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The low-energy effective field theory is constructed by integrating out Standard Model states with 
masses proximate to the electroweak scale. We report the equations of motion for this theory, 
including corrections due to higher dimensional operators up to mass dimension six. We construct the 
corresponding symmetry currents, and discuss how the SU(2)L × U(1)y symmetry, and global symmetries, 
are manifested when Standard Model states are integrated out. Including contributions from higher 
dimensional operators to the equations of motion modifies the interpretation of conserved currents. We 
discuss the corrections to the electromagnetic current as an example, showing how modifications to the 
equation of motion, and corresponding surface terms, have a direct interpretation in terms of multipole 
charge distributions that act to source gauge fields.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Assuming physics beyond the Standard Model (SM) at scales � > v̄ T = √
2 〈H† H〉, the embedding of the discovered “Higgs-like” scalar 

into an SU(2)L scalar doublet (H), and the absence of hidden states with couplings to the SM and masses � v̄ T , the SM can be extended 
into the Standard Model Effective Field Theory (SMEFT). Current LHC results are consistent with interpreting data in this framework, where 
an infinite tower of higher dimensional operators is added to the SM. The lack of any direct discovery of new physics resonances indicating 
beyond the SM states with masses ∼ v̄ T also supports the assumption that v̄ T /� < 1. As a result, the SMEFT expansion in terms of local 
contact operators is a useful and predictive formalism to employ studying measurements with characteristic scales ∼ v̄ T .

The SMEFT has the same field content as the SM, and reduces to the later by taking � → ∞. As the SM is falsified due to the evidence 
of neutrino masses from neutrino oscillations, we assume that neutrino masses are generated by the dimension five SMEFT operator.

The LHC is providing large amounts of data measured around the scale v̄ T to search indirectly for physics beyond the SM. These 
efforts are important to combine with experimental measurements at scales � v̄ T , where the Low-Energy Effective Field Theory (LEFT) 
is the appropriate EFT description.1 The LEFT is built out of the field content of the SM, but as the Higgs, W ± , Z , and top have masses 
mW ,Z ,h,t ∼ v̄ T , these states are integrated out in sequence. The gauged and linearly realized symmetries of the LEFT are U(1)em and SU(3)c. 
To perform EFT studies that combine data sets at scales ∼ v̄ T and � v̄ T , one matches the SMEFT onto the LEFT, and uses renormalization 
group evolution to run between the different scales. For recent results to this end, see Refs. [1,2].

When considering matching onto the LEFT at sub-leading order, it is usually necessary to take into account corrections to the equations 
of motion (EOM) that occur due to the local contact operators present in this theory. In Ref. [3], such corrections for the SMEFT were 
determined. In this paper, we determine these corrections for the LEFT up to operators of mass dimension six.

The pattern of local operator corrections to the EOM encodes a (non-manifest) SU(2)L × U(1)y symmetry, when this symmetry is 
assumed to be present in the UV completion of the LEFT. In this paper, we also construct the corresponding symmetry currents and 
explain the way that the SM gauge symmetries, and global symmetries such as lepton number, are encoded in the LEFT.

* Corresponding author.
E-mail addresses: ahelset@nbi.ku.dk (A. Helset), michael.trott@cern.ch (M. Trott).

1 The notation v̄ T indicates that this expectation value includes the effects of possible higher dimensional operators.
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Modifying the equations of motion of SM fields by higher dimensional operators challenges the standard interpretation of conserved 
currents which is appropriate for, and limited to, renormalizable theories. The generalized currents encode symmetry constraints that still 
constrain an EFT. We also discuss how higher dimensional operator corrections to the equation of motion have a direct interpretation 
in terms of multipole charge distributions that act to source the corresponding gauge fields. We use the electromagnetic current as an 
example of this phenomenon, and redefine the source in Gauss’s law.

2. Effective field theory taxonomy

This paper is concerned with the connection between three effective theories: the Standard Model, the SMEFT and the LEFT. Our SM 
notation is defined in Ref. [3]. The SMEFT extends the SM with higher dimensional operators Q(d)

i of mass dimension d,

LSMEFT = LSM +L(5) +L(6) +L(7) + . . . (1)

L(d) =
∑

i

Ci

�d−4
Q(d)

i for d > 4.

The operators are suppressed by d − 4 powers of the cut-off scale � and the Ci are the Wilson coefficients. The Q(d)
i are constructed out 

of all of the SM fields and the mass dimension label on the operators is suppressed. We use the non-redundant Warsaw basis [4] for L(6) , 
which removed some redundancies in the result reported in Ref. [5]. (See also Refs. [6,7].)

The LEFT is given by

LLEFT = LSM
LEFT + L(5) + L(6) + L(7) + . . . (2)

L(d) =
∑

i

Ci

v̄d−4
T

P(d)
i for d > 4,

where

LSM
LEFT = − 1

4

[
Fμν F μν + G A

μνG Aμν
]
+ θQCD

32π2
G A

μν G̃ Aμν + θQED

32π2
F A
μν F̃ Aμν +

∑
ψ

ψ i/Dψ + νL i/DνL + L(3)
LEFT. (3)

The dual fields are defined with the convention F̃μν = (1/2)εμναβ F αβ with ε0123 = +1. The dimension four mass terms are

−L(3)
LEFT =

∑
ψ

ψ R
r

[
Mψ

]
rsψL

s
+ v̄ T C ν

rs
ν̄c

L
r
νL

s
+ h.c. (4)

F μν = ∂μ Aν − ∂ν Aμ is the field strength of U(1)em. Here ψ = {e, u, d} labels the fermion fields. In the chiral basis for the γi we use, 
charge conjugation is given by C = −iγ2 γ0. This C is not to be confused with a Wilson coefficient Ci . As chiral projection and charge 
conjugation do not commute, we fix notation ψc

L = C ψ̄ T
L . Cν has been rescaled by v̄ T and has mass dimension zero.

The P(d)
i are constructed out of the SM fields except the Higgs, W ± , Z and the chiral top fields tL,R . The dimensionfull cut off scale 

of the operators has been chosen to be v̄ T in the LEFT. The relative couplings required to transform this scale into the mass of a particle 
integrated out (or a numerical factor in the case of �) are absorbed by the Wilson coefficients.

3. Equations of motion

The SM, the SMEFT and the LEFT are all consistent field theories defined by actions

S =
∫

L(χ, ∂χ)d4−2εx. (5)

Each theory contains field variables, here generically denoted χ . The meaning of the field variables, even those with the same nota-
tional label, differs in these theories. A field is redefined order by order in an EFT power counting expansion to remove redundancies of 
description out of the Lagrangian. As a result, the extremum of the action under variations of field configurations,

0 = δS =
∫

d4−2εx

[
∂L
∂χ

δχ − ∂μ

(
∂L

∂(∂μχ)

)
δχ

]
, (6)

is also redefined order by order. The descendent EOM for χ then depend on the local contact operators that are present in the EFT 
expansion. Asymptotic states can be considered to be free field solutions to the modified EOM. The � corrections to the EOM modify 
matching to sub-leading order onto an EFT [2,3,8], and modify the sources of gauge fields. Obviously, one must be careful to include all 
effects when dealing with higher orders in the power counting expansion.

