
u n i ve r s i t y o f co pe n h ag e n

Neural decoding with visual attention using sequential Monte Carlo for leaky integrate-
and-fire neurons

Li, Kang; Ditlevsen, Susanne

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0216322

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Li, K., & Ditlevsen, S. (2019). Neural decoding with visual attention using sequential Monte Carlo for leaky
integrate- and-fire neurons. PLoS ONE, 14(5), [e0216322]. https://doi.org/10.1371/journal.pone.0216322

Download date: 09. Apr. 2020

https://doi.org/10.1371/journal.pone.0216322
https://doi.org/10.1371/journal.pone.0216322

RESEARCH ARTICLE

Neural decoding with visual attention using

sequential Monte Carlo for leaky integrate-

and-fire neurons

Kang LiID
1,2*, Susanne Ditlevsen2

1 Department of Psychology, University of Copenhagen, Copenhagen, Denmark, 2 Department of

Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark

* kang@math.ku.dk

Abstract

How the brain makes sense of a complicated environment is an important question, and

a first step is to be able to reconstruct the stimulus that give rise to an observed brain

response. Neural coding relates neurobiological observations to external stimuli using

computational methods. Encoding refers to how a stimulus affects the neuronal output, and

entails constructing a neural model and parameter estimation. Decoding refers to recon-

struction of the stimulus that led to a given neuronal output. Existing decoding methods

rarely explain neuronal responses to complicated stimuli in a principled way. Here we per-

form neural decoding for a mixture of multiple stimuli using the leaky integrate-and-fire

model describing neural spike trains, under the visual attention hypothesis of probability

mixing in which the neuron only attends to a single stimulus at any given time. We assume

either a parallel or serial processing visual search mechanism when decoding multiple

simultaneous neurons. We consider one or multiple stochastic stimuli following Ornstein-

Uhlenbeck processes, and dynamic neuronal attention that switches following discrete Mar-

kov processes. To decode stimuli in such situations, we develop various sequential Monte

Carlo particle methods in different settings. The likelihood of the observed spike trains is

obtained through the first-passage time probabilities obtained by solving the Fokker-Planck

equations. We show that the stochastic stimuli can be successfully decoded by sequential

Monte Carlo, and different particle methods perform differently considering the number of

observed spike trains, the number of stimuli, model complexity, etc. The proposed novel

decoding methods, which analyze the neural data through psychological visual attention

theories, provide new perspectives to understand the brain.

Introduction

Neural coding is the science of characterizing the relationship between a stimulus presented to

a neuron or an ensemble of neurons, and the neuronal responses [1]. Neural encoding refers

to the map from stimulus to response, i.e., how the neurons respond to a specific stimulus. For

example, if we can construct an encoding model, it can be used to predict responses to other

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li K, Ditlevsen S (2019) Neural decoding

with visual attention using sequential Monte Carlo

for leaky integrate-and-fire neurons. PLoS ONE 14

(5): e0216322. https://doi.org/10.1371/journal.

pone.0216322

Editor: William W Lytton, SUNY Downstate MC,

UNITED STATES

Received: October 9, 2017

Accepted: April 18, 2019

Published: May 14, 2019

Copyright: © 2019 Li, Ditlevsen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All source code files

and data are available from the Open Science

Framework repository https://osf.io/tkvhs/ (DOI:

10.17605/OSF.IO/TKVHS).

Funding: KL and SD were funded by the Dynamical

Systems Interdisciplinary Network, http://dsin.ku.

dk, within University of Copenhagen Excellence

Programme for Interdisciplinary Research, http://

research.ku.dk/strengths/excellence-programmes/.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

http://orcid.org/0000-0001-8368-6930
https://doi.org/10.1371/journal.pone.0216322
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216322&domain=pdf&date_stamp=2019-05-14
https://doi.org/10.1371/journal.pone.0216322
https://doi.org/10.1371/journal.pone.0216322
http://creativecommons.org/licenses/by/4.0/
https://osf.io/tkvhs/
https://doi.org/10.17605/OSF.IO/TKVHS
http://dsin.ku.dk
http://dsin.ku.dk
http://research.ku.dk/strengths/excellence-programmes/
http://research.ku.dk/strengths/excellence-programmes/

stimuli. Neural decoding refers to the reverse map, from response to stimulus, and the chal-

lenge is to reconstruct a stimulus, or certain aspects of that stimulus, from the evoked spike

train. Neural coding is extensively studied in computational neuroscience.

Our aim is to decode complicated multiple stochastic stimuli from neural spike trains. We

combine biophysical spiking neural models with visual attention theories, bridging computa-

tional neuroscience and cognitive psychology. Following the visual attention model [2, 3],

attention to complicated multiple stimuli is viewed as probability mixtures. The two visual

search mechanisms in psychology, the parallel and the serial processing [4], are employed for

decoding neuron ensembles.

The goal of this paper is to develop, explore and compare various decoding methods based

on sequential Monte Carlo for multiple stimuli in a visual attention setting.

