UNIVERSITY OF COPENHAGEN

Using deep learning to evaluate peaks in chromatographic data

Risum, Anne Bech; Bro, Rasmus
Published in:
Talanta

DOI:
10.1016/j.talanta.2019.05.053

Publication date:
2019

Document version _
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Risum, A. B., & Bro, R. (2019). Using deep learning to evaluate peaks in chromatographic data. Talanta, 204,
255-260. https://doi.org/10.1016/j.talanta.2019.05.053

Download date: 09. apr.. 2020

https://doi.org/10.1016/j.talanta.2019.05.053
https://curis.ku.dk/portal/da/persons/anne-bech-risum(ea9f6d2a-516b-4970-b25d-3422e372317b).html
https://curis.ku.dk/portal/da/persons/rasmus-bro(8c7956da-91f7-4c67-8c19-42bc9c446c87).html
https://curis.ku.dk/portal/da/publications/using-deep-learning-to-evaluate-peaks-in-chromatographic-data(48a282c9-cbb4-434a-ad90-b6dc01ee037a).html
https://doi.org/10.1016/j.talanta.2019.05.053

Talanta 204 (2019) 255-260

e

Contents lists available at ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Check for
updates

Using deep learning to evaluate peaks in chromatographic data

Anne Bech Risum, Rasmus Bro*

Department of Food Science, University of Copenhagen, Denmark

ARTICLE INFO ABSTRACT

Keywords: Analysis of untargeted gas-chromatographic data is time consuming. With the earlier introduction of the
Deep learning PARAFAC2 (PARAllel FACtor analysis 2) based PARADISe (PARAFAC2 based Deconvolution and Identification
PARAFAC2 System) approach in 2017, this task was made considerably more time-efficient. However, there are still a
i’::z;::gz:m number of manual steps in the analysis which require data analytical expertise. One of these is the need to define

whether or not each PARAFAC2 resolved component represents a peak suitable for integration. As the peaks may
change in both shape and location on the elution time-axis, this presents a problem which cannot be readily
solved by applying a linear classifier, such as PLS-DA (Partial Least Squares regression for Discriminant
Analysis).

As part of our ongoing efforts to further automate analysis of Gas Chromatography with Mass Spectrometry
(GC-MS), we therefore explore a convolutional neural network classifier, capable of handling these shifts and
variations in shape. The theory of convolutional neural networks and application on vector samples is briefly
explained, and the performance is tested against a PLS-DA classifier, a shallow artificial neural network and a
locally weighted regression model.

The models are built on a training set with PARAFAC2 resolved components from eight different aroma
related GC-MS runs with a total of over 70,000 elution profile samples, and validated using another, in-
dependent, GC-MS dataset.

Based on Receiver Operating Characteristic curves (ROC) and manual analysis of the misclassified cases, it is
shown that the convolutional network consistently outperforms the competing models, yielding an Area Under
the Curve (AUC) value of 0.95 for peak classification. Examples are given illustrating that this new approach
provides convincing means to automatically assess and evaluate modelled elution profiles of chromatographic

data and thereby remove this laborious manual step.

1. Introduction

Untargeted GC-MS can provide highly complex data. No specific
chemical analytes are in focus a priori and hence it is not possible to
optimize the chromatographic procedure as in classical analytical
chemistry. It has been shown that the PARADISe approach [1], based
on PARAFAC?2, is capable of separating co-eluting peaks and baselines,
outperforming state of the art analytical chemical software both in the
number of quantified compounds, and in the reproducibility of the
analysis. However, analysing GC-MS datasets using PARADISe still in-
volves several manual steps, which are labour intensive and require a
skilled tensor data analyst. The chromatograms are split into small in-
tervals and a suitable PARAFAC2 model is fitted to the data from each
interval. Some of the components of this model will represent baseline
and others e.g. peaks of chemicals. Only the components representing
chemicals are of interest. One of the most time-consuming tasks in

* Corresponding author.
E-mail address: rb@food.ku.dk (R. Bro).

https://doi.org/10.1016/j.talanta.2019.05.053

PARADISe is the manual classification of PARAFAC2 components as
being chemical peaks versus non-interesting phenomena such as base-
lines (see Fig. 1).