For the LEFT the gauge fields have the expanded EOM

Dν F νμ =e
∑
ψ

ψ Q γ μψ + 4
θQED

32π2
∂ν F̃ νμ +

∑
d

�
μ,(d)

F

v̄d−4
T

, (7)

[
Dν, Gνμ

]A =g3

∑
ψγ μT Aψ + 4

θQCD

32π2

[
Dν, G̃νμ

]A +
∑

d

�
Aμ,(d)

G

v̄d−4
T

. (8)
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Here we have used the adjoint derivative with definition[
Dα,Q

]A = ∂α QA − g3 f BC A Gα
BQC . (9)

For the fermions, the EOM take the form

i/DψR
p

= [
Mψ

]
pr ψL

r
−

∞∑
d=5

�
(d)
ψR ,p

v̄d−4
T

, (10)

i/DνL
p

= −
∞∑

d=3

�
(d)
νL ,p

v̄d−4
T

, (11)

i/DψL
p

=
[

M†
ψ

]
pr

ψR
r
−

∞∑
d=5

�
(d)
ψL ,p

v̄d−4
T

. (12)

Each �(d) up to L(6)
LEFT is given in the Appendix.

4. Symmetry currents

A continuous transformation of a field,

χ(x) → χ ′(x) = χ(x) + α∇χ(x), (13)

under a deformation ∇χ(x), with an associated infinitesimal parameter α, is a symmetry of S if S → S ′ is invariant under this transfor-
mation, up to the possible generation of a surface term. The EOM defined by the variations of field configurations in the action –δS– is 
unchanged by this transformation. The EOM are defined with surface terms neglected, and the surface terms themselves are defined to be 
those of the form

∂μ

(
∂L

∂(∂μχ)
∇χ

)
, (14)

generated by δS . The Lagrangian is then invariant under S → S ′ , up to a possible total derivative

L → L+ α∂μKμ, (15)

for some Kμ . Associated with each symmetry defined in this manner is a conserved current [9]. The definition of the current is

Jμ = ∂L
∂

(
∂μχ

)∇χ −Kμ. (16)

The conservation of the current corresponds to

∂μ Jμ = 0. (17)

Due to the presence of an EFT power counting expansion, it is interesting to examine how symmetry currents are defined when non-
renormalizable operators are included, and how these currents encode symmetry constraints.

5. Basis dependence

The symmetry currents are basis dependent in an EFT, but still meaningful. They receive corrections due to the local contact opera-
tors in a particular basis through the modification of the EOM. The basis dependence of the symmetry currents can be made clear by 
considering a space-time symmetry. For an infinitesimal translation of this form

xμ → xμ − aμ,

χ(x) → χ(x + a) = χ(x) + aμ∂μχ(x),

L → L+ aμ∂μL = L+ aν∂μ

(
δ
μ
ν L

)
, (18)

up to O(a2). Comparing to Eqn. (15) identifies K. Four separately conserved currents result, identified as the stress-energy tensor, given 
by

T μ
ν = ∂L

∂
(
∂μχ

)∂νχ −Lδ
μ
ν . (19)

The χ become basis dependent when redundant operators are removed from the EFT, leading to the chosen basis of operators for L. The 
T μ
ν constructed from {χ, L} is also basis dependent as a result at the same order in the power counting. This should be unsurprising, as 

the currents are auxiliary operators, and sources and the related Green’s functions are not invariant under field redefinitions. For more 
detailed discussion on this point, see Refs. [10,11]. This basis dependence is similar to scheme dependence. It vanishes in relationships 
between a set of physical measured quantities (i.e. S-matrix elements constructed with an LSZ procedure) defined via the same stress-
energy tensor. Symmetry constraints between S-matrix elements are basis independent, even though the symmetry current itself carries 
basis dependence.
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6. Non-linear global symmetries

The effect of non-linear representations of the symmetries of the LEFT is straightforward in some cases. As a simple example, consider 
transforming the charged lepton fields as

eL
p

→ eiαeL
p
, eR

p
→ eiαeR

p
, (20)

by some global phase α. By inspection of the LEFT operator basis, the �L = 0 operators all respect this transformation, except Oνedu . The 
charged lepton current is

Jμe
rr

≡ Jμe,L
rr

+ Jμe,R
rr

≡ eL
r
γ μeL

r
+ eR

r
γ μeR

r
+ . . . (21)

The kinetic terms are taken to a flavour diagonal form

ψL/R
r

→ U (ψ, L/R)rsψ
′
L/R

s
, (22)

using the flavour space rotation matrix U . In the remainder of the paper, the prime superscript is suppressed. Je descends from the 
kinetic terms and is also flavour diagonal after these rotations. Je can receive contributions from higher dimensional operators in a basis, 
as indicated by the ellipsis in the above expression. The LEFT basis of Refs. [1,2] removes derivative operators systematically so there are 
no contributions of this form due to the L(6)

LEFT defined in these works. The divergence of the current including the EOM corrections �(6) is

i∂μ Jμe,L
rr

= i

(
∂μeL

r

)
γ μeL

r
+ ieL

p
γ μ

(
∂μeL

p

)
=

(
−eR

p
M e

pr
+ �

(6)

eL
r

)
eL

r
+ eL

p

(
M e

rp
eR

r
− �

(6)
e L

p

)
, (23)

and similarly for i∂μ Jμe,R . The mass terms are invariant under Eqn. (20) and cancel when the expressions are summed. We split the 
EOM correction and J into lepton number conserving and violating parts, �(6) = �(6,L) + �(6,/L) and Jμ = J (L)μ + J (/L)μ . First, consider 
the lepton number conserving part of Eqn. (23). A significant degree of cancellation occurs in the resulting expression. The only Wilson 
coefficient remaining corresponds to Pνedu , an operator which is not individually invariant under the charged lepton field transformation. 
The explicit expression is

�
(6,L)

eL
r

eL
r
− eL

p
�

(6,L)
e L

p

+ �
(6,L)

eR
r

eR
r
− eR

p
�

(6,L)
eR

p

=
(

C V ,LL
νedu
prst

Jμνe,L
pr

Jνdu,L
st

− C V ,LL∗
νedu
rpts

Jμeν,L
pr

Jνud,L
st

)
ημν

+
(

C V ,LR
νedu
prst

Jμνe,L
pr

Jνdu,R
st

− C V ,LR∗
νedu
rpts

Jμeν,L
pr

Jνud,R
st

)
ημν + C S,R R

νedu
prst

Sνe,L
pr

Sdu,L
st

− C S,R R∗
νedu
rpts

Seν,R
pr

Sud,R
st

(24)

+
(

C T ,R R
νedu
prst

T μν
νe,L

pr
T αβ

du,L
st

− C T ,R R∗
νedu
rpts

T μν
eν,R

pr
T αβ

ud,R
st

)
ηαμηβν + C S,RL

νedu
prst

Sνe,L
pr

Sdu,R
st

− C S,RL∗
νedu
rpts

Seν,R
pr

Sud,L
st

.

Similarly, we can define a neutrino current

Jμν
rr

≡ νL
r
γ μνL

r
+ . . . (25)

The lepton number conserving contributions to the divergence of the neutrino current are such that

�
(6,L)

eL
r

eL
r
− eL

p
�

(6,L)
e L

p

+ �
(6,L)

eR
r

eR
r
− eR

p
�

(6,L)
eR

p

+ �
(6,L)

νL
r

νL
r
− ν L

p
�

(6,L)
νL

p
= 0. (26)

This is as expected, and provides a cross check of the EOM corrections in the Appendix. The total lepton field current is conserved by the 
subset of �L = 0 operators leading to

∂μ J (L)μ
� = 0, (27)

where � is the SU(2)L doublet field. Considering the transformation of only part of the lepton multiplet under a phase change also 
illustrates how a symmetry can be present in a Lagrangian, but non-linearly realized. The symmetry constraint is only made manifest 
when all terms corresponding to the linear symmetry multiplet are simultaneously included in the constructed symmetry current. This 
re-emphasizes the requirement to use a consistent LEFT with all operators retained when studying the data. Doing so ensures that the 
LEFT represents a consistent IR limit. Conversely, dropping operators can forbid non-linear realizations in the LEFT of UV symmetries, 
which can block a consistent IR limit of some UV completions being defined. For this reason (see also Ref. [12]), experimental studies of 
constraints on higher dimensional operators done “one at a time” can result in misleading conclusions.
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7. Linear representations of global symmetries

Operator dimension in the SMEFT is even (odd) if (�B − �L)/2 is even (odd) [13,14]. Here �B and �L are respectively the baryon 
and lepton number violation of the operator considered. In LSM + L(6) , B − L is an accidentally conserved quantity consistent with this 
constraint.

