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Abstract: Although vitamin A is essential for gut immune cell trafficking (paramount for the intestinal
immune system), epidemiological studies on the role of vitamin A in colorectal cancer (CRC) aetiology
are conflicting. By using functional polymorphisms, gene–environment (GxE) interaction analyses
may identify the biological effects (or “mechanism of action”) of environmental factors on CRC
aetiology. Potential interactions between dietary or supplemental vitamin A intake and genetic
variation in the vitamin A metabolic pathway genes related to risk of CRC were studied. We used a
nested case-cohort design within the Danish “Diet, Cancer and Health” cohort, with prospectively
collected lifestyle information from 57,053 participants, and the Cox proportional hazard models and
likelihood ratio test. No statistically significant associations between the selected polymorphisms and
CRC, and no statistically significant interactions between vitamin A intake and the polymorphisms
were found. In conclusion, no support of an involvement of vitamin A in CRC aetiology was found.

Keywords: gene-environment interaction; diet; immune system; candidate gene; pro-vitamin
A-carotenoids; Vitamin A; retinol; Western-style diet

1. Introduction

Colorectal cancer (CRC) has a high impact on human health with a lifetime risk in Western
European and North American populations of around 5% [1]. CRC is the third most common cancer
worldwide with more than 1.8 million new cases in 2018 and increasing incidence [1]. A significant
part of the risk has been attributed to the Western life style [2], where a high intake of red and processed
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meat and alcohol use are linked to a high risk of CRC, and intake of whole grains and dairy products
to a low risk of CRC [3–5]. With the goal of reducing the number of CRC patients, it is of major
importance to identify individuals at high risk of CRC as well as the risk factors involved.

From biological considerations, vitamin A and pro-vitamin A carotenoids are likely to affect
colorectal carcinogenesis. Vitamin A is a group of unsaturated nutritional organic compounds that
includes retinal, retinol, retinoic acid (RA), and pro-vitamin A carotenoids (e.g., β-carotene, α-carotene,
β-cryptoxanthin). Vitamin A sources from food include mainly fat-soluble retinol from animal sources
(e.g., liver) and green- or yellow-coloured carotenoids from vegetables (e.g., leafy vegetables, carrots).
In the intestine, RA (produced from retinol via two sequential oxidative steps) has been found to
govern the regulation of T cells into Th1/Th2/Th17/Tregs pathways and the development of oral
immune tolerance via induction of foxp3+ regulatory T cells [6]. In line with this, RA was found to be
necessary for developing gut immune tolerance in response to certain microbes in an experimental
human study [7], and RA-deficiency led to dysregulated T cell response and development of colitis and
CRC in a mouse model [8]. Interestingly, RA is needed for the production of integrin α4β7 necessary
for homing of T cells [9], which is an important initial step in the establishment of gut inflammation,
and lack of β7 inhibited the growth of intestinal tumours in an animal model [10]. Additionally,
pro-vitamin A carotenoids have been found to have antioxidant and anti-inflammatory properties
mediated via e.g., activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) pathway [11] and
inhibition of the nuclear factor kappa-B (NF-kB) pathway, respectively, in in vitro studies (reviewed
in [12]). Finally, RA can interact with the nuclear receptors RAR/RXR, which are related to immune
responses and inflammation-related pathways [13]. These data are supported by human and animal
studies; low serum retinol levels were identified as a predictor of poor survival in CRC patients [14],
and vitamin A deficiency was associated with a higher rate of CRC development in an animal model [8].
However, despite the biologically plausible effect of vitamin A intake on CRC risk, the epidemiological
evidence is scarce and conflicting [15–18]. Individual variability in the bioavailability due to e.g.,
genetics may, furthermore, complicate the investigations [19].

CRC is heterogeneous; hence many factors are involved in the disease aetiology. These factors
may not be present in every individual patient developing CRC, and their impact may vary among
individuals. Thus, even identification of important risk factors in subgroups may be difficult in
epidemiological studies. Gene–environment interaction analyses assume that the genetic variants are
randomly distributed during the gamete formation. Such analyses may capture risk factors present
in specific subgroups of CRC patients that may not easily be captured by epidemiological studies,
because an interaction signifies the involvement of both the studied gene and the environmental risk
factor in the disease pathway [20–24].

Based on the scarce evidence on the role of vitamin A in CRC carcinogenesis, we decided to
investigate potential interactions between vitamin A intake and gene variants related to the vitamin A
metabolic pathway. We used a nested case-cohort design within the Danish “Diet, Cancer and Health”
(DCH) cohort with prospectively collected lifestyle information encompassing 57,053 participants,
of which 1038 cases that developed CRC were compared to 1857 controls. Vitamin A intake was
analysed as total intake (dietary and supplements combined), dietary intake (retinol and β-carotene as
a weighted sum), and supplements separately. We also evaluated potential effects of retinol (mainly
from meat and meat products) and β-carotene (mainly from plant foods) separately. We selected
functional variants in genes involved in vitamin A metabolism.

2. Materials and Methods

2.1. Subjects

As previously described [25], the DCH Study is a Danish cohort study designed to investigate
the relation between diet, lifestyle, and cancer risk. The cohort consists of 57,053 persons, recruited
between December 1993 and May 1997. All the subjects were born in Denmark, and the individuals
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were 50 to 64 years of age and had no previous cancers reported. Blood samples, anthropometric
measures, and questionnaire data on diet and lifestyle were collected at study entry.

