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GSK3β: a plausible mechanism of cognitive
and hippocampal changes induced by
erythropoietin treatment in mood
disorders?
Becky Inkster1,2,3, Gwyneth Zai2,4,5,6, Gemma Lewis7 and Kamilla W. Miskowiak 8

Abstract
Mood disorders are associated with significant psychosocial and occupational disability. It is estimated that major
depressive disorder (MDD) will become the second leading cause of disability worldwide by 2020. Existing
pharmacological and psychological treatments are limited for targeting cognitive dysfunctions in mood disorders.
However, growing evidence from human and animal studies has shown that treatment with erythropoietin (EPO) can
improve cognitive function. A recent study involving EPO-treated patients with mood disorders showed that the
neural basis for their cognitive improvements appeared to involve an increase in hippocampal volume. Molecular
mechanisms underlying hippocampal changes have been proposed, including the activation of anti-apoptotic,
antioxidant, pro-survival and anti-inflammatory signalling pathways. The aim of this review is to describe the potential
importance of glycogen synthase kinase 3-beta (GSK3β) as a multi-potent molecular mechanism of EPO-induced
hippocampal volume change in mood disorder patients. We first examine published associations between EPO
administration, mood disorders, cognition and hippocampal volume. We then highlight evidence suggesting that
GSK3β influences hippocampal volume in MDD patients, and how this could assist with targeting more precise
treatments particularly for cognitive deficits in patients with mood disorders. We conclude by suggesting how this
developing area of research can be further advanced, such as using pharmacogenetic studies of EPO treatment in
patients with mood disorders.

Mood disorders and cognitive deficits
Mood disorders affect ∼20% of the general population1

and for individuals suffering from a mood disorder, there
is a 5–6% lifetime risk of completed suicide2. Major
depressive disorder (MDD) is ranked as the third most
prevalent condition associated with disability3 and is
estimated to be the second leading cause of disability
worldwide by 20204. Bipolar disorder (BD) is also on the

top ten list of most debilitating mental illnesses3 and is
associated with significant psychosocial and occupational
disability5. Both mood disorders, MDD and BD, are
debilitating and chronic psychiatric disorders that cause
significant suffering and burden in individuals with these
illnesses and their families and friends, as well as reducing
their quality of life6–8.
Treatment of MDD and BD has focused on reducing

mood symptoms;9 however, cognitive deficits are a core
symptom domain of mood disorders10 that prolongs ill-
ness duration and reduces the likelihood of recovery11,12.
Cognitive dysfunction also contributes to socio-
occupational impairment13,14, which represents the lar-
gest economic cost of mood disorders for society15,16.
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Patients with MDD have consistently displayed difficulties
in attention (e.g., in effortful attention, as well as auto-
matic processing), declarative memory (e.g., verbal
learning and memory, visuospatial learning and memory
and episodic memory), and executive function (e.g.,
response inhibition, problem solving and planning, verbal
fluency, decision-making and mental flexibility)17. These
deficits are particularly pronounced in response to infor-
mation that is emotionally or socially relevant. Similar but
more severe deficits, specifically in verbal learning, spatial
working memory, set-shifting and sustained attention,
have been reported in patients with BD18,19. While neu-
robiological mechanisms of cognitive impairments in
mood disorders are unclear, converging preclinical, human
neuroimaging and post-mortem evidence suggest that they
may arise from disrupted neuroplasticity and associated
structural changes in hippocampal volume20–22. This
highlights the potential of novel treatments with direct
and lasting effects on neuroplasticity changes to induce
enduring structural alterations and effectively alleviate
cognitive deficits.
Pharmacological treatments for mood disorders have

limited effects on cognitive dysfunction23,24 and are, in
some cases, associated with adverse effects on cognition
due to anticholinergic, sedative, extrapyramidal and/or
blunting effects25, which may exacerbate patients’ persis-
tent cognitive impairments during periods of remission
(i.e., when patients are relatively symptom-free)26. Exist-
ing cognitive enhancing drugs (i.e., medications aiming to
improve cognitive functions) have shown limited pro-
cognitive effects in depressed patients27. Among the most
promising cognition treatments are vortioxetine, which
has shown replicated effects on psychomotor speed in
symptomatic MDD28, modafinil that improved some
aspects of cognition in a study of remitted MDD29,
transcranial direct current stimulation that improved
working memory in symptomatic MDD30,31, lurasidone
that improved a global measure of cognition in remitted
BD32 and erythropoietin (EPO) that improved several
cognitive domains in symptomatic MDD and remitted
BD33,34. However, despite these promising findings, there
are no clinically available effective treatments for cogni-
tive impairment in mood disorders to date35,36. Indeed,
many studies have examined the efficacy of existing and
novel interventions to reduce cognitive dysfunction in
patients with mood disorder;35,36 however, cognition trials
in this area have faced some important methodological
challenges that may negate the interpretations and sig-
nificance of findings36,37. Although preliminary evidence
showed promising effects of psychological interventions
for cognitive dysfunction, such as cognitive remediation in
patients with MDD33,38, we recently demonstrated a lack
of beneficial effects of this intervention for BD patients in
a randomized, controlled clinical trial39. Notably, this trial