In the LEFT, incomplete SU(2)L SM multiplets are used to construct operators, and operators are not constructed to respect hypercharge. 
The relationship between operator dimension and global lepton and baryon number in the LEFT is different than in the SMEFT as a result. 
When considering arbitrary Wilson coefficients in the LEFT, the classes of �L = 2, �B = −�L = 1, and �L = 4 defined in Refs. [1,2] are 
present. These ψ4 operators are not present in L(6) in the SMEFT, and these operators violate B − L.

The SMEFT relationship between operator dimension and these global symmetries is projected onto the LEFT operator basis when the 
matching result of Ref. [1] is imposed. The corresponding LSMEFT - LLEFT matchings that violate B − L vanish exactly.

8. Hypercharge

The fermion hypercharge current of the SM is

Jμ�y,SM =
∑

�=eR ,uR ,dR ,
�L ,qL

y��γ μ�, (28)

where y� = {−1, 2/3, −1/3, −1/2, 1/6}. This current is manifestly not conserved in the LEFT

∂μ Jμ�y,SM �= 0. (29)

In the LEFT, a hypercharge current can be defined as

Jμϒy =
∑
ϒ

yϒϒγ μϒ. (30)

Here ϒ = {ψR , ψL, νL} and the hypercharges are assigned as in the SM. Part of the non-conservation of the current stems from the fermion 
mass terms. In addition, the � corrections also lead to the current not being conserved when the Wilson coefficients in the LEFT take 
arbitrary values. When the matching conditions on the Wilson coefficients to the SMEFT are imposed [1], many of the EOM corrections 
generating a non-vanishing ∂μ Jμϒy are removed. The terms that remain are

i∂μ Jμϒy

∣∣∣
match

= (yuR − ydR )

v̄2
T

(
C V ,LR

νedu
prst

Jμνe,L
pr

Jνdu,R
st

− C V ,LR∗
νedu
rpts

Jμeν,L
pr

Jνud,R
st

+ C V 1,LR
uddu
prst

Jμud,L
pr

Jνdu,R
st

− C V 1,LR∗
uddu

rpts
Jμdu,L

pr
Jνdu,R

st

)
ημν

+ (yψR − yψL )

(
ψ R

p

[
Mψ

]
prψL

r
− ψ L

p

[
M†

ψ

]
pr
ψR

r

)
+ 2 v̄ T yνL

[
ν L

p
C�

ν
pr

νc
L
r
− νc

L
p

C T
ν
pr

νL
r

]
(31)

+ (yψL − yψR )

v̄ T

∑
ψ �=e

[
ψ R

p
σαβ T AψL

r
C�

ψG
rp

− ψ L
p
σαβ T AψR

r
C T

ψG
rp

]
Gαβ

A

+ (yψL − yψR )

v̄ T

[
ψ R

p
σαβψL

r
C�

ψγ
rp

− ψ L
p
σαβψR

r
C T

ψγ
rp

]
Fαβ + . . .

Here we have used the fact that in whole or in part, composite operators forms with 
∑

� y� = 0 have a corresponding vanishing contri-
bution to the current. This condition being fulfilled also provides a cross check of the �(3−6) EOM corrections in the Appendix.

Enforcing matching constraints to the SMEFT is insufficient to make the hypercharge current manifest. The reason is that SM states are 
integrated out in constructing the LEFT, that carry this quantum number. Consider the definition of the full hypercharge current

Jμy,full = Jμ�y + yH H† i
←→
D μH, (32)

where yH = 1/2 for the Higgs field. Here, and later, we are using the Hermitian derivative defined by

O † i
←→
D μ O = i O †(Dμ O ) − i(Dμ O )† O , (33)

O †i
←→
D I

μ O = i O †τ I (DμO
) − i

(
Dμ O

)†
τ I O , (34)

for a field O . To make hypercharge conservation manifest, we include the transformation properties of the masses associated with states 
integrated out that depended on 〈H† H〉. This can be done in a spurion analysis. Rescaled Wilson coefficients and mass terms are promoted 
to spurion fields with tilde superscripts

C̃ V ,LR
νedu
prst

= v̄ T C V ,LR
νedu
prst

, C̃ V 1,LR
uddu
prst

= v̄ T C V 1,LR
uddu
prst

,

C̃ ψ
pr

= M ψ
pr

, C̃ ν
pr

= 2 v̄ T C�
ν
pr

,

C̃ψγ
pr

= v̄ T C�
ψγ
rp

, C̃ψG
pr

= v̄ T C�
ψG
rp

.
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These spurion fields have the hypercharge assignments

yC̃ = ydR − yuR for C̃ V ,LR
νedu , C̃ V 1,LR

uddu ,

yC̃ = −yν for C̃ν,

yC̃ = yψR − yψL for C̃ψγ , C̃ψG ,

yC̃ = yψL − yψR for C̃ψ .

As the spurions are charged under hypercharge, we need to include them in the current in the LEFT

Jμy,LEFT = Jμϒy + Jμy,S, (35)

where

Jμy,S =
∑

C̃

yC̃ C̃ † i
←→
D μC̃ . (36)

Here the flavour indices are suppressed. When promoting the Wilson coefficients to fields, we need to include kinetic terms,

Lkin
S =

∑
C̃

(
DμC̃

)† (
DμC̃

)
. (37)

The EOM for the spurion fields are D2C̃ = δLLEFT/δC̃� . Including these contributions, the hypercharge current is conserved: i∂μ Jμy,LEFT = 0.
This provides a cross check of the EOM corrections in the Appendix and the results in Ref. [1,3].

9. SU(2)L current

The SU(2)L current in the SMEFT is defined as

J I
μ = 1

2
qτ Iγμq + 1

2
lτ Iγμl + 1

2
H†i

←→
D I

μH . (38)

This definition of the current fixes the embedding of the LEFT states into SU(2)L doublets. Here τ I are the SU(2)L generators (Pauli 
matrices) with normalization [τ I , τ J ] = 2 i εI J K τ K for I = {1, 2, 3}. The fields q and l are left-handed quark and lepton SU(2)L doublets, 
which are absent in the LEFT as linear multiplets. To examine the SU(2)L current we need to combine terms in the LEFT into reconstructed 
SU(2)L multiplets and also introduce spurions to account for the transformation properties of v̄ T . We illustrate the constraints of the 
SU(2)L current with an operator from the class (L R)X + h.c. as an example,

Ceγ
pr

eL
p
σμνeR

r
Fμν + h.c. → l

i
L
p
σμνeR

r
FμνC i

eγ
pr

+ h.c. (39)

where

C i
eγ
pr

=
(

0
Ceγ

)
pr

and li
L
p

=
⎛⎝νL

p
eL

p

⎞⎠ . (40)

We have promoted the Wilson coefficient to a SU(2)L doublet field, and collected the left-handed leptons into a doublet. Analogous 
promotions can be made for all the operators in this class. The relevant terms in the equations of motion are

v̄ T i/Dli
L
p

= −σμνeR
r

FμνC i
eγ
pr

+ . . . (41)

v̄ T i/Dl
i
L
p

= +C i∗
eγ
pr

FμνeR
r
σμν + . . . (42)

v̄2
T D2C̃ i

eγ
pr

= FμνeR
r
σμν li

L
p
, (43)

v̄2
T D2C̃ i∗

eγ
pr

= l
i
L
p
σμνeR

r
Fμν. (44)

The covariant derivative of Jμl gives

i
[

Dμ, Jμl
]I ≡ i∂μ

(
1

2
lL
p
τ Iγ μl L

p

)
− g2ε

J K I Wμ, J Jμl,K (45)

= 1

2

(
iDμl L

p

)
τ Iγ μl L

p
+ 1

2
lL
p
τ Iγ μ

(
iDμl L

p

)

=
C∗

eγ
pr

FμνeRσμντ I l L −
Ceγ

pr
lLτ

IσμνeR Fμν + . . .

