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ARTICLE

Decoupling of timescales reveals sparse
convergent CPG network in the adult spinal cord
Marija Radosevic 1, Alex Willumsen 1, Peter C. Petersen 1,2, Henrik Lindén 1, Mikkel Vestergaard 1,3 &

Rune W. Berg 1

During the generation of rhythmic movements, most spinal neurons receive an oscillatory

synaptic drive. The neuronal architecture underlying this drive is unknown, and the corre-

sponding network size and sparseness have not yet been addressed. If the input originates

from a small central pattern generator (CPG) with dense divergent connectivity, it will induce

correlated input to all receiving neurons, while sparse convergent wiring will induce a weak

correlation, if any. Here, we use pairwise recordings of spinal neurons to measure synaptic

correlations and thus infer the wiring architecture qualitatively. A strong correlation on a slow

timescale implies functional relatedness and a common source, which will also cause cor-

relation on fast timescale due to shared synaptic connections. However, we consistently find

marginal coupling between slow and fast correlations regardless of neuronal identity. This

suggests either sparse convergent connectivity or a CPG network with recurrent inhibition

that actively decorrelates common input.
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Movement is an essential part of our daily lives, and
disorders of the motor system, such as spasticity,
amyotrophic lateral sclerosis, and spinal cord injury are

particularly debilitating for individuals. Simple rhythmic move-
ments, such as walking and breathing, have constituted models
for fundamental aspects of the motor system. In spite of extensive
investigations1–6, the connectivity of the network responsible for
generating the motor activity remains unknown. A circuit com-
ponent, known as a central pattern generator (CPG), is believed
to transmit command signals to motoneurons and local premotor
interneurons7–10. Although the size of the respiratory motor
network, i.e. the preBötzinger complex1,11, is well–known, the
size and wiring of other CPG networks are not well understood. A
feedforward organization is often proposed between groups of
neurons or modules, which exhibit alternating rhythmic burst-
ing12 (Fig. 1a). Common drive modules are thought to be small,
e.g., the preBötzinger complex has only 600 neurons1, which
provides rhythmic drive for the rest of the network. The pro-
jection is also believed to diverge onto a much larger population
of receiving neurons13–15. Thus, the receiving neurons would
share the same connections via a dense divergent connectivity
(Fig. 1b). Since the transmission is communicated by action
potentials, which are precise in time, a dense connectivity will
manifest as a strong temporal correlation between synaptic
potentials in the receiving neurons, and this correlation can be
verified experimentally through pairwise recordings. If the drive
network is not a small but rather a large population, however, the
receiver neurons are likely to collect sparse convergent input
without correlation (Fig. 1c). Hence, the assessment of correlation
via pairwise sampling from local neurons will provide important
information about the fundamental structure of the premotor
network.16–18.

Here, we use hindlimb scratching of adult turtles as a model for
stereotypical rhythmic movement, and investigate the pairwise
correlation between motoneurons, as well as interneurons, in a
spinal cord network (see Supplementary Movie 1 for a video
abstract). The turtle preparation offers the unique advantage of
being resistant to anoxia, which permits retaining functionally-
intact motor activity induced purely by natural somatic stimuli.
Further, the mechanical stability of this preparation allows
remarkable access to synaptic input across pairs of neurons via
dual intracellular recording19,20. First, we utilize dual intracellular
recordings to assess the strength of synaptic correlations, in
particular for pairs belonging to the same module. The
modular–association is based on two issues: (1) motor neuron

pairs in close vicinity and with same slow phase (2) interneurons
also in close vicinity that have same phase are assumed to belong
to same module and receive common drive. This assumption is
based on the consensus view that the common–drive network is
small compared with the receiver network (hence the term
‘common’) and therefore the risk of randomly recording from
one of the source–network neurons is equally small. Next, we use
multi–electrode arrays to measure population activity to deter-
mine the pairwise spike–spike correlation as an additional indi-
cator for shared synaptic input, under same assumptions. In both
approaches, we found a consistent decoupling between the slow
rate modulation and the fast synaptic activity, even for pairs
belonging to the same module. This indicates that the similarity
in slow rhythmic activity across spinal neurons is not due to input
from the same source. We propose two explanations for this
paradoxical observation. First, according to a minimalist feed-
forward model, the common drive network must be large with
sparse convergent connections. Alternatively, the network does
not have a pure feedforward architecture, but includes recurrent
connectivity21,22 and consequently active decorrelation. Active
decorrelation is a mechanism observed, e.g., in the neocortex, by
which correlated input due to shared connectivity is partially
cancelled by inhibition23–26. The latter interpretation, if true,
implies a role of inhibition in motor circuits, which is funda-
mentally different from the previously assumed role of inhibition
in the spinal cord.

Results
Paradigm. We recorded from pairs of spinal neurons (n= 66
pairs) either motor neurons (MNs) or interneurons (INs) located
in the lumbar region of adult turtles (segments D9/D10). Multi-
electrode arrays were also inserted into the same region of the
spinal cord (up to 256 channels, in n= 6 animals) in order to
investigate the correlated activity of a subset of the neuronal
population20,27. A computational model was implemented to
assist in predicting the strength of correlated input for different
degrees of sparseness within the common source network.

