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Abstract
To test whether genetic variants in PICALM, BIN1, CD2AP, and RIN3—suggested to be involved in blood–brain barrier 
amyloid-β transcytosis pathways—associate with Alzheimer’s disease, all dementia, suggested vascular dementia, and stroke, 
and whether such associations are independent of the strong ε4 APOE risk allele. In a prospective cohort study of 74,754 
individuals from the general population we genotyped PICALM (rs10792832), BIN1 (rs6733839), CD2AP (rs10948363), and 
RIN3 (rs10498633), and generated a weighted and a simple allele score. Multifactorially adjusted hazard ratios for the fourth 
quartile versus the first quartile of the weighted allele score were 1.42 (95% confidence interval 1.22–1.64) for Alzheimer’s 
disease, and 1.33 (1.19–1.48) for all dementia. For suggested vascular dementia and stroke the corresponding estimates were 
1.71 (1.18–2.49) and 1.12 (1.04–1.22), respectively. Hazard ratios were similar after APOE adjustment. Genetic variants in 
PICALM, BIN1, CD2AP, and RIN3 are associated with increased risk of Alzheimer’s disease, all dementia, and suggested 
vascular dementia independent of the strong APOE ε4 allele. These findings may suggest that clathrin-mediated endocytosis 
in clearance of amyloid-β across the blood–brain barrier is important for the integrity of both brain tissue and cerebral vessels.

Keywords Alzheimer’s disease · Vascular dementia · Amyloid-β · Epidemiology · Stroke · Blood–brain barrier clearance

Introduction

Alzheimer’s disease and other forms of dementia are devas-
tating neurodegenerative diseases currently affecting more 
than 47 million people globally, and expected to triple in 
2050 [1]. There are no available curative treatments, no early 
preclinical, easily accessible biomarkers [2, 3], and large 
parts of the underlying biology remain unknown. Clinically, 
Alzheimer’s disease often coexists with cerebral vascular 
diseases [4–8], and the major pathological hallmark of Alz-
heimer’s disease is accumulation of a neurotoxic, sticky 
peptide, amyloid-β, in the brain and in cerebral vessels [3, 
9–12]. An important clearance pathway of amyloid-β from 
the brain is via transcytosis across the blood–brain barrier 
into the vascular lumen [13–15].

Interestingly, a number of genome-wide association stud-
ies (GWAS) risk genes [16], PICALM (phosphatidylinositol-
binding clathrin assembly protein) [17, 18], BIN1 (bridging 
integrator 1) [19–21], CD2AP (CD2-associated protein) [22, 
23], and RIN3 (Ras and Rab interactor 3) [24], encode pro-
teins that are either directly or indirectly involved in trans-
cytosis of amyloid-β across the blood–brain barrier [24–32]. 
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Particularly genetic variants tagging PICALM consistently 
associate with dementia in GWAS [16, 30, 33–35], and this 
signal is one of the most consistent after the ε4 allele of 
APOE (apolipoprotein E gene) [29], an association first rec-
ognized in 1993 [36] and since validated globally [2, 3, 16, 
30, 31, 35, 37]. PICALM is important for endocytosis and 
internalization of cell receptors, and is involved in clathrin-
mediated endocytosis [28, 38]. Recently it was shown that 
PICALM regulates amyloid-β blood–brain barrier transcyto-
sis and clearance by initiating clathrin-mediated endocytosis 
via interaction with LRP1 (low-density lipoprotein receptor 
related protein-1). LRP1 is a key amyloid-β clearance accep-
tor that also binds to apoE [39].

Our aim was dual. First, we wanted to establish the exact 
risk increases at the individual level for Alzheimer’s disease 
and all dementia for four potential blood–brain barrier path-
way genes. Second, we wanted to test the impact on specific 
cerebral vascular endpoints –suggested vascular dementia 
and stroke—since the blood–brain barrier most likely is 
central for dementia related vascular events. We genotyped 
four variants in PICALM, BIN1, CD2AP, and RIN3 previ-
ously identified as top hits for Alzheimer’s disease [16], in 
two prospective studies of the general population totaling 
74,754 individuals.