2v̄ T r p 2v̄ T p r
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To recover a conserved current, we perform a spurion analysis, similar to the one for hypercharge. We have the EOM for the spurion Ceγ , 
in Eqns. (43) and (44). The spurion current is

Jμ,I
S = 1

2
C̃ †

eγ i
←→
D μ,I C̃eγ , (46)

with flavour indices suppressed. The covariant divergence of the spurion current is

i
[

Dμ, JμS
]I = −1

2

[
C̃eγ

pr

∗
τ I D2C̃eγ

pr
− D2C̃eγ

pr

∗
τ I C̃eγ

pr

]
= − 1

2v̄ T

[
Ceγ

pr

∗τ I FμνeR
r
σμνl L

p
− lL

p
σμνeR

r
Fμντ

I Ceγ
pr

]
. (47)

Combining Eqns. (45) and (47), the new current is covariantly conserved for the chosen operator from the class (L R)X ,

i
[

Dμ, Jμ
]I ≡ i

[
Dμ,

(
Jμl + JμS

)]I = 0. (48)

The generalization to include quarks is straightforward.
For ψ4 operators a similar spurion analysis that also includes the promotion of all of the fermion fields into the corresponding SU(2)L

fermion multiplet of the SM is done. The procedure is straightforward. When imposing the LSMEFT - LLEFT matching and performing this 
spurion analysis, the SU(2)L current is conserved.

10. Contraints due to non-manifest currents

The SU(2)L and U(1)Y currents are not conserved in the LEFT when the Wilson coefficients of this theory are treated as free param-
eters. Furthermore, the implication of these currents in the LEFT is distinct than in the SM or the SMEFT, as there is no manifest field 
corresponding to these currents when they are conserved. There is no direct construction of a Ward identity using a propagating gauge 
field as a result.

The conserved currents do constrain the LEFT by fixing relationships between otherwise free parameters of the theory. Matrix elements 
of the currents can be directly constructed, as they are composed of the fields of the LEFT. Constructing such a matrix element from the 
generalized Heisenberg current field, with a set of initial and final states denoted �i, f , and taking a total derivative gives

∂μ

∫
d4xeip·x〈� f | Jμ(x)|�i〉 = 0. (49)

A series of relationships between the Wilson coefficients then follows∑
n

∂μ〈� f |Pn|�i〉μ(p)Cn = 0. (50)

Formally, the measured S-matrix elements must be constructed using an LSZ reduction formula. The constraints that follow for the Wilson 
coefficients are trivially satisfied only if the Wilson coefficients are already fixed by a UV matching preserving the corresponding symmetry.

11. U(1)em and the LEFT multipole expansion

The classical limit of Ld≤4
LEFT reproduces the well known physics of Maxwell’s equations, and in particular Gauss’s law [15] (see also 

Ref. [16]). Gauss’s law relates the time component of the electromagnetic current Jμ = ψeγ
μψe to

J 0 = ∇ · E

−ephys
. (51)

Here ephys = 1.6021766208(98) × 10−19 C , is the electron charge in the usual SI units [17]. In the LEFT, the electromagnetic current is also 
expected to be conserved

∂μ Jμ = 0, (52)

without any of the subtleties of the previous sections as the Pi are constructed to manifestly preserve U(1)em.
The U(1)em current is subject to its own set of subtleties. First, the naive understanding that Jμ being conserved directly leads to 

its non-renormalization requires some refinement. This issue was comprehensively addressed for QED in Ref. [18], neglecting higher 
dimensional operators and considering a one electron state and the corresponding electron number current. Here we review the result of 
Refs. [18,19] and then directly extend this result into the LEFT.

The definition of the electromagnetic current is affected by the presence of a surface term ∂ν Fνμ [18,20] introducing a renormalization 
of this current. We define the Ld≤4

LEFT CP conserving QED Lagrangian as

L = (
ψ [iγ · (∂ + eq A) − m]ψ

)(0) − 1

4
(F (0)

μν)2 − 1

2ξ
(∂ · A)2 = Z2ψ

[
iγ · (∂ + eqμε A) − m(0)

]
ψ − Z3

4
(Fμν)2 − 1

2ξ
(∂ · A)2,

where all ()(0) superscripted quantities are bare parameters. μ is introduced so that the renormalized coupling is dimensionless and q is 
the charge of ψ . We restrict our attention to ψ = ψe for simplicity (even in loops) in the discussion below. Renormalized quantities are 
introduced above with a suppressed r superscript, d = 4 − 2ε and we use MS as a subtraction scheme so that
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Fig. 1. Figures a)-d) represent the renormalization of the electromagentic current in Ld≤4
LEFT. The later two diagrams illustrate a penguin diagram c) leading to a surface 

counter-term in d).

Fig. 2. Figure a) shows the insertion of a dipole operator in a one loop diagram (black square) with the d ≤ 4 LEFT electromagnetic current as a circled cross. Figure b) shows 
the insertion of a dipole contribution to the current as a circled cross box.

A(0)
μ = √

Z3 A(r)
μ , ψ(0) = √

Z2ψ
(r), m(0)

e = Zmm(r)
e , e(0) = Zeμ

ε e(r).

Here m2
e = [Me]11[M†

e]11. The renormalization constants in QED are given by

Z3 = 1 − e2 Sε

12π2 ε
, Z2 = 1 − e2 Sε

16π2 ε
, Zm = 1 − 3e2 Sε

16π2 ε
,

and Ze = 1/
√

Z3 at one loop. Here Sε = (4πe−γE )ε , following the notation of Ref. [18]. Hereon we define our subtractions in MS and 
suppress the corresponding constant terms, setting Sε = 1.

Standard arguments advanced to establish the non-renormalization of Jν are concerned with Fig. 1 a)-b). Fig. 1 a) represents wave-
function renormalization, while the insertion of the current is represented with a circled cross in Fig. 1 b)-c). The divergence and finite 
terms of diagrams a)-b) cancel at zero momentum transfer for an on-shell state. For a one electron state, the Noether current corresponds 
to the electron number current, which we label as JνN consistent with Ref. [18]. The usual textbook argument then concludes

μ
d

dμ
JνN = 0, (53)

consistent with the current being conserved. However, the penguin diagram in Fig. 1 c) is divergent. This divergence is cancelled by a 
counter-term of the form ∂ν Fνμ shown in Fig. 1 d). This operator has a four divergence that identically vanishes (i.e. corresponds to a 
surface term). The EOM of the Aμ field is given by

0 = δSLEFT

δAμ(x)
= eμε JμN + Z3∂ν F νμ + 1

ξ
∂μ∂ · A. (54)

The EOM relates terms in a non-intuitive fashion when an extremum of the action is taken. JμN receives a multiplicative renormalization 
generated from the nonzero anomalous dimension of the second term as a result. The current can be subsequently redefined to remove 
this effect and cancel the running, as shown in Ref. [18].

