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a b s t r a c t

TBTK is a software development kit for quantum mechanical calculations and is designed to enable the
development of applications that investigate problems formulated on second-quantized form. It also
enables method developers to create solvers for tight-binding, DFT, DMFT, quantum transport, etc., that
can be easily integrated with each other. Both through the development of completely new solvers,
as well as front and back ends to already well established packages. TBTK provides data structures
tailored for second-quantization that will encourage reusability and enable scalability for quantum
mechanical calculations.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_138
Legal code license Apache License 2.0
Code version system used git
Software Code Language used C++, python
Compilation requirements, Operating environments &
dependencies

BLAS, LAPACK, CMake, (optional: ARPACK, FFTW3, OpenCV, cURL, SuperLU (v5.2.1), wxWidgets,
CUDA, HDF5, OpenBLAS, OpenMP, Google Test)
Linux, OS X, Unix-like

If available Link to developer documentation/manual www.second-quantization.com
Support email for questions kristofer.bjornson@gmail.com

1. Introduction

For more than half a century technological progress has been
fueled by advances in semiconductor technology, with exponen-
tial progress described by Moore’s law. The main driving factor
behind this is the continuous decrease in transistor size. The
International Technology Roadmap for Semiconductors (ITRS) tar-
gets 5 nm technology in 2021 (http://www.itrs2.net/), but further
decrease is difficult. With a lattice constant of 0.54 nm, a silicon
cube with side length 5 nm is roughly nine unit cells wide and
contains no more than a few thousand silicon atoms. On this scale
quantum mechanical effects starts to dominate [1,2]. Easy access
to more accurate models are therefore needed to complement
the semi-classical models that have been sufficient for industrial
purposes in the past [3].

E-mail address: kristofer.bjornson@second-tech.com.

Simultaneously, increased computational power, in combina-
tion with algorithm development, has increased the number of
atoms that can be simulated using quantum mechanical mod-
els [4–8]. The system sizes that are accessible for both academic
and industrial interests are therefore already overlapping. This is
not least visible through recent advances in the field of quantum
computing, where academia and industry are making signifi-
cant advances together [9–12], as well as through the increased
governmental spending on quantum technologies [13,14]. For
this effort to be successful, it is important to develop tools and
procedures that enables subject experts from different fields to
collaborate effectively with each other. In particular, data struc-
tures that provide high level abstractions of quantum mechanical
quantities are needed.

Consider the notation |Ψlmσ (x, y, z)⟩, which is mathematically
equivalent to a representation using the notation |Ψh⟩, where h
is some linear Hilbert space index. The former representation
is a high level abstraction particularly suited for model specific
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reasoning, while the later is a low level representation suited for
method developers interested in implementing computationally
demanding general purpose algorithms. Without a general map-
ping between the two representations, low level design decisions
are bound to propagate upward in the code. They can either
propagate all the way to the end user or be hidden away through
a high level, application specific, interface. In the former case,
responsibility is put on the end user to understand the low level
conventions, while in the later case the generality of the code
likely is limited. In either case, the code is made difficult to
integrate with other softwares since a set of universally agreed
upon conventions are lacking.

In this paper we present TBTK, an SDK for modeling and
solving Hamiltonians on second-quantized form. At its core it
solves the mapping problem described above. It also provides an
extensive set of general purpose data structures that can be used
to implement new applications, solvers, as well as front ends and
back ends to already existing packages.

2. Data structures: abstraction and efficiency

The main part of TBTK is a C++ library that contains data struc-
tures meant to simplify both the development of applications
that investigate particular quantum mechanical questions, as well
as enable developers to implement general purpose reusable
solvers. The data structures are designed to provide abstractions
that allow the developer to focus on physics instead of numerics,
and to provide the same efficiency as highly optimized single
purpose codes. Through strong emphasis on object oriented de-
sign, the code is divided into logical units protected by strong
encapsulation, which enables developers to work on the level of
abstraction appropriate for the given task.