was limited by a small sample size (n= 44), short follow-
up times (12 weeks) and lack of enrichment for the pri-
mary outcome (objectively-assessed verbal memory dys-
function). Indeed, emerging evidence indicates that
cognitive remediation programs may be useful in BD and
there are several ongoing cognitive remediation trials in
BD.
Recent randomized, placebo-controlled trials demon-

strated that 8 weekly doses of erythropoietin (EPO)
reduced cognitive dysfunction in patients with treatment-
resistant depression (TRD)33 and in patients with BD in
partial remission34. Treatment-resistant depression was
defined as lack of remission after ≥ 2 adequate anti-
depressant treatments with 2 different classes of anti-
depressant drugs in previous or current depressive
episodes33. The improvement of verbal memory after EPO
vs. saline treatment across TRD patients and BD patients
was of a moderate effect size (change in RAVLT total
score, mean [SD]: EPO: 6.4 [8.8]; saline: 2.1 [8.0]; d=
0.54). Structural magnetic resonance imaging (MRI)
assessments of patients from these two trials revealed that
memory improvement was associated with normalization
of volume loss in a subfield of the left hippocampus
corresponding to the cornu ammonis 1–3 (CA1–3) and
subicilum40. Post hoc exploratory assessments of the
mean surface displacement values revealed that the sub-
field hippocampal volume change was of a large effect size
(hippocampal surface displacement, mean [SD]: EPO: 0.04
[0.08]; saline: −0.05 [1.0]; d= 0.90). However, the biolo-
gical mechanisms linking EPO to increased hippocampal
volume in mood disorders remain unknown.

EPO biology
EPO is a glycoprotein hormone cytokine that plays

important roles in regulating red blood cell synthesis (i.e.,
hematopoiesis)41, trafficking of immune cells, anti-
apoptotic actions, neurodevelopment42, neuroprotection
and cognitive function43,44. EPO and its receptor are
expressed in multiple organ systems and have been shown
to interact closely with the nervous, vascular, immune and
reproductive systems45–47. EPO is produced and secreted
predominantly in the kidney, but it is also expressed in
brain regions including the hippocampus, amygdala,
temporal cortex, prefrontal cortex, internal capsule and
midbrain45,48,49 as well as the liver and the uterus47.
Expression of EPO and its receptor have also been found
in neurons, glial cells, endothelial cells and adult neural
progenitor cells. Expression levels are high during human
embryonic brain development, but remain present in
adulthood45. EPO functions in a hypoxia-sensitive man-
ner meaning that stimuli such as hypoxia and stress (i.e.,
cellular changes such as hypoglycaemia, electrolyte
imbalance, anaemia, infections and loss of endogenous
anti-oxidants, etc.) can affect EPO and its receptor45–47,

Inkster et al. Translational Psychiatry  (2018) 8:216 Page 2 of 13



which can have pleiotropic effects in the modulation of
apoptotic and immune activities50 as well as neurotrophic
and neuroprotection effects46. Specifically, hypoxia-
inducible factor (HIF) rapidly upregulates the expression
of the EPO receptor, EPO-R, in cells of the Central Ner-
vous System (CNS) and of EPO synthesis by neurons and
astrocytes45. Extracellular EPO then binds to EPO-R on
the cell membrane, which triggers the intracellular JAK2
(janus kinase 2) signalling. This results in the activation of
several signal transduction pathways including STAT5
(signal transducer and activator of transcription 5), PI3K
(phosphatidylinositol 3-kinase)/Akt (protein kinase B),
NFκB (nuclear factor-κB) and MAPK (mitogen-activated
protein kinase). These pathways switch on signalling
cascades that lead to long-lasting biological protective and
reparative responses, which may be important for future
treatment of cognitive impairments in neuropsychiatric
disorders including depression46. Specifically, relevant
down-steam effects of these signalling cascades include
activation of anti-apoptotic, antioxidant and anti-
inflammatory signalling in neurons, glial and cere-
brovascular endothelial cells, and promotion of dendritic
sprouting, neurogenesis, hippocampal brain-derived
neurotrophic factor (BDNF) and long-term potentia-
tion51–53. Erythropoietin was also shown to exert neuro-
protective effects by inhibiting the activity of the enzyme

glycogen synthase kinase 3-beta (GSK3β)54,55, as will be
discussed in greater detail later in this review. This may be
particularly relevant in relation to mood disorders since
GSK3β is a key activator of cell death and other functions
involved in mood disorders, hippocampal volume, glu-
cocorticoid regulation and neuroplasticity56–58.
It was a conceptual break-through that systemic