Fig. 2 shows the need to further refine this argument in the presence of higher dimensional operators. These diagrams are the di-
rect analogy to the arguments of Ref. [18] leading to a redefinition of the current due to the mixing of the dipole operator with the 
counter-term multiplying ∂ν F νμ . Inserting the dipole operator (indicated with a black box) with the electromagnetic current, indicated 
with a circled cross in Fig. 2a), gives mixing proportional to Me/v T . Including the effect of the dipole operator in the current insertion 
is indicated by a “circled cross box” in Fig. 2b). Calculating the diagrams directly for an electron in the loop gives a contribution to the 
photon two point function of the form

−�Z3 = − eqe

2π2 ε
(Ceγ

11
[Me]11 + C�

eγ
11

[M†
e]11). (55)

This divergence is cancelled by a counter-term [2] which leads to a modification of Z3 of the form �Z3. (The generalization to other 
charged leptons in the loop is trivial.) This is as expected as a corresponding divergence is present in the LEFT in Fig. 3 a)-b) and the 
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Fig. 3. One loop diagrams generating the divergences of the LEFT that are removed with the renormalization reported in Ref. [2].

external photon does not play a role that distinguishes the divergence obtained once the current is redefined. We have calculated the 
diagrams in Fig. 3 and agree with the corresponding dipole operator results in Ref. [2].

The interpretation of this mixing effect is subtle in the LEFT. Varying SLEFT with respect to A(r)
μ gives

0 = δS

δAμ
= eμε JμN + Z3∂ν F νμ + 1

ξ
∂μ∂ · A + √

Z3 Z2∂ν

(
ZC Ceγ

(
eLσ

νμeR
) + Z�

C C∗
eγ

(
eRσνμeL

)) + . . . (56)

The tree level contributions to the electron number operator of terms ∝ Ceγ , C∗
eγ vanish at infinity by Stokes’ theorem.2 We define a 

MS-renormalized current

Jμ
MS

= JμN + Z3 − 1

eμε
∂ν F νμ +

√
Z3 Z2

eμε
∂ν

(
ZC Ceγ

(
eLσ

νμeR
) + Z∗

C C∗
eγ

(
eRσνμeL

)) + . . . (57)

The MS-renormalized current expressed in terms of bare quantities is

Jμ
MS

= ψ
(0)

γ μψ(0) + 1 − Z−1
3

e0
∂ν F (0),νμ + 1

e(0)
∂ν

(
C (0)

eγ

(
e(0)

L σνμe(0)
R

)
+ C∗,(0)

eγ

(
e(0)

R σνμe(0)
L

))
+ . . . (58)

The renormalization group flow of the current is

μ
d

dμ
Jμ

MS
= 2γA

1

e0 Z3
∂ν F (0),νμ. (59)

The MS-renormalized current depends on the renormalization scale μ as in the SM case. The LEFT dipole corrections to the current fall 
off at infinity when considering the electron number operator. They also vanish from Eqn. (59) as separate terms, which is consistent with 
this fact. The dipole operators mix into ∂ν Fμν proportional to Me/v̄ T , a correction with a natural interpretation of an electron dipole 
charge distribution in the LEFT. In order to extract a conserved electron number which is independent of the renormalization scale, we 
redefine the current, including the effect of dipole operators in direct analogy to Ref. [18]. We define

JμLEFTphys = Jμ
MS

− �(0)

eμε
∂ν F νμ, (60)

where �(0) is the electron vacuum polarization in the LEFT, including the effects of operators of mass dimension greater than four. The 
electron vacuum polarization is still defined in the standard manner, and the current is modified by a redefinition at q2 = 0. It follows 
that

F νμ
LEFT,phys = [1 + �(0)]1/2 F νμ, (61)

eLEFT,phys = [1 + �(0)]−1/2 eμε. (62)

In the MS scheme

�(0) = − e2

12π2
log

m2
e

μ2
+ e qe

2π2
(Ceγ

11
[Me]11 + C�

eγ
11

[M†
e]11) log

m2
e

μ2
+ . . . (63)

2 We thank Mark Wise for discussions on this point.
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From these results one directly defines the time component of the physical current as

j0
LEFTphys = ∇ · ELEFT,phys

−eLEFT,phys
, (64)

which is the appropriate generalization of the source in Gauss’s law into the LEFT. This is a numerically small effect, as the electromagentic 
dipole operator is constrained [21].

To summarize, higher dimensional operators in the LEFT act to change the relationship between the Lagrangian parameter e and 
experimental measurements in a manner that corresponds to dipole operators being present in the LEFT. This occurs through a modified 
source term in Gauss’s law that reflects the presence of a multipole expansion in the EFT. The tree level dipole contributions to the 
electron number operator vanish at infinity by Stokes’ theorem, but quantum effects necessitates a redefinition of the current.

12. Conclusions

We have reported the equations of motion for the LEFT including corrections due to dimension six operators. These results are listed 
in the Appendix. These corrections lead directly to questions on the meaning of conserved currents in the LEFT. We have examined how 
the conserved currents of the LEFT encode symmetry constraints that are manifest or non-linearly realized. We have also generalized 
and embedded the source in Gauss’s law into the LEFT, incorporating the effects of electrically charged particles having dipole operator 
sources.
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Appendix A

Our operator label notation for the LEFT is largely consistent with Refs. [1,2]. We use a different sign convention on the charge 
conjugation operator, here C = −iγ 2 γ 0, where as in Refs. [1,2] C is defined with opposite sign. We further introduce the current notation

Sψ1ψ2,L/R
st

=
(

ψ1,L/R
s

ψ2,R/L
t

)
, S A

ψ1ψ2,L/R
st

=
(

ψ1,L/R
s

T Aψ2,R/L
t

)
, Sa,b

ψ1ψ2,L/R
st

=
(

ψ
a
1,L/R

s
ψb

2,R/L
t

)
, (65)

Jαψ1ψ2,L/R
st

=
(

ψ1,L/R
s

γ αψ2,L/R
t

)
, Jα,A

ψ1ψ2,L/R
st

=
(

ψ1,L/R
s

γ αT Aψ2,L/R
t

)
, (66)

T αβ
ψ1ψ2,L/R

st

=
(

ψ1,L/R
s

σαβψ2,R/L
t

)
, T αβ,A

ψ1ψ2,L/R
st

=
(

ψ1,L/R
s

σαβ T Aψ2,R/L
t

)
, (67)

where Jαψψ,R
st

≡ Jαψ,R
st

etc. We also define the currents where one of the fields is charge conjugated

S̃ψ1ψ2,L/R
st

=
(

ψ1,L/R
s

ψ2,L/R
t

)
, S̃a,b

ψ1ψ2,L/R
st

=
(

ψ
a
1,L/R

s
ψb

2,L/R
t

)
,

J̃αψ1ψ2,L/R
st

=
(

ψ1,L/R
s

γ αψ2,R/L
t

)
, T̃ αβ

ψ1ψ2,L/R
st

=
(

ψ1,L/R
s

σαβψ2,L/R
t

)
, (68)

and similarly for J̃α,A
ψ1ψ2,R

st

etc.