2.2. Follow-Up and Endpoints

As previously described [20–22,26,27], the present study used a nested case-cohort design.
Follow-up was based on the Danish population-based Cancer Registry. Between 1994 and December
31, 2009, 1038 CRC cases were diagnosed. A sub-cohort of 1857 people was randomly selected as
controls within the full cohort at time of entry in agreement with the case-cohort study design [28],
and thus without respect to time and disease status. Due to the choice of design with a priori sampling
of the sub-cohort, 28 persons were both cases and sub-cohort, and these persons were kept in the
analyses. Consequently, 1038 CRC cases and 1857 sub-cohort members were analysed.

2.3. Dietary and Lifestyle Questionnaire

Information on diet, lifestyle, weight, height, medical history, environmental exposures,
and socio-economic factors were collected at enrolment using questionnaires and interviews and has
been described in detail elsewhere [21,29,30]. In short, the validated food-frequency questionnaire,
assessed dietary intake in 12 categories of predefined responses, including 68 food items, ranking
from ‘never’ to ‘eight times or more per day’. A section on the intake of dietary supplements included
open-ended questions on brands and doses, and categorical questions on frequency of intake and
its duration (number of months during the last year) and whether they had taken the supplement
in question within the last month. Information on the contents of micronutrients in the different
brands of dietary supplement was obtained from producers or distributors of the specific products.
For each participant we calculated average daily intake of specific foods and nutrients by means
of the software program Food Calc (Copenhagen University, Copenhagen, Denmark) [31], using
population-specific standardized recipes and sex-specific portion sizes. The two forms of vitamin A,
retinol and β-carotene, were examined as a weighted sum, where β-carotene was allotted one sixth
of the vitamin A-activity compared to retinol [30]. The vitamin A from supplements was calculated
as previously described [30]. The Pearson correlation coefficients for nutrient intake (adjusted for
energy intake) between the food-frequency questionnaire and two times 7 days of weighted records
was 0.45 for vitamin A. Red and processed meat was calculated by combining intake of fresh and
minced beef, veal, pork, lamb, offal, bacon, smoked or cooked ham, other cold cuts, salami, frankfurter,
Cumberland sausage, and liver pâté. Total dietary fiber was estimated by the method of the Association
of Official Analytical Chemists [32], which included lignin and resistant starch. Fiber intake was
calculated by multiplying the frequency of consumption of relevant foods (i.e., fruit, vegetables, grains,
and leguminous fruit) by their fiber content as determined from national databases of food content as
described earlier [21,29,30]. For fruits, only the intake of fresh fruit was examined, whereas intake of
vegetables also included estimated contributions from food recipes. Intake of alcohol was inferred
from the food-frequency questionnaire and life-style questionnaire as described earlier [33]. Abstainers
were defined as those who reported no intake of alcohol on the food-frequency questionnaire, and no
drinking occasions on the lifestyle questionnaire. Smoking status was classified as never, past, or
current. Persons smoking at least 1 (one?) cigarette daily during the last year were classified as smokers.
Non-steroidal anti-inflammatory drug (NSAID) use (“Aspirin”, “Ibuprofen”, or “Other pain relievers”)
was assessed as ≥ 2 pills per month during one year at baseline. Use of hormone replacement therapy
(HRT) among women was assessed as current, former, or never user.

2.4. Genotyping and Selection of Polymorphisms

The polymorphisms were chosen based on their biological function. Promising polymorphisms
with known functionality or associated with biological effects suggesting functionality or linkage with
functional polymorphisms, and with a reasonable minor allele frequency to study gene–environment
interactions, were selected. Buffy coat preparations were stored at minus 150 ◦C until use. DNA
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was extracted as described [34]. The DNA was genotyped by LGC KBioscience (Hoddesdon, UK) by
polymerase chain reaction (PCR)-based KASP™ genotyping assay (http://www.lgcgenomics.com/).
To confirm reproducibility, genotyping was repeated for 10% of the samples, yielding 100% identity.

2.5. Statistics

Incidence rate ratios (IRR) and 95% Confidence Intervals (CI) were based on a Cox proportional
hazard model fitted to the age at the event of CRC according to the principles for analysis of case-cohort
studies [28], using the approach of Prentice and Langholz [35]. The main explanatory variables were
the genotypes. All models were adjusted for baseline values of risk factors for CRC: body mass index
(BMI) (kg/m2, continuous), use of hormone replacement therapy (HRT), (never/past/current, among
women), intake of dietary fibre (g/day, continuous), red and processed meat intake (g/day, continuous),
energy intake (kJ/day), NSAID use (yes/no), and smoking status (never/past/current). Cereal, fibre,
fruit, and vegetable consumption were also entered linearly as continuous covariates. All analyses
were stratified by gender to ensure that baseline (underlying) hazards were gender specific.

No recessive effects were found. In order to maximize the statistical power for the interactions
analyses, the genotypes were, therefore, combined, assuming a dominant model. In the interaction
analyses for vitamin A intake and polymorphisms, we present two analyses: in one analysis the vitamin
A intake was used as a numeric variable, and in the other, vitamin A intake was entered in the model as
a three-level categorical variable, defined via tertile cut-points derived from the empirical distribution
of the whole population. Deviation from the Hardy–Weinberg equilibrium in the comparison group
was assessed using a Chi-square test. All analyses were performed using the survival package (Terry
M. Therneau, version 2.42.4, (Mayo Clinic, Rochester, MN, USA)) of the statistical computational
environment R, version 3.5.1 ((R Foundation for Statistical Computing, Vienna, Austria)). A p < 0.05
(2-sided) was considered to indicate a statistically significant test result.