administration of high-dose (> 500 International Units
[IU]/kg) EPO was shown to cross the blood-brain barrier
(BBB)49 and facilitate neuroprotection and neuroplasticity
in animal models of neurodegenerative and neu-
ropsychiatric conditions59 in addition to after acute neural
injury60–62. While it is unclear whether EPO crosses the
BBB via an active transport mechanism or in an unspecific
manner, it is evident that systemically administered high-
dose EPO enters the brain to an extent that is sufficient
for neuroprotection (ibid.). Accordingly, administration of
such high doses of EPO to humans (through injections of
40,000–48,000 IU/ml)33,34,63–65 improved brain function
and cognition after short-term (1 week) and longer-term
(8–12 weeks) treatment. In contrast, short-term admin-
istration (3 days) administration of lower-dose EPO
(30,000 IU to men of 74 ± 7 kg [mean ± SD]; corre-
sponding to < 500 IU/kg) produced no cognitive benefits
in healthy men66 and 12 weeks low-dose EPO treatment
(8000 IU/ml) produced no neural or cognitive benefits

Fig. 1 This overview schematic summarizes the complex, interrelated relationships between EPO treatment in mood disorders, cognitive
deficits, hippocampal changes and EPO’s potential mechanisms of action through the GSK3β inhibition . Notably, complex relationships exist
across signalling pathways and molecules, which have not been illustrated
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with schizophrenia63,67. Although no more precise phar-
macokinetic or pharmacodynamic studies have been
performed, this evidence indicates that high doses of EPO
are required for neuroprotection and cognitive
enhancement.
EPO has also been used to treat anaemia, ischaemia and

reperfusion injuries (i.e., stroke, heart attack)68, neurolo-
gical disorders (i.e., seizures69, spinal cord ischaemia,
Alzheimer’s disease, Parkinson’s disease and demyelinat-
ing disease47), and retinal disease47 and neuropsychiatric
disorders33,34,46. Thus, knowledge of the underlying
mechanisms of EPO may provide important insights for
future therapeutic strategies for the treatment of neu-
ropsychiatric, neurodegenerative, inflammatory and
autoimmune-related disorders.
In this review, we highlight evidence collectively sug-

gesting that inhibition of GSK3β acts as a multi-potent
molecular mechanism that may mediate multi-potent
effects of EPO on hippocampal volume changes in
depression (Fig. 1). Understanding the complex relation-
ship between EPO and GSK3β (and its pleiotropic reg-
ulatory role across its large genetic network) on cognitive
functioning in depressed patients may help reveal new
drug targets (both upstream and downstream), aid pre-
cision medicine, and ultimately reduce disability and
mortality for mood disorders.

Narrative review search methodology
The following search terms were included in this

review: cognition, cognitive functions or dysfunction or
impairment or deficits, cognitive enhancers or
enhancement, mood disorders, depression, bipolar
disorder (BD), major depressive disorder (MDD),
treatment-resistant depression (TRD), erythropoiten
(EPO), glycogen synthase kinase-3 beta (GSK3β), hip-
pocampus, hippocampal volume or structure, mole-
cular pathway and biology or biological. Several search
engines were used, including PubMed and Medline.
This review has mainly focused on unipolar and bipolar
depression and therefore, only the most recent reviews
on other disorders such as neurological and cardiac
diseases have been included for references. Two factors
led us to choosing a narrative style for the review
paper: firstly, to our knowledge, this is the first review
paper to bridge these complex interrelated topics in the
literature and, secondly, it was not our intention to
perform an extensive systematic search for each of the
topics independently as this would be an enormous
undertaking beyond the scope of our narrative
approach.

EPO treatment and cognitive function
Studies in patients with schizophrenia, and multiple

sclerosis, have shown that 8–12 weeks of high-dose

(40,000–48,000 IU) EPO treatment improves cognitive
functioning that lasts for up to 6 months after treatment
completion, long beyond red blood cell normalization63,64.
This indicates that the pro-cognitive effects of EPO are
not directly related to changes in the vascular system.
Indeed, the effects of EPO on neurocognitive function in
humans seem to be mediated through neurobiological
actions rather than indirect increases in red blood
cells65,70. In particular, these studies demonstrated that a
single high dose of EPO (40,000 IU) versus saline
improves neural and cognitive measures of memory and
executive functioning in healthy volunteers without
affecting red blood cells (ibid.). Based on this evidence,
Miskowiak et al.33,34 conducted a randomised, placebo-
controlled clinical trial examining the effects of 8 weekly
infusions of EPO (40,000 IU) on mood symptoms and
cognitive dysfunction in patients with TRD and patients
with BD in partial remission. EPO treatment improved
verbal memory in TRD patients and speed of complex
cognitive processing across attention, memory and
executive function in BD patients relative to placebo
treatment. These cognitive changes were independent of
changes in mood symptoms and were maintained several
weeks after red blood cell normalisation at a 6-week fol-
low-up at which time EPO-treated patients displayed
structural increase in the left hippocampus40 and changes
in task-related neural activity within a fronto-parietal
network71,72. Importantly, post hoc analyses showed that
the structural hippocampal increase and task-related
neural activity change correlated with the observed
improvements in EPO-treated patients’ cognitive func-
tions, whereas no influence was found of changes in red
blood cells, mood symptoms, diagnosis, age or
gender40,71,72.
Effects of EPO have also been demonstrated on neural