Using these notational conventions, the EOM for the gauge fields from L(5,6) are

�
μ,(5)

F

2
=

∑
ψ �=ν

Cψγ
pr

∂νT νμ
ψ,L
pr

+ Cνγ
pr

∂ν T̃ νμ
νcν,L

pr
+ h.c., (69)

�
Aμ,(5)

G

2
=

∑
CψG

pr

[
Dν,ψ L

p
σνμT ψR

r

]A

+ h.c., (70)

�
Aμ,(6)

G

2
=3CG f ABC

[
∂α

(
Gμβ

B GCβα

)
+ g f D EC G D

αβ G EβμGα
B

]
+ CG̃ f ABC

[
∂α

(
Gμβ

C G̃ Bβα

)
+ g f D E B G̃ D

βαG Eμβ Gα
C

]
+ CG̃ f ABC

[
∂α

(
G̃μβ

B GCαβ

)
+ g f D E B G D

βα G̃ Eμβ Gα
C

]
+ CG̃

2
f ABCε

γμ
αβ

[
∂γ

(
G̃αδ

B GCδβ

)
+ g f D E B G̃ E

δγ G DαδGβ
C

]
. (71)

The �L, �B = 0, contributions to the EOM from L(5,6) are as follows

�
(5,B,L)
eR ,p =C∗

eγ σαβeL Fαβ, (72)

rp r
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�
(5,B,L)
uR ,p =C∗

uγ
rp

σαβuL
r

Fαβ + C∗
uG
rp

σαβ T AuL
r
G A

αβ, (73)

�
(5,B,L)

dR ,p =C∗
dγ
rp

σαβdL
r

Fαβ + C∗
dG
rp

σαβ T AdL
r
G A

αβ, (74)

�
(5,B,L)
νL ,p =0, (75)

�
(5,B,L)
eL ,p =Ceγ

pr
σαβeR

r
Fαβ, (76)

�
(5,B,L)
uL ,p =Cuγ

pr
σαβuR

r
Fαβ + CuG

pr
σαβ T AuR

r
G A

αβ, (77)

�
(5,B,L)

dL ,p =Cdγ
pr

σαβdR
r

Fαβ + CdG
pr

σαβ T AdR
r

G A
αβ. (78)

�
(6,B,L)
eR ,p =γαeR

r

⎛⎝2 C V ,R R
ee

prst
Jαe,R

st
+ C V ,R R

eu
prst

Jαu,R
st

+ C V ,R R
ed

prst
Jαd,R

st
+

∑
ψ,ν

C V ,LR
ψe
stpr

Jαψ,L
st

⎞⎠
+ eL

r

(
2 C S,R R∗

ee
rpts

Se,R
st

+ C S,R R∗
eu

rpts
Su,R

st
+ C S,R R∗

ed
rpts

Sd,R
st

+ C S,RL∗
eu

rpts
Su,L

st
+ C S,RL∗

ed
rpts

Sd,L
st

)

+ σαβeL
r

(
C T ,R R∗

eu
rpts

T αβ
u,R
st

+ C T ,R R∗
ed

rpts
T αβ

d,R
st

)
+ νL

r

(
C S,RL∗

νedu
rpts

Sud,L
st

+ C S,R R∗
νedu
rpts

Sud,R
st

)
+ C T ,R R∗

νedu
rpts

σαβνL
r
T αβ

ud,R
st

, (79)

�
(6,B,L)
uR ,p =γαuR

r

(
2C V ,R R

uu
prst

Jαu,R
st

+ C V ,R R
eu

stpr
Jαe,R

st
+ C V 1,R R

ud
prst

Jαd,R
st

+ C V ,LR
νu

stpr
Jαν,L

st
+ C V ,LR

eu
stpr

Jαe,L
st

+ C V 1,LR
du

stpr
Jαd,L

st
+ C V 1,LR

uu
stpr

Jαu,L
st

)

+ γαT AuR
r

(
C V 8,R R

ud
prst

Jα,A
d,R
st

+ C V 8,LR
uu

stpr
Jα,A

u,L
st

+ C V 8,LR
du

stpr
Jα,A
d,L
st

)
+ T AuL

r

(
2C S8,R R∗

uu
rpts

S A
u,R
st

+ C S8,R R∗
ud

rpts
S A

d,R
st

)

+ uL
r

(
C S,R R∗

eu
tsrp

Se,R
st

+ 2C S1,R R∗
uu

rpts
Su,R

st
+ C S1,R R∗

ud
rpts

Sd,R
st

+ C S,RL
eu

stpr
Se,L

st

)
+ C T ,R R∗

eu
tsrp

σαβuL
r
T αβ

e,R
st

+ γαdR
r

(
C V ,LR∗

νedu
tsrp

Jαeν,L
st

+ C V 1,LR∗
uddu
tsrp

Jαdu,L
st

)
+ C V 8,LR∗

uddu
tsrp

γ αT AdR
r

Jα,A
du,L

st

+ dL
r

(
C S,R R∗

νedu
tsrp

Seν,R
st

+ C S1,R R∗
uddu
tsrp

Sdu,R
st

)
+ C S8,R R∗

uddu
tsrp

T AdL
r

S A
du,R

st
+ C T ,R R∗

νedu
tsrp

σαβdL
r
T αβ

eν,R
st

, (80)

�
(6,B,L)

dR ,p =γαdR
r

(
2C V ,R R

dd
prst

Jαd,R
st

+ C V ,R R
ed
stpr

Jαe,R
st

+ C V 1,R R
ud
stpr

Jαu,R
st

+ C V ,LR
νd
stpr

Jαν,L
st

+ C V ,LR
ed
stpr

Jαe,L
st

+ C V 1,LR
ud
stpr

Jαu,L
st

+ C V 1,LR
dd
stpr

Jαd,L
st

)

+ γαT AdR
r

(
C V 8,R R

ud
stpr

Jα,A
u,R
st

+ C V 8,LR
ud
stpr

Jα,A
u,L
st

+ C V 8,LR
dd
stpr

Jα,A
d,L
st

)
+ T AdL

r

(
C S8,R R∗

ud
tsrp

S A
u,R
st

+ 2C S8,R R∗
dd

rpts
S A

d,R
st

)

+ dL
r

(
C S,R R∗

ed
tsrp

Se,R
st

+ C S1,R R∗
ud
tsrp

Su,R
st

+ 2C S1,R R∗
dd

rpts
Sd,R

st
+ C S,RL

ed
stpr

Se,L
st

)
+ C T ,R R∗

ed
tsrp

σαβdL
r
T αβ

e,R
st

+ γαuR
r

(
C V ,LR

νedu
stpr

Jανe,L
st

+ C V 1,LR
uddu
stpr

Jαud,L
st

)
+ C V 8,LR

uddu
stpr

γαT AuR
r

Jα,A
ud,L

st
+ uL

r

(
C S1,R R∗

uddu
rpts

Sud,R
st

+ C S,RL
νedu
stpr

Sνe,L
st

)
+ C S8,R R∗

uddu
rpts

T AuL
r

S A
ud,R

st
, (81)

�
(6,B,L)
νL ,p =γανL

r

⎛⎝2C V ,LL
νν
prst

Jαν,L
st

+
∑
ψ �=ν

C V ,LL
νψ
prst

Jαψ,L
st

+
∑
ψ �=ν

C V ,LR
νψ
prst

Jαψ,R
st

⎞⎠ + γαeL
r

(
C V ,LL

νedu
prst

Jαdu,L
st

+ C V ,LR
νedu
prst

Jαdu,R
st

)

+ eR
r

(
C S,R R

νedu
prst

Sdu,L
st

+ C S,RL
νedu
prst

Sdu,R
st

)
+ C T ,R R

νedu
prst

σαβeR
r
T αβ

du,L
st

, (82)

�
(6,B,L)
eL ,p =γαeL

r

⎛⎝2C V ,LL
ee
prst

Jαe,L
st

+ C V ,LL
νe
stpr

Jαν,L
st

+ C V ,LL
eu
prst

Jαu,L
st

+ C V ,LL
ed
prst

Jαd,L
st

+
∑
ψ

C V ,LR
eψ
prst

Jαψ,R
st

⎞⎠
+ eR

r

(
2C S,R R

ee
prst

Se,L
st

+ C S,R R
eu
prst

Su,L
st

+ C S,R R
ed Sd,L

st
+ C S,RL

eu
prst

Su,R
st

+ C S,RL
ed Sd,R

st

)

prst prst
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+ σαβeR
r

(
C T ,R R

eu
prst

T αβ
u,L
st

+ C T ,R R
ed
prst

T αβ

d,L
st

)
+ γανL

r

(
C V ,LL∗

νedu
rpts

Jαud,L
st

+ C V ,LR∗
νedu
rpts

Jαud,R
st

)
, (83)

