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Abstract. Circulating tumor DNA (ctDNA) has been frequently 
investigated to monitor tumor dynamics and measure tumor 
burden. This non‑invasive method concerning ctDNA has 
been recognized as a promising biomarker. Recently, next 
generation sequencing has been used in ctDNA detection 
by researchers. However, those reports have been limited by 
modest sensitivity, and only a minority of patients with cancer 
were applicable. Additionally, a limited number of cases of 
liver cancer have been analyzed. A more precise method is 
required to be established to evaluate ctDNA noninvasively. In 
the present study, a novel method to design a liver cancer‑asso-
ciated chip region (spanning 211 kb, containing 159 genes) was 
performed with high specificity using International Cancer 
Genome Consortium datasets. Following evaluation with data-
sets from The Cancer Genome Atlas and data from 3 patients 
with liver cancer, the selected regions were demonstrated to 
be beneficial to locate specific somatic mutations associated 
with liver cancer therapy and to monitor cancer dynamics in 
the plasma samples of the patients. In addition to establishing 
performance benchmarks supporting direct clinical use, the 

chip designed and the high‑resolution sequencing analyses 
pipeline would allow the development a set of patient specific 
markers that could monitor the process of cancer with high 
accuracy and low cost. Furthermore, the present study is 
essential to understanding the dynamics and providing insight 
into the basic mechanisms of liver cancer.

Introduction

Circulating tumor DNA (ctDNA), determined in the cell‑free 
fraction of blood, represents a variable and generally small 
fraction of the total circulating DNA  (1). Plasma‑derived 
ctDNA, determined in the cell‑free fraction of blood in 
patients with cancer, has been recognized as a potential 
non‑invasive biomarker for tumor tissue biopsies  (2‑4). 
Next generation sequencing (NGS) studies on ctDNA have 
revealed that ctDNA is a potential marker associated with 
various human cancer types (2‑4). In 2010, to enhance the 
clinical management of patients with cancer, Leary et al (2) 
introduced the concept of using ctDNA for the development 
of personalized biomarkers to provide an exquisitely sensitive 
and broadly applicable approach. Van der Vaart et al (3) used 
a parallel tagged sequencing method to sequence circulating 
DNA obtained from healthy controls as well as patients 
with cancer (12 patients with prostate cancer). Chan et al (5) 
reported the use of shotgun massive parallel sequencing to 
obtain a non‑invasive, genome‑wide view of somatic copy 
number alterations and cancer‑associated mutations in four 
patients with hepatocellular carcinoma (HCC) and a patient 
with synchronous breast and ovarian cancer, demonstrating 
the use of ctDNA as a powerful tool for cancer detection, and 
its potential role as a powerful tool for elucidating important 
tumoral characteristics, cancer monitoring and research. In a 
study containing 30 females with metastatic breast cancer who 
were receiving systemic therapy, Dawson et al (4) compared 
the radiographic imaging of tumors with the assay of CA 15‑3, 
circulating tumor cells and ctDNA. The results demonstrated 
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that ctDNA is an inherently specific, informative and highly 
sensitive biomarker of metastatic breast cancer. The develop-
ment of ctDNA is rapid, which indicates notable potentialities 
and feasibility of using it to monitor tumor dynamics in various 
solid cancer types. However, the majority of the methods used 
to test ctDNA are expensive (3,4).