As part of our ongoing efforts towards automation and ease-of-use of
the processing of GC-MS data, the purpose of the presented work was to
develop an automated classifier, removing this laborious step in the
workflow. At first glance, classifying the PARAFAC2 elution mode
profiles might seem trivial. However, inherent problems in the nature of
the data render our preferred chemometric methods unsuitable. The
most significant issue is that the location and width of peaks on the time
axis will shift considerably from different intervals. This type of non-
linearity cannot be handled well using PLS-DA, SIMCA, or other linear
methods.

As an alternative, we therefore explore deep learning in the form of
convolutional neural networks. The convolutional neural net searches
for the same features in windows across the entire time axis, hence

Received 19 March 2019; Received in revised form 8 May 2019; Accepted 10 May 2019

Available online 22 May 2019

0039-9140/ © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

http://www.sciencedirect.com/science/journal/00399140
https://www.elsevier.com/locate/talanta
https://doi.org/10.1016/j.talanta.2019.05.053
https://doi.org/10.1016/j.talanta.2019.05.053
mailto:rb@food.ku.dk
https://doi.org/10.1016/j.talanta.2019.05.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.talanta.2019.05.053&domain=pdf

A.B. Risum and R. Bro

TIC

a)

Talanta 204 (2019) 255-260

TIC

"baseline”|

"other”

b))

Fig. 1. Illustration of how the classified vectors are obtained from the GC-data. a) Example of a Total Ion Chromatogram of raw GC-MS data. The shaded area shows
an example of an interval selected for PARAFAC2 modelling. Intervals are defined for each peak area in the chromatogram. b) Top: zoom on the selected interval
below: elution profile loadings of the four PARAFAC2 components fitted on this interval, colored according to their classification. c) Illustration of how each of the
sample elution profile loadings from the PARAFAC2 components become a single sample vector in the training data for the deep net.

allowing peaks similar in shape to shift but still be considered the same
class; making it highly applicable for our problem. Furthermore, as
large amounts of chromatographic data can easily be acquired, the need
for large amounts of data in deep learning is not an issue in this case.

Here, we present a convolutional neural net approach capable of
classifying the PARAFAC2 elution mode profiles into four classes:
“peaks”, “baselines”, “shoulder peaks” and “other”, as illustrated in
Fig. 1.

To evaluate the performance of the classifier, it is compared to PLS-
DA as an example of a linear classifier, locally weighted regression
(LWR) as a highly flexible non-linear model, and shallow artificial
neural networks (ANN) as an alternative non-linear classifier.

2. Theory

The basic principles of deep learning in the form of convolutional
neural networks will be shortly explained in the following. Normally,
deep learning is applied to images and the theory is therefore usually
described in terms of images. However, our input data will not be
images with an x- and a y-plane. Instead our input will be elution
profiles, hence vectors. Therefore, we will describe the theory in terms
of such vectors. The basic principle of convolutional networks is that
they make intensive use of a moving filter. The network consists of a
number of layers starting with the input layer. The fact that there are
many layers is what gives rise to the name deep learning. The input
layer is where the data enters the network. Hence, if each sample is,
say, a vector with fifty elements, then the input layer has fifty nodes —
one node for each input variable.

The second layer of the network is then defined by a filter, for ex-
ample of length two. The weights of this filter will be optimized during
the training but for the example, assume that this filter reads w = [w;
w1] = [0.5 0.5]. For an input vector of length fifty that readsx = [7 35
... 3 9] the convolution/filtering can be depicted as in Fig. 2. The fil-
tering runs from element (1,2), (2,3), (3,4) etc. of the input vector and
takes the weighted sum. Hence, the first element in the following layer
will be 7:0.5 + 3:0.5 = 5. The fact that the same filter is applied only
on a small segment at a time provides for some sparsity in the network
which is important for the stability of the solution. That is, for a tra-
ditional feed-forward neural network each hidden layer is connected to

0 @ O O @ @ Input layer

w
\ 2

~ Output from first
convolutional layer

@

@ Max-pooling layer

Fig. 2. An input layer followed by a convolution layer which is followed by a
max-pooling layer. Normally there would also be first a batch normalization
and then a ReLU layer before the max-pooling layer, but this is left out for
simplicity.

the previous layer with a fully connected set of weights. If there are e.g.
100 variables in the previous layer, then there will be 100 weights to
estimate. In the convolution layer above, there will be just two para-
meters regardless of the number of variables in the previous layer.