and cognitive responses to facial expressions in healthy
volunteers70,73 and were subsequently replicated in a
sample of patients with acute depression74. Long-term
EPO treatment did not improve the primary measure of
depression severity in an 8-week trial (Hamilton
Depression Rating Scale [HDRS] score), but this may be
a result of suboptimal statistical power75 and the use of
HDRS, which might underestimate other less relevant
depressive symptom domain and burden of illness that
correlate poorly with depression severity;76 however,
improvement in several other depression-relevant out-
comes including self-rated depression and quality of life
were observed, suggesting that further investigations of
the antidepressant efficacy of EPO in larger-scale trials
are warranted33. Given this evidence demonstrating the
potential impact of EPO on cognitive function and
mood symptoms, it is important to elucidate the biolo-
gical mechanisms underlying alterations of neural
processing.
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GSK3β: biological mechanism of mood disorders
GSK3β is a highly active proline-directed serine-threo-

nine protein kinase. It contributes to diverse cellular
functions including gene expression, neurogenesis, neu-
roplasticity, cell survival, differentiation, migration, stress
responses, cell structure, cell death, the immune system,
neurotransmitter systems, metabolism and other func-
tions77–80. GSK3β inhibitors increase proliferation,
migration and differentiation of neural stem cells in the
adult hippocampal dentate gyrus81. GSK3β is ubiquitously
expressed throughout the brain, most prominently in the
cerebral cortex and hippocampus (Allen Brain Atlas).
GSK3β is a particularly unique protein kinase82 that can
be inactivated through the action of various kinases, such
as Akt/protein kinase B, protein kinase A and protein
kinase C on the ninth position of serine (Ser9)83.
Several neurogenetics studies have investigated asso-

ciations between GSK3β and mood disorders. The GSK3β
gene (GSK3β; OMIM 605004) was mapped to chromo-
some 3q13.384. Functional single nucleotide polymorph-
isms (SNPs) have been identified in GSK3β; for example, a
promoter T to C polymorphism at position −50
(rs334558) with the T allele having a higher in vitro
transcriptional activity and an intron 5T to C poly-
morphism at position −157 (rs6438552) with the T allele
lacking exons 9 and 11 and has been associated with an
increased level of GSK3β85. Several studies have investi-
gated genetic variants in GSK3β as risk factors for
MDD86,87 and BD88. Other studies have focused on
anxiety symptoms in MDD and P300 waveform89, psy-
chotic symptoms in MDD and BD90, age of onset in
MDD91 and BD92, suicidal behaviour in MDD93 and
combined cases of MDD and schizophrenia patients94.
Furthermore, GSK3β polymorphisms have been examined
as a predictor of antidepressant response95 and lithium
response96,97.
Neuroimaging genetic studies of mood disorders have

reported associations between GSK3β variation and hip-
pocampal volume. A genetic association study of
numerous GSK3β SNPs and brain-wide grey matter
volume using MRI-based voxel-based morphometry was
conducted in a sample of 134 patients with recurrent
MDD and 144 healthy controls56. Disease modulated
associations were reported between grey matter volume in
the right hippocampus and bilateral temporal cortex and a
functional intronic GSK3β polymorphism, rs6438552. The
same direction of association was observed in a larger,
independent sample of healthy volunteers between the
same GSK3β polymorphism and hippocampal volume
using different neuroimaging methods98. This poly-
morphism has also been associated with altered resting
state networks in MDD patients99. Based on in vitro work,
this polymorphism alters the splice acceptor site leading
to exclusion of exons 9 and 11, which alters the protein’s

function to then hyperphosphorylate the substrate,
microtubule-associated protein tau85. Further in vivo and
in vitro work is required to understand how this modified
GSK3β protein regulates other substrates. Additional
associations between hippocampal volume and genetic
variation involving GSK3β-related pathways and other
directly interacting proteins have also been reported57,58.

Identifying putative connections between GSK3β,
erythropoietin, hippocampus, cognition and
mood disorders
The hippocampus is an important brain region impli-

cated in mood disorders. Specifically, changes in the
neural circuitry of the hippocampus have been implicated
in cognitive deficits in patients with mood disorders100–
102, which may arise in part from the disruption of neu-
roplasticity67. Disturbance in hippocampal neuroplasticity
has been hypothesised to play an aetiological role in mood
disorders and may result from chronic inflammatory
processes and over-activation of stress responses103–105.
This is consistent with evidence showing that stress-
induced glucocorticoid production is associated with
reduced hippocampal neurogenesis, hippocampal mem-
ory deficits and depression-like behaviour in animals106–
109. Moreover, a recent meta-analysis110 supported an
overall significant hippocampal volume reduction in
patients with MDD relative to controls and several addi-
tional studies reported hippocampal subiculum shape
abnormalities in patients with depression111–113.
The involvement of GSK3β in EPO-mediated neuro-

