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Abstract
Marine zooplankton release chemical cues, which trigger defenses in unicellular phytoplankton, such as

increased toxin production and changes of colony sizes. Here, we identify the structure of two novel alarm cues
belonging to the group of copepodamides. Similar to the known copepodamides, one of the compounds
described is shown to trigger both amnesic and paralytic shellfish toxin production and chain length shortening
in Skeletonema marinoi. In addition, we report the putative structures of another 21 copepodamides, which con-
stitute 28% of the total copepodamides extractable from whole animals, suggesting that the copepodamide con-
centrations have been underestimated in earlier studies. We introduce a structure-based nomenclature to handle
the increasing number of copepodamides. Analysis of 12 copepod species showed that marine calanoid and
freshwater cyclopoid copepods contain copepodamides. The only harpacticoid included in the analysis, Tigrio-
pus californicus, did not appear to produce detectable amounts of copepodamides. Feeding experiments revealed
that copepodamide compositions depend on both diet and species-specific properties. Copepodamides induce
both morphological and biochemical defensive traits in phytoplankton and may drive large-scale trait–mediated
effects in marine food webs. The more comprehensive list of copepodamides reported here makes it possible to
explore the role of the copepodamide signaling system in the pelagic ecosystem in greater detail.

The free water mass of the oceans, the pelagial, is Earth’s
largest ecosystem, and its primary producers, phytoplankton,
account for half of the planets primary production (Field
et al. 1998). The zooplankton community of the upper part of
the pelagial is dominated by copepods. In productive areas,
they occasionally reach densities of hundreds of individuals
per liter (Hamner and Carleton 1979; Ambler et al. 1991) and
constitute up to 90% of the zooplankton biomass (Froneman
2001; Pane et al. 2004). Copepods play a key role in the food
web as the main vector from the primary producers to higher

trophic levels (Hansen et al. 1994; Verity and Smetacek 1996;
Stibor et al. 2004).

Copepods exude unique chemical cues into surrounding
waters (Selander et al. 2016). Among the exuded compounds
are intraspecific and interspecific cues. This includes species,
sex, and even life-stage–specific cues (Heuschele and Selander
2014). Exuded compounds also serve as early warnings of pred-
ator presence for prey organisms. Prey responses to predator
presence include decreased colony size, induction of toxin pro-
duction, increased bioluminescence, and increased cell wall
silicification (Long et al. 2007; Pondaven et al. 2007; Bergkvist
et al. 2012; Selander et al. 2015; Lindström et al. 2017). One
group of such predator cues is taurine conjugated lipids, cope-
podamides. Copepodamides trigger paralytic shellfish and
amnesic shellfish toxin production in dinoflagellates and dia-
toms (Selander et al. 2015; E. Selander et al. unpubl.), increased
bioluminescence in Alexandrium tamarense and Lingulodinium
polyedra (Lindström et al. 2017), and chain length shortening
in chain forming diatoms (E. Selander et al. unpubl.).

Copepodamides are characterized by the scaffold and the
fatty acid attached to it. The known copepodamides contain
common marine fatty acids such as docosahexaenoic (C22:6),
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eicosapentaenoic (C20:5), or stearidonic acid (C18:4). Cope-
pods, however, contain many more fatty acids, and it is possi-
ble that more copepodamides exist in addition to the ones
currently known. Further, copepodamides have only been mea-
sured in three species of calanoid copepods, Centropages typicus,
Calanus sp., and Pseudocalanus sp. (Selander et al. 2015). Here,
we report the structure of two novel copepodamides and sug-
gest putative structures for an additional 21 copepodamides.
The bioactivity and ecological relevance of one of the newly
identified compounds is tested in dose response experiments
monitoring morphological and biochemical defensive traits of
representatives from the two major marine phytoplankton
groups, dinoflagellates and diatoms. Additionally, we report the
copepodamide composition of 10 common marine copepods
in the NE Atlantic surface waters as well as one harpacticoid
and one freshwater species and explore the effect of diets
with different fatty acid composition on the copepodamide
composition.

Materials and methods
Copepodamide extraction and purification

Copepodamides from freeze-dried Calanus finmarchicus
(11.32 g) (Calanus AS) were extracted with 200 mL methanol
at −20�C for 48 h. The extract was mixed in a blender and
sonicated at 40�C and > 20 kHz, for 30 min, and centrifuged
for 5 min at 1800 rpm. The supernatant was collected and the
procedure repeated with 150 mL methanol. Copepodamides
were separated from less polar compounds by liquid–liquid
partitioning (Löfgren et al. 2012). The methanol extract was
supplemented with 1% aqueous NH3