3. Results

3.1. Baseline Characteristics

Figure 1 shows the flowchart of the study participants. Included in the analysis were 1038 cases
and a subcohort of 1857 control participants.
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Table 1 shows the baseline characteristics of 1038 CRC cases and 1857 sub-cohort members
including CRC risk factors as previously studied [20–22,24,27,36,37]. There were no associations
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between vitamin A intakes and risk of CRC. Among the controls, the genotype distributions of the
studied polymorphisms were in Hardy–Weinberg equilibrium (results not shown).

Table 1. Participant description.

Variable Cases Sub-Cohort IRR (95% CI) 1

n (%) Median (5–95%)
(Missing) n (%) Median (5–95%)

(Missing)

Total 1038 (100) 1857 (100)
Sex

Females 462 (45) 865 (47)
Males 576 (55) 992 (53)

Age at entry 58 (51–65) 56 (51–64)
BMI (kg/m2) 26 (21–34) (3) 26 (21–33) 1.05 (1.01–1.10) 5

Food intake
Alcohol (g/day) 2 15 (1–71) 14 (1–66) 1.03 (0.98–1.07) 6

Dietary fiber (g/day) 20 (11–33) 21 (11–34) 0.83 (0.65–1.08) 7

Red and processed meat (g/day) 112 (46–233) 109 (41–236) 1.01 (0.97–1.06) 8

Total energy (kJ/day) 9681 (6115–14,712) (4) 9633 (5922–14,820) 1.00 (1.00–1.00) 9

Fruits (g/day) 166 (24–493) (4) 176 (27–546) 0.98 (0.95–1.02) 10

Vegetables (g/day) 153 (46–367) (4) 163 (50–372) 1.03 (0.98–1.09) 11

Fruit and vegetables (g/day) 331 (98-796) (4) 350 (102–818) 1.00 (0.97–1.02) 12

Vitamin A intake
Vitamin A (total) (RE/day) 1980 (759–4332) (0) 1992 (800–4398) (4) 0.98 (0.90–1.06) 13

Vitamin A (dietary) (RE/day) 1684 (697–4189) (0) 1693 (670–3966) (4) 1.03 (0.94–1.13)
β-Carotene (total) (µg/day) 2993 (707–12,424) (0) 3177 (761–12,837) (4) 0.99 (0.89–1.10) 14

Retinol (total) (µg/day) 1033 (285–2661) (0) 966 (272–2550) (4) 1.04 (0.91–1.18) 15

Vitamin A (supplements) (%, n) 455 (44) 882 (48) [4] 0.87 (0.74–1.03)
Vitamin A (supplements) 3

(RE/day)
624 (72–1011) (0) 640 (57–1500) (4)

Smoking status
Never 306 (29) 621 (33) 1.00 (ref.)
Past 322 (31) 536 (29) 1.12 (0.91–1.38)

Current 410 (39) 699 (38) 1.18 (0.97–1.44)
NSAID use 4

No 716 (70) 1275 (69) 1.00 (ref.)
Yes 313 (30) 568 (31) 0.99 (0.84–1.18)

HRT use among women
Never 279 (60) 455 (53) 1.00 (ref.)
Past 62 (13) 137 (16) 0.65 (0.45–0.92)

Current 121 (26) 273 (32) 0.70 (0.53–0.92)

Values are expressed as medians (5th and 95th percentiles) or as fractions (%). Number of missing observations in
parenthesis. IRR, incidence rate ratio; CRC, colorectal cancer; CI, confidence interval; BMI, body mass index; NSAID,
non-steroidal anti-inflammatory drug; HRT, hormone replacement therapy. 1 IRRs for CRC estimated by the Cox
proportional hazards model mutually adjusted for all variables, with age as the underlying time axis, and stratified
by gender, so that the underlying baseline hazards are gender specific. 2 Among current drinkers. 3 For those taking
supplements. 4 NSAID use is defined as ≥2 pills per month for one year. 5 Risk estimate per 2 kg/m2 increment of
BMI. 6 Risk estimate for the increment of 10 g alcohol per day. 7 Risk estimate for the increment of 10 g dietary fibers
per day. 8 Risk estimate for the increment of 25 g red and processed meat per day. 9 Risk estimate for the increment
of 1 kJ energy per day (incl alcohol). 10 Risk estimate for the increment of 50 fruits per day. 11 Risk estimate for the
increment of 50 vegetables per day. 12 Risk estimate for the increment of 50 g fruits or vegetables per day. 13 Risk
estimate for the increment of 1000 retinol equivalents (RE) per day. 14 Risk estimate for the increment of 4000 µg
β-carotene per day. 15 Risk estimate for the increment of 1000 µg retinol per day.

3.2. Associations between Polymorphisms and Colorectal Cancer (CRC)

Table 2 shows the studied polymorphisms (rs1667255 near TTR, FFAR4 rs10882272, rs4889286 near
BCO1, BCO1 rs12934922, rs6564851 near BCO1, RARB rs6800566, RARB rs13070407, ABCA1 rs2791952,
FABP2 rs1799883). The polymorphisms were selected based on known or suggested functional effects
such as being involved in the metabolism, transport, or cellular uptake of retinoids.

Table 3 shows the crude and adjusted associations between the polymorphisms and CRC. No
statistically significant associations were found. In order to maximize the statistical power for the
gene–vitamin A interaction analyses, the genotypes were combined, assuming a dominant model.
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Table 2. Suggested biological effects of the selected polymorphisms.