Liver cancer is one of the most common cancer types and 
cause of cancer‑associated mortalities in China (6). Targeted 
therapies have been achieved by addressing the specific 
molecular drivers of a patient, which is safer and more effica-
cious (1,7,8). However, ctDNA with specific tumor mutations 
has not been extensively investigated or analyzed in patients 
with liver cancer. The majority of the research used whole 
genome sequencing to investigate ctDNA (2‑5). It has been 
reported that there are >6,000 genes associated with liver 
cancer, but the majority of which occurred rarely (liverome.
kobic.re.kr/index.php). As for the specific nature of ctDNA, 
sequencing of the sample in depth is required to retrieve the 
genetic information. Therefore, if the region is too large, it would 
be a waste of resources, because only the regions associated 
with liver cancer are required. Furthermore, the majority of 
the liver cancer‑associated genes are not suitable to be markers 
as the majority of these genes are rarely observed in patients 
with liver cancer (liverome.kobic.re.kr/index.php). Therefore, 
these regions specific to liver cancer should be determined. In 
the present study, liver cancer samples from several databases 
were used to develop a set of regions specific to liver cancer. 
Those selected regions were then determined to be suitable for 
ctDNA analysis. Due to the small size of the designed regions, 
samples could be sequenced deeply, which would help to make 
ctDNA a potential marker for cancer monitoring. To the best 
of our knowledge, this is the first research aiming to develop 
and design the liver cancer regions for the analysis of ctDNA. 
Furthermore, the present study could provide valuable infor-
mation for other cancer chip design types.

In conclusion, in order to detect somatic mutations and 
design a specific method to quantify ctDNA in liver tumors, 
a selected region covering multiple classes of somatic muta-
tions that may be identified in patients with liver tumors was 
designed, and its performance was evaluated in 3 patients 
with liver cancer. The results provided a set of personalized 
cancer‑specific markers, and evaluated the prognosis of 
therapy. 

Materials and methods

Data analysis pipeline. In the present study, a data analysis 
pipeline, including data filtration, alignment, variants detection 
and results annotation for whole genome data and data in the 
selected regions, was established (Fig. 1). The sequencing data 
(bam file) were provided by Professor Yuk‑Ming Dennis Lo from 
The Chinese University of Hong Kong (Hong Kong, China). The 
bam file was sorted, and bedtools (bedtools version 2.25.0) was 
used to change the bam file into an fq file, via filtering of certain 
reads with the same read ID, for further analysis. The pipeline 
started from the clean reads, as follows: Firstly, the clean reads 
with a length of 50 bps were mapped to the human reference 
genome (hg19) from the University of California, Santa Cruz 
database (hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/) 
using BWA (Burrows Wheeler Aligner; bio‑bwa.sourceforge.

net/); secondly, following removal of polymerase chain reac-
tion‑derived duplications using Picard (broadinstitute.github.
io/picard/) and realigning by GATK (https://software.broadinsti-
tute.org/gatk/documentation/tooldocs/current/), the bam results 
were then used to determine variant detection. Somatic SNVs 
calling were performed using MuTect (software.broadinstitute.
org/cancer/cga/mutect). To reduce false‑positives, stringent 
criteria were used in the present study, as follows: Firstly, a 
mutation was kept only when it was completely absent in the 
result blood sample; secondly, a mutation was kept only when 
the sequencing depth was >20‑fold. This threshold was applied 
to lower the false‑positive detection rate. Somatic Indel calling 
was performed using Varscan software (varscan.sourceforge.
net/). Detailed filtering parameters followed the best practice 
guidelines (varscan.sourceforge.net/using‑varscan.html). Local 
realignment around Indels was also included. The identified 
somatic variants were directly annotated by the Catalogue of 
Somatic Mutations in Cancer (COSMIC, https://cancer.sanger.
ac.uk/cosmic/) database, dbSNP, Hapmap, 1000 Genome and 
dbNSFP using our own PERL scripts if the alterations have been 
reported to be disease‑causing mutations or targets for therapy.

Design of a liver cancer‑associated selector. In the present 
study, the focus was on liver cancer; therefore, specific regions, 
including the coding sequences (CDSs), covering recurrent 
alterations in potential recurrent mutated genes were designed. 
Using the method by Newman et al (9) a novel algorithm to 
determine the liver cancer‑associated regions was developed. 
Firstly, a list of genes covering recurrent alterations in poten-
tial driver genes were selected using the top 100 genes listed 
in COSMIC (10). Subsequently, regions of CDS containing 
recurrent single nucleotide variants (SNVs) were selected 
based on the mutation frequency of the CDS region (cut‑off 
value, 5; Fig.  2) to form potential liver cancer‑associated 
regions. Following this, to maximize the number of mutations 
per patient while minimizing the region, a novel algorithm 
was applied using whole‑exome sequencing (WES) data from 
243 patients (the LINC‑JP_Liver_Cancer‑NCC_JP project by 
December 6, 2014) with liver cancer with cancer‑associated 
SNVs and Indels profiled by International Cancer Genome 
Consortium (https://icgc.org/). Of the 243 patients included 
in the study, 74.49% (181/243) were male, and the age of the 
243 patients at diagnosis ranged from 23‑85 years. Detailed 
information of the patients can be found in the ICGC database 
(https://icgc.org/icgc/cgp/66/420/824). Additionally, a number 
of genomic regions harboring liver cancer driver genes known 
to be associated with liver cancer therapy were included. The 
present study and the protocols used were approved by the 
Institutional Ethics Committee of BGI (Shenzhen, China). 