+, to a volume of 300 mL
and mixed with 300 mL of heptane/methanol (98 : 2). The
mixture was incubated on a shaking table for 30 min, trans-
ferred to a separation funnel, and 150 mL heptane/methanol
(98 : 2) was added. The funnel was shaken vigorously for
3 min. The heptane phase was discarded and the procedure
repeated twice with 300 mL portions of heptane/methanol
(98 : 2). The methanol phase, containing the copepodamides,
was evaporated using a rotary evaporator (Rotavapor R II,
Büchi) at 40�C. The extract was resolved in methanol, diluted
with milliQ water to 25% methanol (aq), and loaded onto an
solid phase extraction (SPE) column (ENVI-18, 19 g, 60 mL;
Sigma-Aldrich). Impurities were removed with 70% (v/v)
methanol, and the copepodamides eluted in 100% methanol.
The copepodamides were further purified by gradient elution
on a high-performance liquid chromatography (HPLC; Hitachi
ELITE LaChrom L-7100) system with a reversed phase column
(KR100, C18, 5 μm, 4.6 × 150 mm; Hichrom) The gradient
went from 100% A (methanol : acetonitrile : water;
35 : 35 : 35) to 100% B (2-propanol) over 25 min, 100% B was
maintained for 5 min before re-equilibrating in 100% A for
7 min before the next injection. Both eluents were supple-
mented with 0.2% (v/v) formic acid, the flow rate was 1 mL
min−1. Fractions were collected (Waters Fraction Collector III)

at 15 s intervals. Fractions were pooled based on copepoda-
mide content. A final isocratic HPLC clean up step with meth-
anol : acetonitrile : water : isopropanol, 9 : 8 : 3 : 80, with
0.2% (v/v) formic acid was used. Fractions containing signifi-
cant amounts of pure copepodamides were pooled and stored
at −20�C.

Copepodamide analysis
Copepodamides were analyzed on an Agilent 1200 LC sys-

tem, coupled to an Agilent 6410 triple quadrupole detector
with electrospray interface (Agilent Technologies). We used a
Prevail column (C18, 3 μm, 2.1 × 150 mm, Hichrom), at 50�C,
and a gradient from A methanol : acetonitrile : water
(35 : 35 : 30) to B 2-propanol, at a flow rate of 0.2 mL min−1.
Both solvents were supplemented with 0.2% (v/v) formic acid.
The gradient started with 5% B, 1 min, followed by a linear
increase over 14 min to 82% B, which was maintained for
1 min before re-equilibrating for 8 min with 5% B. The ion
source was operated in negative mode, at 300�C and 4.5 kV, at
7 L min−1 nitrogen flow at 35 Psi. Copepodamides with
known flat structure were identified using the following diag-
nostic fragments: product ion m/z 432.2 for 22:6-, 20:5-, and
18:4-dihydrocopepodamides with precursor ions m/z 708.5,
734.5, and 760.5; product ion m/z 430.2 for 14:0-, 16.0-, 22:6-,
20:5-, and 18:4-copepodamides with precursor ions 658.5,
686.5, 706.5, 732.5, and 758.5; fragmentor voltage 250 V; and
collision energy 44 eV. 22:6-Copepodamide was used as exter-
nal standard for quantification. For the precursor ion scan for
additional copepodamides from C. finmarchicus, the precursor
ions were scanned from m/z 400 to 1000 for product ions m/z
430.2 and 432.2, respective.

Structure verification of novel copepodamides
To separate and identify the hydrolysable fatty acid side

chain in position C5 (Fig. 1) from the copepodamide, we used
the alkaline transmethylation modified after Christie (1976).
Purified copepodamides were dissolved in 0.2 mL heptane,
and 0.5 mL 0.5 mol L−1 sodium methoxide in dry methanol
was added before incubation in a sonication bath for 30 min
at room temperature. After neutralization with 50 μL acetic
acid and 0.8 mL deionized water, the heptane phase was trans-
ferred into a new glass vial. Extraction was repeated once with
0.5 mL heptane, and the combined heptane phases were evap-
orated under N2 flow at room temperature. The fatty acid
methyl esters were dissolved in heptane and analyzed by gas
chromatography–mass spectrometry (GC–MS) as described in
Selander et al. (2015). To verify the identity of the lyso-
copepodamide scaffold, we extracted the remaining aqueous
phase with chloroform. The chloroform was evaporated and
the sample resolved in methanol before analysis on HPLC–
MS/MS as described above. The sample was compared to
nuclear magnetic resonance (NMR)-verified standards of lyso-
copepodamide, both individually and coinjected (Supporting
Information Fig. S1).
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Species-specific copepodamide composition
The marine copepod species Acartia clausi, Centropages

hamatus, Centropages typicus, Metridia longa, Oithona sp., Pseu-
docalanus sp., and Temora longicornis were collected outside
the Sven Lovén Center for Marine Sciences, Kristineberg, Swe-
den. C. finmarchicus, Calanus glacialis, and Calanus hyperboreus
were collected from water at Svalbard, Norway, 2014. The
intertidal harpacitcoid Tigriopus californicus was purchased
from Reefphyto, and the freshwater specie Cyclops sp. was col-
lected in a pond in the Gothenburg botanical garden, Sweden.
Three to seven copepods were extracted in 1 mL methanol at
−20�C for at least 24 h. The methanol was evaporated at 40�C
under N2 flow and the sample resolved in 40–80 μL methanol
before analysis by HPLC–MS/MS as described above. The rela-
tive proportions (in %) of the different copepodamides ana-
lyzed in each sample were compared by principal component
analysis (PCA) using SIMCA (Version 14.1 Umetrics).