protection via PI3K/AKT is well documented in the lit-
erature (e.g. see refs 45,114–116). In the context of primary
hippocampal neurons, EPO treatment triggers pro-
survival mechanisms by activation of PI3K/AKT45,
which suppresses downstream target GSK3β (i.e., by
increasing phosphorylation of Ser9 in GSK3β)117. In
contrast, PI3K/AKT pathway inactivation results in
GSK3β pro-apoptotic functions. In a recent study, Ma and
colleagues116 administered exogenous EPO to rats for
4 weeks using an animal model of vascular dementia.
Their results indicated improvements in memory
impairment, promotion of hippocampal dendritic spine
growth as well as deactivation of GSK3β via an EPO-R/
JAK2/STAT5/PI3K/Akt/GSK3β pathway116 (Fig. 1).
Another mechanism of action of EPO treatment that

could be linked with GSK3β function is through the
central role that GSK3β plays in neuronal and oligoden-
droglial differentiation. A recent study by Hassouna and
colleagues118 examined the effects of EPO in young,
healthy mice administered EPO for 3 weeks. The authors
reported an approximately 20% increase in hippocampal
CA1/CA3 neurons and oligodendrocytes, and they
detected a significant enhancement of neuronal and oli-
godendroglial differentiation rather than proliferation118.
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Using neural stem cells and hippocampal cultures, the
authors found that EPO administration decreased the
transcription factor Sry-box 9 (Sox9) and increased micro
RNA 124 (miR-124). miR-124 is known to regulate Sox9
function and drive neuronal differentiation118. We high-
light evidence showing an interconnected relationship
between GSK3β, Sox9 and miR-124. Sox9 interacts with
GSK3β via its targets in the Wnt signalling pathway119,120.
For example, Sox9 inhibits the GSK3β-dependent Wnt/
beta-catenin signaling pathway in chondrocyte differ-
entiation by promoting beta-catenin phosphorylation in
the nucleus. This finding is in keeping Hassouna and
colleagues118 in that EPO inhibits Sox9 although it should
be noted that different tissues and models were used and
so further investigations are warranted for mood dis-
orders. Other Sox-related genes should also be explored
given that, for example, Sox17 regulates the Wnt/β-
catenin signaling pathway via GSK3β in oligodendrocyte
progenitor cells121. Furthermore, miR-124 co-regulates
neuronal differentiation and dendritic architecture via the
AKT/GSK3β-dependent pathway122. Its regulation of
GSK3β hippocampal expression may have implications
for chronic stress and mood disorder pathophysiol-
ogy123,124. Further evidence has shown that miR-124
regulates HDAC4 and GSK3β expression in the hippo-
campus, which may have important implications for
chronic stress and depression124 and another study
identified associations between HDAC4 genetic variation
and reduced hippocampal volume in two independent
MDD cohorts58. Notably, another class IIa histone dea-
cetylases (HDAC5) has been implicated in the therapeutic
action of EPO whereby researchers found that EPO reg-
ulates phosphorylation at two different sites stimulating
nuclear export of HDAC5 in rat hippocampal neurons125.
Collectively and indirectly, these diverse studies provide a
plausible link between EPO treatment and its downstream
effects on GSK3β function (Fig. 1), which require much
greater examination in order to delineate specific and
selective effects.
Research has shown that EPO stimulates calcium influx.

In terms of biological mechanisms, one study demon-
strated that interactions between inositol 1,4,5-trispho-
sphate (ITPR1; alias, IP3R) and transient receptor
potential cation channel subfamily C member 3 (TRPC3)
is required for epo-modulated Ca2+ influx, which was
reduced under conditions of mutated or deleted IP3R
binding sites on TRPC3126. ITPR1 (alias, IP3R) genetic
variation was recently associated with reduced hippo-
campal volume in two independent MDD cohorts, which
lead the authors to speculate that mood disorders, and
specifically cognitive changes, may involve mechanisms
related to ITPR, endoplasmic reticulum (ER) stress, the
unfolded protein response (UPR) system and GSK3β
signalling56.

Another possible way in which EPO treatment could be
linked with GSK3β function is through anti-apoptotic
mechanisms. Several biological models have implicated
GSK3β as a key activator of cell death79 and so inactiva-
tion of GSK3β may therefore promote cell viability. For
example, evidence has demonstrated a molecular rela-
tionship between EPO, GSK3β and the mitochondrial cell
death pathway; EPO suppresses 6-hydroxydopamine (6-
OHDA)-induced apoptosis by increasing phosphorylation
of Ser9 in GSK3β (i.e., increasing GSK3β inhibition)54.
Neuroprotective effects against apoptosis were observed
for both EPO and the GSK3B inhibitor 4-benzyl-2-
methyl-1, 2,4-thiadiazolidine-3, 5-dione (TDZD8). In
contrast, 6-OHDA decreased phosphorylation of Ser9 in
GSK3β (i.e., increased GSK3β activity). In this study,
decreases in mitochondrial expression of the anti-
apoptotic gene B-cell lymphoma 2 (Bcl-2) were also
observed (Fig. 1). Other related work has also described a
relationship between EPO treatment, increased phos-
phorylation of Ser9 in GSK3β, and oxidant stress-induced
apoptosis127,128. Further investigation is crucial to
understand how EPO treatment interacts with GSK3β
function in different brain tissue types, cellular environ-
ments and diseases.
An additional relationship between EPO and GSK3β