3. Second quantization

The starting point for TBTK applications are Hamiltonians in
second quantized form

H = H0 + HI =

∑
ij

aijc
†
i cj + HI , (1)

where aij are complex numbers, i and j are discrete indices and
c†
i and ci are creation and annihilation operators, respectively,
for state i. Preliminary support is available for interaction terms
HI , but in this brief introduction we focus on non-interacting
Hamiltonians. In TBTK notation, the complex numbers aij are
called hopping amplitudes, which is derived from the codes initial
focus on tight-binding calculations. However, the nomenclature is
more generally motivated by the fact that when the Schrödinger
equation

ih̄∂t |Ψ (t)⟩ = H0|Ψ (t)⟩ (2)

is rewritten using finite differences

|Ψ (t + dt)⟩ = (1 −
idt
h̄

∑
ij

aijc
†
i cj)|Ψ (t)⟩, (3)

the aij’s are seen to be amplitudes associated with the process
whereby particles are annihilated in state j and recreated in state
i. That is, the particle is hopping from state j to state i.

4. Physical indices and Hilbert space indices

To allow for Hamiltonians of arbitrary complexity to be spec-
ified, TBTK provides a flexible indexing scheme. An important
distinction is made between physical indices such as (x, y, z,
sublattice, orbital, spin) that have an intuitive connection to the

physical problem at hand, and Hilbert space indices that are
linear representations of the corresponding physical indices. A
typical mapping from a physical index to a Hilbert space index,
say for a two dimensional lattice with a spin having the index
structure (x, y, s), could be hard coded into an application as h =
2*SIZE_Y*x + 2*y + s. The problem with such an explicit mapping
is that it forces every aspect of the application to work with this
convention, both limiting the applicability of the code and leaving
unnecessary numerical details visible at every level of the code.
TBTK solves this through a combination of flexible indices and
a sophisticated storage structure for the hopping amplitudes and
indices that automatically provides an efficient mapping between
the physical indices and the Hilbert space indices. Application
developers can therefore work with physical indices exclusively,
while method developers can write general purpose solvers that
only depends on the Hilbert space indices. In TBTK a physical
index is specified using curly braces such as {x, y, s}.

For full generality, TBTK also allows for indices with different
index structures to be used simultaneously, as for example is the
case for a system that consists of two subsystems with index
structure (x, s) and (x, y, s), respectively. For this to be possible,
the only requirement is that the indices differ in a subindex to
the left of where the index structure first differs. This is easily
solved by adding a subsystem index at the front, resulting in the
numerical indices {0, x, s} and {1, x, y, s}.

5. Creating models

A hopping amplitude is uniquely determined by its complex
value and the two indices i and j. A hopping amplitude with value
1 from state {x, y, s} to {x+1, y, s} is created using

HoppingAmplitude (1 , {x+1 , y , s } , {x , y , s } ) ;

Further, all hopping amplitudes are stored inside an object called
Model and for example a square lattice with nearest neighbor
hoppings can be set up as follows.

Model model ;
for ( int x = 0; x < SIZE_X ; x++){

for ( int y = 0; y < SIZE_X ; y++){
for ( int s = 0; s < 2; s ++){

i f (x+1 < SIZE_X ) {
model << HoppingAmplitude (

1 , {x+1 , y , s } , {x , y , s }
) + HC;

}
i f ( y+1 < SIZE_Y ) {

model << HoppingAmplitude (
1 , {x , y+1 , s } , {x , y , s }

) + HC;
}

}
}

}

Here ‘‘+ HC’’ implies that both the hopping amplitude and its Her-
mitian conjugate is added to the model. By allowing the user to
specify the model using physical indices with arbitrary structure,
it is relatively easy to specify virtually any Hamiltonian of interest
given that the aij’s are known. In fact, it is even possible to specify
Hamiltonians that are time dependent or which depend on some
yet undetermined parameters by passing so called callback func-
tions as the first parameter to the hopping amplitudes. The later
can be particularly useful if for example some parameters are to
be determined self-consistently or if they need to be calculated
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Fig. 1. As hopping amplitudes are added to the Model, a tree structure is being
built. The hopping amplitude is passed down along the branches of the tree
and stored on the leaf nodes, with the nth subindex of the second hopping
amplitude index determining which branch to go down at the nth level. If
hopping amplitudes consistent with the geometry on the right side of the figure
are added to the model, the resulting tree structure is as shown on the left.
When the model.construct() call is made, a linear Hilbert space basis is created
by traversing the tree and enumerating the leaf nodes with increasing numbers
starting from 0.