�
(6,B,L)
uL ,p =γαuL

r

(
2C V ,LL

uu
prst

Jαu,L
st

+ C V ,LL
νu
stpr

Jαν,L
st

+ C V ,LL
eu
stpr

Jαe,L
st

+ C V 1,LL
ud
prst

Jαd,L
st

+ C V ,LR
ue
prst

Jαe,R
st

+ C V 1,LR
uu
prst

Jαu,R
st

+ C V 1,LR
ud
prst

Jαd,R
st

)

+ γαT AuL
r

(
C V 8,LL

ud
prst

Jα,A
d,L
st

+ C V 8,LR
uu
prst

Jα,A
u,R
st

+ C V 8,LR
ud
prst

Jα,A
d,R
st

)
+ C T ,R R

eu
stpr

σαβuR
r
T αβ

e,L
st

+ uR
r

(
C S,R R

eu
stpr

Se,L
st

+ 2C S1,R R
uu
prst

Su,L
st

+ C S1,R R
ud
prst

Sd,L
st

+ C S,RL∗
eu
tsrp

Se,R
st

)
+ T AuR

r

(
2C S8,R R

uu
prst

S A
u,L
st

+ C S8,R R
ud
prst

S A
d,L
st

)

+ γαdL
r

(
C V ,LL∗

νedu
tsrp

Jαeν,L
st

+ C V 1,LR
uddu
prst

Jαdu,R
st

)
+ C V 8,LR

uddu
prst

γαT AdL
r

Jα,A
du,R

st

+ dR
r

(
C S1,R R

uddu
prst

Sdu,L
st

+ C S,RL∗
νedu
tsrp

Seν,R
st

)
+ C S8,R R

uddu
prst

T AdR
r

S A
du,L

st
, (84)

�
(6,B,L)

dL ,p =γαdL
r

(
2C V ,LL

dd
prst

Jαd,L
st

+ C V ,LL
νd
stpr

Jαν,L
st

+ C V ,LL
ed
stpr

Jαe,L
st

+ C V 1,LL
ud
stpr

Jαu,L
st

+ C V ,LR
de
prst

Jαe,R
st

+ C V 1,LR
du
prst

Jαu,R
st

+ C V 1,LR
dd
prst

Jαd,R
st

)

+ γαT AdL
r

(
C V 8,LL

ud
stpr

Jα,A
u,L
st

+ C V 8,LR
du
prst

Jα,A
u,R
st

+ C V 8,LR
dd
prst

Jα,A
d,R
st

)
+ C T ,R R

ed
stpr

σαβdR
r
T αβ

e,L
st

+ dR
r

(
C S,R R

ed
stpr

Se,L
st

+ C S1,R R
ud
stpr

Su,L
st

+ 2C S1,R R
dd
prst

Sd,L
st

+ C S,RL∗
ed
tsrp

Se,R
st

)
+ T AdR

r

(
C S8,R R

ud
stpr

S A
u,L
st

+ 2C S8,R R
dd
prst

S A
d,L
st

)

+ γαuL
r

(
C V ,LL

νedu
stpr

Jανe,L
st

+ C V 1,LR∗
uddu

rpts
Jαud,R

st

)
+ C V 8,LR∗

uddu
rpts

γαT AuL
r

Jα,A
ud,R

st

+ uR
r

(
C S,R R

νedu
stpr

Sνe,L
st

+ C S1,R R
uddu
stpr

Sud,L
st

)
+ C T ,R R

νedu
stpr

σαβuR
r
T αβ
νe,L

st
+ C S8,R R

uddu
stpr

T AuR
r

Sud,L
st

. (85)

The �L �= 0, �B = 0 contributions to the EOM from L(6) are

�
(6,B,/L)
eR ,p =eL

r

(
C S,LL

νe
stpr

S̃νcν,L
st

+ C S,LR∗
νe

tsrp
S̃ννc,L

st

)
+ C T ,LL

νe
stpr

σαβeL
r
T̃ αβ

νcν,L
st

+ γανc
L
r

(
C V ,RL∗

νedu
rpts

Jαud,L
st

+ C V ,R R∗
νedu
rpts

Jαud,R
st

)
, (86)

�
(6,B,/L)
uR ,p =uL

r

(
C S,LL

νu
stpr

S̃νcν,L
st

+ C S,LR∗
νu

tsrp
S̃ννc,L

st

)
+ C T ,LL

νu
stpr

σαβuL
r
T̃ αβ

νcν,L
st

+ C S,LR∗
νedu
tsrp

dL
r

S̃eνc ,L
st

+ C V ,R R∗
νedu
tsrp

γαdR
r

J̃αeνc,R
st

, (87)

�
(6,B,/L)
dR ,p =dL

r

(
C S,LL

νd
stpr

S̃νcν,L
st

+ C S,LR∗
νd

tsrp
S̃ννc,L

st

)
+ C T ,LL

νd
stpr

σαβdL
r
T̃ αβ

νcν,L
st

+ C S,LL
νedu
stpr

uL
r

S̃νce,L
st

+ C T ,LL
νedu
stpr

σαβuL
r
T̃ αβ

νce,L
st

+ C V ,R R
νedu
stpr

γαuR
r

J̃ανce,L
st

, (88)

�
(6,B,/L)
νL ,p =νc

L
r

⎛⎝2C S,LL∗
νν
prst

S̃∗
νcν,L

st
+ 2C S,LL∗

νν
rpts

S̃ννc,L
st

+
∑
ψ

(
C S,LL∗

νψ
prst

S∗
ψ,R

st
+ C S,LL∗

νψ
rpts

Sψ,L
st

+ C S,LR∗
νψ
prst

S∗
ψ,L
st

+ C S,LR∗
νψ
rpts

Sψ,R
st

)⎞⎠
+ σαβνc

L
r

(
C T ,LL∗

νe
prst

T αβ∗
e,R
st

+ C T ,LL∗
νe
rpts

T αβ
e,L
st

+ C T ,LL∗
νu
prst

T αβ∗
u,R
st

+ C T ,LL∗
νu
rpts

T αβ
u,L
st

+ C T ,LL∗
νd
prst

T αβ∗
d,R
st

+ C T ,LL∗
νd
rpts

T αβ

d,L
st

)

+ ec
L
r

(
C S,LL∗

νedu
prst

S∗
du,R

st
+ C S,LR∗

νedu
prst

S∗
du,L

st

)
+ C T ,LL∗

νedu
prst

σαβec
L
r
T αβ∗

du,R
st

+ γαec
R
r

(
C V ,RL∗

νedu
prst

Jα∗
du,L

st
+ C V ,R R∗

νedu
prst

Jα∗
du,R

st

)
, (89)

�
(6,B,/L)
eL ,p =eR

r

(
C S,LL∗

νe
tsrp

S̃ννc,L
st

+ C S,LR
νe
stpr

S̃νcν,L
st

)
+ C T ,LL∗

νe
tsrp

σαβeR
r
T̃ αβ

ννc,L
st

+ νc
L
r

(
C S,LL∗

νedu
rpts

Sud,L
st

+ C S,LR∗
νedu
rpts

Sud,R
st

)
+ C T ,LL∗

νedu
rpts

σαβνc
L
r
T αβ

ud,L
st

, (90)

�
(6,B,/L)
uL ,p =uR

r

(
C S,LL∗

νu
tsrp

S̃ννc,L
st

+ C S,LR
νu
stpr

S̃νcν,L
st

)
+ C T ,LL∗

νu
tsrp

σαβuR
r
T̃ αβ

ννc,L + C S,LL∗
νedu dR

r
S̃eνc,L

st
st tsrp
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+ C T ,LL∗
νedu
tsrp