The main steps and cut off parameters are as follows 
(Fig. 2A): i) Step 1: Region 1. To select the CDS region (initial 
region 1) covering recurrent alterations in known driver 
genes, the data of patients with liver cancer from COSMIC 
was analyzed. Subsequently ‘mutation frequency’ in a specific 
gene region in patients with liver cancer was used to select 
the initial seed genes. The cut‑off value was 12 (Fig. 2B), and 
100 genes from the COSMIC patients with liver cancer were 
obtained. Subsequently, ‘mutation frequency’ of the CDS 
region (Fig. 2C; cut‑off value was 5) was used to select the 
initial seed regions and a region with 141 CDS regions was 
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obtained. The final region 1 was generated from the intersec-
tion of the seed genes and the CDS regions. Finally, region 1 
with 122 CDS regions was selected (data not shown); 

ii) Step 2: Region 2. To maximize the number of mutations 
per patient while minimizing the region, a novel algorithm was 
used using WES data from 243 patients (the LINC‑JP_Liver_
Cancer‑NCC_JP project) with cancer‑associated SNVs and 
Indels profiled by International Cancer Genome Consortium 
(icgc.org/). Firstly, patients with a mutation in region 1 
were removed. A total of 142 samples were removed, which 
indicated a high liver cancer‑associated nature of region 1. 
The remaining samples were retained for further analysis. 
Secondly, the ‘sample frequency’ of all the CDSs in the 
remaining patients was calculated. A cut off value of 4 was 
used in this step (Fig. 2D). Thirdly, the remaining CDS region, 
which would be selected only if at least one new patient was 
identified, was analyzed. This was repeated until no further 

region met these criteria. In this step, region 2 (69 CDS regions) 
was selected. Additionally, 91 more samples were covered in 
this step, and a total of 233 samples (233/243) were covered in 
regions 1 and 2.

iii) Step 3: Region 3. In this step, ‘sample frequency’ and the 
recurrence index (RI) value were used. Firstly, a sample cutoff 
value of 2 and RI cutoff value of 10 was used to generate a 
seed list of 257 candidate CDS regions. The cutoff value afore-
mentioned is not a stringent filtering parameter. Therefore, the 
‘mutation frequency’ of the aforementioned seed CDS regions 
was calculated. A cutoff value of 3 was used, which means that 
only the CDS regions with at least 3 mutations were obtained. 
Region 3 was obtained in this step, which contains 14 CDS 
regions in total (region 3).

iv) Step 4: Add chemotherapy‑associated site. Single nucle-
otide polymorphisms, which were reported to be associated 
with chemotherapy (region 4) were included.

v) Step 5: Add targeted drug‑associated sites. By the time 
of submission of this paper, there has only been one drug 
demonstrated to treat liver cancer, Sorafenib, which blocks the 
RAF/mitogen‑activated protein kinase kinase/extracellular 
signal‑regulated kinase pathway  (11). A number of poten-
tial targeted genes reported to be targetable to some drugs 
(region 5) were also included.

Selected regions performance assessment. To investigate the 
specificity of the selected genomic regions selected, WES 
data from patients with liver cancer‑associated SNVs and 
Indels profiled by TCGA (by January 10, 2015) were used 
for assessment. The aim was to evaluate the fraction of the 
192 patients containing at least one loss‑of‑function mutation 
in the selected regions.