As opposed to a conventional fully connected neural network, the
convolutional network looks for similar features defined by the weights
in different parts of the input. The rationale for this has traditionally
come from images where it is desired to be able to identify an object
such as a chair no matter where in the picture it appears. The length of
the filter, two in this case, is a parameter that needs to be established
during training. It is usually much closer to two than to, say, ten. Hence,
it is kept fairly small which may seem a little counter-intuitive espe-
cially, if the goal is, indeed, to identify chairs. However, there are many
layers in the network and each layer is assumed to only handle very
specific tasks. It is the aggregation over many layers of simple tasks that
will allow the network to handle complex problems.

There are a number of hyperparameters (known as metaparameters
in chemometrics) related to a convolutional layer. The filter width has
already been mentioned but also the stride has to be defined. The stride
is the step size which defines how much the filter moves. For example,
if the stride is three, then the filter will start with element one and
afterwards element four. Stride is often maintained at the value one as
in Fig. 2. It is also possible to zero pad the input layer by adding zeros

A.B. Risum and R. Bro

Table 1

Talanta 204 (2019) 255-260

Overview of the size and origins of the different datasets used for training, stop set and validation of the deep neural network.

GC-MS datasets Intervals PF2 components Elution profile samples Samples after preprocessing
Training data 1-8 618 1812 71078 119104
Stop set data 1-8 206 609 24796 43241
Validation set 9 381 1585 37961 37961%

2 The Validation set data was kept as originally collected, only normalized, and not flipped or shifted in any way.

0.95

$$$$$$

0.9

AUC

0.85

2 4 6 8
Number of convolutive layers

Fig. 3. Boxplot of the “peak” versus “non peak” classification AUC value for the
deep convolutional nets as a function of the number of convolutive layers. For
each level of number of convolutive layers, the model training was repeated 20
times.

before the first element and after the last.

After the convolutional layer, the data are normalized using batch
normalization [2]. It is essentially an autoscaling and just a way to
make sure that the output is within bounds. This helps speed up the
algorithm. The normalization is done for each mini-batch. A mini-batch
is a set of samples that are processed before updating of the parameters
through backpropagation. The mini-batch size is often around some
hundreds. After all samples have been processed once (termed one
epoch), the data are usually shuffled before creating the next set of
mini-batches. The shuffling tends to help in averaging out possible
unfortunate distributions within the mini-batches.

The outputs from the batch normalization layer are normally passed
through what is called a Rectified Linear Unit Activation function [3]
referred to as a ReLU function. The ReLU function is defined f(x) = max
(0,x). This simple cutoff helps the neural network model interactions as
the output is only active above a certain threshold and also provides
means for including certain non-linearities. The ReLU also has a bias
implicitly added to x because the preceding convolutive layer has a
bias. Hence, the actual cutoff that zero represents can be modified.

In a real neural network, there is not just one filter for each layer.
Instead, there are several of these called channels. The number of
channels is called the depth of the layer. By having many channels, it is
possible to extract many different features rather than just one. This is
somewhat comparable to having many components in a latent variable
model.

After a filtering and a ReLU layer, it is common to have a so-called
max-pooling layer. The aim of max-pooling is to do a re-sampling —
typically a down-sampling. Imagine for simplicity that one channel has
a feature that looks for ‘chairs’. Hence, any node with a high value will
represent a chair. Max-pooling will use a filter where a set of neigh-
bours are replaced with the max value. Hence, if just one of the ‘chair’-
filters was high, then the node will have a high value (see Fig. 2). Apart
from extracting potentially interesting information, the max-pooling
will also filter out other information. Only the most significant features

257

Table 2
The structure of the final deep learning model. Convolutional neural network
with four convolutional layers and 23 layers in total.

No. Layer Parameters

1 Image input layer 50 x 1 x 1 images, ‘zerocenter’ normalization

2 Convolution 20 channel, 3 x 1 convolutions with stride [1 1]
and padding [1 1 0 0]

3 Batch normalization

4 ReLU

5 Max Pooling 3 x 1 max pooling with stride [1 1] and padding
[0000]

6 Convolution 40 channel, 3 X 1 convolutions with stride [1 1]
and padding [1 1 0 0]

7 Batch normalization

8 ReLU

9 Max Pooling 3 x 1 max pooling with stride [1 1] and padding
[0000]

10 Convolution 60 channel, 3 X 1 convolutions with stride [1 1]
and padding [1 1 0 0]

11 Batch normalization

12 ReLU

13 Max Pooling 3 x 1 max pooling with stride [1 1] and padding
[0000]

14 Convolution 80 channel, 3 X 1 convolutions with stride [1 1]
and padding [1 1 0 0]

15 Batch normalization

16 ReLU

17 Max Pooling 3 x 1 max pooling with stride [1 1] and padding
[0000]

18 Fully connected 20 neurons fully connected layer

19 ReLU

20 Dropout 25% dropout

21 Fully connected layer 4 neuron fully connected layer

22 Softmax

23 Classification Output Crossentropyex

are allowed through. Other functions than maximum can also be ap-
plied. Pooling is considered essential in convolutive networks for
achieving the invariance to position and orientation of features within
the data.