Correlation to infer sparseness and size: predictions. The cor-
relation of synaptic input across a pool of receiving neurons
depends on how many shared connections they obtain from a
source network. To quantify this, we employed a minimalist
model, which consists of a source network of variable size that
projects to a receiver network, which represents the local spinal
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Fig. 1 Scenarios of feedforward connectivity of motor networks and the expected pairwise correlation. a Traditional half-center model with feedforward
connections from a common drive network (yellow shaded area) to flexor- and extensor–related neurons in the spinal cord (blue shaded region with local
premotor neurons in gray) including reciprocal inhibition (IN). The common–drive network of unknown size and architecture projects to functionally related
local neurons in the lumbar spinal cord (blue shaded region). b A densely connected input from the common–drive network consisting of few neurons with
many connections per neuron (high out–degree) results in strongly correlated input across the receiver neurons (blue). c A sparsely connected and large
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INs and MNs (Fig. 1). A given number of arriving synaptic
connections to a group of neurons can either be provided by
a small population of neurons (yellow) with many axon col-
laterals (Fig. 1b), i.e., a dense/divergent connectivity, or a large
population (yellow) with few axon collaterals, i.e., a sparse/con-
vergent connectivity (Fig. 1c). Thus, synaptic correlation in the
receiver network can provide important insight about the con-
nectivity, i.e., whether it is dense or sparse. In graph theory,
density is often defined as the number of connections (k) divided
by the total possible number of connections28,29 (n), i.e. k/n (see
methods). We define sparseness (ρ) as the inverse of density, i.e.
ρ= 1−k/n. Since the correlation of input across two receiving
neurons does not depend on how many other neurons receive the
same input, the size of the receiver network is irrelevant and
therefore kept constant. Consequently, there will be a large
overlap in input, and thus high correlation when the source
network is small (dense connectivity). This is opposed to when
the network is large with convergent connections, in which the
correlation is expected to be negligible.

Testing this prediction in our model, we found that a dense
input from a small group of common drive neurons (ρ = 0.5)
with rhythmic yet independently Poisson spiking (Fig. 2a) caused
a high correlation in membrane potential of pairs of neurons. In
the contrary situation, a large and sparsely connected common
drive network (ρ = 0.98) evoked membrane potential fluctuations
across pairs of receiving neurons, which had little resemblance
other than the slow rhythm (Fig. 2b). The distribution of synaptic
correlation between pairs was relatively high for the dense/
divergent network (top, Fig. 2c) while the sparse/convergent

network had a near–zero value (bottom). Both distributions
exhibited a large variance around the mean ð?Þ. Such large
variance around a small mean for the sparse architecture is
qualitatively similar to what has been observed in balanced
neocortical networks23,24,30. Variability can also be seen in the
correlation matrix (right). Changing the architecture in our
model from dense to sparse, we observed a direct inverse relation
between sparseness and the correlation of synaptic input in the
receiving cells (Fig. 2d). Further, the mean correlation coefficient
was dependent on the size of the source network. The correlation
showed a graceful decay with network size as 1/n (Fig. 2e). The
network sparseness, on the other hand, climbed towards 1 as the
size of the network increased (gray line). In conclusion, the
correlation between input to a pair of randomly selected receiving
neurons is an indicator of both network sparseness and the
relative size of the common source network. Specifically, the
weaker the shared input is, the more large and sparse is the source
network.

Functional modules grouped by phase. The premise of the
above analysis is that a given pair of receiving neurons belongs to
the same functional module. However, a local spinal population
consists of neurons involved in various activities from flexion to
extension, as well as other synergist contractions with various
phase lags31. These distinct groups of neurons are naturally
expected to receive uncorrelated input due to differences in ori-
gin. To determine the sources, we distinguish between pairs of
neurons according to their phase. Specifically, those with zero
phase lag belong to the same functional module3,32, while those
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with large phase lags are incompatible. Hence, we expect to
observe an increase in correlation in fast synaptic input as the
correlation in slow rate modulation increases, i.e., a coupling
between timescales.

To verify a coupling between slow and fast correlations, we first
conducted dual intracellular recordings from both MNs and INs
in the lumbar spinal cord of turtles performing touch–induced
scratching (Fig. 3a). To avoid the confounding factor of
supraspinal input, the interference with and prevention of the
scracthing response to sensory stimulation, the turtles were
spinalized. The muscles were removed to limit proprioceptive
feedback and increase mechanical stability, while leaving the
cutaneous sensation intact. Post–hoc immunohistology and filling
with an intracellular marker (biocytin, red) was performed to
assist in the cell–type identification (Fig. 3b). Pairwise recordings
showed neurons that had a slow rhythmic activity concurrent
with a particular nerve, i.e., in–phase activity (Fig. 3c). Here,
neuron 1 and 2 were in–phase with each other (φ = 0), as well as
the hip–flexor nerve activity. Another sampled pair exhibited
anti–phase activity (φ = 180°) in spite of their close proximity
(Fig. 3d). In fact, all of the neuronal pairs had commensurate
oscillations with various phase lags (Fig. 3e) regardless of their
close physical location (<300 μm). A similar poor relationship
between physical location and phase delay has been previously
observed in turtles33, as well as other animals, e.g., neonatal
mice4,34,35. Consequently, spinal neurons receive various com-
mon drives, and it is not possible to rely on their somata location
for classification of functional relatedness.