Evaluation of somatic mutation detection in 3 patients with 
liver cancer. To investigate the performance of the designed 
regions, 3 patients with liver cancer were recruited, who all 
received surgery [formalin‑fixed paraffin embedded (FFPE) 
sample and blood sample sequencing data prior to surgery, 
and ctDNA sequencing data prior to and following surgery]. 
The samples were collected in the Prince of Wales Hospital 
(Hong Kong, China), as previously described  (5). Written 
informed consent was obtained from all the participants at the 
time of sample collection. The sequencing data was provided by 
Professor Yuk‑Ming Dennis Lo from The Chinese University 
of Hong Kong. The following pipeline was used to identify 
patient specific mutations, and then evaluate the performance 
of the designed regions in monitoring cancer in the 3 patients. 
The bioinformatics pipeline is depicted in Fig. 1.

Statistical analysis. To assess statistical significance, random 
selectors were selected using the same size to the present 
selected region. The performance of random selectors and 
liver cancer‑associated selectors were compared (Z‑test), and 
P‑values were calculated accordingly.

Results

Liver cancer‑associated selector. The following algorithm 
was used to design the liver cancer‑associated selector, aiming 
to collect all the liver cancer‑associated genes and regions. 

Figure 1. Bioinformatics pipeline. Flow diagram of bioinformatics analysis. 
QC, quality control.
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In the whole process, two values were primarily introduced 
to maximize the association of the selected regions and liver 
cancer, whilst minimizing the length of the designed regions: 
One was ‘mutation frequency’, which is defined as the number 
of SNVs/Indels that occur within a given cohort of patients; 
the other one was ‘sample frequency’, which is defined as 
the number of the samples (carrying specific mutations) in 
a specific CDS region. The number of patients with muta-
tions/CDS length in kb [known as RI (9)] was used to measure 
patient‑level recurrence frequency at the CDS level. This RI 
could normalize gene or CDS size.

Following all of the aforementioned steps, a specific region 
of 211 kb, which included 159 genes, was obtained.

Reliability and accuracy evaluation of the selector. To 
investigate the specificity of the aforementioned selected 
genomic regions, WES data from 192  patients with liver 
cancer‑associated SNVs and Indels profiled by TCGA were 
used for assessment. Detailed information of the patients 

can be found in TCGA database (by January 10, 2015). A 
total of 107 patients (107/192, 55%) contained at least one 
loss‑of‑function mutation in the selected region. This indepen-
dent cohort contained a mean of 284.4 mutations following the 
removal of 5 samples, which contained >100,000 mutations 
each and would influence the sample frequency. The RI of the 
selected region in the remaining samples was 1, which means 
the number of patients with loss‑of‑function mutations/CDS 
length in kb was >1. To assess the statistical significance, a 
211 kb region was randomly selected for comparison. A mean 
RI of 0.0123 was determined in the randomly selected region 
(P<1.0x10‑5 for the difference between random selectors and 
liver cancer‑associated selector; Z‑test), which validated a 
high specificity of the selected genomic regions to liver cancer.

Analysis of the 3 patients with liver cancer. To demonstrate 
the use of the designed region in elucidating notable tumoral 
characteristics, and the potential role of ctDNA as a powerful 
biomarker, the WGS (whole genome sequencing) data of 

Figure 2. Selected region design workflow. (A) Selected region design workflow. (B) Cut‑off value used to selected the initial seed genes. (C) Cut‑off value used 
to select the initial seed region 1. (D) Cut‑off ‘sample frequency’ of all the CDSs using data from ICGC. ICGC, International Cancer Genome Consortium; 
COSMIC, Catalogue of Somatic Mutations in Cancer. RI, recurrence index; CDS, coding sequence.
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3 patients with HCC (blood and FFPE pre‑resection samples, 
and pre‑ and post‑resection plasma samples), which were 
recruited for another study (5), were analyzed. The analysis 
was started from the bam file provided by Professor Yuk‑Ming 
Dennis Lo from The Chinese University of Hong Kong. The 
bam file was sorted first, and then bedtools was used to change 
the bam file into a fq file for further analysis. During this 
process, some reads with the same read ID were removed. 
Subsequently, the aforementioned pipeline was used for 
analysis. The sequencing results are detailed in Table I. 