Materials and methods

Participants

The Copenhagen General Population Study (CGPS) is a 
prospective study of the Danish general population initi-
ated in 2003 and still recruiting [40–42]. Individuals were 
selected randomly based on the national Danish Civil Reg-
istration System to reflect the adult Danish population aged 
20–80 + years. Data were obtained from a self-administered 
questionnaire reviewed together with an investigator at the 
day of attendance, a physical examination, and from blood 
samples including DNA extraction. Genotypes are available 
on 64,974 individuals. Before genotyping all DNA samples 
were blinded regarding phenotype and endpoint to the labo-
ratory technician and investigator.

The Copenhagen City Heart Study (CCHS) is a pro-
spective study of the Danish general population initiated 
in 1976–1978 with follow-up examinations in 1981–1983, 
1991–1994 and 2001–2003 [40–42]. Individuals were 
recruited and examined exactly as in the CGPS. Genotypes 
are available on 9780 individuals from the 1991–1994 and 
2001–2003 examinations.

Combining the two studies yielded a total of 74,754 
individuals for Alzheimer’s disease and all dementia analy-
ses, of whom 2514 developed dementia during a median 
follow-up of 10 years (range 0–23 years). For the analyses 

of suggested vascular dementia and stroke we included 
72,612 individuals, of whom 5016 developed stroke and 
248 developed suggested vascular dementia during a median 
follow-up of 10 years (range 0–25 years). No individuals 
were lost to follow-up. Follow-up began at the time of blood 
sampling (2003 and onward for CGPS and 1991–1994 or 
2001–2003 for CCHS). Follow-up ended at occurrence of 
event (n = 2514 for Alzheimer’s disease and all dementia 
and n = 5264 for suggested vascular dementia and stroke), 
death (n = 10,608 for Alzheimer’s disease and all dementia 
and n = 9203 for suggested vascular dementia and stroke), 
emigration (n = 404 for Alzheimer’s disease and all dementia 
and n = 395 for suggested vascular dementia and stroke), or 
on March 22nd, 2017 (last update of the registry), whichever 
came first. Years at risk were calculated for each partici-
pant as the time difference between baseline and the end of 
follow-up. Written informed consent was obtained from all 
individuals. Individuals in both studies were white and of 
Danish descent.

Dementia and stroke

In CGPS and CCHS, information on births, deaths, emi-
grations and immigrations was collected from the national 
Danish Civil Registration System. Information on diagno-
ses of dementia and stroke, and age at diagnosis was drawn 
from the national Danish Patient Registry and the national 
Danish Causes of Death Registry. The national Danish 
Patient Registry has information on all patient contacts 
with all clinical hospital departments in Denmark since 
1977, including emergency wards and outpatient clinics 
from 1994. The national Danish Causes of Death Registry 
contains data on the causes of all deaths in Denmark, as 
reported by hospitals and general practitioners. The national 
Danish registries are regarded among the best of its kind 
[43, 44], however an inherent limitation of using registry-
based data is underdiagnosis, because only hospital regis-
tered events are in the registries. This is a general issue that 
needs to be considered when interpreting results based on 
registry diagnoses. In Denmark the diagnosis of dementia 
has been made in accordance with international standards 
in routine clinical practice since the 1990’s and 91–95% of 
diagnoses are given by neurologically relevant units and/or 
departments of internal medicine [45]. Alzheimer’s disease 
is diagnosed using the NINCDS-ADRDA criteria [46], the 
NIA-AA criteria [47], or the ICD8/ICD10 criteria and is 
highly valid once the diagnosis is given [48]. Alzheimer’s 
disease was ICD8 (World Health Organization International 
Classification of Diseases, 8th revision) code 290.10 and 
ICD10 (World Health Organization International Classifica-
tion of Diseases, 10th revision) codes F00 and G30. Vascular 
dementia has been diagnosed using the ICD10 criteria, the 
NINDS-AIREN criteria (before 2015) [49] or the VASCOG 



581Blood–brain barrier transcytosis genes, risk of dementia and stroke: a prospective cohort study…

1 3

criteria since 2015 [50]. The diagnosis, however, suffer from 
some uncertainty [48], which is why we use the term “sug-
gested vascular dementia” throughout the paper. The diag-
nosis of suggested vascular dementia was ICD10 code F01 
and did not include mixed dementia. All dementia further 
included unspecified dementia (ICD8 290.18; ICD10 F03). 
Stroke was ICD8 codes 430, 431 and 433–435 and ICD10 
code G45, I60, I61, I63 and I64.