Slow and fast synaptic activities are decoupled. Instead of using
somata location to classify functional relatedness between neu-
ronal pairs, we utilize the cross–correlation of their rhythmic
activity. If a pair is in–phase, both neurons will presumably
belong to the same flexor/extensor module31,32. If they belong to
the same module, they should receive a large proportion of

synaptic input from the same source, and this will manifest as a
strong correlation on a fast synaptic timescale. To quantify this,
we divided the membrane potential (Fig. 4a) into slow and fast
signals (Fig. 4b). Correlation in the slow signal represents func-
tional relatedness; whereas, correlation in the fast signal repre-
sents directly shared synaptic input. The fast signals were
correlated in a sliding 400ms–window in order to probe temporal
aspects of the correlation (Fig. 4c, d). Even though the correlation
on a fast timescale exhibited some variability, it did not possess a
clear relationship with motor rhythm (blue line). The variability
can be associated with uncertainty in estimation since the shuffled
data contained similar dynamics (blue and beige lines Fig. 4d).
Although this sample pair had the highest correlation on a fast
timescale among all pairs, the correlation was rather weak when
comparing the distribution of correlations over time with the
shuffled data (vertical histograms Fig. 4d). For the fast correlation
averaged over the whole trace (red, Fig. 4e), this sample pair
exhibited an almost perfect correlation on a slow timescale (gray,
Fig. 4e) yet a relatively weak synaptic correlation (compare 0.36
with 0.99). Thus, we conclude that the strong correlation on a
slow timescale was not caused by shared synaptic input.

This absence of fast correlation could be due to electrotonic
filtering within the cell if the synaptic contacts of the correlated
source were located far apart on the cell. To test this, we
performed dual recordings (n= 5) of the same neuron (not the
one in a–d). We recorded the membrane potential of the same
neuron at two locations of the cell (Fig. 4f). Here, an electrotonic
separation of the potentials should manifest as a lack of pairwise
correlation. Nevertheless, the correlation in synaptic potentials of
the two electrodes were close to 1 throughout the activity (Fig. 4g)
and much higher than for the correlation between the two
different neurons (Fig. 4e). A corresponding high correlation was
also found in the slow signal (Fig. 4h). Similar results were found
in the other pairwise recordings (n= 5). Thus, we conclude that
the lack of correlation on a fast timescale between two neurons is
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not due to electrotonic filtering. These data also ensure that the
recorded fluctuations, which may appear to be noise, are
correlated in both electrodes, and it is therefore not electronic
noise, but rather fluctuations in synaptic input.

Separation of fast and slow synaptic timescales was performed
for all pairs, both IN-MN and MN–MN pairs (n= 66 in total),
and plotted against each other (Fig. 5a). Pairs that belong to the
same functional module, i.e., have a strong slow correlation, did

not exhibit a parallel correlation in the fast activity. This was
shown as a departure from the unity line, i.e., a decoupling of
timescales (Fig. 5a). A majority of the pairs had a near zero
correlation on a fast timescale (Fig. 5b). Only three out of 66 pairs
(4.5%) had a correlation higher than 2σ from the mean of the
distribution for shuffled pairs, which is within what is expected by
chance for the 95% confidence limit (solid vertical line). When
choosing slow correlation >0.8 there was n= 3/17 points (17.6%)
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above confidence limit. Nevertheless, the fast correlation in this
group was not statistically different from the group with slow
correlation below 0.8 (Supplementary Fig. 1). For comparison, no
decoupling was observed for dual recordings from the same cell
(n= 5, purple Fig. 5a–c). The correlation on a slow timescale had
a scattered distribution from negative to positive values (Fig. 5c)
as expected, considering the previously observed phase distribu-
tion (Fig. 3e). Even pairs within close proximity (Fig. 5d)
exhibited a remarkable decoupling (0.99 vs. 0.36, green point
Fig. 5a). This indicates a pervasive decorrelation of synaptic input
among pairs of neurons of the same functional module. Based on
our previous analysis (Fig. 2d) and since the fast correlation is
below the significance level (0.0–0.2) the network sparseness is
probably about 90% (ρ ~ 0.90). Although we neither know the
size of common drive network (n), nor the in–degree (k), the
feedforward connectivity would have to be sparse, i.e. large n/k, in
order to achieve such low correlation on fast timescale (Fig. 2e).

Spike-spike correlations are decoupled from rate modulation.
Until now, our analysis has focused on common source input to

pairs of neurons in the lumbar cord, which demonstrated a
decoupling between synchrony in slow and fast synaptic activity.
Since the correlated synaptic input often causes synchronized
discharge36 we can further substantiate the decoupling by
investigating the concurrent spiking of the IN and MN popula-
tion. To achieve this, we inserted multi-electrode arrays (128–256
channels) into the same part of the lumbar region to greatly
increase the number of neuronal pairs in our analysis (Fig. 6a).
Single units were sorted using polytrode spike sorting19 (Fig. 6b).
This gave the concurrent spike activity of typically ~300 neurons
in addition to multiple nerve recordings (Fig. 6c). Similar to the
intracellular data, different units had different phase–preference
in rate modulation. The phase of the hip flexor activity (from
Hilbert–transformation, third panel) was used to characterize the
diversity of the population. The spike–triggered phase distribu-
tion was calculated for each unit and plotted in polar histograms,
which illustrates the high degree of complexity in the population
activity (Fig. 6d–e).