Gene Rs-Number MAF Function/Effect of Polymorphism Feature Reference

RA Transport

near TTR rs1667255 0.50 The SNP has been associated with
circulating retinol levels Downstream of gene [38,39]

FFAR4 rs10882272 0.39 - 3′ UTR [38,39]

Cleavage β-Carotene into RA

near BCO1 rs4889286 0.49 Associates with plasma β-carotene Upstream of gene [40]
BCO1 rs12934922 0.23 - Missense (Arg to Ser) [40,41]

near BCO1 rs6564851 0.48 - Upstream of gene [40]

RA Receptor

RARB rs6800566 0.25 Associated with immune response
and/or cytokine levels after stimulation Intron [42]

RARB rs13070407 0.20 - Intron

Uptake of β-Carotene into Enterocytes

ABCA1 rs2791952 0.14 Associated with
β-carotene bioavailability Intron [43,44]

FABP2 rs1799883 0.25 Affect the promotor activity in in vitro
promotor assay Missense (Ala to Thr)) [45]

MAF, minor allele frequencies in the population; RA, retinoic acid; SNP, single nucleotide polymorphism; UTR,
un-translated region. Proteins encoded by genes: transthyretin encoded by TTR, free fatty acid receptor 4 endcoded
by FFAR4, beta-carotene oxygenase 1 encoded by BCO1, retinoic acid receptor beta encoded by RARB, ATP binding
cassette subfamily A member 1 encoded by ABCA1, fatty acid binding protein 2 encoded by FABP2.

Table 3. Incidence rate ratios (IRR) for associations between the polymorphisms and colorectal cancer (CRC).

Polymorphism ncases (%) nsub-cohort (%) IRR (95% CI) 1 IRR (95% CI) 2 p-Value 3

TTR rs1667255
AA 360 (39) 675 (39) 1.00 (ref.) 1.00 (ref.)
CA 426 (46) 794 (46) 0.99 (0.83–1.19) 1.03 (0.86–1.23) 0.76
CC 139 (15) 270 (16) 0.97 (0.76–1.24) 0.99 (0.77–1.27) 0.93

CA + CC 565 (61) 1064 (61) 0.99 (0.84–1.17) 1.02 (0.86–1.21) 0.84
CC vs. AA +

CA 139 (15) 270 (16) 0.97 (0.78–1.22) 0.97 (0.78–1.22) 0.82

FFAR4 rs10882272
TT 395 (43) 699 (40) 1.00 (ref.) 1.00 (ref.)
TC 414 (45) 811 (47) 0.92 (0.77–1.10) 0.92 (0.77–1.10) 0.35
CC 116 (13) 232 (13) 0.90 (0.69–1.16) 0.93 (0.71–1.21) 0.57

TC + CC 530 (57) 1043 (60) 0.91 (0.78–1.08) 0.92 (0.78–1.09) 0.33
BCO1 rs4889286

TT 250 (27) 451 (26) 1.00 (ref.) 1.00 (ref.)
TC 451 (48) 862 (49) 0.95(0.78–1.15) 0.96 (0.79–1.17) 0.70
CC 237 (25) 446 (25) 0.97(0.77–1.21) 0.99 (0.79–1.25) 0.97

TC + CC 688 (73) 1308 (74) 0.96(0.80–1.15) 0.97 (0.81–1.17) 0.77
BCO1 rs12934922

AA 274 (30) 541 (31) 1.00 (ref.) 1.00 (ref.)
TA 437 (47) 837 (48) 1.05 (0.87–1.27) 1.05 (0.87–1.28) 0.61
TT 211 (23) 364 (21) 1.18 (0.94–1.48) 1.18 (0.93–1.48) 0.18

TA + TT 648 (70) 1201 (69) 1.09 (0.91–1.30) 1.09 (0.91–1.31) 0.36
BCO1 rs6564851

GG 252 (27) 467 (27) 1.00 (ref.) 1.00 (ref.)
TG 444 (48) 854 (49) 0.96 (0.79–1.17) 0.98 (0.80–1.19) 0.82
TT 230 (25) 433 (25) 1.00 (0.80–1.25) 1.03 (0.82–1.30) 0.80

TG + TT 674 (73) 1287 (73) 0.97 (0.81–1.17) 0.99 (0.82–1.20) 0.96
TT vs. GG +

TG 230 (25) 433 (25) 1.02 (0.85–1.24) 1.05 (0.86–1.27) 0.65
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Table 3. Cont.

Polymorphism ncases (%) nsub-cohort (%) IRR (95% CI) 1 IRR (95% CI) 2 p-Value 3

RARB rs6800566
GG 397 (43) 735 (42) 1.00 (ref.) 1.00 (ref.)
GA 421 (45) 830 (47) 0.93 (0.78–1.11) 0.94 (0.79–1.12) 0.51
AA 108 (12) 199 (11) 1.00 (0.76–1.31) 0.98 (0.75–1.30) 0.92

GA + AA 529 (57) 1029 (58) 0.94 (0.80–1.11) 0.95 (0.80–1.12) 0.56
RARB rs13070407
TT 536 (57) 985 (56) 1.00 (ref.) 1.00 (ref.)
TC 344 (37) 672 (38) 0.96 (0.81–1.14) 0.95 (0.80–1.14) 0.61
CC 60 (6) 110 (6) 1.04 (0.74–1.46) 1.06 (0.75–1.50) 0.75

TC + CC 404 (43) 782 (44) 0.97 (0.83–1.15) 0.97 (0.82–1.14) 0.71
CC vs. TT + TC 60 (6) 110 (6) 1.05 (0.75–1.47) 1.08 (0.77–1.51) 0.66