involves the downstream increase in hippocampal brain-
derived neurotrophic factor (BDNF) expression, neurite
growth and spine density53,129 (Fig. 1). BDNF is highly
involved in neuroplasticity, cell survival, differentiation
and cell death130,131 as well as learning and memory132–
134. Evidence has shown that GSK3β interacts with BDNF
at the protein level; GSK3β overexpression inhibits
BDNF-induced cAMP response element-binding (CREB)
phosphorylation135,136. GSK3β and BDNF genotype
combinations have been associated with MDD86.
A complex relationship between EPO, GSK3β, the

hippocampus and depression may exist, in part, through
nitric oxide (NO)-related pathways. In brief, increased
GSK3β mRNA expression was found in post-mortem
hippocampal samples from MDD patients, which is con-
sistent with previous animal studies of depression. GSK3β
mRNA expression was also significantly correlated with
nitric oxide synthase 1 (NOS1) in these same patients137,
which is in keeping with previous evidence suggesting that
nitric oxide activates GSK-3β. EPO can influence oxygen
delivery through stimulation of NO production45, which
may contribute to its neuroprotective role; however, this
relationship is complex and very much dependant on the
cell and tissue type, and different dose-time exposure
conditions (i.e., short-term versus long-term exposure,
hypoxia versus normoxia conditions etc.). Possible rela-
tionships between EPO, GSK-3β, NOS and hypoxia may
exist, although specific mechanisms remain unclear.
Hypoxia modulates NOS mRNA and protein levels under
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specific conditions138, GSK-3β overexpression is asso-
ciated with reduced hypoxia-inducible transcription fac-
tor 1α (HIF-1α)139, while EPO-R expression is rapidly
upregulated by HIF45. More detailed work in this area is
needed to understand the isoform-specific interactions
however (e.g., the role of HIF-1α versus HIF-2α etc.).
GSK3β acts centrally in the canonical Wnt signalling

pathway, which is essential for regulating neurodevelop-
ment as well as synaptic maintenance and plasticity in the
adult brain140. Independent evidence has implicated the
Wnt pathway in mood disorders57,141. Biological interac-
tions between EPO and the canonical Wnt signalling
pathway have been observed in elevated D-glucose models
of diabetes142. These authors142 found that EPO triggered
anti-apoptotic responses via the modulation of Wnt1
protein expression that subsequently promoted beta-
catenin translocation. The authors142 also reported that
Wnt1 gene silencing and Wnt1 antagonist administration
prevented the protective EPO treatment. Notably, biolo-
gical interactions between EPO and Wnt signalling have
also been a proposed mechanism of action for neurode-
generative diseases47.
Peroxisome proliferator-activated receptor-gamma co-

factor 1A (PPARGC1A) is involved in the PPAR-γ system,
which interacts with numerous pathways including the
Wnt signalling pathway57. Evidence has shown that
PPARGC1A genetic variation is associated with altered
brain volume in MDD patients57. Activation of the PPAR-
γ system has been shown to improve depressive-like
behaviours105. It has been proposed that PPAR-γ plays a
protective role against ER stress105 and that PPAR-γ pro-
survival activity is inhibited by HDAC4 activation143.
Furthermore, the PPAR-γ system has been linked to EPO
function144. For example, a study examining the ther-
apeutic implications of EPO in type 2 diabetes and insulin
resistance found that EPO regulates the PI3K/AKT
signalling pathway via PPARγ-dependent activation144

(Fig. 1).
Insulin signalling pathways also share complex rela-

tionships with both EPO and GSK3β. Evidence has shown
that insulin-like growth factor leads to increased EPO and
EPOR expression in neuronal cells46 and that GSK3β is
inhibited by insulin-mediated mechanisms145. It has been
proposed that impaired insulin receptor-mediated reg-
ulation of GSK3β activity is involved with the cognition
and depression146.