Laboratory analyses

Standard hospital assays measured electrolytes, glucose, 
liver-, kidney-, and inflammatory parameters as well as total 
cholesterol, HDL (high-density lipoprotein) cholesterol and 
triglycerides (Boehringer Mannheim, Mannheim, Germany). 
LDL (low-density lipoprotein) cholesterol was calculated 
using the Friedewald equation [51] when plasma triglycer-
ides were ≤ 4 mmol/L (≤ 352 mg/dL), and otherwise meas-
ured directly (Konelab). Estimated glomerular filtration rate 
was calculated according to CKD-EPIcrea [52].

Genotyping

Taqman-based (Life Technologies, a part of Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) or KASP tech-
nology based assays (LGC Genomics, Hoddesdon, Herts, 
UK) were used to genotype for PICALM rs10792832, 
BIN1 rs6733839, CD2AP rs10948363, RIN3 rs10498633 
and for p.Cys130Arg (rs429358, legacy name Cys112Arg, 
c.388T>C) defining the ε4 allele and p.Arg176Cys (rs7412, 
legacy name Arg158Cys, c.526C>T) defining the ε2 allele 
of the APOE gene [42].

Other covariates

Body mass index was measured weight in kilograms divided 
by measured height in meters squared. Hypertension was use 
of anti-hypertensive medication, a systolic blood pressure of 
140 mm Hg or greater, and/or a diastolic blood pressure of 
90 mm Hg or greater. Diabetes mellitus was self-reported 
disease, use of insulin or oral hypoglycemic agents, and/or 
non-fasting plasma glucose levels of more than 11 mmol/L 
(> 198 mg/dL). Estimated glomerular filtration rate was cal-
culated according to CKD-EPIcrea [52]. Smoking was cur-
rent smoking. High alcohol consumption was > 14/21 units 
per week for women/men (1 unit = 12 g alcohol, equivalent 
to one glass of wine or one beer (33 cL)). Physical inactiv-
ity was ≤ 4 h per week of light physical activity in leisure 
time. Women reported menopausal status and use of hor-
monal replacement therapy. Lipid-lowering therapy was 
mainly statins (yes/no), and low education was < 8 years of 
education.

Consortia data

IGAP (the International Genomics of Alzheimer’s Project) 
(is a large two-stage study based upon GWAS on indi-
viduals of European ancestry [16]. In stage 1, IGAP used 
genotyped and imputed data on 7,055,881 SNPs (single 
nucleotide polymorphisms) to meta-analyze four previ-
ously published GWAS datasets consisting of 17,008 Alz-
heimer’s disease cases and 37,154 controls (The European 
Alzheimer’s disease Initiative—EADI, the Alzheimer Dis-
ease Genetics Consortium—ADGC, the Cohorts for Heart 
and Aging Research in Genomic Epidemiology consor-
tium—CHARGE, the Genetic and Environmental Risk in 
AD consortium—GERAD). In stage 2, 11,632 SNPs were 
genotyped and tested for association in an independent set 
of 8572 Alzheimer’s disease cases and 11,312 controls. 
Finally, a meta-analysis was performed combining results 
from stages 1 and 2 [16].

Statistical analysis

We used Stata/S.E. v14.0 and v13.0 (Stata Corp, College 
Station, TX, USA). Probability values < 0.001 are given as 
powers of 10. Kruskal–Wallis one-way analysis of variance 
or Pearson’s χ2 test were used to evaluate continuous and 
categorical variables by genotype and disease status. Miss-
ing data on continuous covariates were imputed from age, 
sex, and the most related continuous parameters. Missing 
data on categorical covariates were assigned a dummy value. 
Missing values for continuous covariates were < 0.8%.