ABCA1 rs2791952
CC 720 (77) 1389 (79) 1.00 (ref.) 1.00 (ref.)
TC 211 (22) 341 (19) 1.17 (0.96–1.43) 1.15 (0.93–1.40) 0.19
TT 7 (1) 27 (2) 0.48 (0.21–1.10) 0.51 (0.22–1.19) 0.13

TC + TT 218 (23) 368 (21) 1.12 (0.92–1.36) 1.10 (0.90–1.35) 0.34
FABP2 rs1799883

GG 505 (55) 908 (52) 1.00 (ref.) 1.00 (ref.)
GA 356 (39) 706 (41) 0.89 (0.75–1.05) 0.89 (0.74–1.06) 0.18
AA 62 (7) 125 (7) 0.89 (0.64–1.24) 0.88 (0.63–1.23) 0.45

GA + AA 418 (45) 831 (48) 0.89 (0.75–1.04) 0.88 (0.75–1.05) 0.16
1 IRRs for CRC estimated by the Cox proportional hazards model with age as the underlying time axis, and stratified
by gender, so that the underlying baseline hazards are gender specific. 95% CI is based on Wald’s tests. 2 In addition,
adjusted for smoking status, alcohol, HRT status (women only), BMI, use of NSAID, energy consumption, intake of
red and processed meat dietary fiber, fruit and vegetable intake. 3 p-value for adjusted risk estimates. Number of
missing observations; TTR rs1667255 230, FFAR4 rs10882272 227, BCO1 rs4889286 197, BCO1 rs12934922 230, BCO1
rs6564851 214, RARB rs6800566 203, RARB rs13070407 186, ABCA1 rs2791952 199, FABP2 rs1799883 232.

3.3. Interactions between Polymorphisms and Vitamin A Intake

Table 4 shows the results from the interaction analysis between the total dietary intake of vitamin A,
β-carotene, and retinol and the targeted polymorphisms, and Table 5 shows the results from the tertile
analysis of the polymorphisms and total dietary intake of A vitamin, β-carotene, and retinol. There
were no statistically significant interactions between the polymorphisms and total intake of vitamin A,
β-carotene, and retinol. However, weak associations between BCO1 rs4889286 and BCO1 rs6564851
and intake of β-carotene and risk of CRC were seen so that homozygotes of the most common genotype
were associated with 20% and 21% increased risk of CRC, respectively (IRRBCO1 rs4889286 = 1.20, 95% CI
0.97–1.49, Pfor interaction = 0.08; IRRBCO1 rs6564851 = 1.21, 95%: 0.98–1.50, Pfor interaction = 0.09) (Table 3).
In tertile analyses, variant carriage of these two genotypes exhibited a dose-dependent decrease in
CRC risk; that is, the risk decreased with increasing intake of β-carotene (Table 5). Similar patterns
were found for the other polymorphisms and β-carotene. The opposite was observed for retinol, where
the risk of CRC increased with increasing intake of retinol. No statistically significant interactions were
found between polymorphisms and vitamin A from dietary intake or from supplements, respectively
(data not shown), in relation to risk of CRC.

Table 4. Interactions between polymorphisms and dietary intake of vitamin A, β-carotene, and retinol
and risk of colorectal cancer.

Vitamin A β-Carotene Retinol

IRR (95% CI) 1 p-Value IRR (95% CI) 1 p-Value IRR (95% CI) 1 p-Value

TTR rs1667255
AA 0.98 (0.88–1.09) 0.61 1.02 (0.89–1.17) 0.92 0.99 (0.83–1.19) 0.32

CA + CC 1.01 (0.91–1.13) 1.03 (0.91–1.17) 1.11 (0.94–1.32)
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Table 4. Cont.

Vitamin A β-Carotene Retinol

IRR (95% CI) 1 p-Value IRR (95% CI) 1 p-Value IRR (95% CI) 1 p-Value

FFAR4 rs10882272
TT 1.05 (0.94–1.17) 0.25 1.05 (0.93–1.20) 0.45 1.16 (0.97–1.38) 0.21

TC + CC 0.97 (0.87–1.07) 1.00 (0.88–1.13) 1.01 (0.85–1.19)
BCO1 rs4889286

TT 1.07 (0.91–1.26) 0.33 1.20 (0.97–1.49) 0.08 1.04 (0.83–1.31) 0.85
TC + CC 0.98 (0.90–1.08) 1.00 (0.90–1.12) 1.07 (0.92–1.24)

BCO1 rs12934922
AA 1.00 (0.86–1.15) 0.92 0.94 (0.79–1.13) 0.20 1.16 (0.96–1.40) 0.21

TA + TT 1.00 (0.91–1.10) 1.06 (0.94–1.20) 1.00 (0.85–1.18)
BCO1 rs6564851

GG 1.06 (0.90–1.25) 0.37 1.21 (0.98–1.50) 0.09 1.02 (0.81–1.28) 0.77
TG + TT 0.98 (0.90–1.08) 1.02 (0.91–1.14) 1.06 (0.91–1.23)

RARB rs6800566
GG 0.98 (0.88–1.10) 0.53 0.97 (0.85–1.12) 0.23 1.10 (0.92–1.31) 0.61

GA + AA 1.03 (0.92–1.14) 1.06 (0.94–1.20) 1.04 (0.88–1.22)
RARB rs13070407

TT 1.02 (0.92–1.13) 0.46 1.08 (0.96–1.22) 0.05 1.01 (0.86–1.19) 0.35
TC + CC 0.97 (0.86–1.09) 0.92 (0.79–1.08) 1.13 (0.93–1.36)