To perform a similar analysis to the pairwise intracellular data
(Figs. 4 and 5), the spike activity of individual neurons was
divided into a fast and a slow component by convolving the spike
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times with a narrow and a broad Gaussian kernel, σ= 5 and 150
ms, respectively (Fig. 7a). These traces were then correlated for all
neuronal pairs, and the coefficients were plotted in a composite
correlation matrix in colors (Fig. 7b). The upper–right half shows
the pairwise correlation in slow rate modulation, which contained
large negative-to-positive values (blue to red). The lower–left half
shows the pairwise correlation on a fast timescale. The white
appearance indicates a near–zero value for all pairs. To directly
test the coupling between fast and slow correlations, all
correlation values were plotted against each other (Fig. 7c). A
distinct departure from the unity line (orange) was observed,
similar to the intracellular data (Fig. 5a). The distribution of
correlation coefficient on a fast timescale was thinly scattered
around zero (bottom, Fig. 7d) indicating an absence of correlated
spiking, even though many pairs had a strong slow correlation
(top) and were therefore functionally related (see Supplementary
Discussion on discrepancy between intra– and extracellular data).
This decoupling between timescales is an indication for the lack
of correlated synaptic input, in particular for pairs that belong to
the same module, and therefore should have received common
input.

Local connectivity is sparse. So far, our analysis has focused on
shared input to neighboring neurons or correlations in spiking
activity of extracellularly–identified neurons, without considering
local recurrent connectivity especially inhibitory connection,
which are important for active decorrelation. By combining
intracellular and extracellular recordings together within the
lumbar region, we were able to identify local connections and
directly test whether they are inhibitory or excitatory. By inserting
an intracellular electrode in conjunction with the Si-arrays

(Fig. 8a) we compared the timing of spikes by neurons in the
population with synaptic events in the membrane potential (Vm).
The Vm of one neuron (Fig. 8b) is shown together with the
population spiking activity (Fig. 8c). If there was a connection
from an extracellularly-recorded neuron to the intracellularly
recorded neuron, a spike should evoke either an excitatory or an
inhibitory post-synaptic potential (EPSP or IPSP). Consequently,
we could verify both a connection and its identity. An inhibitory
connection was confirmed by a spike–triggered median trace with
a negative peak significantly outside of the reference distribution
(Fig. 8d). The associated extracellular waveform of the inhibitory
cell was recorded on multiple electrodes on the shank (Fig. 8e).
The decay–time constant of ~5ms of the identified inhibitory
cells (n = 5) was comparable to previously identified glycinergic
inhibition37,38 (Fig. 8f). The significance of the synaptic connec-
tions was established by comparison of the IPSP–peak with that
of a surrogate data, where a temporal structure had been abol-
ished by random jitter of the spike–times. The PSP peak dis-
tribution for a data set containing 4 such inhibitory units is
shown (Fig. 8g). The corresponding spike activity for the same
data set containing the 4 inhibitory activity is shown in blue
(Fig. 8c), where one inhibitory unit is concurrently active with
excitation, while three are alternating, indicating the complexity
of the population activity39. The verified synaptic connections
give a connectivity probability of only 0.9% of inhibitory input,
and even lower for the excitatory units (none detected). Similar
low estimates (1%) has previously been obtained indirectly in the
medulla respiratory system11,40.

Decorrelation by recurrent inhibition. The observation that the
local neurons we recorded from were all inhibitory neurons
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suggests that active decorrelation could be part of the explanation
in the absence of correlated input. The asynchronous state in
cortical networks is achieved by a mechanism known as active
decorrelation41. Active decorrelation relies on some sort of bal-
ance of excitation and inhibition in the network, potentially
recurrent inhibition in the premotor network39. To test the
conditions of such a scenario, we amended the model presented
previously (Fig. 2). First, the feedforward network had low
sparseness (ρ= 0.5), which gave correlations between receiver
neurons of ~0.5 as before (Fig. 9a). Next, adding feedforward
inhibition with the same sparseness (ρ= 0.5) to a local inhibitory
population, which then connected to the receiver neurons (ρinh =
0.9) did not provide decorrelation of the correlated feedforward
input (Fig. 9b). However, when adding recurrent inhibition
within the inhibitory population itself, a substantial decrease in
correlation was observed (cf. middle and bottom correlation
matrices, Fig. 9c). Population histograms of these 3 scenarios
illustrates the difference (Fig. 9d). Nevertheless, this strong dec-
orrelation from recurrent inhibition was contingent on the
sparseness of the inhibitory population. If the connectivity was

too dense (gray region, Fig. 9e), the correlations would be
enhanced, whereas if the connectivity was sparse (red region),
there was a decorrelation of the input. The sparseness used in (c),
was ρ = 0.9, (circle). This is because dense divergent connections
from the inhibitory population would actually enhance rather
than suppress correlations. Another requirement for active dec-
orrelation, is that the inhibitory population is actually active.
Hence, the decorrelation is also activity–dependent. When the
firing rate of the source population is low, there is little or no
suppression of synchronous input (Fig. 9f).