The output of the max-pooling layer is normally passed on to a new
set of Conv/Normalize/ReLU/Max-pool layers. Often with less nodes to
compress the information into the essential information but with more
and more channels to be able to detect more complex phenomena. After
the defined number of convolutive layers, a fully connected layer is
added. This is similar to a normal feed forward neural network [4]. As
in a normal neural network, it is possible to add several layers but ty-
pically relatively few layers are used. In deep learning it is common to
add a drop-out layer after a hidden fully connected layer. The drop-out
layer sets a fraction of the outputs to zero at random and provides a way
to avoid overfitting, and forces the layer to be robust to missing out on
certain features. The fraction to zero out is a hyperparameter that needs
to be determined.

The final output layers will depend on the purpose of the network;
typically, classification is the aim in which case the output layer can be
a softmax layer which consist of a transfer function for each class using
a normalized exponential which is a generalization of a logistic function
[5]. It transfers a node value into a value between zero and one that can
then be used for classifying.

Estimating the parameters of a network of a given structure can be

A.B. Risum and R. Bro

Talanta 204 (2019) 255-260

Input Conv. 1 Conv. 2 Conv. 3
P 20 channels 40 channels 60 channels
& \ k
— B \/\
L N R
50 sSePOERBNENDS
RelU RelU
Max Pool Max Pool
Conv. 4 FC1 FC2 Class
x20 Softmax
: e —
L~ : * — ;
L]
E . —
.
P —
°**® RelU RelU ® Rew
Max Pool 80 channels Max Pool Dropout

Fig. 4. Illustration of the architecture of the final deep network with four convolutional layers.

1 =
0.8 r
L
o
g 06t =P S-DA
= = ANN
§ ====Deep conv. net
o 04 ——LWR
2
'_
0.2
O 1 1 1 1]
0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 5. ROC curves of the classification of “peak” versus “non peak” classes of
the deep convolutional net compared to the other three tested models. The
curves are based on the independent validation set.

done with classical back-propagation. Current state-of-the-art is an
approach called adaptive moment estimation (ADAM) [6].

3. Materials and methods
3.1. Data collection

A total of nine different aroma related GC-MS datasets were ana-
lysed using PARADISe version 3.88 (http://www.models.life.ku.dk/
paradise, March 12, 2019). The chromatograms were divided into in-
tervals, each containing only a few peaks, which were then resolved by
PARAFAC2 modelling. After choosing the appropriate number of
components each component was manually classified into four classes:
“peak”, “baseline”, “shoulder peak” and “other”. All elution profiles
from the components were linearly interpolated to a length of 50 and
collected as classified vectors used for input data in the deep convolu-
tional net (see Fig. 1 for illustration of the workflow).

The dataset was divided into a training set, a stop set and a vali-
dationset. An overview of the dimensions of these datasets can be found
in Table 1. Eight of the GC-MS datasets were used for the training data
and stop set data. The stop set data was created by randomly selecting
one fourth of the components from the training set,. The validation set

was collected from a new independent GC-MS dataset.

3.2. Preprocessing

To create more variation in the training and stop set data, all vector
samples were appended to the original data in a horizontally flipped
version. This increased the dataset to double size. Furthermore, to in-
troduce even more variation, all samples in the “other” class in the
augmented matrix were shifted randomly with an integer from -—10 to
10 points left or right on the x-axis, by moving the beginning of the
vector to the end or the ending of the vector to the beginning, respec-
tively. Similarly, all peak samples were shifted by adding a random
integer of points (0-20) before and after the vector.

All sample sets, including the validation set, were re-sampled in
order to have approximately 30% “peak” samples, 40% “other sam-
ples”, 15% “baseline” samples and 15% “shoulder peaks” samples.
Finally, before any modelling, all of the vector samples in the ap-
pended, resampled matrices were normalized to length one. For the
PLS-DA and LWR models, the data was also mean centred prior to
modelling.