Combining all genotypes, we generated two different 
genetic risk scores for dementia and stroke. The first genetic 
score, named “weighted allele score”, was calculated for 
each individual using a weighted sum of alleles for increas-
ing risk of Alzheimer’s disease and all dementia, subse-
quently categorized into quartiles of approximately equal 
size to maximize statistical power. The weights correspond 
to the regression coefficients for the dementia risk increas-
ing alleles in each individual adjusted for age and gender 
[53] (Supplementary Table 1). The weights were generated 
in the combined cohort. The second genetic score, named 
“simple allele score”, was a simple counting of the number 
of dementia increasing risk alleles in each individual, subse-
quently categorized into three groups of approximately equal 
size. Similar scores were generated for suggested vascular 
dementia and stroke.

Cumulative incidences of Alzheimer’s disease and all 
dementia were plotted against age and weighted/simple 
allele score group, using the method of Fine-Gray [54], to 
account for the possibility of death as a competing event. 
Similar cause-specific (censoring at death) Cox proportional 
hazards regression models with age as time scale and left 
truncation (delayed entry) were used to estimate hazard 
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ratios for Alzheimer’s disease, all dementia, suggested 
vascular dementia, and stroke as a function of weighted 
allele score and simple allele score. Using age as time scale 
ensures that each participant experiencing an event is always 
compared to a participant at the exact same age. This is 
regarded as the state of the art age-adjustment method in 
survival analyses in large epidemiological studies where par-
ticipants enter at different ages. For Cox regression models, 
proportionality of hazards over time were assessed by plot-
ting − ln(− ln[survival]) versus ln(analysis time). There was 
no suspicion of nonproportionality. Cox regression models 
were multifactorially adjusted for age (as time scale), sex, 
body mass index, hypertension, diabetes, smoking, alco-
hol intake, physical inactivity, postmenopausal status and 
hormonal replacement therapy in women, lipid-lowering 
therapy, educational level, and APOE genotype (ε2/ε3/ε4 
APOE genotype).

Meta-analyses were conducted using the user-written 
metan command from Stata/S.E. v13.0 to estimate fixed 

and random effects odds ratios by regression coefficients 
and standard errors for each of the four genetic variants. 
Between-study heterogeneity was assessed by Cochran’s Q 
test and  I2 statistics and was considered as low  (I2 ≤ 25%), 
moderate (25% < I2 < 49%), or high  (I2 ≥ 50%). Results are 
presented for both fixed- and random-effects models.

Results

Baseline characteristics of the 74,754 individuals enrolled 
in the study are shown by quartiles of weighted allele score 
for Alzheimer’s disease in Table 1. Baseline characteristics 
by disease status are shown in Supplementary Table 2. 
Age at diagnosis of disease are shown in Supplementary 
Table 3 and distribution of age at baseline and follow-up 
time are shown in density plots in Supplementary Fig-
ures 1 and 2. All results are for the CGPS and CCHS com-
bined unless otherwise stated.

Table 1  Characteristics of study 
participants by weighted allele 
score quartile for Alzheimer’s 
disease

Values are median (interquartile range) or percent and are from the day of enrolment (2003 and onwards for 
the CGPS and 1991–1994 or 2001–2003 for the CCHS). Hypertension was use of anti-hypertensive medi-
cation, a systolic blood pressure of 140 mm Hg or greater, and/or a diastolic blood pressure of 90 mm Hg 
or greater. Diabetes mellitus was self-reported disease, use of insulin or oral hypoglycemic agents, and/or 
non-fasting plasma glucose levels of more than 11 mmol/L (> 198 mg/dL). Smoking was current smoking. 
High alcohol consumption was > 14/21 units per week for women/men (1 unit = 12 g alcohol, equivalent to 
one glass of wine or one beer (33 cL)). Physical inactivity was ≤ 4 h per week of light physical activity in 
leisure time. Women reported menopausal status and use of hormonal replacement therapy. Lipid-lowering 
therapy was primarily statins (yes/no), and low education was < 8 years of education. Differences across 
weighted allele score groups were tested by Kruskal–Wallis one-way analysis of variance or Pearson’s χ2-
test
HDL high-density lipoprotein cholesterol, LDL low-density lipoprotein cholesterol
a In women only