If active decorrelation is the cause of the low pair-wise
correlation we have observed, a time dependence of fast
correlation should be visible in our data since the firing rate is
waxing and waning during the rhythmic activity. To investigate
this further, we simulated the correlation between pairs of
receiver cells during oscillatory input drive (Fig. 10a). The
pairwise correlation had a clear rhythmic dependence, due to the
change in firing rate of the inhibitory population (Fig. 10b). In the
off–cycles the activity of the inhibitory population was lower and
therefore the suppression of the synchronized feedforward input
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was absent, whereas during the on–cycles the input was
decorrelated. The rhythmicity in the decorrelation was quantified
by correlating the fast pairwise correlation (blue trace Fig. 10b)
with the slow low–pass filtered Vm (broken line Fig. 10a), which
showed a negative correlation for the population compared with a
shuffled distribution (cf. green vs. gray Fig. 10c). However, similar
negative correlation between mean Vm and the fast correlation
was not seen in the experimental data. Pairs that were correlated
on a slow timescale (R > 0.9) did not show a dependence between
their fast timescale correlation and the low-pass filtered Vm (in
comparison with shuffled data) (Fig. 10d). Hence, we conclude
that either active decorrelation by a local recurrent inhibitory
population is not present in the spinal network, or the firing rate
within this population is in the high end where there is no
dependence (blue curve to the right of the gray region, Fig. 9f).

Discussion
Although substantial progress has been made in describing spinal
cell types and projection patterns2,4,32,42–45 remarkably little is
known about connectivity in motor circuits. Indeed, the size and
extent of the neuronal population involved in generating motor
activity are unknown, and essential features of graph theory, such
convergence versus divergence, degree distributions29, and

sparseness remain open issues. In this report, we address the
network architecture of spinal CPGs from a dynamics perspective
by employing intra and extracellular recordings from pairs of
lumbar INs and MNs. We find a remarkable absence of corre-
lation of input across all pairs, even for pairs that are strongly
correlated on a slow timescale, and therefore belong to the same
functional module. This paradoxical finding can be interpreted in
two ways: (1) the common drive network is much larger than
previously assumed, and the driving neurons are sparsely con-
nected and convergent upon the receiving lumbar neurons; or (2)
there is a pervasive active decorrelation cancelling an otherwise
correlated drive from a smaller and denser network. Active dec-
orrelation has been found among correlated sensory input to
cortical networks23–26. It is worth noting that these two inter-
pretations are not mutually exclusive. A network, which possesses
both active decorrelation, as well as sparse connectivity, is indeed
possible41. A circuit motif, which could participate in active
decorrelation by combining feedforward excitation with inhibi-
tion, has been reported in the vertebrate spinal cord46. Never-
theless, the latter interpretation implies a radically different
network structure, since such an asynchronous state is char-
acterized by widespread recurrent inhibition and excitation21,23,
which is fundamentally dissimilar to the conventional feedfor-
ward scheme of spinal motor networks.
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Although most networks in the brain are sparse, likely due to
their low wiring cost29, such topology remains to be verified in
spinal motor networks. Spinal CPGs have been suggested to rely
either on unit oscillators2,31, or a multilayered half–center model
with centers, consisting of neurons with similar properties, con-
nected in a feedforward manner12,32 (Fig. 1). The internal con-
nectivity in a module has been proposed to consist of
glutamatergic neurons with recurrent connectivity to induce
reverberate internal activity47. The lower modules are driven by a
descending common network, which is responsible for the
rhythm generation. This feedforward divergent wiring from a
small neuronal population, which orchestrates a larger popula-
tion, would result in a substantial overlap in synaptic input
(Fig. 1b). Since we did not find the correlated activity that such
overlap would cause, our data support either a sparse feedforward
network with convergent connections or a recurrent network
architecture with active decorrelation.

Although the purpose of a sparse network architecture is non-
obvious, it may be relevant for controllability. The circuitry in the
spinal cord produces overall motor activity, but supraspinal
centers, especially the primary motor cortex and the brainstem,
can exert a major influence on this activity. The pertinent ques-
tion is what type of spinal circuit architecture best accommodates

the influence from supraspinal regions? Controllability is an
active topic of investigation in graph theory, and it is defined as
the ability to drive the network from any intrinsic state to any
other state. It was suggested that sparse architectures are difficult
to control compared with dense architectures.48. Here, hubs29

and modules may serve as intermediaries for supraspinal input.
Finding modules in sparse networks is generally difficult49, but an
obvious location to inspect is where the corticospinal projections
terminate. The issue of how such few supraspinal fibers can
control motor behavior remains to be investigated and under-
stood from a network perspective.

A surprising absence of correlation across a neuronal popula-
tion, which is known to receive shared input, has been observed
in cortical networks23–26. This enigmatic observation has moti-
vated theoretical studies in active decorrelation since it was sus-
pected to be the source. If inhibitory feedforward and feedback
loops are present in networks, as recent data suggest39,50, they will
participate in the decorrelation of an otherwise correlated feed-
ward input30,41. The recurrent inhibition21, which is found in
theoretical sparse networks that have balanced excitation and
inhibition, can explain a low cross–correlation, which would
otherwise be large41. It was proposed that recurrent inhibition is
likely responsible for the active decorrelation, and the purpose of
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such decorrelation is primarily to reduce noise from correlated
excitatory drive.41. A similar mechanism could play a role in
spinal networks, where a clear advantage exists of reducing the
correlated noise to ensure stable and smooth movements. This
introduces a novel purpose of inhibitory interneurons in spinal
circuits, which has not previously been considered. Spinal inhi-
bition has traditionally been associated with sculpting of the
motor rhythm via reciprocal connections2,12 or modulation of
gain during motor control20. Nevertheless, since active decorr-
elation occurs in networks with a balance between excitation and
inhibition23,24, and such concurrent E/I activity has been
observed in spinal motor networks under certain
circumstances39,51–53, it is quite possible that part of the low
correlation could be explained by this mechanism. In our simu-
lations of active decorrelation (Figs. 9 and 10) we found that this
scenario is likely only possible if the recurrent inhibitory popu-
lation is itself sparse and substantially active. This inherent net-
work sparseness could also explain the large number of
interneurons, which is eightfold more numerous than MNs54.
Such a new perspective on the purpose of inhibition in spinal
networks remains to be substantiated in future experiments.