Diet-specific copepodamide composition
Adult females of a T. longicornis culture were used for feed-

ing experiments. Four to six copepods were placed in 5 mL fil-
tered sea water (salinity 26) and fed with Rhodomonas
sp. (6.5 × 105 cells mL−1),Nannochloropsis oculata (3.7 × 105 cells

mL−1), Dunaliella tertiolecta (5 × 105 cells mL−1), or Isochrysis
galbana (4.6 × 105 cells mL−1) for 2 d at 16�C, photoperiod
12 : 12 (light : dark), light intensity 100 μmol photons
m−2 s−1(N = 4 biological replicates). All algae strains were
obtained from the GUMACC algae bank (University of Goth-
enburg, Sweden). Extraction and HPLC–MS/MS analysis of
copepodamides were done as described earlier.

Phytoplankton culturing
Skeletonema marinoi strain GF 04-7D (isolated from Gull-

marsfjord, Sweden, in 2009) and Alexandrium minutum strain
GUMACC 83 (isolated from Ria de Vigo, Spain, 1987) were
obtained from the GUMACC algae bank (University of Goth-
enburg, Sweden). Pseudo-nitzschia seriata (isolated from Disko
Bay, West Greenland, 2013) was obtained from Nina Lund-
holm, Natural History Museum, University of Copenhagen,
Denmark. The algae were cultured in silicate-enriched
(S. marinoi) or selenium-enriched (A. minutum) f/2-medium
(Guillard 1975) or L medium (P. seriata). Incubation tempera-
ture was 16�C, photoperiod 12 : 12 (light : dark), light inten-
sity 100 μmol photons m−2 s−1, and salinity 26 for S. marinoi
and A. minutum. P. seriata was incubated at 4�C, photoperiod
22 : 2 (light : dark), 60 μmol photons m−2, and salinity 30.

Copepodamide dose response experiments
Exponential growing cultures of S. marinoi, P. seriata, and

A. minutum were exposed to 16:0- and 18:4-copepodamide (0, 1,
5, 10, 50, 100, and 500 pmol L−1, n = 4, for S. marinoi; 0, 1,
25, 50, 100, 150, 250, and 500 pmol L−1, n = 3, for P. seriata;
and 0, 2, 4, 8, 16, and 24 nmol L−1, n = 4 for A. minutum).
Copepodamides were coated onto the culture vessel walls
(8.7 mL scintillation vials for S. marinoi and P. seriata, 1.5 mL
glass tubes for A. minutum) by adding them in methanol and
evaporating the solvent under N2 flow, 30�C. Controls were
treated with methanol without copepodamides. Starting cell
concentrations were ≈ 5000 cells mL−1 (S. marinoi), ≈ 6500 cells
mL−1 (P. seriata), and ≈ 10,000 cells mL−1 (A. minutum). S. mari-
noi and P. seriata were incubated on a revolving plankton wheel
at 0.5 rpm, while the motile A. minutum cells were incubated
standing. Incubation conditions were the same as described for
cultures stock above. Incubations lasted 3 d for S. marinoi and
P. seriata and 2 d for A. minutum. After incubation, the numbers
of cells in chains were counted for at least 50 chains from each
replicate under an inverted microscope (S. marinoi) or the cells
harvested for toxin analysis (P. seriata and A. minutum).

Toxin analysis
Domoic acid analysis

The culture samples consisting of cells suspended in media
were acidified with 0.2% (v/v) formic acid and loaded onto
SPE columns (Bond Elute C18 LRC 10 mL, 200 mg, 40 μm;
Agilent) to collect total (intracellular and extracellular) domoic
acid. Columns were desalted with 5 mL milliQ water with

Fig. 1. Structures of the two novel copepodamides. The black structures
show the identified scaffold and the blue the saturated lipids attached to
it. (a) For 14:0-copepodamide (C36H68NO7S

−, molecular weight [MW] 659),
tetradecanoic acid (14:0, myristic acid) is attached to the scaffold at position
C5. (b) For 16:0-copepodamide (C38H72NO7S