Neural decoding

Given neurobiological observations, a decoding algorithm aims at reconstructing the

unknown stimulus information encoded by the neural system. Neural decoding plays an

important role in understanding the mechanisms of neurons and the brain. Well-performing

algorithms of decoding constitute necessary components of brain-machine interfaces [5, 6].

Different methods have been explored to study neural decoding. Some methods focus on

regression-related approaches building linear models between spike trains and the corre-

sponding stimulus by optimal linear estimation (OLE) [7, 8]. Machine learning methods are

also employed to stimulus decoding, such as artificial neural networks [9], kernel regression

[10], and a recently developed approach using kernel-based neural metrics [11]. These meth-

ods employ general statistical techniques and omit the specific spike-generating mechanism

of the neural response. On the other hand, stimulus decoding may directly employ spiking

neural models that describe the spike generating mechanisms from stimuli [12–15]. Various

encoding models can be used. Approximate methods using point processes treat the spikes

in a spike train as sequential random events, which can be equivalently formulated as gener-

alized linear models (GLM) for model fitting [15, 16]. Meanwhile, there are also biophysi-

cally motivated methods like integrate-and-fire models, which study the stochastic evolution

of the membrane potential. In decoding tasks, these encoding models are used in the poste-

rior distribution to infer the most likely stimuli. Decoding of constant stimulus can be

obtained from the posterior distribution using maximum a posteriori (MAP) or Monte

Carlo methods. The decoding of temporal stimuli can be discretized as a sequence of con-

stant decoding tasks, which can be solved by Kalman filtering [17] or particle sequential

Monte Carlo methods [18–21].

Modeling visual attention

Stimulus mixture and probability mixing. We define a stimulus mixture to be multiple

non-overlapping stimuli inside the receptive field of a neuron. We assume that the neuronal

response to a stimulus mixture follows the probability-mixing model [2, 22], where the neuron

responds at any given time to only one of the single stimuli in the mixture with certain proba-

bilities. In [3] data from MT neurons in macaque monkeys are analyzed, and the probability-

mixing model appears to be more in agreement with data compared to the competing

response-averaging model. The probability-mixing model enables us to accurately perform

decoding, i.e., to recover the single stimulus that caused the response.

Neural behaviour during parallel and serial processing. The two opposing visual search

mechanisms of parallel and serial processing have been long debated in psychology, and empir-

ical behavioral experiments have shown evidence supporting both mechanisms [4, 23–25].

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 2 / 35

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0216322

According to serial processing, multiple objects are processed sequentially by the brain, such

that only one object is being processed at any given time point, and according to parallel pro-

cessing, multiple objects are processed concurrently in parallel. We explain parallel and serial

processing from a neural perspective, based on the Neural Theory of Visual Attention (NTVA)

[2] stating that a neuron can only represent a single object at any time. It follows that in serial

processing, all neurons in the high level visual cortex must respond to the same single object at

any given time, whereas in parallel processing, neurons can split the attention, such that some

neurons represent one object and others represent other objects at the same time. Here we do

not aim to select one mechanism over the other. We will assume either mechanism, and per-

form decoding in both cases.

Stochastic stimulus. A stimulus is stochastic if it contains strong and inevitable noise

apart from a deterministic trend, for example a stimulus described by a stochastic diffusion

process. Decoding stochastic stimuli requires obtaining parameter estimates as well as recover-

ing the stochastic realization of the stimulus at all time steps. The stimulus may represent the

strength of light or sound, the position of objects, etc, and these signals are more realistically

described by stochastic processes than deterministic functions. Here we consider mixtures of

stochastic stimuli evolving continuously over time following Ornstein-Uhlenbeck processes

with unknown parameters.

Markov attention switching. Consider the case where a neuron is responding to a

mixture of multiple stimuli following the probability-mixing model. One possible situation

is that the neuronal response is fixed, responding to the same stimulus component in the

mixture during the whole trial. Another more probable situation for long trials is that the

neuron switches between stimuli, only responding to a certain stimulus for some time

whereafter it switches to another stimulus, and the switching is random following a Markov

chain with certain transition probabilities. During the process, the neuron can only respond

to one single stimulus in the mixture at a given time, according to probability-mixing and

NTVA.

Leaky integrate-and-fire model

The leaky integrate-and-fire (LIF) models are simple diffusion models for the dynamics of the

membrane potential in single neurons [26, 27], the most common being an Ornstein-Uhlen-

beck (OU) process with constant conductance, leak potential, and diffusion coefficient. The

model can be extended by incorporating post-spike currents with a spike-response kernel

function [28]. Here we first focus on a bursting response kernel [29] (rhythmic spiking), then

we try two other kernels causing a decay of the spiking rate (adaptation) and a delay of spike

formation (refractory period). These kernels have been used to study parameter estimation in

LIF models responding to a plurality of stimuli in the same visual attention framework [22].

The likelihood function of an observed spike train was computed using different approaches

by numerically solving either the Fokker-Planck partial differential equations (PDE) or the

Volterra integral equations. In this study we only focus on the PDE method, which provides

the best solution when considering the trade-off between accuracy and computational burden

[22].