The population of neurons investigated in the current study
was classified according to their electrical activity, which is
agnostic towards their genetic identity. Although, spinal inter-
neurons are often categorized according to their cellular linage, it
is unclear if such categorization would have a simple relationship
with the electrical activity. There is no indication of exclusive
connectivity between interneuron subtypes and the various motor
pools. Multiple clades of interneurons can innervate a single
motor pool, and the same clade can innervate multiple motor
pools55. Further, it is uncertain if cells of same subtype should
have a preference of being interconnected, rather than being
connected to cells of other origin. A recent investigation using
intracellular recordings from pairs of interneurons with the shox2
transcription factor demonstrated the internal connectivity
among those interneurons to be sparse56. These interneurons
together with those expressing the Hb9 transcription factors have
been suggested to be responsible for rhythm generation57–59 and
could represent the source neurons in the feedforward network
presented here. Nevertheless, the motor circuitry is likely to be
made up of a heterogeneous population with various electrical
activities interconnected in a complex manner, which remains to
be unraveled39.

Methods
Definition of sparse networks. The density (or connectance), ξ, of a network is
often defined as the number of connections, C, over the maximum possible number
of connections Cmax

28. In our model (Fig. 1b, c) the number of neurons is n1 in the
source network (yellow region) and n2 for the receiving network (blue region). The
maximal number of connections is then Cmax = n1 ⋅ n2. We assume that the
number of incoming connections to the receiving neurons, i.e. the in–degree k, is
constant regardless of n1 and n2. The total number of connections is therefore C =
k ⋅ n2 and ξ is independent on the number of receiving neurons, n2:

ξ ¼ C
Cmax

¼ k
n1

The formal definition of a dense network according to graph theory is a network
where ξ approaches a constant (>0) as the network size increases n1 → ∞. A sparse
network is a network where ξ → 0 as n1 → ∞28. In biological networks the size of a
network cannot approach infinity or even be changed. Therefore the definitions of
sparse and dense networks are less helpful. A practical definition of a sparse
network we therefore suggest a network where the density ξ is very low. Further, we
define sparseness (ρ) as ρ = 1 − ξ = 1 − k/n1, i.e. the inverse of the density. Other
definitions of sparse connectivity is a low probability (~10%) of finding a
connection between neurons60.

Model and simulation. All simulations were done using the NEST simulator
(http://www.nestsimulator.org) ver. 2.1061. The code for the simulations are
available either on the lab web site (www.berg-lab.net) or from the corresponding
author upon reasonable request. The model consisted of a population of

motorneurons implemented as leaky integrate-and-fire cell model with con-
ductance based synapses, for which, spiking was disabled. The parameters of the
cell model was set to have a membrane capacity of 250 pF, leak conductance of
16.67 nS and resting potential of −60 mV. Synapses were modeled as exponentially
decaying conductances with a timescale of 1 ms and reversal potential 0 mV or −80
mV for excitatory and inhibitory synapses, respectively. Three different input
scenarios were considered: (i) The motorneurons population received only feed-
forward excitatory input from an uncorrelated presynaptic population modeled as
an inhomogeneous Poisson process (Fig. 2), (ii) An additional population of
inhibitory interneurons (identical to the motorneurons but with a spike threshold
at −50 mV) provided feedforward inhibitory input, or (iii) same as (ii) but the
inhibitory population was recurrently connected to achieve active decorrelation
(Figs. 9 and 10). Parameters of the model differed between (Fig. 2) and (Fig. 9 and
10):

Figure 2: Peak conductances of excitatory synapses were set to 10 nS. The
population of motorneurons consisted of 30 cells. Time–varying input the
presynaptic input population was modeled using an inhomogeneous Poisson
process with a mean firing rate of 12 spikes/s modulated with a 1 Hz sinusoidal
oscillation with 10 spikes/s amplitude. The size of the presynaptic population was
varied (in separate simulations) between 10 and 500.

Figures 9 and 10: Peak conductances of synapses were set to 5 nS and 15 nS for
excitatory and inhibitory synapses, respectively, to create an approximate balance
between excitatory and inhibitory input currents at resting membrane potential.
The receiving population of motorneurons and the inhibitory interneuron
population each consisted of 100 cells. Time–varying input the presynaptic input
population was modeled using an inhomogeneous Poisson process with a mean
firing rate of 80 spikes/s modulated with a 1 Hz sinusoidal oscillation with
70 spikes/s amplitude.