−, MW 687), hexadecanoic
acid (16:0, palmitic acid) is attached to the scaffold at position C5.
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0.2% (v/v) formic acid. About 750 μL aqueous methanol (50%,
v/v) was added to the column and left for 1 h, to extract cells.
The samples were eluted into HPLC vials and analyzed on an
Agilent 1200 LC system coupled to an Agilent 6410 triple
quadrupole detector with electrospray interface, injection vol-
ume was 10 μL. We used a reversed phase column (Accucore
2.1 × 150 mm, 2.6 μm, Thermo Fisher Scientific) at 45�C and
isocratic elution with 25% acetonitrile (aq) with 0.1% (v/v)
formic acid. The flow rate was 0.2 mL min−1. The ion source
operated in negative mode at 300�C and 4500 V with a nitro-
gen gas flow of 5.8 L min−1 at 20 psi. Fragmentor voltage was
set at 100 V and collision energy 14 eV. Domoic acid was
identified by comparing retention time and diagnostic frag-
ments, precursor ion m/z 312 and product ion m/z 266.2
(Tammilehto et al. 2012), with domoic acid standard solution
(National Research Council, Certified Reference Materials Pro-
gram, Canada).

Gonyautoxin analysis
The samples were transferred to a 1.5 mL reaction tube and

centrifuged for 5 min at 16�C, 12,000 × g. The supernatant was
discarded and the cell pellets lyophilized. Toxins were extracted
in 200 μL acetic acid (0.05 mol L−1) by three freeze–thaw cycles.
The lysate was centrifuged for 5 min at 12,000 × g, the superna-
tant transferred into HPLC vials and analyzed on an Agilent 1200
LC system coupled to an Agilent 6410 triple quadrupole detector
with electrospray interface, injection volume was 1 μL.We used a
reversed phase chromatography (Accucore 2.1 × 150 mm,
2.6 μm; Thermo Fisher Scientific) and isocratic elution with 50%
acetonitrile (aq) with 0.1% (v/v) acetic acid, flow rate 0.2 mL
min−1. The electrospray ionization source was operated in posi-
tive ionization mode at 4.5 kV and 300�C with a nitrogen gas
flow of 10 L min−1 at 35 psi. Fragmentor voltage was set at 104 V
and collision energy 23 eV (gonyautoxin 1, 4) or 19 eV (gonyau-
toxin 2, 3). Gonyautoxins were identified from comparison of
retention time and diagnostic fragments, precursor ionm/z 412.0
and product ionm/z 314.1 for gonyautoxin 1 and 4 and precursor
ion 396.0 and product ion 298.1 for gonyautoxin 2 and 3 (Dell’a-
versano et al. 2005) provided by analysis of standard solutions of
gonyautoxin 1,4 and 2,3 (National Research Council, Certified
ReferenceMaterials Program, Canada).

Nonlinear regression fits
We performed nonlinear regression fits according to the

Michaelis–Menten equation (GraphPad Prism 7, GraphPad
Software) with the obtained phytoplankton response variables
in relation to the copepodamide concentrations to get infor-
mation about the maximum induced response:

Phytoplankton response¼Rmax ×C
Km +C

where phytoplankton response refers to toxicity or chain
length reduction relative to controls, C denotes copepodamide

concentration, Rmax the maximum induced response, and Km

the half saturation constant, that is, the concentration induc-
ing half the maximum induction.

Results
Structure elucidation of novel copepodamides

To search for additional copepodamides, we performed a
precursor scan of a polar lipid extract from C. finmarchicus
(Fig. 2a). The precursor scan targeting compounds with the
diagnostic fragment m/z 430 revealed two prominent peaks
with precursor ions (negative mode) m/z 658 and 686 in addi-
tion to more than 20 minor constituents (Fig. 2b). GC–MS
analysis of fatty acid methyl esters from isolated copepoda-
mides 658 and 686 revealed the fatty acid side chain to be
myristic acid (C 14:0) for copepodamide m/z 658 and palmitic
acid (C 16:0) for copepodamide m/z 686. MS/MS experiments
confirmed that the scaffold part of both compounds is identi-
cal to NMR-validated lyso-copepodamide (Selander et al. 2015;
Supporting Information Fig. S1). This confirms the structure
of 14:0-copepodamide (C36H68NO7S

−; Fig. 1a) and
16:0-copepodamide (C38H72NO7S

−; Fig. 1b). Accurate mass of
the compounds is consistent with the proposed structures
(Supporting information 2).

