10, 11]. A widely used method for this is
the WGCNA method and R package [12]. WGCNA is
designed for gene expression data, creating networks of
co-expressed genes. To take advantage of this feature in
a genomic context, the WISH (Weighted Interaction
SNP Hub) method was developed by Kogelman and
Kadarmideen [13]. WGCNA is built on the assumption
that genes that are co-expressed are functional in similar
pathways. WISH extends this hypothesis into the as-
sumption that loci that show epistatis are functionally
related. WISH calculates epistasis and creates biological
networks based on said interactions. The goal is to iden-
tify modules of interacting loci that affect a phenotype
or complex trait of interest.
We have developed an efficient and easy to use R pack-

age based on the WISH method and added several fea-
tures including LD based data dimensionality reduction.
Using input genotypes and a phenotype the WISH R pack-
age filters the data, calculates genome-wide epistatic inter-
actions and generates biologically meaningful networks.

Implementation
Inputs and filtering
The WISH R package is based on the WISH method [13].
The input files required for the method are a pedigree

(ped) and a transposed ped (tped) file, both following
standard PLINK format [14]. The overall workflow is
shown in Fig. 1. We highly recommend that the raw
phenotype data are adjusted for fixed effects and covari-
ates such as sex, age etc., before running genome-wide
epistatic model, as they need to be estimated only once.
This is done in simple linear regression model fitting all
non-genetic fixed effects and, obtaining estimated effects
and correct the phenotypes accordingly. We recommend
running a simple GWAS on your data first, and then fil-
tering input SNPs based on significance. This helps reduce
data dimensionality, as variants with no main effect are
unlikely to have epistatic effects, as these would show up
at least partially in the main effect estimation. However,
we do not recommend strict filtering, as the efficiency of
our implementation allows testing of a large number of

Fig. 1 Overview of the package pipeline and workflow. The method
only requires phenotypes and genotype data to run. The boxes in
red are optional but recommended. The genotype data should be
input using the PLINK ped and tped format [14]. Phenotypes can be
either continuous or binary. The WISH method can be separated
into three overall parts: QC and data filtering, calculation of epistasis
and network and module generation. The QC should be similar to a
standard GWAS based on call rates and minor allele frequency. An
additional step can be done to filter based on LD, which is built into
the package. The calculation of epistasis is the most computationally
heavy part and is fully parallelized. The network and module
construction part is based on converting the epistatic coefficients
into correlations and running the WGCNA pipeline, which is
integrated into the WISH package
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interactions, as discussed further below. This means we
recommend including as many variants as feasible de-
pending on the available computational power.
Once a suitable set of variants has been selected it is

possible to further filter the data by using LD. Variants
in high LD are redundant and will lead to the same
nearly identical models being estimated several times. In
the context of WISH-R we are not interested in a prob-
abilistic measure of LD, but in the observed LD in a
given dataset. If an allele is co-occurring with another al-
lele in a data set they will yield similar epistatic interac-
tions regardless of allele frequencies and sample sizes
and we therefore use the r2 measure of LD [15]. In prac-
tice, we calculate LD between variants by sliding linearly
along the genome, including variants into blocks as long
as the mean r2 values between all variant pairs is above a
selected threshold. When the blocks are identified, the
variant with the highest average r2 in the block is se-
lected as a representative for the block.

Epistatic interaction modelling
The main computational challenge is the calculation of epi-
static interactions. Therefore, we have several tools to
optimize the calculations of the models. The model used for
calculating the epistasis is a heterogeneity model [16, 17]:

y ¼ μþ β1snpi þ β2snp j þ β3 snpi � snp j

� �
þ ϵ

Here y represents a phenotype of interest, μ is the
intercept, β1 and β2 are the SNP main effects, ϵ is a
noise term and most importantly β3 represents the epsi-
tasis of the two loci. To represent the genotypes snpj
and snpi we code genotype data as 2 (homozygote minor
alleles), 1 (hetrozygote) and 0 (homozygote major al-
leles). The selection of the values for the genotype af-
fects the model hypothesis. Here there is an assumption
of multiplicative interaction between minor alleles in the
two sites. We also test for the opposite but mathematically
identical model by reversing the minor and major homo-
zygote labels in one of the loci. This test is in case the
interaction is between minor and major alleles. There is
one more parametrization available in the package, which
is 2 (homozygote minor alleles), 1.5 (heterozygote) and 1
(homozygote major alleles). This parametrization tests
interaction on the gradient of one allele pair set to the
other allele pair, which means that all four alleles are in-
volved in the interaction. This is more powerful descrip-
tion but also more difficult to fit as it requires all four
alleles to be related to changes in the phenotype for an op-
timal fit. In the package there is also a generalized linear
model (GLM) implemented so that case-control studies
(where case-control are coded in binary form as 1–0) can
be analyzed. The GLM version is about twice as slow as
the non-binary version, as it fits an underlying liability

threshold models. The basic linear model uses implemen-
tations linked to underlying C++ code, ensuring fast com-
putations of epistatic interactions. The algorithm is fully
parallelized. A test setting is included to test runtimes
based on input data and the number of threads used.