ABCA1 rs2791952
CC 0.98 (0.90–1.08) 0.43 0.99 (0.88–1.12) 0.52 1.09 (0.95–1.27) 0.47

TC + TT 1.05 (0.90–1.22) 1.04 (0.91–1.21) 1.00 (0.80–1.25)
FABP2 rs1799883

GG 1.00 (0.89–1.11) 0.73 1.04 (0.92–1.18) 0.67 1.09 (0.93–1.29) 0.35
GA + AA 0.97 (0.87–1.09) 1.01 (0.87–1.16) 0.98 (0.82–1.18)

Risk estimate for the increment of 1000 retinol equivalents (RE) per day. IRR, incidence rate ratio; CI, confidence
interval (Vitamin A: Risk estimate for the increment of 1000 retinol equivalents (RE) per day, β-Carotene: Risk
estimate for the increment of 4000 µg per day, Retinol Risk estimate for the increment of 1000 µg per day). 1 p-value
for interaction between genotype and intake of vitamin A, β-carotene or retinol for adjusted risk estimates. Number
of missing observations; TTR rs16672552 294, FFAR4 rs10882272 292, BCO1 rs4889286 263, BCO1 rs12934922 291,
BCO1 rs6564851 279, RARB rs6800566 266, RARB rs13070407 251, ABCA1 rs2791952 264, FABP2 rs1799883 297.
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Table 5. Tertile analyses of polymorphisms and dietary intake of vitamin A, β-carotene, and retinol.

1. Tertile 2. Tertile 3. Tertile 1. Tertile 2. Tertile 3. Tertile p 1. Tertile 2. Tertile 3. Tertile 1. Tertile 2. Tertile 3. Tertile p

Nc/Ns Nc/Ns Nc/Ns IRR (95% CI) IRR (95% CI) IRR (95% CI) Nc/Ns Nc/Ns Nc/Ns IRR (95% CI) IRR (95% CI) IRR (95% CI)

TTR rs1667255 Vitamin A Retinol
AA 119/216 126/228 105/219 1.00 1.02 (0.66–1.57) 0.93 (0.58–1.49) 110/221 127/237 113/205 1.00 1.02 (0.66–1.58) 1.02 (0.63–1.63)

CA + CC 185/335 178/340 190/359 1.03 (0.70–1.53) 0.99 (0.67–1.48) 1.04 (0.68–1.59) 0.83 162/355 178/320 213/359 0.93 (0.62–1.38) 1.08 (0.72–1.62) 1.14 (0.74–1.76) 0.66
β-carotene

AA 131/199 118/229 101/235 1.00 0.90 (0.57–1.42) 0.77 (0.46–1.29)
CA + CC 196/327 196/348 161/359 0.95 (0.65–1.40) 0.98 (0.65–1.49) 0.83 (0.51–1.36) 0.79

FFAR4 rs10882272 Vitamin A Retinol
TT 129/236 134/230 125/213 1.00 1.16 (0.76–1.76) 1.19 (0.76–1.87) 118/231 128/244 142/204 1.00 0.97 (0.64–1.49) 1.31 (0.83–2.06)

TC + CC 172/317 168/341 174/363 1.07 (0.73–1.58) 0.95 (0.64–1.41) 0.98 (0.65–1.48) 0.36 154/344 175/314 185/363 0.90 (0.60–1.34) 1.07 (0.71–1.59) 0.97 (0.63–1.48) 0.18
β-carotene

TT 139/217 140/238 109/224 1.00 1.09 (0.71–1.68) 0.90 (0.54–1.50)
TC + CC 187/311 172/340 155/370 0.99 (0.68–1.45) 0.90 (0.59–1.36) 0.79 (0.49–1.28) 0.67

BCO1 rs4889286 Vitamin A Retinol
TT 78/162 79/140 83/142 1.00 1.12 (0.66–1.89) 1.22 (0.71–2.09) 69/145 91/163 80/136 1.00 1.06 (0.63–1.78) 1.10 (0.62–1.95)

TC + CC 230/397 227/437 217/439 1.18 (0.77–1.80) 1.09 (0.71–1.68) 1.08 (0.68–1.70) 0.48 206/438 217/399 251/436 0.98 (0.62–1.53) 1.08 (0.69–1.70) 1.12 (0.70–1.79) 0.98
β-carotene

TT 77/151 87/145 76/148 1.00 1.27 (0.75–2.16) 1.14 (0.63–2.04)
TC + CC 253/380 233/440 188/453 1.31 (0.86–2.01) 1.16 (0.73–1.82) 0.93 (0.55–1.57) 0.12

BCO1 rs12934922 Vitamin A Retinol
AA 89/178 98/155 85/192 1.00 1.23 (0.75–2.01) 0.96 (0.58–1.59) 73/181 91/187 108/157 1.00 1.09 (0.65–1.81) 1.61 (0.95–2.75)

TA + TT 214/376 203/414 212/387 1.18 (0.78–1.79) 1.04 (0.69–1.58) 1.16 (0.74–1.79) 0.23 200/395 209/371 220/411 1.27 (0.82–1.96) 1.38 (0.88–2.17) 1.25 (0.78–2.00) 0.05
β-carotene

AA 94/154 103/170 75/201 1.00 1.09 (0.66–1.80) 0.70 (0.39–1.24)
TA + TT 230/374 212/409 187/394 1.05 (0.69–1.59) 0.98 (0.63–1.53) 0.91 (0.55–1.51) 0.27