A targeted search for additional copepodamides- and
dihydrocopepodamides-containing fatty acids commonly
found in copepods (Tiselius et al. 2012) revealed another
21 putative structures of copepodamides listed in Table 1,
although we were unable to purify sufficient amounts for full
structural elucidation of these. Together with 14:0- and
16:0-copepodamide, the novel copepodamides contribute
28% of total copepodamides in C. finmarchicus extract. We
propose a simple structure-oriented nomenclature (Table 1) to
name the growing number of copepodamides. The described
copepodamides all fall into two groups with either a methyl
(-CH3) or a methylene (=CH2) group at position C3 (Fig. 1).
We refer to these groups as dihydrocopepodamides (former
copepodamides A–C) and copepodamides (former copepoda-
mides D–F). Each group is further characterized by different
fatty acids attached to position C5 which is indicated by the
prefix (e.g., 22:6-copepodamide, a copepodamide with a meth-
ylene group at C3 and docosahexaenoic acid [C 22:6] at C5).
The deacylated species are in analogy with other acyl lipids
referred to as lyso-dihydrocopepodamide (former G) and lyso-
copepodamide (former H). The entire group of compounds
can collectively be referred to as “copepodamides.”

Effects of 16:0-copepodamide on phytoplankton
We were able to purify sufficient amounts of 16:0-

copepodamide and performed dose response experiments with
three microalgae species to confirm its biological activity. We
used established copepod-induced systems in diatoms and
dinoflagellates. A. minutum and P. seriata both increase pro-
duction of toxic secondary metabolites (gonyautoxins and
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domoic acid, respectively) in response to copepod presence
(Selander et al. 2015; Tammilehto et al. 2015). Skeletonema
changes morphology to single celled or shorter chain pheno-
type when exposed to copepods (Bergkvist et al. 2012).
Increased resistance to grazers has been established for
defended phenotypes of Alexandrium and Skeletonema, but the
grazer deterrent role of domoic acid is still debated (Bergkvist
et al. 2012; Selander et al. 2006; E. Selander et al. unpubl.).
18:4-Copepodamide (copepodamide D) was included as a posi-
tive control. It has the same molecular backbone as
16:0-copepodamide and induces toxin formation in
A. minutum (Selander et al. 2015). 16:0-Copepodamide trig-
gered the grazer-induced phenotypes in all three systems
(Fig. 3). P. seriata and S. marinoi were sensitive to low amounts
of copepodamides and signal perception saturated at 50 pmol
L−1 (S. marinoi) and 150 pmol L−1 (P. seriata). In contrast,
A. minutum showed no saturation even at high concentrations
(up to 24 nmol L−1) and is previously shown to do so up to
28 nmol L−1 (Selander et al. 2015). However, for the diatoms,
the potency of 16:0-copepodamide was lower than that of
18:4-copepodamide as reflected by 63% lower maximum
domoic acid increase in P. seriata (Fig. 3b) and 19% lower
maximum chain length shortening in S. marinoi (Fig. 3c). For
A. minutum, no maximum induced response could be esti-
mated as the copepodamide concentrations tested did not lead

to a saturation of the increased toxin production (Fig. 3a), but
for the tested concentrations, no difference in potency of
16:0- and 18:4-copepodamide could be observed.

Copepodamide composition
The composition of the 10 copepodamides with known struc-

ture (lyso-,14:0-, 16:0-, 18:4-, 20:5-, 22:6-copepodamide and lyso-
,18:4-, 20:5-, 22:6-dihydrocopepodamide) shows species-specific
patterns in 11 tested copepod species (marine species: Acartia
clausi, C. finmarchicus, C. glacialis, C. hyperboreus, Centropages
hamatus, Centropages typicus, Metridia longa, Oithona sp., Pseudoca-
lanus sp., and T. longicornis and the freshwater species: Cyclops sp.;
Fig. 4a). A single harpacticoid species (Tigriopus californicus) was
included and did not contain detectable levels of copepodamides.

Some species of the same genus have similar copepodamide
composition, such as Calanus spp., whereas others like Centro-
pages typicus and Centropages hamatus cluster far apart (Fig. 4a).
The freshwater specie Cyclops sp. is not distinctly different
from the saltwater species, and has a similar copepodamide
signature as Centropages hamatus. The presence of copepoda-
mides in the freshwater copepod suggests that copepodamide
signaling may be operating in limnic systems too. Copepoda-
mide composition in Centropages hamatus and C. finmarchicus
illustrates the differences in copepodamide profiles from oppo-
site corners of the PCA. Centropages hamatus, is dominated by

Fig. 2. Total ion chromatogram of an extract from freeze-dried C. finmarchicus. (a) Counts vs. acquisition time; total ion count precursor ion plot. The
area between 15 and 20 min (gray) was extracted and the corresponding spectrums are displayed in (b). (b) The green spectrum shows the precursor
ions with the taurine fragment of 430.2, and the red spectrum displays the precursor ions with the taurine fragment of 432.2. The precursor ions of
758.4, 732.4, and 706.3 have been characterized earlier, but two previously unknown masses, containing the 430.2 fragment, 658.2 and 686.3, formed
prominent peaks in the precursor scan. The analysis was made in negative mode.
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dihydrocopepodamides (95% of total copepodamides),
whereas C. finmarchicus contains only 14% dihydrocopepoda-
mides (Fig. 4b).