Models and methods

Encoding model: The leaky integrate-and-fire model

The encoding model is a standard LIF model extended with a spike response kernel, and is

the same as used in [22]. We will briefly repeat it here for convenience. The evolution of the

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 3 / 35

https://doi.org/10.1371/journal.pone.0216322

membrane potential is model by the solution to the stochastic differential equation:

dXðtÞ ¼ bðXðtÞ; tÞdt þ sdWðtÞ

¼ ð� aðXðtÞ � mÞ þ IðtÞ þHðtÞÞdt þ sdWðtÞ;

Xð0Þ ¼ x0 ; Xðtþj Þ ¼ x0

tj ¼ inf ft > tj� 1 : XðtÞ ¼ xthg for j � 1; t0 ¼ 0;

ð1Þ

where tþj denotes the right limit taken at tj. The drift term b(�) contains three currents: the leak

current −a(X(t) − μ), where a> 0 is the decay rate and μ is the reversal potential, the stimulus

driven current I(t), and the post-spike current H(t). The potential X(t) evolves until it reaches

the threshold, xth, where it resets to x0. The membrane potential X(t) is not measured, only the

spike times {t1, t2, . . .} are observed. Thus, the scaling of X is arbitrary, and we can use any val-

ues for threshold and reset. We set x0 = 0 and xth = 1 such that X is measured in units of the

distance between reset and spike threshold. The noise is modelled by the standard Wiener pro-

cess, W(t), with diffusion parameter, σ> 0.

The stimulus current I(t) is shaped from the external stimulus S(t) through a stimulus ker-

nel ks(t); IðtÞ ¼
R t
� 1

ksðt � sÞSðsÞds. The post-spike current arises from past spikes convoluted

with a response kernel kh(t); HðtÞ ¼
R t
� 1

khðt � sÞIðsÞds. Here IðsÞ ¼
P

t2ft1 ;t2 ;...g
dðs � tÞ rep-

resents the spike train, where δ(�) denotes the Dirac delta function.

We assume a stimulus kernel without delay, such that ks(t) = δ(t), implying that I(t) = S(t).
The response kernel is assumed to be the difference of two exponentials decaying over time,

khðtÞ ¼ Z1e� Z2t � Z3e� Z4t ð2Þ

with four positive parameters, η = (η1, η2, η3, η4). By adjusting the parameters, different kernels

are obtained. Three types of kernels are used here, described in Table 1 and illustrated later in

the Results section. In the center panels example spike trains generated from the different ker-

nels and different stimuli are illustrated.

Likelihood of an observed spike train

Suppose there are a total of K stimuli inside the receptive field of the neuron, denoted by S =

(S1, . . ., SK). Let Y = (Y1, . . ., YM) denote M spike trains. The realizations of stimuli and spike

trains are respectively s = (s1, . . ., sK) and y = (y1, . . ., yM). According to the probability-mixing

encoding model, the stimulus-driven current, I(t), follows a probability mixture:

IðtÞ ¼ SkðtÞ; with probality ak; ð3Þ

Table 1. Characteristics of response kernels used in the encoding model.

Kernel Description Parameter Interpretation

Bursting first positive,

then negative,

then vanishing

η1 > η3,

η2 > η4

recent spikes have excitatory effects,

accumulation of spikes has inhibitory effects,

resulting in rhythmic spiking with bursts

Decaying first negative,

then vanishing

η1 = 0,

η3, η4 small

inhibitory effects are small but long-lasting,

making the firing rate decay slowly over time

Delaying first negative,

then positive,

then vanishing

η1 < η3,

η2 < η4

recent spikes have inhibitory effects,

accumulation of spikes has excitatory effects,

preventing short interspike intervals (refractory period)

https://doi.org/10.1371/journal.pone.0216322.t001

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 4 / 35

https://doi.org/10.1371/journal.pone.0216322.t001
https://doi.org/10.1371/journal.pone.0216322

for k = 1, . . ., K, where
PK

k¼1
ak ¼ 1. Then the probability of a spike train ym generated under

the exposure of the K stimuli is also a mixture distribution,

pðymjsÞ ¼
XK

k¼1

akpðy
mjskÞ; ð4Þ

where p(ym|sk) is the probability of generating spike train ym from the single stimulus sk. It

equals the product of the probability densities of all spike times within ym = (t1, t2, . . .), where

the dependence between spike times is accounted for by conditioning on the history of past

spike times, Hm
ti� 1

,

pðymjskÞ ¼
Y

i

gðtijs
k;Hm

ti� 1
Þ; ð5Þ

where gðtjsk;Hti� 1
Þ is the conditional probability density of spiking at time t given the kth stim-

ulus and the spike history up to the previous spike time ti−1. The probability density g(�) can be

obtained from the density of the first-passage time of model (1), which we calculate by numeri-

cally solving the Fokker-Planck equation; see Appendix I: Probability of ISIs. If the M spike

trains Y = (Y1, . . ., YM) are assumed independent, then the likelihood for y = (y1, . . ., yM) is

pðyjsÞ ¼
YM

m¼1

pðymjsÞ ¼
YM

m¼1

XK

k¼1

akpðy
mjskÞ: ð6Þ

Decoding of stochastic stimulus mixtures with Markov switching

We consider stochastic stimulus mixtures with Markov attention switching, described by