For all the samples included in the present study, a mean 
of 1,079,369,231 reads were mapped to regions of the hg19 
genome, resulting in a 23‑fold average depth (Table I). The 
mean coverage of the 3 blood samples (all sample types) 
was >91.5%, except FFPE sample T013 and T027. The mean 
sequencing depth of the blood sample, FFPE samples and 
plasma sample was 31.7, 27.3 and 16.6, respectively, which 
demonstrated a relatively low sequencing depth of the plasma 
sample. The data in the selected region was then removed from 
the WGS data for further analysis. The mean coverage of the 
3 patients (all sample types) in the selected region was ~98%, 
except for sample T27, while the mean sequencing depth of 
the blood sample, FFPE samples and plasma sample of the 
selected region was 53.5, 68.5 and 20.5, respectively.

No Indels were identified in the selected regions; therefore, 
the primary focus was on the somatic SNVs. The total number 
of detected SNVs was detailed in Table II. There was a mean 
of 3,097 mutations detected in the whole genome region of all 
the tissue samples. The mutations determined in the plasma 
prior to and following surgery are almost equal, which made it 
difficult to annotate and generate the association between those 
mutations and the cancer states. While the mutations located 
in the selected region were relative small and liver‑cancer 
associated. The comparison between whole genome data and 
data of the selected region was aimed to reveal its potential 
role as a powerful tool for cancer detection and monitoring. As 
detailed in Table II, the mean detected mutations of the FFPE 
samples and plasma sample of the designed selected region 
was 71.3 and 5.5, respectively.

Monitoring of serial ctDNA levels of the liver cancer‑​
associated selector. The specific pattern(s) of ctDNA involved 
in the disease states identified by targeted NGS sequencing 
may provide a set of biomarker/therapeutic that could monitor 
tumor dynamics with high accuracy, which may be used as 
a more precise diagnostic tool to predict disease risk and 
treatment responses.

The performance of circulating biomarkers from the 
selected regions in the 3  patients with HCC prior to and 
following surgery was analyzed (Fig. 3). This was performed 
to evaluate whether the fluctuations of ctDNA in the selected 
regions can reflect the dynamics of the disease. The signifi-
cantly detectable levels of ctDNA data from the selected 
region may be used to determine tumor volumes and clinical 
responses to therapy. 

In the present study, the analysis of the reads ratio in the 
selected region was performed to monitor the effect of surgery. 
The reads ratio was defined as the fraction of mutated reads 
in all detected reads. The reads ratio in patients 2 and 3 was 
notably reduced following surgery (Fig. 3). Those two patients 

exhibited similar dynamic patterns, which may reflect tumor 
burden in plasma samples. However, further experiments are 
required to be performed to support this result. 

There were 6 SNVs exhibited in the pre‑surgery sample of 
patient 1. A total of three mutations were not identified in the 
post‑surgery sample of patient 1, including: TERT c.C1310G and 
c.G555C, and MET c.T1621G, which may partially reflect the 
clinical effect of surgical treatment. However, three mutations 
(ALK c.A2242G, NOTCH1 c.A4111C and FLCN c.T884G) in 
the pre‑surgery sample of patient 1 were also exhibited in the 
post‑surgery sample. These minimal residuals may indicate 
possible progression of occult microscopic disease. These data 
may highlight the promise of ctDNA analysis from the specific 
selector region for identifying patients with residual disease 
following treatment.

Somatic mutation reads upregulated/downregulated, 
according to the treatment sensitivity of the patients, are consid-
ered to be novel biomarkers. In the present study, the results 
in the selected region demonstrated that the present method 
provided an optimal method, including the design of specific 
liver cancer‑associated selector, and then the monitoring of 
treatment response, which could provide a more accurate, 
sensitive and economic method, compared with whole genome 
sequencing. If the data indicates a strong association between 
ctDNA level and therapy sensitivity of the patients, it will 
provide evidence of the role of ctDNA in cancer monitoring, 
and may further validate previous investigations. 