Network and module creation
The original idea of WGCNA was based on using corre-
lations in expression data to find interconnected gene.
From there it is a natural extension to genomic interac-
tions in networks, by converting the epistatic estimates
(the β3in the model) to correlations by rescaling them
from − 1 to 1. This is done by treating the negative and
positive β3 separately to insure that values close to zero
correspond to a correlation of zero. The resulting similar-
ity matrix is then used to calculate the topological overlap
measure (TOM) [18]. The next steps follow the workflow
of WGCNA: the dissimilarity TOM is used to define mod-
ules by creating a gene dendrogram and cutting of
branches using a tree-cutting algorithm. Modules are then
correlated to the phenotype of interest to detect biologic-
ally interesting modules. The functions of WGCNA are
integrated in the WISH package for optimization of the
workflow. For more details, see Kogleman et al. [13].

Visualization and result assessment
Visualizing high dimensional data from epistasis in an
informative and meaningful way can be a challenge. In
the WISH R package, we have implemented several
functions for visualizing and summarizing epistatic in-
teractions. The first method is a pseudo Manhattan plot,
based on calculating the sum of -log likelihoods for each
variant across all tested interactions. See Fig. 2 for an ex-
ample. Another measure is a genome wide interaction
overview, created by calculating quantile values of signifi-
cance of interaction between chromosomes, as seen in
Fig. 3. While this does not give an accurate representation
of individual interactions, it does indicate which chromo-
somes may be hot spots for interactions for a given
phenotype. An example can be seen in Fig. 3. The other
option is to visualize epistasis between individual chromo-
somes. This is done by visualizing the strength of epistasis
in all pairwise regions of a user-defined size between se-
lected chromosomes (Additional file 1: Figure S1).

Results and discussion
Performance
When dealing with epistasis it is important to have effi-
cient algorithms. We tested the performance of this part
of the package using randomly simulated phenotypes and
genotypes. In Fig. 4 we can see the runtime of WISH
based on different number of variants and 500 samples
using different amount of threads. The test where con-
ducted using AMD Opteron 6380 Processors running at
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2.5 GHz with varying number of cores used. There is an
approximately linear increase in run-speed based on
the number of threads. With our benchmark, it
would take around 3 h for 10,000 variants or about
three days for 50,000 variants using 40 threads. In

Additional file 2: Figure S2 we see that the package is
not sensitive to the number of samples, and can therefore
be run on a wide range of sample sizes. The LD filtering
and network analysis part of the package are entirely
dependent on the input data, and do not have any
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Fig. 2 Example of a Pseudo Manhattan plot. Visualizing interactions in a meaningful way is difficult due to the high data dimensionality. One way
to solve this is to use summary statistics for each locus instead. Here we sum over the -log likelihoods of all interactions for each variant to give
an idea of which variants are most strongly interacting across the genome and color by chromosome

Fig. 3 Visualization of pairwise chromosomal interaction strength. Chromosomal interactions are found by calculating the 90th percentile of the –log
likelihood of all epistatic interactions between each chromosome pair and then normalizing them to from − 1 (weakest) to 1 (strongest) interactions
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computational challenges. For an example of a full analysis
see the original WISH paper [13, 19].

Method comparison
In general, it is difficult to compare methods that calculate
epistasis as different models and definitions of epistasis
are used. SNPassoc [20] can calculate epistatic interactions
but lacks any strategies or recommendations for the com-
putational issues. EPIBLASTER [21] reports being able to
calculate a high amount of interactions but requires a
GPU computing facility and specific sub-setting and parti-
tioning of the data. Their strategy to filter the data is to a
priori calculate simple correlations between cases and
controls and variants, as their method only applies to bin-
ary phenotypes. This is similar to our suggested approach
of using a main effect filtering, however, they end up cal-
culating much fewer interaction models. They report be-
ing able to analyze 300 k markers in one day but, using
real data they only calculate actual epistasis in 373,153
SNP pairs out of 4.5 × 1010 possible pairs. Their imple-
mentation does not include the epistasis modelling, re-
quiring more work to get the epistasis results.,
FastEpistasis [22] has a similar idea as our method for the
epistasis calculations, but it only has focus on one aspect,
namely calculating the models. They do not discuss filter-
ing strategies or data analysis strategies but are able to cal-
culate the models faster. Martinéz et al. [23] also focus
only on epistasis without filtering steps, but report having
a higher sensitivity than other available methods, but they
do not present any evidence as to why this should be the
case. Their implementation has comparable speed to ours.