stochastic processes with unknown parameters. The focus is both on estimating parameters

governing the law of the kth stimulus, as well as decoding of the stochastic realization of the

stimulus. We discretize the time interval of a trial in smaller intervals of length v, and assume

that the neurons can only switch attention between intervals, but will attend the same stimulus

during any of these small intervals. [30] found that sustained attention naturally fluctuates

with a periodicity of 4–8 Hz, thus, at most switching attention after 125ms. In the simulations

presented later, we set v = 100ms. Denote by Cn the index of the attended stimulus at the nth

time point, Cn 2 {1, . . ., K}, n = 1, . . ., N, such that vN is the length of the total observation

interval, and let Sn denote the stochastic realization of the attended stimulus at the nth time

point. In the decoding algorithm, it is assumed that Sn is constant, thus approximating the

stochastic stimulus process by a piecewise constant process. Assume the neuron switches

attention between two consecutive time intervals following a Markov chain with transition

probability matrix (TPM) Γ. Denote the elements of Γ by λkl for k, l = 1, . . ., K. Thus, λkl = P
(Cn = l|Cn−1 = k) is the probability that at time n the attended stimulus is Sl, given that the neu-

ron attended stimulus Sk at time n − 1.

The stochastic stimuli are described by Ornstein-Uhlenbeck (OU) processes. For a mixture

of K stimuli S = (S1, . . ., SK), the kth stimulus component is governed by the stochastic differ-

ential equation (SDE):

dSkðtÞ ¼ ½bk � SkðtÞ�dt þ gdWðtÞ; ð7Þ

where βk and γ are parameters, and W(t) is a standard Wiener process. Only the drift parame-

ter βk is stimulus specific, the diffusion parameter γ is assumed to be the same for all stimuli in

the mixture.

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 5 / 35

https://doi.org/10.1371/journal.pone.0216322

The parameters describing the stimulus are unknown, namely γ, β = (β1, . . ., βK) and the

TPM Γ, so that θ = (γ, β, Γ). The parameter space is thus Θ = R+ × RK ×O, where O is the

space of K × K stochastic matrices. For simplicity, the mixture number K is assumed to be

known. If K is unknown, then the algorithm is run with different k = 1, 2, . . ., and the k that

minimizes the BIC is chosen. We focus on various Monte Carlo techniques for decoding,

including the bootstrap filter, the auxiliary particle filter with parameter learning, fixed-lag

and fixed-interval smoothing, etc; see [31] for a review of such methods. The goal is to decode

the stochastic realization of Sn for n = 1, . . ., N. We will present online methods, where param-

eter estimates are updated sequentially as observations become available. We also explore

smoothing techniques, where some delay is allowed before the stimulus is reported.

Sequential Monte Carlo methods

We will now establish sequential Monte Carlo methods for decoding. In Table 2 below, we

summarize the methods that are developed and compared. The details are described in the fol-

lowing sections.

To represent various methods, we use a unified term

f;i;m gfBF;APFgf;gg � fF;lag;FBg: ð8Þ

The prefix i or m stands for individual decoding or marginal likelihood decoding in parallel

processing, respectively. The main term BF or APF indicates the filtering algorithm. The suffix

g stands for using the geometric mean for the likelihood value. Finally, the last part represents

whether we use filtering (F), fixed-lag smoothing (lag) or fixed-interval smoothing with the

forward-filtering backward-smoothing algorithm (FB). For example, the method iBF-lag
represents individual decoding in parallel processing using bootstrap filtering with fixed-lag

smoothing.

Table 2. Summary of methods.

Single spike trains

Methods Comments

BF, APF Compared with the Bootstrap Filter (BF), the Auxiliary Particle filter (APF) applies two-stage resampling with auxiliary

variables and performs parameter learning along time.

Multiple spike trains

Methods Comments

Serial BF, APF In serial processing, multiple simultaneouslyrecorded spike trains are analyzed.

Parallel iBF, mBF, iAPF,

mAPF

In parallel processing, single spike trains are either decoded independently and results are merged (i-), or all spike trains

are decoded together and the marginal likelihood is computed (m-).

Extensions

Methods Comments

APF resampling APFg Resample using geometric mean of likelihood.

Smoothing -F Online filtering.

-lag Fixed-lag smoothing by marginalization.

-FB Fixed-interval smoothing using Forward-Backward algorithm.

Continuous-time

switching

- Discretization methods can approximate continuous time switching at low frequency.

Response kernel Bursting The decoding methods apply to any response kernel.

Decaying

Delaying

https://doi.org/10.1371/journal.pone.0216322.t002

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 6 / 35

https://doi.org/10.1371/journal.pone.0216322.t002
https://doi.org/10.1371/journal.pone.0216322

State space model. We use a state-space model to describe the evolution of the

stochastic stimuli. The state space is extended to not only include the stimuli S, but also

the unknown stimulus-related parameters, which are included for the construction of the

decoding algorithms. Fig 1 shows the graph of the state-space model. The stimuli S are con-

tinuous-state Markov processes, and the attention states C are discrete-state Markov pro-

cesses. The spike trains Y depend on both stimuli and the attention, also affected by spiking

history. S, C and Y may be multi-dimensional containing multiple stimuli and neurons.