1st quartile 2nd quartile 3rd quartile 4th quartile

No. of individuals (%) 19,423 (26) 18,251 (24) 18,409 (25) 18,671 (25)
Age (years) 58 (48–67) 58 (48–67) 58 (47–67) 57 (47–67)
Female (%) 55 56 55 56
Total cholesterol (mmol/L) 5.6 (4.9–6.4) 5.6 (4.9–6.4) 5.6 (4.9–6.4) 5.6 (4.9–6.4)
LDL cholesterol (mmol/L) 3.3 (2.6–3.9) 3.2 (2.6–3.9) 3.2 (2.6–3.9) 3.3 (2.6–3.9)
HDL cholesterol (mmol/L) 1.5 (1.2–1.9) 1.6 (1.3–1.9) 1.5 (1.2–1.9) 1.6 (1.2–1.9)
Triglycerides (mmol/L) 1.4 (1.0–2.1) 1.4 (1.0–2.1) 1.4 (1.0–2.1) 1.4 (1.0–2.1)
Body mass index (kg/m2) 26 (23–28) 26 (23–28) 26 (23–28) 26 (23–28)
Hypertension (%) 58 59 58 58
Diabetes mellitus (%) 4 4 4 4
Smoking (%) 23 24 24 24
High alcohol consumption (%) 18 18 18 18
Physical inactivity (%) 53 52 53 52
Postmenopausal (%)a 66 66 67 67
Hormonal replacement therapy (%)a 11 12 11 11
Lipid-lowering therapy (%) 9 10 9 9
Education < 8 years (%) 14 14 14 15
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Weighted/simple allele scores and risk 
of Alzheimer’s disease and all dementia

Cumulative incidences of Alzheimer’s disease and all 
dementia increased stepwise as a function of increas-
ing weighted/simple allele score groups (all P for 
trend ≤ 2 × 10−5) (Fig. 1). Multifactorially adjusted hazard 
ratios for the fourth versus the first weighted allele score 
quartile were 1.42 (95% confidence interval 1.22–1.64) for 
Alzheimer’s disease and 1.33 (1.19–1.48) for all demen-
tia. For the simple allele score multifactorially adjusted 
hazard ratios for 5–8 alleles versus 0–3 alleles were 1.32 
(1.16–1.51) for Alzheimer’s disease and 1.26 (1.14–1.38) 
for all dementia (Fig. 2, left panel). Results were similar 
after further adjustment for APOE genotype (Fig. 2, mid-
dle panel), or when analyses were performed exclusively in 
APOE ε33 carriers (Fig. 2, right panel). Findings for Alz-
heimer’s disease were comparable to results using external 
weights (Supplementary Figure 3) [16]; external weights 
were not available for all dementia. Findings were simi-
lar for the CGPS and CCHS separately (Supplementary 

Figures 4 and 5) and when excluding participants who 
developed dementia of any subtype within the first six 
months of follow-up (Supplementary Figure 6). When 
dividing the weighted allele score into tertiles, hazard 
ratios for the third tertile were similar to hazard ratios for 
the fourth quartile in the original analysis for both Alzhei-
mer’s disease and all dementia (Supplementary Figure 7). 
We also performed the analysis in APOE ε4-carriers and 
ε4-non-carriers separately and results were similar (Sup-
plementary Figure 8). After stratification in age groups 
(< 65 years, 65–80 years and ≥ 80 years), results were 
similar although attenuated in the ≥ 80 years age group, 
most likely due to lack of power (Supplementary Fig-
ure  9). There was no interaction between the genetic 
scores and age at baseline (Alzheimer’s disease: P = 0.43 
for the weighted allele score and P = 0.61 for the simple 
allele score. All dementia: P = 0.53 for the weighted allele 
score and P = 0.18 for the simple allele score). Further no 
interaction was present between the genetic scores and 
APOE genotype (Alzheimer’s disease: P = 0.31 for the 
weighted allele score and P = 0.52 for the simple allele 
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Fig. 1  Cumulative incidence of Alzheimer’s disease and all dementia 
by age and weighted/simple allele scores. We used Fine-Gray models, 
allowing for death as a competing event. P for trend from competing 

risks regression trend test. Weights for the weighted allele score were 
generated in the combined cohort
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score. All dementia: P = 0.91 for the weighted allele score 
and P = 0.22 for the simple allele score).