σαβdR
r
T̃ αβ

eνc,L
st

+ C V ,RL∗
νedu
tsrp

γαdL
r

J̃αeνc ,R
st

, (91)

�
(6,B,/L)
dL ,p =dR

r

(
C S,LL∗

νd
tsrp

S̃ννc,L
st

+ C S,LR
νd
stpr

S̃νcν,L
st

)
+ C T ,LL∗

νd
tsrp

σαβdR
r
T̃ αβ

ννc,L
st

+ C S,LR
νedu
stpr

uR
r

S̃νce,L
st

+ C V ,RL
νedu
stpr

γαuL
r

J̃ανce,L
st

. (92)

�L, �B �= 0, contributions to the EOM from L(6) are

�
(6,/B,/L)
eR ,p =C S,LR∗

uud
tsrp

εαβγ dγ c
R
r
S̃β,αc

u,L
st

+ εαβγ uγ c
R
r

(
C S,LR∗

duu
tsrp

S̃β,αc
ud,L

st
+ C S,R R∗

duu
tsrp

S̃β,αc
ud,R

st

)
+ εαβγ dγ

L
r

(
C S,LL

ddd
stpr

S̃αc,β
d,L
st

+ C S,RL
ddd
stpr

S̃αc,β
d,R
st

)
, (93)

�
(6,/B,/L)
uR ,p =εβγαec

R
r

(
C S,LR∗

duu
stpr

S̃βc,γ ∗
du,L

st
+ C S,R R∗

duu
stpr

S̃βc,γ ∗
du,R

st

)
+ εαβγ uβc

R
r

(
C S,RL∗

uud
prst

S̃γ c, ∗
de,L

st
− C S,RL∗

uud
rpts

S̃ ,γ c
ed,L

st

)

+ εβαγ dβc
R
r

(
C S,RL∗

duu
rpts

S̃ ,γ c
eu,L

st
+ C S,R R∗

duu
rpts

S̃ ,γ c
eu,R

st
+ C S,RL∗

dud
rpts

S̃ ,γ c
νd,L

st
− C S,R R∗

udd
prst

S ,γ ∗
νd,L

st

)
+ C S,LR∗

ddu
tsrp

εβγανL
r
S̃γ ,βc

d,L
st

, (94)

�
(6,/B,/L)

dR ,p =εαβγ dβc
R
r

(
C S,RL∗

ddu
prst

S̃γ c, ∗
uν,L

st
− C S,RL∗

ddu
rpts

S̃ ,γ c
νu,L

st
+ C S,RL∗

ddd
prst

S ,γ ∗
ed,R

st
− C S,RL∗

ddd
rpts

Sγ ,

de,L
st

+ C S,R R∗
ddd
prst

S ,γ ∗
ed,L

st
− C S,R R∗

ddd
rpts

Sγ ,

de,R
st

)

+ εαβγ uβc
R
r

(
C S,RL∗

duu
prst

S̃γ c, ∗
ue,L

st
+ C S,R R∗

duu
prst

S̃γ c, ∗
ue,R

st
+ C S,RL∗

dud
prst

S̃γ c, ∗
dν,L

st
− C S,R R∗

udd
rpts

Sγ ,

dν,R
st

)
+ C S,LR∗

uud
stpr

εβγαec
R
r
S̃βc,γ ∗

u,L
st

+ εβγαeL
r

(
C S,LR∗

ddd
tsrp

S̃γ ,βc
d,L
st

+ C S,R R∗
ddd
tsrp

S̃γ ,βc
d,R
st

)
+ εβγανL

r

(
C S,LR∗

udd
tsrp

S̃γ ,βc
du,L

st
+ C S,R R∗

udd
tsrp

S̃γ ,βc
du,R

st

)
, (95)

�
(6,/B,/L)
νL ,p =εαβγ dγ c

L
r

(
C S,LL∗

udd
tsrp

S̃β,αc
du,L

st
+ C S,RL∗

dud
tsrp

S̃β,αc
ud,R

st

)
+ εαβγ dγ

R
r

(
C S,LR

udd
stpr

S̃αc,β
ud,L

st
+ C S,R R

udd
stpr

S̃αc,β
ud,R

st

)
+ C S,RL∗

ddu
tsrp

εαβγ uγ c
L
r
S̃β,αc

d,R
st

+ C S,LR
ddu
stpr

εαβγ uγ
R
r
S̃αc,β

d,L
st

, (96)

�
(6,/B,/L)
eL ,p =εαβγ uγ c

L
r

(
C S,LL∗

duu
tsrp

S̃β,αc
ud,L

st
+ C S,RL∗

duu
tsrp

S̃β,αc
ud,R

st

)
+ C S,RL∗

uud
tsrp

εαβγ dγ c
L
r
S̃β,αc

u,R
st

+ εαβγ dγ
R
r

(
C S,LR

ddd
stpr

S̃αc,β
d,L
st

+ C S,R R
ddd
stpr

S̃αc,β
d,R
st

)
, (97)

�
(6,/B,/L)
uL ,p =εαβγ dβc

L
r

(
C S,LL∗

udd
prst

S̃γ c, ∗
dν,L

st
+ C S,LR∗

udd
prst

S ,γ ∗
νd,L

st
− C S,LL∗

duu
rpts

S̃ ,γ c
eu,L

st
− C S,LR∗

duu
rpts

S̃ ,γ c
eu,R

st

)
+ C S,RL

ddu
stpr

εβγανc
L
r
S̃βc,γ ∗

d,R
st

+ εβαγ ec
L
r

(
C S,LL∗

duu
stpr

S̃βc,γ ∗
du,L

st
+ C S,RL∗

duu
stpr

S̃βc,γ ∗
du,R

st

)
+ εαβγ uβc

L
r

(
C S,LR∗

uud
prst

S̃γ c, ∗
de,R

st
− C S,LR∗

uud
rpts

S̃ ,γ c
ed,R

st

)
, (98)

�
(6,/B,/L)

dL ,p =εβαγ uβc
L
r

(
C S,LL∗

udd
rpts

S̃ ,γ c
νd,L

st
+ C S,LR∗

udd
rpts

Sγ ,

dν,R
st

− C S,LL∗
duu
prst

S̃γ c, ∗
ue,L

st
− C S,LR∗

duu
prst

S̃γ c, ∗
ue,R

st

)
+ C S,RL∗

uud
stpr

εβγαec
L
r
S̃βc,γ ∗

u,R
st

+ εβγαeR
r

(
C S,LL∗

ddd
tsrp

S̃γ ,βc
d,L
st

+ C S,RL∗
ddd
tsrp

S̃γ ,βc
d,R
st

)
+ εβγανc

L
r

(
C S,LL∗

udd
stpr

S̃βc,γ ∗
ud,L

st
+ C S,RL∗

dud
stpr

S̃βc,γ ∗
du,R

st

)

+ εαβγ dβc
L
r

(
C S,LL∗

ddd
prst

S ,γ ∗
ed,R

st
− C S,LL∗

ddd
rpts

Sγ ,

de,L
st

+ C S,LR∗
ddu
prst

S ,γ ∗
νu,L

st
− C S,LR∗

ddu
rpts

Sγ ,

uν,R
st

+ C S,LR∗
ddd
prst

S ,γ ∗
ed,L

st
− C S,LR∗

ddd
rpts

Sγ ,

de,R
st

)
. (99)

Finally, the dimension 3 and 5 LEFT operators contributing to the neutrino EOM give

�
(3)
νL
p

= −2C∗
ν

pr
νc

L
r
, (100)

�
(5)
νL
p

= 2 C∗
νγ
pr

σαβνc
L
r

Fαβ. (101)
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