4. Deep learning
4.1. Selecting network structure

The AUC of peak versus non-peak classification as a function of
number of convolutional layers is shown in Fig. 3. Simple networks
with less than three layers did not perform well. Increasing up to three
to five layers gave a substantial improvement whereas increasing
complexity beyond that did not improve the average performance and
resulted in less stable results.

The model settings described in Table 2 was chosen as a base model.
An experimental design was run making slight modifications of step
length, etc. It was found that the model was robust to slight modifica-
tions which we assume is because of the large amount of data used.
Hence, no further optimization was pursued.

The final network, corresponding to the one outlined in Table 2, is
illustrated in Fig. 4. It has four convolutional layers with 20, 40, 60 and
80 channels in each respective layer, from first to last. Stepsize is 3 x 1
throughout all convolutional layers, with a stride of one. Between each
convolutional layer, a ReLU activation and MaxPooling (3 X 1) is per-
formed. After the convolutional layers there is a fully connected layer
with 20 neurons, followed by ReLU and a 25% dropout layer. Finally, a
second fully connected layer with four neurons, a softmax activation
and a classification layer yields the classification output.

http://www.models.life.ku.dk/paradise
http://www.models.life.ku.dk/paradise

A.B. Risum and R. Bro

Deep V
- v
- 4

v
PLSDA

Talanta 204 (2019) 255-260

A

A

Fig. 6. Examples of classification results for the four methods. Each column shows one interval and each row one classification method. The classification result is
, other). Correct classifications are indicated by tick marks.

indicated by the color (s

20000 15000
6000
15000
4000 10000 3
10000
2000 5000
5000
0 0 0
0 5 10 15 20 25 bl
4
4 X120 1 2.6
] ‘l 1.2 2.4 (5
z 1.4 2.2
1 -1.6 2
O L -1.8 1.8
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 75

Baseline (04,113

Fig. 7. Example of an interval fitted with a six component PARAFAC2 model, and subsequent deep net classification of all elution profiles in each component. Top:
raw TIC. Bottom six: elution mode loadings of the six different components, colored according to the classification results. The numbers denote the component

number.

4.2. Training the convolutional neural network

The network was trained using the neural network toolbox in Matlab
2018a. An ADAM optimizer was used to train. Initial learning rate was 0.1
and the learning rate drop period was ten with a learning rate drop factor

of 0.1. The network was trained using minibatches with a minibatch size of
124 samples and shuffling between every epoch. The validation frequency
was four times per epoch and validation patience was set at three. This
means that the training stops when the validation using the stop set has not
improved in three consecutive validation points.

A.B. Risum and R. Bro

5. Other algorithms for comparison
5.1. PLSDA

A PLSDA model classifying samples into the four classes was fit to
the training data. Different number of components were tried, and the
models were validated by prediction error on the stop set. The final
model was fitted using three latent variables, and used to predict the
validation set data.

5.2. Locally weighted regression

Different locally weighted regression (LWR) models were in-
vestigated using the training set data to predict the stop set data to
validate the model parameter choices. As opposed to the other models
used in this study, these models were made to classify only “peak”
versus “non peak”. A binary classification was chosen for practical
reasons as the software did not allow multiple classes. The final LWR
model, predicting the validation set data, had 11 components and 400
points in the local regression.

5.3. ANN

Shallow ANN models classifying samples into the four classes were
trained using the training data under the same conditions as the deep
convolutional network, using the same neural networks toolbox in
matlab2018a and the same learning parameters. A single hidden layer
was used, while the number of neurons were varied from one to ten.
The final ANN had two neurons in its hidden layer.

6. Results and discussion

In Fig. 5, the resulting ROC curves for the peak versus non peak
classification of the validation data are shown for the four tested
models. Each curve shows the classification performance as a function
of the decision threshold. For example, it is possible to have perfect
classification of true peaks (true positive rate) by setting the threshold
low. The downside of that is that all non-peaks will also be classified as
peaks (false positive rate). By adjusting the threshold, the ROC curve
shows the performance compromise. The ideal curve would be in the
upper left corner and have an area under the curve (AUC) of one. A
completely nonfunctioning model would have a ROC curve lying on the
diagonal from lower left to upper right and have an AUC of a half. Even
though the deep network is trained to classify four different classes, it is
the correct identification of peaks that is essential for the intended
application, and so all models were evaluated based on this.