Meta‑analyses of individual genetic variants 
for dementia

Meta-analyses included the present two prospective cohorts 
of the Danish general population and stage 1 and 2 from 
IGAP which includes meta-analyzed data from 15 individual 
studies [16]. For PICALM overall fixed- and random-effects 
odds ratios were 1.14 (1.12–1.17) and 1.14 (1.11–1.17) with 
I2 of 20% (P for heterogeneity = 0.29) (Fig. 3, upper left 
panel). For BIN1 odds ratios were 1.21 (1.19–1.24) for both 
overall fixed- and random-effects, with I2 of 0% (P for het-
erogeneity = 0.97) (Fig. 3, upper right panel). For CD2AP 
odds ratios were 1.10 (1.08–1.13) for both overall fixed- and 
random-effects, with I2 of 0% (P for heterogeneity = 0.92) 

(Fig. 3, lower left panel). For RIN3 odds ratios were 1.11 
(1.08–1.13) for both overall fixed- and random-effects, with 
I2 of 0% (P for heterogeneity = 0.70) (Fig. 3, lower right 
panel).

Weighted/simple allele scores and risk of suggested 
vascular dementia and stroke

Multifactorially adjusted hazard ratios for the fourth versus 
the first weighted allele score quartile were 1.71 (1.18–2.49) 
for suggested vascular dementia and 1.12 (1.04–1.22) for 
stroke. When prevalent stroke was excluded, risk of sug-
gested vascular dementia remained (fourth versus first quar-
tile 2.01 (1.32–3.07), data not shown). For the simple allele 
score multifactorially adjusted hazard ratios for 5–8 alleles 
versus 0–3 alleles were 1.65 (1.20–2.26) for suggested vas-
cular dementia and 1.03 (0.96–1.10) for stroke (Fig. 4, left 
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Fig. 2  Risk of Alzheimer’s disease and all dementia as a function of 
weighted/simple allele scores. Individuals with Alzheimer’s disease 
or all dementia before blood sampling were excluded, leaving 74,754 
individuals for analysis in the left panel. A total of 72,138 individu-
als with available APOE genotype were included in the middle panel. 
The right panel exclusively contains individuals with the APOE ε33 
genotype (N = 40,239). Hazard ratios were multifactorially adjusted 

for age (as time scale), sex, hypertension, diabetes, smoking, alco-
hol intake, physical inactivity, postmenopausal status and hormonal 
replacement therapy in women, lipid-lowering therapy and educa-
tional level (left and right panel). Middle panel additionally includes 
adjustment for APOE genotype. P for trend from Cox regression. 
APOE = apolipoprotein E gene; APOE genotype = ε2/ε3/ε4 APOE 
genotype; CI = confidence interval
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panel). Results were similar after further adjustment for 
APOE genotype (Fig. 4, right panel), and when excluding 
participants who developed dementia of any subtype within 
the first six months of follow-up (Supplementary Figure 10).

Blood pressure, heart rate and biochemical 
characteristics of study participants by weighted 
allele score

Weighted allele score quartiles for all endpoints, were not 
associated with any variation in vital signs (systolic and 
diastolic blood pressure, heart rate), plasma levels of elec-
trolytes (potassium, sodium, chloride), renal function (cre-
atinine, estimated glomerular filtration rate), liver function 
(alanine aminotransferase, alkaline phosphatase, bilirubin, 
gamma-glutamyl transpeptidase), glucose level or high-
sensitivity C-reactive protein (Supplementary Tables 4 and 

5 for Alzheimer’s disease and all dementia; data not shown 
for suggested vascular dementia and stroke).