BCO1 rs6564851 Vitamin A Retinol
GG 79/168 81/145 82/146 1.00 1.11 (0.66–1.87) 1.20 (0.70–2.05) 73/153 91/166 78/140 1.00 1.06 (0.63–1.77) 1.08 (0.61–1.90)

TG + TT 224/388 222/431 215/434 1.19 (0.78–1.82) 1.11 (0.72–1.69) 1.09 (0.69–1.72) 0.53 199/426 215/392 247/435 0.98 (0.63–1.52) 1.11 (0.71–1.73) 1.13 (0.71–1.80) 0.95
β-carotene

GG 78/155 85/151 79/153 1.00 1.23 (0.72–2.09) 1.14 (0.64–2.05)
TG + TT 248/379 225/432 188/442 1.30 (0.85–1.99) 1.15 (0.73–1.82) 0.98 (0.58–1.66) 0.19

RARB rs6800566 Vitamin A Retinol
GG 132/239 133/246 123/232 1.00 0.98 (0.65–1.48) 1.04 (0.66–1.63) 119/250 138/239 131/228 1.00 1.19 (0.78–1.82) 1.14 (0.73–1.80)

GA + AA 171/325 170/330 176/350 0.95 (0.65–1.40) 0.96 (0.65–1.43) 0.96 (0.64–1.45) 0.96 155/334 165/326 197/345 1.00 (0.67–1.49) 1.01 (0.68–1.51) 1.16 (0.76–1.77) 0.63
β-carotene

GG 142/229 142/241 104/247 1.00 1.08 (0.70–1.67) 0.81 (0.48–1.36)
GA + AA 185/305 171/346 161/354 0.99 (0.68–1.46) 0.91 (0.60–1.36) 0.87 (0.54–1.38) 0.51

RARB rs13070407 Vitamin A Retinol
TT 168/305 179/313 177/348 1.00 1.10 (0.76–1.60) 1.01 (0.68–1.49) 161/315 166/323 197/328 1.00 0.97 (0.67–1.41) 1.12 (0.74–1.67)

TC + CC 141/257 129/264 122/239 1.08 (0.74–1.59) 0.92 (0.62–1.37) 1.02 (0.66–1.58) 0.46 115/270 144/243 133/247 0.87 (0.58–1.30) 1.11 (0.75–1.65) 1.01 (0.66–1.54) 0.38
β-carotene

TT 184/287 167/332 173/347 1.00 0.90 (0.60–1.33) 0.93 (0.59–1.48)
TC + CC 147/247 152/255 93/258 0.99 (0.68–1.45) 1.08 (0.72–1.62) 0.67 (0.40–1.13) 0.06
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Table 5. Cont.

1. Tertile 2. Tertile 3. Tertile 1. Tertile 2. Tertile 3. Tertile p 1. Tertile 2. Tertile 3. Tertile 1. Tertile 2. Tertile 3. Tertile p

Nc/Ns Nc/Ns Nc/Ns IRR (95% CI) IRR (95% CI) IRR (95% CI) Nc/Ns Nc/Ns Nc/Ns IRR (95% CI) IRR (95% CI) IRR (95% CI)

ABCA1 rs2791952 Vitamin A Retinol
CC 237/435 237/452 227/467 1.00 0.99 (0.72–1.36) 0.97 (0.68–1.37) 207/456 242/444 252/454 1.00 1.18 (0.85–1.63) 1.19 (0.84–1.70)

TC + TT 69/124 71/124 74/113 1.03 (0.64–1.64) 1.06 (0.66–1.68) 1.18 (0.72–1.95) 0.78 68/126 67/118 79/117 1.28 (0.81–2.04) 1.13 (0.69–1.84) 1.33 (0.81–2.21) 0.52
β-carotene

CC 251/421 250/446 200/487 1.00 1.03 (0.74–1.46) 0.79 (0.52–1.20)
TC + TT 78/114 69/131 67/116 1.06 (0.67–1.68) 0.96 (0.60–1.55) 1.11 (0.64–1.93) 0.24

FABP2 rs1799883 Vitamin A Retinol
GG 159/284 167/312 165/296 1.00 0.94 (0.65–1.37) 1.03 (0.69–1.55) 154/300 154/287 183/305 1.00 0.97 (0.66–1.43) 1.10 (0.73–1.65)

GA + AA 146/266 133/257 128/284 0.93 (0.63–1.37) 0.92 (0.62–1.38) 0.82 (0.53–1.25) 0.57 118/267 147/273 142/267 0.85 (0.57–1.27) 0.98 (0.66–1.45) 0.94 (0.61–1.45) 0.68
β-carotene

GG 183/300 161/288 147/304 1.00 1.04 (0.70–1.53) 0.91 (0.57–1.45)
GA + AA 144/229 148/287 115/291 1.01 (0.69–1.49) 0.90 (0.60–1.35) 0.74 (0.46–1.20) 0.58

Nc, Ncases; Ns, Nsubcohort. Number of missing observations; TTR rs1667255 294, FFAR4 rs10882272 292, BCO1 rs4889286 263, BCO1 rs12934922 291, BCO1 rs6564851 279, RARB rs6800566
266, RARB rs13070407 251, ABCA1 rs2791952 264, FABP2 rs1799883 297. Vitamin A 1st tertile 300–1600 RE/day, 2nd tertile 1600–2500 RE/day, 3rd tertile 2500–15,500 RE/day. Retinol 1st
tertile 90–730 µg/day, 2nd tertile 730–1280 µg/day, 3rd tertile 1280–5660 µg/day. β-carotene l 1st tertile 160–2180 µg/day, 2nd tertile 2180–4710 µg/day, 3rd tertile 4710–54,180 µg/day.
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4. Discussion