The transition of the states S and C are parameterized by θ = (γ, β, Γ). In the algorithms, the

parameters θ are also considered as states propagating following Markov processes given in

(10), but are not shown in the graph. Denote by Zn = (Sn, Cn, θn) the full hidden states, and

zn a realization of Zn. Similar methods were used in [32], where the authors employed a

state-space model describing spike train data with Poisson distributions and an animal’s

position with Gaussian noise. Sequential Monte Carlo methods were used to estimate

parameters and decode the position based on spike trains. Here we include the latent states

explaining visual attention and describe spike trains with leaky integrate-and-fire models.

The full states are

Γn ðTPMÞ

Cn ðindex of attended stimulusÞ

gn ðcommon diffusion parameter of all stimuliÞ

bn ¼ ðb
1

n; . . . ; b
K
n Þ ðdrift parameter of each stimulusÞ

Sn ¼ ðS1
n; . . . ; SKn Þ ðvalue of each stimulusÞ

ð9Þ

The subscript n stands for the current time in the state evolution. Note that, even if Γ, γ and

β are constant in model (7), the filters will at each time point update the information regarding

their value, and thus, they are allowed to change at each time point. Hopefully, they converge

towards their true values as more spikes are used in the decoding algorithm. The propagation

Fig 1. State-space model used for the decoding of stochastic stimuli.

https://doi.org/10.1371/journal.pone.0216322.g001

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 7 / 35

https://doi.org/10.1371/journal.pone.0216322.g001
https://doi.org/10.1371/journal.pone.0216322

of states at time n is given by:

flkl;ngl¼1;...;K
� DirðfV � 1

l
lkl;n� 1gl¼1;...;K

Þ;
XK

l¼1

lkl;n ¼ 1;lkl;n � 0

Cn � ΓðCn� 1Þ; Cn 2 f1; . . . ;Kg

gn � Ntrðgn� 1;VgÞ; gn > 0

b
k
n � Nðbn� 1;VbÞ;

Skn � NðMk
n;V

k
nÞ;

ð10Þ

for k, l = 1, . . ., K. The state propagation is explained as follows. Each row of the TPM is sampled

following a Dirichlet distribution, with parameters being the probabilities in the previous time

step multiplied by a concentration parameter V � 1
l

controlling the sampling variance. The index

of the attended stimulus is sampled from a multinomial distribution given by row Cn−1 of the

TPM, Γ(Cn−1). The parameters γn and βn are updated using Gaussian distributions with vari-

ance Vγ and Vβ, respectively. Since γn> 0, a positive truncated Gaussian distribution is used.

The strength of each stimulus, Skn, is updated according to the OU model, following a Gaussian

distribution with mean Mk
n ¼ ðS

k
n� 1
� b

k
nÞe
� Dt þ b

k
n and variance Vk

n ¼ g
2
nð1 � e� 2DtÞ=2.

The likelihood of the spike train given the parameters is obtained from the encoding model.

In the following text before we deal with multiple simultaneous spike trains, we focus on

decoding of single spike trains, so we will use y as a single spike train for readability. Let yn ¼
ðt1; . . . ; tLnÞ denote the spike train within the duration of the nth interval, where it can happen

that yn is empty if no spikes were fired. Since the intervals are short, we need to take into

account boundary effects, i.e., the time from the left boundary of the interval to the first spike,

and the time from the last spike to the right boundary. Let Tb and Te denote the beginning and

the end of the interval, respectively. Then if yn is non-empty, Tb � t1 < � � � < tLn � Te. Given

stimulus S1:n = s1:n and attentional index C1:n = c1:n from the first to the nth time step, the likeli-

hood of yn is then

pðynjscnn ; s
cn� 1

n� 1 ;HTb
Þ ¼

YLn

l¼2

gðtljs
cn
n ;Htl� 1

Þ ðcomplete ISIs inside the intervalÞ

� gðt1jscnn ; s
cn� 1
n� 1 ;HTb

Þ ðleft boundaryÞ

� 1�

Z Te

tLn

gðtjscnn ;HtLn
Þdt

" #

ðsurvival probability at right boundaryÞ

ð11Þ

If there are no spikes in the interval, the likelihood is given by the survival probability:

pðynjscnn ; s
cn� 1

n� 1 ;HTb
Þ ¼ 1 �

Z Te

Tb

gðtjscnn ; s
cn� 1

n� 1 ;HTb
Þdt: ð12Þ

The decoding of stimuli aims at obtaining the conditional distribution

pðs1:njy1:nÞ ¼

Z

Y

X

c1:n

pðz1:njy1:nÞdy ¼
Z

Y

X

c1:n

pðs1:njc1:n; y1:n; y1:nÞpðc1:njy1:nÞpðy1:nÞ

()

dy: ð13Þ

We have different types of filtering based on the distribution p(s1:n|y1:n).