as some yet unknown overlap integrals. For more information on
this we refer to the documentation.1

Once all relevant hopping amplitudes are added to the model,
the mapping between the physical indices and the Hilbert space
indices are created using

model . construct ( ) ;

Taking a closer look at what happens behind the scenes of this
call is useful for understanding why we can afford the added
convenience of physical indices without incurring a significant
performance penalty. The hopping amplitudes are stored in a
tree structure, see Fig. 1, which can be thought of as a sparse
matrix format with each column stored on a leaf node. The
physical indices associated with each column is encoded in the
tree structure itself, while the linear Hilbert space index is stored
on the leaf node once the model.construct() call has been made.
In addition to acting as a storage for the hopping amplitudes,
the tree structure therefore also provides a mapping between the
physical and Hilbert space indices. Note that since the mapping
only includes sites that are actually included in the model, this
results in a minimal Hilbert space.

Since a physical index can be converted to a Hilbert space
index by traversing the tree to the corresponding leaf node, the
time complexity for a conversion from a physical to a Hilbert
space index is O(1) in the Hilbert space size. The time complexity
for a single reverse lookup is somewhat more complicated since
it depends on the number of branches per level, but algorithms
that need a reverse lookup can construct a lookup table in O(N)
time by iterating through the tree structure, where N is the
Hilbert space size. Of particular interest to the method developer
is the fact that it is possible to iterate through all the hopping
amplitudes and extract their value in the Hilbert space basis in a
time that is O(M), where M is the number of hopping amplitudes.
This is virtually always also linear in the Hilbert space size since
the number of hopping amplitudes is proportional to the Hilbert
space size for any model with local operators (which is the case
for tight-binding, finite differences, finite elements, etc.).

Although we do not go into details about any of the prelim-
inary support for many particle systems, we note that the tree
structure described above describes the (bilinear) single particle
part of the Hamiltonian. Interaction terms are stored in a separate
structure, but the mapping provided by the tree structure allows

1 With doxygen installed, the documentation can be built using make
documentation and is then found at BuildFolder/doc/html/index.html, where
BuildFolder is the build folder. The documentation for the latest release is also
available at http://www.second-quantization.com.

also for the operators in the interaction terms to be referred to
using their physical and Hilbert space indices interchangeably.

When relevant, the model object can also hold information
such as the temperature, chemical potential, and statistics

model . setTemperature (300);
model . setChemicalPotential ( 0 ) ;
model . s e t S t a t i s t i c s ( S t a t i s t i c s : : FermiDirac ) ;

The model object is thus the general purpose container for model
related information and can also contain other information not
shown here.

6. Solvers

Different type of problems require different solution methods
and these are generally implemented in solvers in TBTK. Since
the solver usually is where most computational time is spent,
it is important that method developers have complete freedom
over the choice of data structures and programming paradigm
that are used internally to implement their algorithms. Moreover,
for general purpose solvers it is also important that they can
work with minimal assumptions about the model. The mapping
from physical indices to Hilbert space indices provides the key
to solving both of these problems. Internally the solvers can
request the hopping amplitudes from the model using the Hilbert
space basis and set up the data structures that are best suited
for the method. In this way method developers can create new
solvers without worrying about the details of specific physical
models, while application developers can specify models without
worrying about the method specific details of particular solvers.

TBTK comes packed with a number of different solvers that
for example can perform diagonalization, Arnoldi iteration, and
Chebyshev expansion of the Green’s function [8]. Using diagonal-
ization as an example, a typical solver can be set up and executed
as follows.

Solver : : Diagonalizer solver ;
solver . setModel (model ) ;
solver . run ( ) ;

For other solvers the initialization may require more method
specific parameters to be supplied. However, the main idea is
to provide an interface to the application developer that mini-
mizes the amount of necessary method specific knowledge while
simultaneously providing the possibility to configure the solver
on demand.