Data analysis. All data analysis was performed in custom designed procedures
either in Matlab (Mathworks, R2014b) or Python (www.python.org). Spike sorting
was performed using Spyking Circus62 (Fig. 6) and KlustaKwik63 (Figs. 7 and 8).
The intracellular membrane potential recordings were digitally filtered using a
3–pole butterworth filter in both directions to cancel phase distortion using the
‘filtfilt’ function in Matlab. The fast activity was high pass filtered with cut off 5 Hz
after removing any potential action potentials. The slow activity was band–pass
filtered from 0.2–5 Hz. These signals were then cross–correlated in pairwise fashion
using Pearson correlation:

Rxy ¼
Pn

i¼1 ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðyi � �yÞp ð1Þ

where xi and yi are the two arrays of observations to be compared, n is the number
of observations, and �x ¼ Pn

i¼1ðxiÞ=n, is the sample mean. The confidence limits
were calculated by comparing the correlation coefficients to those achieved by
shifting one trace with a delay, which is randomly selected, i.e. the shuffled data.
The 95% confidence limit was ±1.96σ from the mean for the shuffled distribution.
Phase between the rhythmic activity of two neurons recorded intracellularly was
calculated as the location of the peak in the cross–correlation function of the
low–pass filtered Vm trace shift in time. A shuffled correlation was used for
comparison, in which any causal correlation was eliminated by randomly shifting
one trace while leaving the other trace intact. In this way, we could establish the
correlation expected purely by chance. The shuffled recording was constructed by
shifting the trace in time, in a region that had similar statistics of synaptic intensity.
The shift was chosen randomly from trial to trial between 500 ms to 2 s.

Polar histograms of the spike triggered phase. The nerve activity was estimated
by convolving the nerve signal with a Gaussian kernel (σ = 150ms) similar to the
estimates of spike rates. The instantaneous phase of the nerve activity was calcu-
lated from the analytic signal using the Hilbert transform. Before applying the
transform the nerve activity was high pass filtered at 0.1 Hz. We only calculated the
spike triggered phase on nerve signals when there was a ongoing activity (as seen in
Fig. 6).

Pairwise correlation in spike rates: slow and fast. Spike rates were convolved
with a broad and and narrow Gaussian kernels64,

kðtÞ ¼ 1ffiffiffiffiffi
2π

p
σ
exp � t2

2σ2

� �
ð2Þ

where σ = 5 ms and σ = 150ms, respectively, to capture the fast and the slow
activity, respectively (Fig. 7). The spike rates were further high–pass filtered with a
3-pole Butterworth filter using a zero–phase filter (‘filtfilt.m’) function in Matlab,
with a cut–off frequency of 0.3 Hz for the slow activity and 10 Hz for the fast
activity. We wanted to only consider rhythmically neurons in the analysis, since
these are related to the motor activity and easy to group functionally. We test if
units are rhythmically active in relation to the motor program by applying Ray-
leighs test for circular uniformity. The unit that did not have rhythmic activity was
excluded using the Rayleigh test of circular statistics65. The test statistic was z =
NR2, where R is the length of the average phase vector in polar coordinates, and N
is the number of spikes for a given unit. The test statistic was Rayleigh’s test for
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circular uniformity66,67 with a significance level of 5%. The p–value was estimated
as

p ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4N þ 4ðN2 � R2

N Þð
q

� ð1þ 2NÞ
� �

ð3Þ

where RN = R⋅N. Using this level, N = 1701 units were excluded out of the a total
of 5791 recorded units over 3 animals (Fig. 7). For these significantly rhythmic
units the cross–correlation was calculated for all pairs, both on slow and on fast
timescales.

Local connectivity. The combination of the intracellular recording from a single
cell and the simultaneous recordings from hundreds of neurons recorded extra-
cellularly can be extracted from previous reports19,27,52, but are describe briefly
here. Three animals were implanted each with three 64–channel probes
(Berg64–probes, Neuronexus inc.) in D8, D9 and D10. These are lumbar segments
in the turtle corresponding to L2-L5 in mammals54. In addition, an intracellular
sharp electrodes was inserted from the ventral side and ipsilaterally to the probe in
D10. Spike sorting was performed in open source software (Klustakwik-suite:
SpikeDetekt, KlustaKwik v.3.0 and KlustaViewa63). Spike–triggered average (STA)
and spike–triggered median (STM) membrane potential (Vm) of an intracellular
recorded neuron was calculated for all simultaneous extracellular recorded neu-
rons, typically 200–300 neurons. In order to minimize the impact of large excur-
sions in Vm due to the occurrence of action potentials, the median of Vm was used
and z-scored, i.e.

zVm
¼ Vm � μVm

σVm

ð4Þ

The z-scoring compensates for the different degree of fluctuations across
recorded neurons. In order to set an unbiased connection-threshold we chose STM
over STA, as STM allowed us to consider spike triggered traces with spike in them,
as the median value is less affected by the skewness of the Vm-distribution,
introduced by spikes in the Vm-trace. Average traces without spikes in the spike
triggered window, were observed to be visually indistinguishable from the median
traces. To test whether the spike–triggered synaptic potentials where exceeding
chance level, we compared the temporal structure in zVm

with a surrogate data set,
where the spike times had been jittered. The location of the spike in time were
locally jittered to abolish temporal structure using the interval jitter method68 of
size 100 ms. The same analysis was then performed to establish a distribution of
zVm

when there is no causal structure.

Experimental preparation. The data that support the findings of this study are
available either on the lab web site (www.berg-lab.net) or from the corresponding
author upon reasonable request. 80 adult red-eared turtles (Trachemys scripta
elegans) of both sexes were used in this study. Animal was placed on crushed ice for
2 h. to ensure hypothermic anesthesia, then killed by decapitation and blood
substituted by perfusion with a Ringer solution containing (in mM): 120 NaCl; 5
KCl; 15 NaHCO3; 2MgCl2; 3CaCl2; and 20 glucose, saturated with 98% O2 and 2%
CO2 to obtain pH 7.6. The carapace containing the D4-S2 spinal cord segments
(corresponding to the cervical to lumbar regions) was isolated by transverse
cuts20,27,51 and the cord was perfused with Ringer’s solution through the vertebral
foramen, via a steel tube and gasket pressing against the D4 vertebra. The surgical
procedures comply with Danish legislation and were approved by the controlling
body under the Ministry of Justice.