Discussion

Continuing ineffective therapies and unnecessary side effects 
are common limitations of cancer treatment (12), and thus far 
there is no effective method to monitor treatment response, 
and to determine the benefit of novel therapeutics. Generally, 
the use of serial imaging, including radiographic measure-
ments, in assessing treatment response and detecting changes 
in tumor burden, frequently fails. For example, patients with 
non‑small cell lung cancer undergoing definitive radiotherapy 
frequently have surveillance computed tomography (CT)/posi-
tron emission tomography (PET)‑CT scans that are difficult 
to interpret due to fibrotic changes and radiation‑induced 
inflammatory in the lung and surrounding tissues (13). Thus, 
there is an urgent requirement for more sensitive and specific 
biomarkers to measure tumor burden. Along with the devel-
opment of NGS, the research of ctDNA has become a hot spot 
in this field. It can be used as a potential marker to predict 
disease risk, patient outcomes or response to treatment (2‑4). 
However, the reports published thus far have a number of 
limitations. Firstly, it is difficult to detect low frequency 
mutations; secondly, the acute monitoring of ctDNA requires 
the detection of somatic mutations in tumor‑tissue samples, 
which are required to be performed in an invasive way; and 
finally, evaluation of the ctDNA levels is different in reported 
articles. For example, certain studies used absolute levels of 
ctDNA or fraction of mutant allele in plasma to represent 
the ctDNA levels (4,14), while other studies used the mean 
allele frequency of the major clone to represent the ctDNA 
levels (15). This inconsistency makes it difficult to use ctDNA 
as a biomarker to monitor tumor dynamics in patients with 
various solid types of cancer. 
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To solve those problems, the aim of the present study 
was to develop a novel method. Firstly, based on consider-
ations of high sequencing depth, a selector only containing 

liver‑associated genes was designed; and secondly, the aim 
was to establish a more precise target in analyzing ctDNA 
in cancer monitoring. In the present study, patient specific 
mutation sites were analyzed instead of the whole ctDNA level 
through targeted NGS sampling at different times. This could 
make ctDNA an inherently specific, informative and highly 
sensitive biomarker for liver cancer. 

There are >6,000 genes reported to be liver cancer asso-
ciated (liverome.kobic.re.kr/index.php). To the best of our 
knowledge, no available database provides a selector specific 
for liver cancer. Only a minority of tumor types can be defined 
using a small number of recurrent mutations at predefined 
positions. If the region is too large (such as WGS/WES), the 
cost of sequencing would increase substantially. The cost 
greatly influences the clinical application of ctDNA detection, 
meaning that the design of the specific selector is vital in the 
present study. First, it dictates which mutations can be detected 
with high probability for a patient with a particular cancer 

Figure 3. Results of the reads ratio in the selected region to monitor the effect 
of surgery.

Table II. Analysis results of somatic SNVs.

Patient	 Gender	 Age, years	 Sample pair	 Somatic SNVs	 Somatic SNVs in selected region

Patient 1	 Male	 77	 case013W‑T013	 3,500	 75
			   case013W‑Plsm013_pre	 274	 6
			   case013W‑Plsm013_post	 330	 7
Patient 2	 Male	 58	 case023W‑T023	 3,060	 86
			   case023W‑Plsm023_pre	 345	 10
			   case023W‑Plsm023_post	 306	 6
Patient 3	 Male	 39	 case027W‑T027	 2,732	 53
			   case027W‑Plsm027_pre	 98	 3
			   case027W‑Plsm027_post	 114	 1

SNVs, single nucleotide variants.

Table I. Whole genome and selected region performance results.