Since the Hamiltonian can be converted to whatever format
that is most suitable for the algorithm in O(N) time and the
execution time of almost every solution method is superlinear in
N , the penalty for this conversion is negligible. The basic recipe
a method developer can apply when setting up the calculation
inside the solver is as follows.

/ / I t e r a t e over the HoppingAmplitudes .
const HoppingAmplitudeSet

&hoppingAmplitudeSet
= model . getHoppingAmplitudeSet ( ) ;

for (
HoppingAmplitudeSet : : Const I terator

i t e r a to r
= hoppingAmplitudeSet . cbegin ( ) ;

i t e r a to r != hoppingAmplitudeSet . cend ( ) ;
++ i t e r a to r

) {
/ / Ex t rac t the amplitude and phys i ca l
/ / i nd i c e s from the HoppingAmplitude .
complex<double> amplitude

http://www.second-quantization.com
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Fig. 2. (Left) Time spent setting up an N ×N ×N cubic tight binding-model with onsite and nearest neighbor hopping terms, as a function of the Hilbert space basis
size. TBTK is approximately four times faster (3.93 times faster at basis size 106). (Right) Time spent extracting the same Hamiltonian, as a function of the Hilbert
space basis size. Extracting the matrix as a SparseMatrix object in TBTK is about three times faster than extracting it as a sparse numpy array in kwant (2.86 times
faster at basis size 106). Method developers can squeeze out an additional factor of two in TBTK by accessing the raw sparse matrix data directly (6.15 times faster
at basis size 106).

= (∗ i t e r a to r ) . getAmplitude ( ) ;
const Index &toIndex

= (∗ i t e r a to r ) . getToIndex ( ) ;
const Index &fromIndex

= (∗ i t e r a to r ) . getFromIndex ( ) ;

/ / Convert the phys i ca l i nd i c e s to l i n e a r
/ / i nd i c e s .
int row

= hoppingAmplitudeSet . getBasisIndex (
toIndex

) ;
int column

= hoppingAmplitudeSet . getBasisIndex (
fromIndex

) ;

/ / Add the matrix element to the
/ / Hamiltonian on the format bes t su i t ed
/ / f o r the given algorithm .
/ / . . .

}

7. Extracting properties

TBTK defines several properties such as eigenvalues, wave
functions, density of states (DOS), (spin-polarized) local density
of states (LDOS), etc. However, different solvers can internally use
very different storage structures and it is desirable to limit the
solvers responsibility to dealing with the general purpose prob-
lem formulated using Hilbert space indices. For this reason TBTK
provides property extractors that bridge the gap between the
method specific details of the solvers and the higher abstraction
layer presented to application developers. Method developers are
strongly advised to create similar property extractors in parallel
with their solvers.

The property extractors provide a more intuitive interface to
the application developer, allowing the application developer to
extract properties from the solvers using physical indices. More-
over, they aim to provide uniform interfaces for the solvers to the
outside world. Code that uses property extractors can therefore
often work even if the solver is changed and makes it possible

to try completely different solution method by simply changing
a few lines of code related to the solver initialization. We do,
however, note that not every solver can calculate every property,
and some solvers can calculate some specific details that are
not available through other solvers at all. Property extractors
are therefore only approximately uniform, sometimes providing
implementations for functions that simply print that the corre-
sponding solver cannot be used to calculate the given property,
while sometimes having additional functions not available in
other property extractors.

A typical expression for setting up a property extractor is as
follows.

PropertyExtractor : : Diagonalizer
propertyExtractor ( solver ) ;

propertyExtractor . setEnergyWindow(
LOWER_BOUND,
UPPER_BOUND,
RESOLUTION

) ;

We can then extract the density on each site, summing over
spins:

Property : : Density density
= propertyExtractor . ca lculateDensity (

{ { IDX_ALL , IDX_ALL , IDX_SUM_ALL}}
) ;

Calculate the density of states (DOS):

Property : :DOS dos
= propertyExtractor . calculateDOS ( ) ;

Get the eigenvalues:

Property : : EigenValues eigenValues
= propertyExtractor . getEigenValues ( ) ;