Boost [24] offers very high performance based on
using approximated calculations setups, but is not
straightforward to use, as it requires non-standard in-
put files and requires specific GPU computing software
and hardware setups. Similar to Boost but more recently,
Gonzalez-domingues et al. [25] are able to calculate epista-
sis for large datasets, but they also use specialized hardware
setups and it is unclear if their implementation is generally
available. We believe that WISH offers several advantages
compared to other models. Our method works both on
quantitative and binary phenotypes, and we apply the full
model to all pairs in the input space. Most of the above
methods are able to calculate epistatic interactions at a fas-
ter speed than our implementation, but this comes at a
cost. Either heuristic filters are applied, or specific hard-
ware is needed, and often the methods themselves are not
straightforward to use. In regards to speed, it is unlikely
that it is necessary to calculate epistasis for all SNP pairs
on a high-density SNP chip, as many of these calculations
will be redundant or not biologically related to the trait of
interest. The epistasis calculations of WISH should be fast
enough to cover most or all biologically relevant SNPs We
present strategies for filtering the data using SNP main ef-
fect and we include a built-in LD filter, thus ensuring a
proper selection of biologically meaningful SNPs. We also
implement a solution for dealing with the epistatic coeffi-
cients, namely the application of network-based analysis.
Epistasis is in general a very complex subject, and the esti-
mation the epistasis itself is just the start of the analysis.
Network analysis is the natural extension of pairwise epis-
tasis, as allows us to identify and analyze more complex

0

500

1000

1500

2000

10 20 30 40

Threads

S
ec

on
ds

N−variants
1000
2000
3000

Multi−thread Scaling

Fig. 4 Scaling of runtime using multithreading based on 1000, 2000 or 3000 variants and 500 samples using simulated genotypes and
phenotypes. We see that the improvement in run time with increased number of threads is not linear, due to increased overhead. In all the
different runs the improvement in runtime from 5 to 40 threads is ab out 5-fold. On the other hand, the number of variants has no effect on the
speed with about 9000 models per second being calculated using 40 threads across all runs. This is because as with larger data sets the
individual threads handle larger data chunks at a time, leading to less overhead
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genomic interaction patterns. One more feature we have
that we found lacking in other methods is visualization.
Visualizing high dimension epistasis data is technically diffi-
cult, but we have included some options for summarized
assessment of the epistatic modelling, which we found to
be lacking in other methods. Our package is simple to use
and implemented in R, making it easy to install, transparent
to use, and the outputs are easy to manipulate for the user.

Conclusions
Epistasis in an important component of genetic variation
and may have causal effects in certain diseases or com-
plex trait manifestation in humans, animals, plants and
other organisms. However, analysis of epistasis on
genome-wide scale is an overlooked subject with several
challenges, mainly interpretation and data dimensional-
ity issues. We have previously proposed the WISH
method for calculating epistasis and applying the results
in a network framework, thus offering solutions for
some of the main issues in the analysis of epistasis. Here
we have implemented WISH-R, an efficient R package
for calculating linear interaction between genomic vari-
ants from standard genotype data and generating mod-
ules of groups of interacting variants. WISH-R is easy to
install and use, and provides tools for analyzing epistasis
in complex traits and diseases based on whole genomic
data from data filtering to final interpretation.

Availability and requirements
Project name: WISH-R package.
Project homepage: https://github.com/QSG-group/

wish
Operating system: Platform Independent.
Programming Language: R.
Other requirements: R 3.0 or >.
License: GPL-3.
Restrictions to use by non-academics: license needed.

Additional files

Additional File 1: Figure S1. Example visualization of the package
function pairwise.chr.map() function displaying the strength of epistatic
interaction between regions on two chromosomes. (DOCX 38 kb)

Additional File 2: Figure S2. Visualization of the runtime scaling of the
method based on changes in sample size. (DOCX 27 kb)
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