				    Whole 	 Coverage 	 WGS	 Sequencing depth
		  Mapped	 Duplicate	 genome	 of selected 	 sequencing	 of selected
Sample	 Type	 reads	 rate (%)	 coverage (%)	 regions (%)	 depth	 regions

case013W	 Blood	 1,004,693,827	 1.89	 92.58	 98.59	 25.49	 42.63
T013	 FFPE	 1,082,465,782	 4.09	 86.08	 98.04	 26.86	 58.93
Plsm013_pre	 Plasma	 951,847,727	 2.34	 92.05	 98.08	 16.04	 18.73
Plsm013_post	 Plasma	 1,074,184,598	 2.02	 92.20	 98.48	 18.16	 22.03
case023W	 Blood	 971,811,353	 2.00	 92.57	 98.59	 24.64	 41.16
T023	 FFPE	 1,128,719,103	 2.04	 92.57	 98.40	 28.62	 49.26
Plsm023_pre	 Plasma	 881,754,515	 1.77	 91.52	 98.24	 14.99	 21.35
Plsm023_post	 Plasma	 987,003,992	 2.42	 92.02	 98.38	 16.66	 23.36
case027W	 Blood	 1,810,697,288	 3.97	 92.83	 98.58	 44.98	 76.61
T027	 FFPE	 1,064,991,038	 4.20	 74.04	 93.20	 26.41	 97.33
Plsm027_pre	 Plasma	 928,705,384	 2.88	 92.24	 97.66	 15.56	 16.66
Plsm027_post	 Plasma	 1,065,556,168	 2.10	 92.32	 98.29	 18.00	 20.91

FFPE, formalin‑fixed paraffin embedded; WGS, whole genome sequencing.
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type; and secondly, the selector size directly impacts the cost 
and depth of sequence coverage. For example, the smaller the 
selector is, the deeper the sequencing depth could be achieved.

In the present study, a novel algorithm was used in a 
liver cancer‑associated selector design. It was considered 
that ‘mutation frequency’ and ‘sample frequency’ should be 
considered at the same time. In the first step of process of 
designing a liver cancer‑associated selector, genes and CDS 
were taken into consideration to generate region 1, due to it 
being considered that genes are functional elements, which 
could be used as the first filter, and CDS regions could be 
used to minimize the regions associated with liver cancer 
mutations. To determine the regions most associated with liver 
cancer, the algorithm used was more stringent in the first 3 
steps, particularly in the third step, where 3 values were used 
to calculate and filter. 

The mean sequencing depth of the blood sample, FFPE 
samples and plasma sample of the selected region was 53.5, 
68.5 and 20.5, respectively, which demonstrated a relatively 
low sequencing depth of the plasma samples. The coverage 
of FFPE sample T013 and T027 was 86.08 and 74.04%, 
respectively, which may be a result of degradation of the 
samples. Only the associations of SNV and disease progres-
sion were discussed in the present study. The whole genome 
CNV status has been investigated in previous research (5). 
The key point in the present study is the sensitivity of 
designed selector.

A number of researchers reported that the absolute levels 
of ctDNA in pretreatment plasma were significantly correlated 
with tumor volume, as measured by CT and PET imaging (2‑4). 
Therefore, they used total volume of ctDNA as a marker. 
However, in a number of cases, it has also been observed that 
certain mutations dominated the plasma (4,14,16). As a result, 
it was considered that mutations in potential driver genes or 
actionable mutations could better reflect the tumor dynamics. 
Analysis of the total reads in the selected region was conducted 
to monitor the effect of surgery. The reads ratio in patients 2 
and 3 is notably reduced following surgery (Fig. 3), which 
demonstrated similar dynamic patterns in plasma. To support 
this result, more experiments are required to be performed. 
However, the ratio of the ctDNA remained detectable in the 
plasma following surgery, which is the reason why further 
investigation is required.

Along with the development and improvement of NGS, 
the research of ctDNA has become a hot spot in this field. 
The monitoring of ctDNA levels requires the identification 
of somatic mutations in patients with cancer. However, due 
to the high cost of sequencing, the characteristic of ctDNA 
slowed down the application of ctDNA in the clinical setting. 
The present study provided an optimal method to design a 
cost‑effective alternative for ctDNA analysis, and targeted 
deep sequencing can be readily expanded to include other 
genes known to be recurrently mutated in a specific cancer 
type. Therefore, Chinese HCC samples will be collected for 
testing in future work.
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