Activation of motor program. To reproducibly activate the scratching motor
pattern, a linear actuator was applied to provide mechanical touch on the skin
around the legs meeting the carapace. The somatic touch was controlled by a
function generator (TT2000, Thurlby Thandar instrument, UK) and consisted of a
ten-second long sinusoidal movement (1 Hz). The touch was applied on the border
of the carapace marginal shields M9-M10 and the soft tissue surrounding the
hindlimb, which is the receptive field for inducing pocket scratching motor
pattern69.

Electrophysiology. Each scratch episode lasted approximately 20 s. A new trial was
initiated after a 5 min rest. Electroneurogram recordings (ENG) were performed
with suction electrodes of the hip flexor nerve and dD8 at the level of D9-D10
vertebra. The ENGs were recorded with a differential amplifier Iso-DAM8. The
bandwidth was 300 Hz–1 kHz. The transverse cut was performed at the caudal end
of D10 of the spinal cord in order to get access to the motor– and inter–neurons27.
Pairwise intracellular recordings were performed using sharp electrodes (≈40MΩ).
Each neuronal pair was recorded for at least one trial, and typically 3–4 trials.
Given the length of each scratch episode (20 s), a single trial is enough to estimate
the pairwise correlation in Vm. The electrodes were filled with a mixture of 0.9 M
potassium acetate and 0.1 M KCl. In most experiments the electrodes also con-
tained 4% W/V biocytin to leave a stain in the cell for post hoc histology. All
experiments were conducted in current-clamp mode with a Multiclamp 700B
amplifier (Molecular devices, Union City, CA). Data were sampled at 10 kHz with a
16-bit analog-to-digital converter, controlled and displayed with Clampex software.
Glass pipettes were pulled on a P-1000 (Sutter instruments, USA). Motoneurons

were accessed from the surface at a typical depth of 50–300 μm using motorized
micromanipulators.

Multi–electrode recordings. Extracellular multi–electrode recordings were per-
formed in parallel at 40 KHz using a 256–channel multiplexed Amplipex amplifier
(KJE-1001, Amplipex). Up to four 64-channel silicon probes were inserted in the
spinal cord from ventral side in incisions in parallel to the spinal cord. We used the
64-channel probes (Berg64–probe from NeuroNexus Inc., Ann Arbor, MI, USA)
with 8 shanks, and 8 recording sites on each shank arranged in a staggered con-
figuration with 30 μm vertical distance (Fig. 6a). The shanks are distanced 200 μm
apart. Recordings were performed at depths in the range of 400–1000 μm inserted
from the ventral side of the cord.

Identification of motoneurons. Motoneurons were mainly identified by their
location in the ventral horn, size (via Rm), size of action potentials and spiking
relation with nerve activity. A subset was filled with biocytin for histological
processing. The tissue containing the motoneuron was carefully removed and left
in phosphate buffered saline (PBS) with 4% paraformaldehyde for 24–48 h. The
tissue was then rinsed with and stored in PBS. The tissue section was mounted in
an agar mount and sliced into several 100 μm slices using a microtome (Leica,
VT1000 S). The slices were incubated for 3–4 hr at room temperature with
Cyanine-3-conjugated (Cy3) to streptavidin (1:500 or 1:250 Jackson ImmunoR-
esearch labs, Inc) in blocking buffer (PBS with 5% donkey serum and 0.3% Triton
X-100). The slices were washed with PBS and incubated overnight at 4 °C with
primary choline acetyltransferase (ChAT) antibodies goat anti-ChAT antibodies
(1:500, AB144P, Millipore, USA) diluted in blocking buffer. The slice was washed
three times with PBS and incubated for 1 hr at room temperature with the sec-
ondary antibody Alexa488 conjugated to donkey anti-goat antibodies (1:1000
Jackson) diluted in blocking buffer. After three washes with PBS, the slice was
mounted and coverslipped using ProLong Gold antifade reagent (Invitrogen
Molecular Probes, USA) and cured overnight at room temperature before micro-
scopy. Micrographs were produced using a confocal microscope, Zeiss LSM 700
with diode lasers, on a Zeiss Axiolmager M2 using a 20 × /0.8 Apochromat
objective (Zeiss). The fluorophores were excited/detected at: Cy3 at 555 nm/
559–700 nm, Alexa488 at 488 nm/405–544 nm, and DAPI at 405/420–700 nm. The
pinhole was 35 μm resulting in an optical section of 2 μm. For all the channels a
mosaic of 5 × 6 was made. During the z-stack of Cy3 fluorescence 15 optical slices
with slight overlap gave a total optical section of 28 μm. A maximum-intensity-
projection of the Cy3 z-stack was done and superimposed on the DAPI and
Alexa488 image. The DAPI and Alexa488 image was taken in the middle of the Cy3
z-stack. Images were handled with ZEN 2011 software (Zeiss) in the LSM and 8-bit
TIFF format.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availabilty
The code that analyzed the neural data and performed the network simulations of this
study are available from the corresponding author upon reasonable request.
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