Discussion

The principal findings of this study are that genetic variation 
in PICALM, BIN1, CD2AP and RIN3, four genes suggested 
to be involved in blood–brain barrier amyloid-β transcytosis, 
are associated with increased risk of Alzheimer’s disease, all 
dementia, and suggested vascular dementia in the general 
population independent of the strong APOE genotype. There 
was no conclusive association with risk of stroke. These 
findings may suggest that compromising blood–brain bar-
rier function has implications for both brain tissue—mani-
fested by increased Alzheimer’s disease risk—as well as for 
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Fig. 3  Meta-analysis of PICALM, BIN1, CD2AP, and RIN3 in IGAP 
1 and 2, CGPS, and CCHS. Summarizing risk of Alzheimer’s dis-
ease by risk increasing alleles in PICALM (G allele), BIN1 (T allele), 
CD2AP (G allele), and RIN3 (G allele). Horizontal lines correspond 
to 95% confidence intervals by forest plots. Diamonds and broken 
vertical lines represent summary estimates. Confidence intervals for 
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meta-analysis from the fixed effects models (right column). P for 
heterogeneity from Cochran’s Q test. APOE = apolipoprotein E gene; 
APOE genotype = ε2/ε3/ε4 APOE genotype; BIN1 = bridging integra-
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cerebral vasculature—manifested by increased risk of sug-
gested vascular dementia.

To our knowledge this is the first study to simultaneously 
assess risk of dementia and stroke as a function of genetic 
variation in all four, potential blood–brain barrier transcy-
tosis genes. PICALM has consistently been associated with 
Alzheimer’s disease in several GWA studies with risk esti-
mates in the range of 1.14–1.27 [16, 30, 33, 34]. BIN1 in the 
range of 1.15–1.36 [16, 31, 33–35, 37], CD2AP in the range 
of 1.10–1.12 [16, 31, 37], and finally, RIN3 with an odds 
ratio for the risk increasing allele of 1.10 [16]. The present 
findings of these genes with suggested vascular dementia 
are however novel.

The biological mechanisms of our findings remain to 
be determined and the evidence from population studies 
linking the four selected variants to blood–brain barrier 

amyloid-β transcytosis pathways is limited. Recently new 
light was shed on the function of PICALM in Alzheimer’s 
disease pathology, emphasizing clathrin-mediated endo-
cytosis as a potential important mechanism in amyloid-β 
clearance across the blood–brain barrier [29]. Zhao et al. 
showed that reductions of PICALM in brain endothelium 
in Alzheimer’s disease correlated with amyloid-β accumu-
lation, Alzheimer’s disease neuropathology, and cognitive 
impairment in mice. Picalm+/− mice had a reduction in 
amyloid-β40 and amyloid-β42 efflux across the blood–brain 
barrier of 41% and 61%, respectively, compared to littermate 
controls. Using in vitro endothelial monolayer to mimic the 
blood–brain barrier, they found that amyloid-β binding to 
LRP1 enhanced the binding of PICALM, which initiated 
PICALM/clathrin-dependent endocytosis of the amyloid-
β-LRP1 complex and subsequent transcytosis involving 
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Fig. 4  Risk of suggested vascular dementia and stroke as a function 
of weighted/simple allele scores. Individuals with suggested vascu-
lar dementia or stroke before blood sampling were excluded, leaving 
72,612 individuals for analysis in the left panel. A total of 70,086 
individuals with available APOE genotype were included in the right 
panel. Hazard ratios were multifactorially adjusted for age (as time 

scale), sex, hypertension, diabetes, smoking, alcohol intake, physical 
inactivity, postmenopausal status and hormonal replacement therapy 
in women, lipid-lowering therapy and educational level. Right panel 
additionally includes adjustment for APOE genotype. P for trend 
from Cox regression. APOE = apolipoprotein E gene; APOE geno-
type = ε2/ε3/ε4 APOE genotype; CI = confidence interval
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GTPases Rab5 and Rab11 controlling, respectively, early 
endosome formation and vesicle exocytosis [55–60]. In pri-
marily in vitro studies both BIN1 and CD2AP are shown to 
bind to Rab5 [27], and RIN3 is shown to mediate the recruit-
ment of BIN1 and CD2AP to Rab5-positive early endosomes 
in the endocytic transport pathway [24, 27]. Taken together, 
these findings suggest that PICALM and interacting proteins 
control amyloid-β transport across the blood–brain barrier 
and clearance of amyloid-β from brain through clathrin-
mediated endocytosis. Therefore, it may be biologically 
plausible that inactivating genetic variants in genes involved 
in this transcytosis pathway may cause an increased risk 
of Alzheimer’s disease due to accumulation of amyloid-β 
in brain tissue. This is also supported by a recent pathway 
analysis pinpointing endocytosis and clathrin/AP2-adaptor 
complex as important mechanisms in dementia [61–63].