EPO, GSK3β and pharmacological treatments
Evidence from animal studies suggests that inhibition of

GSK3β is a potential mechanism contributing to the
antidepressant-like effects of lithium, ketamine147 and
valproate148. Lithium is considered to be the gold stan-
dard pharmacological treatment for BD and has pleio-
tropic effects on multiple cellular systems and

pathways149. Additionally, lithium treatment results in
significant inhibition of GSK3 activity150,151, which has
been shown to mediate neuroprotective, anti-oxidative
and neurotransmission mechanisms. The effect of
lithium-induced GSK3 inhibition has also previously been
shown to reduce tauopathy and neurodegeneration152,
and another study demonstrated that lithium (Li+) inhi-
bits GSK3 by competition for magnesium (Mg2+)153.
With regard to ketamine, while the literature is incon-
clusive, there is an indication that ketamine may be
effective at treating depression154, in particular severe
depression, TRD and acute suicidality. With its fast-acting
properties155, ketamine has been shown to interact with
EPO156,157. The combination of EPO and ketamine may
offer new areas of investigation for mood disorder treat-
ments. The antidepressant actions of ketamine involve
GSK3β inhibition147. Lithium and other selective GSK3β
inhibitors enhance the effects of low doses of ketamine158

and the authors suggested that GSK3β activation is an
underlying mechanism related to ketamine-induced
apoptosis. Low-dose interactions may be of particular
interest for reducing the risk of side effects and possible
misuse given prior evidence implicating ketamine with
misuse and addiction159. Ketamine has been shown to
modulate inflammatory responses160. Acute or chronic
use of ketamine has been found to induce cognitive
impairments with hyperphosphorylation of tau and
apoptosis161, and transient behavioural changes similar to
schizophrenia (i.e., motor and social behavioural dis-
turbances)162,163. However, studies have previously shown
that ketamine has anti-inflammatory effects under
inflammatory conditions and has been used in surgical
procedures in patients with sepsis164,165, chronic stress-
induced depression166, mood disorders in general167 and
severe TRD168. The effect of ketamine in reducing
depressive symptoms has been shown to be fast-onset but
short-lived and requires continual or maintenance treat-
ment; however, the safety of long-term ketamine use has
not yet been examined169. Evidence has suggested the
involvement of the serotonergic and dopaminergic sys-
tems in addition to the glutamate N-methyl-D-aspartate
(NMDA) receptor and BDNF169. Studies have postulated
that excessive or ill-timed NMDA antagonism by keta-
mine may induce glutamate excitotoxicity, which further
complicates the role of ketamine in neuroprotection or
neurotoxicity, and its clinical utility169. Future clinical
trials that examine the EPO-ketamine combination
treatment would be of interest, especially in patients who
have molecular measures of GSK3β given its interactions
with EPO and ketamine. GSK3β cellular signalling is
extremely fast acting and responsive to cellular changes.
Animal studies have also shown that the monoamine
reuptake inhibitor antidepressants, fluoxetine and
imipramine, increase the inhibitory control of
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phosphorylation of Ser9 in GSK3170,171. Furthermore,
valproate directly inhibits GSK3β and was shown to
protect cells from ER stress and apoptosis148. Inhibition of
GSK3β is therefore a possible mechanism of action shared
by several classes of antidepressant medication and other
emerging medications (i.e., ketamine) for the treatment of
depression. Whether the pharmacological effects of these
antidepressants on GSK3β contribute to the reduction of
depressive symptoms is yet to be established.

Future directions and challenges
Here we have reviewed literature that examines the

relationship between EPO, mood disorders, cognition and
the hippocampus. We then speculated that EPO inhibits
GSK3β activity and subsequently might alter complex
signalling cascades to improve cognition via hippocampal
brain changes. A key limitation of this review is that the
selective molecular effects of the treatment with EPO
remain unclear. Also, other antidepressant therapies have
strong overlap with these cellular pathways presented in
this review indicating that much more work is required to
unravel directly relevant versus secondary molecular
events in the context of cognitive and hippocampal in
mood disorders. One key area that needs prioritising is to
explore cellular differentiation molecular mechanisms.
Future studies investigating the effects of EPO on differ-
ent cellular networks mediated by GSK3β are highly
warranted to identify its common and specific roles in the
treatment of mood disorders and other neuropsychiatric
illnesses. Given the similarities and known differences
between MDD and BD, further exploration of the
underlying mechanism that differentiates unipolar and
bipolar depression is necessary for novel treatment of
these debilitating and chronic mood disorders. Never-
theless, the beneficial effects of EPO on cognition and
hippocampal volume have been observed across several
neuropsychiatric diseases including MDD, BD40 and
schizophrenia67, suggesting that EPO modulates common
signalling pathways involved in neuroplasticity and cog-
nition across these disorders. Preliminary evidence sug-
gests that GSK3β inhibition may play a role in improving
a range of cognitive deficits172,173. We therefore recom-
mend that further studies directly test for associations
between hippocampal-related cognitive measures in
mood disorders and GSK3β-related genetic networks (e.g.,
ITPR1) as well as considering co-treatment designs with
EPO, such as ER stress inhibitors58. This may lead to
future potential treatment options more targeted for
illness-related cognitive impairments173.
Additional research is required to elucidate the role of

the EPO gene (OMIM: 133170) and its related genetic
variation; surprisingly, this has not been studied in mood
disorders (or psychiatric disorders more generally). To
our knowledge, only one study to date has investigated