Feeding of T. longicornis with different microalgae resulted
in a changed composition of copepodamides (Fig. 4c) mirror-
ing the fatty acid content of the algae. Feeding on
D. tertiolecta, Rhodomonas sp., and I. galbana resulted in high
C18:2-dihydrocopepodamide levels, whereas copepods feeding
on N. oculata mainly formed C20:5-dihydrocopepodamide.
N. oculata is rich in C20:5 (Roncarati et al. 2004; Ohse
et al. 2015) while Rhodomonas algae have a high content of
C18:4 and I. galbana is rich in C18:4 and C22:6 (Patil
et al. 2007; Dahl et al. 2009; Parrish et al. 2012). The fatty acid
composition of D. tertiolecta is typical for chlorophytes, deficient

in C20:5 and C22:6 but contain some C18:4 (Veloza et al. 2006;
Parrish et al. 2012). The food composition had no effect on
which type of copepodamide scaffold was synthesized as both
T. longicornis caught in field and the cultured ones only pro-
duced dihydrocopepodamides but not copepodamides.

Discussion
We report the structure of two novel copepodamides. Both

share the identical molecular scaffold of the known copepoda-
mides but are unique in containing saturated acyl groups. In
addition, we identify 21 putative copepodamide structures with
acyl groups commonly found in copepod organisms. The new
compounds constitute a significant portion of the total

Table 1. Composition of copepodamides in a polar lipid extract of C. finmarchicus analyzed by HPLC-MS/MS. The structures of cope-
podamide A-F are published in Selander et al. (2015), the structures of 14:0- and 16:0-copepodamide are presented in this study, and
the remaining copepodamides are not structural elucidated. Copepodamides are now named by the fatty acid residue followed by a suf-
fix reflecting an unsaturated (copepodamide) or saturated (dihydrocopepodamide) scaffold (e.g., 22:6-copepodamide for the former
copepodamide D and 22:6-dihydrocopepodamide for the former copepodamide A). Fatty acids marked with * were also identified in
taurine-containing lipids in Calanus spp. stage five copepodites in a study of Mayor et al. (2015).

Fatty
acid Scaffold m/z precursor ion m/z product ion

Percentage of all
listed compounds

Former
annotation

22:6* Copepodamide 758 430 50.3 D

22:5 760 9.1

20:5* 732 9.1 E

16:0* 686 6.6

18:4* 706 2.2 F

18:1* 712 1.8

18:3* 708 1.7

20:4 734 1.6

14:0* 658 1.5

16:1* 684 0.6

18:2* 710 0.5

18:5 704 0.3

20:1* 740 0.2

22:4 762 0.2

18:0 714 0.1

16:4 678 0.1

20:2 738 0.1

22:6 Dihydrocopepodamide 760 432 8.6 A

16:0 688 1.6

20:5 734 1.4 B

22:5 762 1.4

18:4 708 0.2 C

20:4 736 0.2

18:3 710 0.2

18:1 714 0.1

18:5 706 0.1

18:2 712 0.1

16:1 686 0.1

14:0 660 0.1
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copepodamides, which have consequently been underestimated
in earlier studies. Ten of the putative structures are likely to be
identical to a group of taurine-containing lipids identified in a
study of the metabolic response of Calanus spp. to environmen-
tal warming and ocean acidification (Mayor et al. 2015) further
supporting their presence in calanoid copepods.

The inducing effect of copepodamides on domoic acid and
gonyautoxin production can facilitate harmful algal bloom
formation of both amnesic and paralytic shellfish toxin-
producing algae. The grazer deterrent role of harmful algal
toxins is debated. Evidence is mainly correlative, where algae
producing toxins trigger a wide range of responses in grazers.
Some grazers are resistant to toxins and feed seemingly
unharmed on harmful algae. Others show decreased feeding
rates and rejection of toxic prey (Guisande et al. 2002; Xu
et al. 2018) or reduced reproductive success (Dutz 1998; Gui-
sande et al. 2002), altogether leading to less grazing pressure
for the algae. Several algal toxins like microcystins, paralytic
shellfish toxins, and amnesic shellfish toxins are induced by
grazer presence, which supports that they serve as grazer deter-
rents (Selander et al. 2006; Takabayashi et al. 2006; Jang
et al. 2007). Both, domoic acid and paralytic shellfish poison
accumulate within the tissue of copepods which play a crucial
role by transfer of the toxins to distant trophic levels (Tester
et al. 2000; Lincoln et al. 2001). As a consequence, harmful
algal blooms sometimes have detrimental effects on, for exam-
ple, fish and mammals (Todd 1993; Landsberg 2002).