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 8 / 35

https://doi.org/10.1371/journal.pone.0216322

Online filtering refers to the distribution p(s1:n|y1:n) or the marginal distribution p(sn|y1:n)

where n represents the current time step. In online filtering, when new data yn arrive, the

unknown hidden state sn is inferred, and the decoding procedure is online.

Offline smoothing refers to the distribution p(s1:N|y1:N) or the marginal p(sn|y1:N), where N
represents the total time and n is some past time. In offline smoothing, we infer any states in

the past sn, n = 1, . . ., N, after we observe all data y1:N, and the decoding procedure is offline.

A third type is a semi-online smoothing, where we target the distribution p(sn − Δn|y1:n), for

Δn> 0. We infer the state at a past time sn−Δn after we receive the data at the current time y1:n.

This semi-online decoding procedure can be conducted if we allow for some delay Δn before

reporting the online result.

A bootstrap particle filter. Sequential Monte Carlo methods aim to obtain the distribu-

tion (13) through sequential sampling over time, and the strategy relies on the following

decomposition:

pðz1:njy1:nÞ ¼
pðz0:n� 1jy0:n� 1Þ

pðynjy0:n� 1Þ
pðznjzn� 1Þpðynjzn; y0:n� 1Þ: ð14Þ

The method is to sample a new zn at each time step n and sequentially update the weight of

each sample zn based on the above decomposition [31]. In the bootstrap particle filter (BF), zn
is sampled from p(zn|zn−1) and the weight of each sample is updated using p(yn|zn, y0:n−1). Each

particle is a sample from the state space at all time points, where we write Zn,i = zn,i for the sam-

pled value of Zn of particle i. Particle filtering approximates the distribution p(z1:n|y1:n) by the

empirical distribution using I particles:

p̂ðz1:njy1:nÞ ¼
XI

i¼1

1fz1:n¼z1:n;ig
�wn;i; ð15Þ

where �wn;i denotes the normalized weight of particle i at time n. Since we are interested only in

the marginal distribution of the stimuli, p(s1:n|y1:n), we use the marginal

p̂ðs1:njy1:nÞ ¼
XI

i¼1

1fs1:n¼s1:n;ig
�wn;i ð16Þ

and also

p̂ðsnjy1:nÞ ¼
XI

i¼1

1fsn¼sn;ig �wn;i ð17Þ

with the same set of weight values. Then the stimulus at time n is estimated by the posterior

mean,

Ŝn ¼
XI

i¼1

sn;i �wn;i: ð18Þ

Using the state evolution and the likelihood, the BF is formulated in Algorithm 1. In this

particle filter, each particle has the attended target Cn as a state, and only the information

about the attended stimulus is used to calculate the weights. In the first step at n = 1, the states

are initialized by sampling from uniform distributions. The attention state C is sampled from a

discrete uniform distribution on the indices of the K stimuli, U{1, . . ., K}, and the other states

are sampled from continuous uniform distributions, with intervals given in the Result section.

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 9 / 35

https://doi.org/10.1371/journal.pone.0216322

In this and the subsequent filters, we resample particles using systematic resampling to

avoid weight degeneracy, which is conducted as follows. Denote by Uj, for j = 0, 1, . . ., I − 1, a

total of I random grid variables. A uniform variable �U is sampled from U(0, 1]. The grid vari-

ables follow

Uj ¼
jþ �U
I

; j ¼ 0; 1; . . . ; I � 1: ð19Þ

The number of duplicates for particle i, i = 1, 2, . . ., I, after resampling is

Wi ¼ j;Uj 2 ð
Xi� 1

l¼1

�wl;
Xi

l¼1

�wl�; j ¼ 0; 1; . . . ; I � 1

()�
�
�
�
�

�
�
�
�
�
; ð20Þ

i.e., the number of grid variables that fall into the ith increment of the cumulative sum of the

normalized weights. It follows that
PI

i Wi ¼ I and Wi� 0 for i = 1, 2, . . ., I. Afterwards, we set

the weight of all resampled particles to 1/I.
Algorithm 1 Bootstrap particle filter, BF

Initialization: at n = 1
1: for particle i = 1, . . ., I do
2: Sample each row of Γ using the Dirichlet distribution with equal

weights
3: C1,i � U{1, . . ., K}; γ1,i � U(0, maxγ); b

k
1;i � Uð0;maxbÞ; Sk

1;i � Uð0;maxSÞ,
k = 1, . . ., K

4: Calculate the weights, wi ¼ pðy1jS
C1;i
1;i Þ

5: end for
6: Calculate normalized weights, �wi ¼ wi=

P
iwi

Iteration: for n = 2, . . ., N
7: Resample particles (systematic resampling)
8: for particle i = 1, . . ., I do
9: Propagate states: first Γn,i, then Cn,i, γn,i, βn,i, and finally,

Sn,i, from distributions (10)