genetic variants across EPO and EPOR in schizophrenia,
which showed initial promising results in cognitive
modulation43. Given the caveats for genetic association
studies and recruitment challenges for EPO patient stu-
dies, interactions between GSK3β and EPO/EPOR also
require further examination using large scale, well pow-
ered healthy participant populations. In vivo work
examining the functional effects of EPO/EPOR and
GSK3β will also be an important avenue for further
investigation.
The evidence to date suggests that EPO has potential

clinical utility to reduce cognitive deficits in patients with
depression. There is no known pharmacokinetic
drug–drug interaction and no adverse events were
observed in the recent EPO clinical trials33,34. Never-
theless, significant adverse events for EPO treatment have
been reported including tumour progression and throm-
boembolic events. Given these potential risks of EPO
treatment, extensive screening is necessary prior to
starting EPO therapy and EPO-treated patients must also
be closely monitored (for details, see ref. 74). Furthermore,
the long-term benefits and use of EPO in patients need to
be demonstrated in clinical studies with longer-term fol-
low-up times regarding its potential benefits and risks.
Specifically, studies using six months follow-up assess-
ments of cognition and functioning are highly warranted
given the short (6 weeks) follow-up times in the recent
trials in BD and MDD. Knowing the biological and
molecular genetic mechanisms, and pharmacogenetics
underlying the effects of EPO, may guide clinicians and
patients in understanding who will tolerate and respond
to EPO treatment. This will allow clinicians to choose the
best medications for each individual patient for precision
medical care.
Given the highly pleiotropic effects of GSK3β in triggering

multiple pathways and processes, including cancer devel-
opment and tumour growth174, it is important to exten-
sively investigate molecular targets that act with less
potency and greater GSK3β downstream specificity (i.e., its
numerous substrates). However, in vivo and in vitro evi-
dence is currently limited and many unknown putative
GSK3β substrates may exist. The identification of more
GSK3β substrates is therefore of great importance for
understanding the larger impact GSK3β plays in hippo-
campal volume of individuals with mood disorders. Algo-
rithms that estimate the likelihood of proteins binding to
GSK3β should facilitate this work175. Furthermore,
exploration of protein kinases required for priming phos-
phorylation prior to GSK3β protein docking should also be
explored, as is being explored in cancer research174. Also
crucial will be harnessing the power of statistical methods,
such as machine learning, to better understand how geno-
typic combinations combinations interact across these
substrates and upstream regulating proteins as part of
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GSK3β’s larger genetic network. The identification of
GSK3β-related genotypic combinations that specifically
influence hippocampal volume in MDD may help guide
further exploration for additional and more specific ther-
apeutic combinations of treatment targets58.
Issues that require further exploration include disease

onset and specificity. It is unclear how such factors relate
to addressing issues of disease susceptibility and disease
progression. While researchers have started to address
complex interactions with disease onset176, future studies
are needed, including longitudinal studies involving risk
populations, to further our understanding and to further
elucidate the causal pathway of antidepressant actions in
the context of mood disorders. Growing evidence for
dynamic neurodevelopmental patterns of GSK3β poses
many additional research questions177. In this review, we
have shown evidence that EPO may have generalizable
effects spanning across illnesses; therefore, much work in
this area is required to understand comorbidity and dis-
ease specificity. Furthermore, EPO neuroprotection is only
partially reduced by the inhibition of pro-survival PI3K/
AKT signalling45. In addition, GSK3β inhibition sup-
presses pro-inflammatory responses involving the NFκB
pathway178; however, EPO may activate neuroinflamma-
tion signalling pathways (and other unknown molecules)
using different mechanisms of action from GSK3β. Like-
wise, the complex relationship between EPO, GSK3β and
MAPK179 needs further mapping. Overall, it is highly
warranted to further delineate the EPO-GSK3β pathways
involved in different aspects of treatment and illness.
The important role of EPO in cognition and mood

disorders sheds light on the longstanding treatment
challenge in psychiatric patients who suffer from chronic
cognitive deficits. Unearthing the cellular pathways gov-
erned by EPO may enhance translation of targeted ther-
apeutic strategies for mood disorders and other related
conditions. Further work that explores molecular
mechanisms related to the inhibition of GSK3β function
and the promotion of EPO function within a mood dis-
order and cognition framework is highly warranted.
Restoration of neuroplasticity, including upregulation of

neurogenesis and BDNF, may be an important mechan-
ism of chronic antidepressant treatment. Mechanistically
distinct compounds, such as EPO, which directly increa-
ses cellular resilience and plasticity hold great promise as
novel faster acting treatments of depression. To assess the
importance of such mechanisms for the cognitive and
potential antidepressant effects of EPO, it would be a
conceptually important next step to assess the effects of
hippocampal irradiation, which impedes upregulation of
BDNF and neurogenesis and blocks the behavioural
effects of antidepressant drugs180. The associations pre-
sented in this review are only beginning to scratch the
surface of the upstream and downstream events that may

be changing as a result of EPO administration in relation
to GSK3β and much more work is needed in this
important area.
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