Calculate the retarded Green’s function for all spin combinations,
with the annihilation operator on site (0, 0) and the creation
operator on site (5, 5):

Property : : GreensFunction greensFunction
= propertyExtractor . calculateGreensFunction (

{ { {0 , 0 , IDX_ALL } , {5 , 5 , IDX_ALL } } } ,
Property : : GreensFunction : : Type : : Retarded

) ;
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Extract the LDOS along y = SIZE_Y/2, summing over spins:

Property : : LDOS ldos
= propertyExtractor . calculateLDOS (

{ { IDX_ALL , SIZE_Y /2 , IDX_SUM_ALL}}
) ;

Calculate the magnetization on all sites:

Property : : Magnetization magnetization
= propertyExtractor . calculateMagnetization (

{ { IDX_ALL , IDX_ALL , IDX_SPIN }}
) ;

Get the spin-polarized LDOS on site (2, 4) and (3, 5):

Property : : SpinPolarizedLDOS
spinPolarizedLDOS
= propertyExtractor . calculateSpinPolarizedLDOS (

{
{2 , 4 , IDX_SPIN } ,
{3 , 5 , IDX_SPIN } ,

}
) ;

Extract the wavefunction for all indices for state 1, 3, and 7:

Property : : WaveFunctions waveFunctions
= propertyExtractor . calculateWaveFunctions (

{ { IDX_ALL , IDX_ALL , IDX_ALL } } ,
{1 , 3 , 7}

) ;

8. Benchmark

We perform a few benchmarks to quantify the scaling behav-
ior and provide convincing evidence that the general purpose
data structures introduced comes with negligible performance
penalties. In particular, the model specification and retrieval of
the Hamiltonian on a sparse matrix format is considered since
this is the layer that separates application developer code from
method developer code. These benchmarks therefore provides an
upper bound on the overhead cost of the data structures. The
benchmark is done against kwant [15] since it is able to achieve
the same things, although using a less general formalism where
coordinates and other indices are treated on different footing. See
PerformanceTest.zip in the supplemental material for the actual
code used.

For simplicity a cubic tight-binding model with nearest neigh-
bor hopping is created and then converted to a sparse matrix on
a fresh install of Ubuntu 18.04 running on a single core Intel(R)
Xeon(R) CPU @ 2.30 GHz. In the left panel of Fig. 2 the time to set
up a model as a function of the Hilbert space size is shown. Both
TBTK and kwant display linear scaling, with TBTK outperforming
kwant by a factor of almost 4. In the right panel of Fig. 2 the
time for extracting the Hamiltonian on a sparse matrix format
is plotted. Also here both TBTK and kwant scales linearly, with
TBTK beating kwant by a factor of 3 to 6 depending on the specific
sparse format chosen. In either case, the overhead cost for setting
up a model and requesting the data is not particularly large for
either TBTK or kwant. In fact, for problems with a basis size as
large as 106, the cumulative time of about 10 s for TBTK and 38 s
for kwant to specify and extract the model on a sparse matrix
format is almost certainly going to be dwarfed by the time spent
in any algorithm working on a system of that size.

9. Impact and summary

TBTK is a software development kit that enables rapid de-
velopment of applications that calculates quantum mechanical
properties. It will aid the scientific community and industry in
developing codes that enable large scale collaborations through a
scalable approach that encourages reusability. A more integrated
community is essential for quantum technology to scale to an
industrial level. It also means that errors etc. can be detected
more quickly and provides a means towards the transparency
that scientific work is supposed to have. This will allow the
community to spend less time replicating numerical details that
others already have worked out and to put more focus on the
physical questions of interest. To achieve this, TBTK provides a set
of efficient general purpose data structures and build tools that
draws from the latest best practices in software development. The
intention is to enable the development of an ecosystem of solvers
and tools that can perform tight-binding, DFT, DMFT, quantum
transport, and other types of calculations and to make it easy
to integrate the different methods with each other. In particular,
TBTK aims to aid such development by providing data structures
that allow developers to work at a higher level of abstraction,
enabling them to put more focus on the physical ideas than
on numerical details. The interested reader is referred to the
documentation2 for more information.
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