10: Calculate the weights, wi ¼ pðynjS
Cn;i
n;i ; S

Cn� 1;i
n� 1;i ; y1:n� 1Þ

11: end for
12: Calculate normalized weights, �wi ¼ wi=

P
iwi

13: Estimate attended stimulus, Ŝn ¼
PI

i¼1
�wiS

Cn;i
n;i

Auxiliary particle filter with parameter estimation. In the bootstrap filter, the resam-

pling weights are calculated from the past observations. A more reasonable idea is to calculate

the weights based on the current observation. In the auxiliary particle filter (APF) [33], the

resampling relies on auxiliary variables, for example, the likelihood of the current observation

conditional on the expected states:

un ¼ wn� 1pðynjmCnn ; S
Cn� 1
n� 1 ; y1:n� 1Þ; ð21Þ

where

mCnn ¼ EðSCnn jS
Cn
n� 1; yn� 1Þ: ð22Þ

The idea is that the resampling based on the current observation provides particles that are

distributed more closely to the posterior at the following time point. Therefore, the weights

degenerate less and the effective number of particles is larger.

The stimulus model contains fixed hyperparameters θ that are estimated using artificial

propagation, which introduces information loss over time [34]. To overcome this, we propa-

gate the hyperparameter γn using kernel smoothing as proposed by [34]. The propagation of

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 10 / 35

https://doi.org/10.1371/journal.pone.0216322

γn follows a Gaussian distribution

gnþ1 � Nðcgn þ ð1 � cÞ�gn; h2vnÞ; ð23Þ

where �gn and vn are the mean and the variance of the posterior p(γ|y1:n), evaluated from parti-

cles at time n. In practice, we use a truncated version of the Gaussian distribution in (23) since

the parameter γ is positive. The constants ψ = (3δ − 1)/2δ and h2 = 1 − ψ2 are evaluated using a

discount factor δ 2 (0, 1], typically around 0.95 − 0.99 recommended by the authors. For the

parameters Γn and βn, which depend on the stimulus components, we use the same propaga-

tion distribution as before, due to the problem of label switching in mixture models [35, 36].

It is difficult to evaluate the posterior of elements of Γn and βn because each particle can label

each component differently.

The APF with kernel smoothing of parameters is formulated in Algorithm 2.

Algorithm 2 Auxiliary particle filter with kernel smoothing, APF
Initialization: at n = 1
1: for particle i = 1, . . ., I do
2: Sample each row of Γ using the Dirichlet distribution with equal

weights
3: C1,i � U{1, . . ., K}; γ1,i � U(0, maxγ); b

k
1;i � Uð0;maxbÞ; Sk

1;i � Uð0;maxSÞ,
k = 1, . . ., K

4: Calculate the weights, wi ¼ pðy1jS
C1;i
1;i Þ

5: end for
Iteration: for n = 2, . . ., N
6: for particle i = 1, . . ., I do
7: Propagate Γn,i and then Cn,i
8: Calculate m

Cn;i
n;i ¼ EðS

Cn;i
n;i jS

Cn;i
n� 1;i; yn� 1;iÞ

9: Calculate the first-stage weight, ui ¼ wipðynjm
Cn;i
n;i ; S

Cn� 1;i
n� 1;i ; y1:n� 1Þ

10: end for
11: Resample particles (systematic resampling) using {ui}, giving a

new set of particles N
12: for particle j 2 N do
13: propagate γn,j using (23), then βn,j, and finally Sn,j
14: Evaluate the weight, wj ¼ pðynjS

Cn;j
n;j ; S

Cn� 1;j
n� 1;j ; y1:n� 1Þ=pðynjm

Cn;j
n;j ; S

Cn� 1;j
n� 1;j ; y1:n� 1Þ

15: end for
16: Normalize weights and output estimate

Particle filtering with marginal likelihood. In Algorithms 1 and 2 we use the attended

target C as a hidden state, and the weights are evaluated conditional on C. Alternatively, we can

marginalize out C in each particle, and use all S = (S1, . . ., SK) to calculate the marginal likeli-

hood as the weight. This requires a recursive computation of the probabilities p(Cn|y1:n−1, s1:n)

at time n, for which we follow the routine shown below:

pðynjy1:n� 1; s1:nÞ ¼
XK

j¼1

pðynjCn ¼ j; y1:n� 1; s1:nÞpðCn ¼ jjy1:n� 1; s1:nÞ; ð24Þ

pðCn ¼ jjy1:n� 1; s1:nÞ ¼
XK

i¼1

pðCn� 1 ¼ ijy1:n� 1; s1:n� 1Þlij;n; ð25Þ

pðCn� 1 ¼ ijy1:n� 1; s1:n� 1Þ / pðyn� 1jCn� 1 ¼ i; y1:n� 2; s1:n� 1ÞpðCn� 1 ¼ ijy1:n� 2; s1:n� 1Þ: ð26Þ

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 11 / 35

https://doi.org/10.1371/journal.pone.0216322

At time n, the probabilities p(Cn|y1:n−1, s1:n) are computed using p(Cn−1|y1:n−2, s1:n−1) from

time n − 1, and likewise in the subsequent time steps. Note that in the marginal probability we

depend on all stimuli S = (S1, . . ., SK) instead of a component given by C as in Eq (11).