This study investigated potential associations between polymorphisms of genes involved in
the vitamin A metabolic pathway and CRC and, furthermore, potential interactions between these
polymorphisms and dietary intake of vitamin A in relation to CRC risk using the large prospective
Danish “Diet, Cancer and Health” cohort. We found no statistically significant associations of the
polymorphisms with risk of CRC, and no statistically significant interactions between the selected
polymorphisms and intake of vitamin A in relation to CRC risk. When evaluating β-carotene and
retinol separately, we did find an indication of opposite CRC risks independent of genotype, where
β-carotene was associated with dose-dependent decreased CRC risks, and retinol was associated with
dose-dependent increased CRC risks. These effects are most likely driven by plant foods and meat,
respectively, and not vitamin A, due to the lack of effect of the polymorphisms.

The epidemiological evidence for the relation between vitamin A and CRC aetiology is scarce
and conflicting. First, a large meta-analysis from 2010 found no association between dietary intake
of vitamin A from food and supplements and CRC (relative risks (RR) = 0.88; 95% CI: 0.76,1.02 for
>4000 vs. ≤1000 µg/day). The study included thirteen prospective cohort studies from North America
and Europe in a pooled analysis comprising 676,141 men and women, including 5454 CRC cases [17].
Conversely, two prospective studies from 2012 and 2014 found inverse associations of pre-diagnostic
blood concentrations of RA with CRC risk. In the first study, nested within the European Prospective
Investigation into Cancer and Nutrition (EPIC), plasma concentrations of RA and dietary consumption
of RA were determined in 898 colon cancer cases, 501 rectal cancer cases, and 1399 matched controls.
An inverse association was observed between high pre-diagnostic plasma RA concentration and a
low risk of colon cancer (IRR for the highest quartile = 0.63 (0.46–0.87), ptrend = 0.01) [15]. The other
study evaluated the association of serum levels of eight antioxidant nutrients, including β-carotene,
among postmenopausal women from a subsample of the Women’s Health Initiative in relation to CRC
risk using repeated measurements. Among 5477 women with baseline serum antioxidant values, 88
incident cases of CRC were identified over a median follow-up time of 12 years. The average serum
level of β-carotene was inversely associated with lowered risk of CRC (HRs for highest vs. lowest
tertile 0.54 (0.31–0.96)) [16]. A retrospective case-control study, the Japanese Fukuoka CRC study,
published in 2012, found that intake of vitamin A (retinol-equivalent) was inversely related to CRC
risk in women, but positively related in men [18]. Thus, these studies do not support the notion that a
high vitamin A intake protects against CRC. Our genetic study found no support for a significant role
of vitamin A in the etiology of CRC.

Furthermore, vitamin A and, especially, carotenoid absorption from supplements, may be
hampered by being less efficient compared to dietary intake, especially from formulations not
containing many lipids [46]. Therefore, in addition to analysing the total vitamin A intake (i.e., from
both diet and supplements), we analysed the data for dietary intake and intake from supplements
separately. No statistically significant interactions between the polymorphisms and the intake of
vitamin A from dietary sources or from supplements were found. Similarly, inconsistent associations
were found for CRC risk and supplemental vitamin A in a recent review [47]. However, the power in
the present study to perform such analysis was limited.

Advantages and limitations with the study design have been described in previous
studies [20–22,26,27,48]. The main advantage of this study is the prospective study design including
the collection of dietary and lifestyle factors before diagnosis which eliminates the risk of recall bias.
This design has previously proven its value by the identification of GxE interactions between e.g., meat
and pattern recognition receptors [20,21]. Changes in dietary and life-style habits during follow-up
are possible and, if present, would result in lower power to detect real differences between cases and
the comparison group. The “Diet, Cancer and Health” cohort is relatively homogenous, reducing
population-specific differences in genetics and dietary patterns seen in larger multicentre studies.
The disadvantage of this prospective study is the limited power to study gene–environment interactions.
Residual confounding of lifestyle factors might be present; however, the study design using GxE
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interaction analysis with polymorphisms selected on biological basis strongly reduces the risk of bias.
Alcohol intake could potentially have affected the results. In a case-control study, an association
between the serum retinol level and head and neck cancer was found that was not present among
regular alcohol consumers [39]. A high number of alcohol drinkers in our study may, therefore, result
in a reduced ability to detect an interaction between carotenoids and CRC despite the adjustment for
alcohol intake. Finally, the null-result of this study is dependent on several premises. First, the selected
polymorphisms are either functional themselves or in linkage with functional polymorphisms involved
in vitamin A metabolism. This criteria, however, seems to be fulfilled [19,38–43,45]. Next, the intake of
vitamin A should be sufficiently distributed among the study participants to allow the evaluation of
variable intakes. As shown in Table 1, the intake of vitamin A seems to be well-distributed among the
participants. However, nearly all participants appeared to have a sufficient vitamin A intake, as the
recommended intake of vitamin A is 700 and 900 RE/day for women and men, respectively, which was
generally surpassed.

5. Conclusions

In conclusion, this large gene–environment interaction analysis, using a nested case-cohort design
within the Danish “Diet, Cancer and Health” cohort with prospectively collected lifestyle information
encompassing 57,053 participants, found no support of an involvement of vitamin A in CRC aetiology.
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