As is evident from the results, all models are capable of classifying
reasonably well, but the deep learning net has better AUC than any of
the other methods. The one that comes closest in performance is LWR.
This is to be expected as it only builds models locally and hence can
build models that do not need to consider shapes completely different
from the one investigated. In PLS-DA and ANN, the classification is
basically based on global latent variables which means that the classi-
fication model will trigger on a specific type of shape. Therefore, it will
be difficult to handle extreme shifts in time axis position or extreme
variations in width unless a very high false positive rate is accepted.
The deep learning and LWR approaches, on the other hand, need not
have one signal that will trigger positive. Because of the localized
nature of both, they can handle much more heterogenous classes which
is exactly what is needed here.

That local models perform well also implies that e.g. support vector
machines could be a viable approach, but both those as well as LWR are
very slow in practice for data sets of this size. Support vector machines

260

Talanta 204 (2019) 255-260

would most likely be cumbersome to implement with hundreds of
thousands of samples. When screening through the results, it is clear
that for well-performing models and intervals, the deep network per-
forms extremely well and hardly ever misses a peak. Some of the al-
ternative methods can fail even for seemingly simple problems (see
Fig. 6).

Nevertheless, it is evident from Fig. 5 that the deep network is not
perfect. In order to understand why the classification results are not
perfect, we manually went through all cases where the deep network
did not get the classification of a peak or non peak correct.

In around half of the few cases where the deep network failed, the
apparent error was caused by a bad reference class which means that
our initial class assignment was wrong. In less than five percent of the
misclassified cases, the deep network really did do worse than the al-
ternative methods but mostly by confusing a peak with the category
“other”. The category “other” is the most heterogenous class and pre-
dominantly occurs in intervals and models that are already doing a
fairly bad job. Hence, it is plausible that many of these models are
deemed invalid on other grounds. Apart from these two types of errors
constituting a little more than half the problems, the remaining mis-
classifications seem to be cases where the deep network makes mistakes
but much less so than the competing models. Hence, overall, the deep
network is trustworthy and efficient and even to a higher degree than
the ROC curve seems to indicate. Training the model on more data of
diverse nature may help improve the model even further.

As a final illustration of the use of the network, we show the out-
come of the PARAFAC2 modelling of one interval in Fig. 7. As can be
seen, the elution profiles are correctly assigned to the appropriate
classes. Notice that the baseline-like profiles in component five are
assigned as “other” because they are slightly negative which is incon-
sistent with how baselines are defined.

7. Conclusions

It has been shown that deep learning provides an approach for au-
tomatically assessing the nature of estimated elution profiles. With the
well performing classification model implemented here, it is possible to
further automate the analysis of chromatographic data. The current
system was developed solely using GC-MS data, but it is of interest to
test out the model on other types of chromatographic systems as well. It
is also of interest to expand the current model to include other types of
information; e.g. for detecting fronting and tailing. If such capabilities
are included, the model may further help the chemist in providing
advice and guidance.

Acknowledgments

The research in this paper was partly funded by The Nils Foss
Excellence Prize awarded to one of the authors.

References

[1] L.G. Johnsen, P.B. Skou, B. Khakimov, R. Bro, Gas chromatography — mass spec-
trometry data processing made easy, J. Chromatogr. A 1503 (2017) 57-64.

S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, (2015) arXiv preprint arXiv:1502.03167, 2015 -
arxiv.org.

R.H. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Digital
selection and analogue amplification coexist in a cortex-inspired silicon circuit,
Nature 405 (6789) (2000) 947-951.

J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley, Redwood City CA, 1991.

W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: A
comprehensive review, Neural Comput. 29 (2017) 2352-2449.

D.P. Kingma, J.L. Ba, Adam: A Method for Stochastic Optimization ICLR 2015,
(2015) arXiv preprint arXiv:1412.6980, 2014 - arxiv.org.

[2]

[3]

[4]
[5]

[6]

http://refhub.elsevier.com/S0039-9140(19)30537-5/sref1
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref1
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref2
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref2
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref2
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref3
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref3
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref3
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref4
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref4
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref5
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref5
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref6
http://refhub.elsevier.com/S0039-9140(19)30537-5/sref6

	Using deep learning to evaluate peaks in chromatographic data
	Introduction
	Theory
	Materials and methods
	Data collection
	Preprocessing

	Deep learning
	Selecting network structure
	Training the convolutional neural network

	Other algorithms for comparison
	PLSDA
	Locally weighted regression
	ANN

	Results and discussion
	Conclusions
	Acknowledgments
	References