Beside increased toxicity, copepod cues also trigger chain
length shortening in Skeletonema, together with a massive
transcriptional response (Bergkvist et al. 2012; Amato
et al. 2018; E. Selander et al. unpubl.). Copepods have an one
order of magnitude lower grazing rate on single cells com-
pared to longer chains, whereas microzooplankton, like cili-
ates, prefer the smaller units (Bjærke et al. 2015). By grazing
on microzooplankton and large phytoplankton, copepods
may act as a switch between two alternate trophic cascades of
different food chain lengths and with opposite selective pres-
sure on phytoplankton size distribution (Stibor et al. 2004).
Measurements of chain length over time confirm that chain
length is negatively correlated to copepod abundance in
nature too (Bjærke et al. 2015). Based on the results reported
here and earlier findings—a previous study shows that cope-
podamides induce bioluminescence in L. polyedra and Alexan-
drium tamarense (Lindström et al. 2017)—we conclude that
copepodamide presence induces a broad range of defensive

Fig. 3. Dose response experiments of A. minutum, P. seriata, and
S. marinoi treated with copepodamides. Symbols display average toxin
induction or colony size reduction normalized to control � SEM after
18:4-copepodamide (circle) or 16:0-copepodamide (square) treatment.
Dashed, black lines represent nonlinear least square fits according to the
Michaelis–Menten equation. (a) Changes in total gonyautoxin 1–4 (GTX)
content in A. minutum cells in percentage after exposure to increasing
concentrations of 18:4-copepodamide and 16:0-copepodamide for 48 h
(N = 4 biological replicates). (b) Changes in domoic acid (DA) contents
in P. seriata cells in percentage after exposure to increasing concentrations
of 18:4-copepodamide and 16:0-copepodamide for 60 h (N = 3 biologi-
cal replicates). (c) Chain length reduction of S. marinoi expressed as per-
centage of chain length in controls after exposure to increasing
concentrations of 18:4-copepodamide and 16:0-copepodamide for 66 h
(N = 4 biological replicates, average length of 50 cell chains per replicate).
Note the different scales on the axes.
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traits in phylogenetically distant groups which may cause
indirect cascading effects in plankton food webs. In particular,
copepods and copepodamides will both favor smaller and/or
more defended phytoplankton phenotypes.

A full characterization of copepodamides makes it possible
to pursue the molecular and ecological mechanisms of indi-
rect effects of copepods in the pelagic ecosystem. For instance,
the signal transduction pathway and downstream molecular
mechanisms leading to the expression of defensive pheno-
types can be studied in controlled laboratory experiments,
and plankton communities can be exposed to copepodamides
to separate the indirect, copepodamide-driven effects from
direct grazing effects.

Dose response experiments comparing copepodamides con-
taining a saturated or unsaturated fatty acid support the

importance of the presence of a fatty acyl group at position
C3 (Selander et al. 2015). Notwithstanding, for the diatoms
tested, the potency of the saturated 16:0-copepodamide is
lower than for the unsaturated 18:4-copepodamide. This sug-
gests that the identity of the fatty acid side chain is also of
some importance for the structure activity relationship and
that especially the level of saturation may be important for
the activity of the copepodamides. The binding of molecules
to proteins is partly driven by entropic terms which mean that
molecules with a lower conformational flexibility and less
conformational penalty toward the bioactive conformation
can bind better than highly flexible molecules (Bostrom
et al. 1998; Hoffmann 2000). In comparison to saturated fatty
acids, the conformational space of unsaturated fatty acids is
smaller, as the double bond introduces a rotational barrier.

Fig. 4. Effects of species affiliation and diet on copepodamide composition. (a) PCA on the relative copepodamide composition of 11 different copepod
species (N = 3–6 biological replicates of three to seven individuals per sample). (b) Example of the copepodamide profiles of Centropages hamatus and
C. finmarchicus (N = 3 [Centropages hamatus]; N = 5 [C. finmarchicus] biological replicates of five individuals per sample, average � SEM). (c) Relative
content of copepodamides in percentage of cultured T. longicornis exclusively fed with Rhodomonas sp., Nannochloropsis oculata, D. tertiolecta, or
I. galbana (N = 4 biological replicates of five to six individuals per sample, average � SEM) and T. longicornis caught in the field (N = 4 biological repli-
cates of three to five individuals per sample, average � SEM).
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Assuming that copepodamides are sensed by microalgae via
receptor proteins, copepodamides with a higher conformal
stability may lead to better binding to the protein and thus
stronger biological activity.