Vascular dementia is a disorder in the blood supply of the 
brain, caused by preceding hemorrhage or ischemia located 
in either larger vessels or in the microvasculature [64]. Accu-
mulation of amyloid-β in the vessel walls of the blood–brain 
barrier could lead to microinfarcts or microbleeds eventu-
ally causing vascular dementia but not necessarily clini-
cally overt stroke. The present findings may emphasize the 
blood–brain barrier as a delicate border structure between 
brain and vasculature and supports the now widespread 
understanding of mixed pathology in most dementia cases. 
Thus, it is biologically meaningful that disruptions in this 
pathway affect both brain and vascular disease, in contrast 
to other dementia susceptibility genes, that exert their effects 
only in brain [65, 66].

An important limitation to this study is that endpoints 
are based on ICD registry codes from hospitals and death 
certificates diagnosed in routine clinical practice and thus 
only captures individuals in contact with hospitals. This is 
in contrast to research studies where all individuals living 
in one area are examined and diagnosed with use of stand-
ardized instruments, trained staff and standardized diagnos-
tic methods [67]. Consequently, an inherent limitation of 
using registry-based diagnoses is underdiagnosis. Another 
limitations is that even though the national Danish regis-
tries are regarded among the best of its kind [43, 44], and 
the quality of the Danish registry-based dementia diagno-
ses previously has been validated, including a full clinical 
workup performed by dementia experts [48], the subtypes 
of dementia, especially vascular dementia and other rare 
forms, are uncertain [48]. Therefore, we have emphasized 
throughout that the diagnostic uncertainty should be con-
sidered when interpreting the results for vascular dementia. 
Consequently, we named this subtype “suggested vascular 
dementia” throughout the paper. Another potential limitation 
is the uncertainty of age at onset for dementia diseases. It 
is commonly accepted that for dementia prodromal phases 
can last for decades. Hence, we cannot exclude that some of 

the participants receiving a dementia diagnosis during our 
follow-up time already have dementia pathology at baseline.

Strengths of this study are the prospective design and the 
large, well-characterized, ethnically homogeneous cohort 
of the general population with no losses to follow-up. Fur-
thermore, no differences of participant characteristics across 
weighted/simple allele score groups were observed and 
therefore obvious confounding of the gene scores could be 
excluded. Furthermore, there was no interaction between the 
genetic scores and age at baseline, age at diagnosis, or APOE 
genotype. Due to the extensive phenotyping of biochemical 
and other quantities in the present cohorts, we could also 
evaluate blood pressure, heart rate, electrolytes, and meas-
ures of kidney function, liver function, glucose metabolism 
and inflammation. We found no significant variation across 
weighted/simple allele score groups, suggesting that this 
molecular pathway may be safe to target therapeutically. The 
sufficient quality of the Danish registry-based all dementia 
and Alzheimer’s disease diagnoses was further supported 
by the well-known association with the apolipoprotein E ε4 
allele in the present cohorts [42] and by the present meta-
analyses for each individual SNP showing similar estimates 
in our cohorts as those found by the IGAP [16]. Diagnoses 
of stroke in our cohorts have been validated by trained physi-
cians using the WHO definition of cerebrovascular disease, 
as previously described [68].

In conclusion, by combining common genetic variation 
in four genes with possible function in the blood–brain bar-
rier, we found an increased risk of Alzheimer’s disease, all 
dementia and suggested vascular dementia with increasing 
weighted/simple allele score groups independent of the 
APOE ε4 allele. These findings may suggest that clathrin-
mediated endocytosis in clearance of amyloid-β across the 
blood–brain barrier is important for the integrity of both 
brain tissue and cerebral vessels.
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