However, the response of A. minutum to copepodamides
was less sensitive than for the diatoms and there was no differ-
ence in the potency of 18:4- and 16:0-copepodamide in toxin
induction. Dinoflagellates and diatoms may have evolved dif-
ferent perception or response mechanisms to copepodamides.
This is not surprising as dinoflagellates and diatoms are repre-
sented in two distinct groups in the eukaryotic tree of life
(Burki and Keeling 2014; Worden et al. 2015) and may indi-
cate convergent evolution of copepodamide receptor proteins.

A study monitoring copepodamide concentrations in the
field reveals that the average natural concentration of copepo-
damides in seawater is 0.4 to 2 pmol L−1. The same study
shows that the effective concentration averages < 0.5% of
the nominal concentration when administered by coating
copepodamides onto culture vessel walls (E. Selander et al.
unpubl.). In the present study, saturation in the dose response
curves for the diatoms was reached at nominal concentrations
of 0.1–0.5 nmol L−1, resulting in 0.5–2.5 pmol L−1 effective
concentrations. Thus, both diatom species respond to copepo-
damide cues in ecologically relevant concentrations. The
lower sensitivity of the dinoflagellate to copepodamides is
puzzling, but copepods occasionally reach densities of hun-
dreds per liter (Hamner and Carleton 1979; Ambler et al.
1991) and a single large copepod can exude 120 pmol d−1

(Selander et al. 2015). This indicates that even these high con-
centrations are in a possible range of natural occurring cope-
podamides. Indeed, copepods do induce toxin production in
A. minutum in laboratory experiments, but the lower sensitiv-
ity also suggest that there may be additional cues to the cope-
podamides involved or alternatively that the standing
incubations used for A. minutum result in lower effective con-
centrations than incubation on a rotating plankton wheel
used for the diatoms in this study.

Our results indicate that copepods have a specific copepoda-
mide composition, which is linked to the diet and controlled
by the amount of available dietary fatty acids. Copepods,
although generally omnivorous, are selective feeders on micro-
algae depending on, for example, size, abundance, or toxicity
(Frost 1972; Schultz and Kiørboe 2009; Ray et al. 2016; Xu
et al. 2017) and microalgae vary in their fatty acid composition
(Roncarati et al. 2004; Patil et al. 2007; Ohse et al. 2015). Addi-
tionally, copepods graze on microzooplankton, further differ-
entiating the fatty acid composition of their diet (Tiselius 1989;
Calbet and Saiz 2005; Tiselius et al. 2012). Hence, it is conceiv-
ably that feeding preferences between different species are mir-
rored in the copepodamide composition. The specific
composition of copepodamides is further influenced by the
proportions of dihydrocopepodamides and copepodamides,
which seem not to be affected by the diet. It may reflect evolu-
tionary differences in copepodamide biosynthesis among the

copepod species tested. This is obviously also the case for the
harpacticoid Tigriopus californicus, which does not produce
detectable amounts of copepodamides at all. In accordance to
the biosynthetic pathway of a group of related compounds in
Tetrahymena (Kaya and Sano 1991), it is possible that the two
copepodamide scaffolds are synthesized prior to the introduc-
tion of the fatty acid residue, resulting in a species-specific dis-
tribution of dihydrocopepodamides and copepodamides with a
diet-depending variation of the fatty acid side chain.

As the composition of exuded copepodamides of
C. finmarchicus (Fig. 4b) is similar to the composition of
extractable copepodamides (Selander et al. 2015), the specific
composition of dihydrocopepodamides and copepodamides
observed within different copepod species can have ecological
consequences. Dihydrocopepodamides are approximately
10 times more potent inducers of paralytic shellfish toxin pro-
duction in dinoflagellates than copepodamides (Selander
et al. 2015). Thus, formation of harmful algae blooms may be
more promoted by copepods rich in dihydrocopepodamides
such as Acartia clausi, Centropages hamatus, and T. longicornis.

Further, this study represents the first record of copepoda-
mides in freshwater copepods and suggests that copepoda-
mides may act as cue compounds in limnic systems too.

It is currently not known why copepods synthesize copepo-
damides and why the compounds are released into the water,
but kairomones, chemical cues benefitting the receiving
organism, are often released involuntary where the com-
pounds original purpose, for example, metabolism, improves
overall fitness (Pohnert et al. 2007). One possible hypothesis
is that copepodamides serve a function as emulsifiers in the
digestive tract of copepods in analogy to taurine-containing
lipids found in the gastric juice of crabs and bile salts in other
animals (Van Den Oord et al. 1965; Maldonado-Valderrama
et al. 2011). Alternatively, Mayor et al. (2015) discuss a specu-
lative role of taurine lipids found in Calanus in the transporta-
tion and protection of metabolic substrates from their storage
location to the point of oxidative catabolism within mito-
chondria. Beside this, a variety of possible functions of cope-
podamides is conceivable and further studies, for example,
regarding the localization and biosynthesis of copepodamides
are needed to learn more about the function of copepoda-
mides within the copepods.
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