Due to label switching, each particle could label the stimulus components differently. It is

then difficult to output the correct results with the posterior mean [35]. Here we use a simple

method. The stimuli in each particle are sorted first, then the posterior mean is calculated for

the sorted stimuli. The hope is that after sorting, each particle relabels the components in the

same order. The algorithm of a bootstrap particle filter with marginal likelihood is formulated

in Algorithm 3.

For single spike trains, we cannot decode all components of the stimulus mixture because

only one is attended at a time. Therefore marginal likelihood is less appealing for single spike

train decoding. However, if we have multiple independent observations at each time point,

marginal likelihood will be more appropriate.

Algorithm 3 Bootstrap particle filter with marginal likelihood, mBF
Initialization: at n = 1
1: for particle i = 1, . . ., I do
2: Sample each row of Γ using the Dirichlet distribution with equal

weights
3: γ1,i � U(0, maxγ); b

k
1;i � Uð0;maxbÞ; Sk

1;i � Uð0;maxSÞ, k = 1, . . ., K
4: Calculate the weights, wi = p(y1|S1,i)
5: end for
6: Calculate normalized weights, �wi ¼ wi=

P
iwi

Iteration: for n = 2, . . ., N
7: Resample particles (systematic resampling)
8: for particle i = 1, . . ., I do
9: Propagate states: first Γn,i, then γn,i, βn,i and finally Sn,i

from distributions (10)
10: Calculate the weights, wi = p(yn|Sn,i, Sn−1,i, y1:n−1)
11: end for
12: Calculate normalized weights, �wi ¼ wi=

P
iwi

13: Estimate all Sn ¼ ðS1
n; . . . ; SKn Þ using Ŝkn ¼

PN
i¼1

�wiSkn;i on sorted stimulus
components

Auxiliary particle filtering with parameter estimation and marginal likelihood. The

idea of APF and parameter learning using kernel smoothing can also be applied to the particle

filter with marginal likelihood. We calculate the first-stage weights using marginal likelihood:

un ¼ wn� 1pðynjmn; Sn� 1; y1:n� 1Þ; ð27Þ

where μn is the expectation of all components of Sn:

mn ¼ EðSnjSn� 1; yn� 1Þ: ð28Þ

The calculation of the marginal likelihood p(yn|μn) follows the same way as in Eq (24). Due

to label switching, only the propagation of the common parameter γn is done using the kernel

smoothing method by [34]. The algorithm is formulated in Algorithm 4.

Algorithm 4 Auxiliary particle filter with kernel smoothing and marginal likelihood, mAPF
Initialization: at n = 1
1: for particle i = 1, . . ., I do
2: Sample each row of Γ using the Dirichlet distribution with equal

weights
3: γ1,i � U(0, maxγ); b

k
1;i � Uð0;maxbÞ; Sk

1;i � Uð0;maxSÞ, k = 1, . . ., K
4: Calculate the weights, wi = p(y1|S1,i)
5: end for
Iteration: for n = 2, . . ., N

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 12 / 35

https://doi.org/10.1371/journal.pone.0216322

6: for particle i = 1, . . ., I do
7: Calculate mn;i ¼ EðSn;ijSn� 1;i; yn� 1;iÞ

8: Calculate the first-stage weight, ui = wip(yn|μn,i, Sn−1,i, y1:n−1)
9: end for
10: Resample particles (systematic resampling) using {ui}, giving a

new set of particles N
11: for particle j 2 N do
12: propagate γn,j using (23), then βn,j, Γn,j and finally Sn,j
13: Evaluate the weight, wj = p(yn|Sn,j, Sn−1,j, y1:n−1)/p(yn|μn,j,

Sn−1,j, y1:n−1)
14: end for
15: Normalize weights and output estimate based on sorted stimulus

components

Decoding from multiple spike trains with serial and parallel processing. Now we con-

sider multiple neurons simultaneously recorded in one trial providing multiple spike trains.

Since stochastic stimuli contain inevitable noise and are not reproducible by repetitions in

real applications, all estimates of the stimuli depend entirely on the spike trains from one trial.

Thus, the attentional behavior of the simultaneously recorded neurons is of great importance

for understanding the full information of stimuli.

For multiple, simultaneously recorded spike trains we consider two opposing hypotheses

for visual search in neuronal attention, namely the serial and the parallel processing. In serial

processing, all stimuli are processed sequentially. The neural interpretation is that all neurons

attend to the same stimulus at the same time, and switch to another all together. Therefore, all

spike trains would have similar spiking patterns. On the contrary, in parallel processing, sti-

muli are processed in parallel. Each neuron attends its own stimulus and can switch to another

stimulus independently of the other neurons. The spike trains are then distinct from each

other.

Serial processing. For stimulus decoding using particle methods, serial processing essen-

tially means an increase of the observation size at each time point, making the decoding more

accurate. However, it only decodes the attended stimulus at any time, and the data contain no

information about the other stimuli at that time point. For M spike trains, y = {y1, y2, . . ., yM},

the likelihood function with the serial processing assumption within a small interval is then

pðyn j Scnn ; S
cn� 1

n� 1 ; y1:n� 1Þ ¼
YM

m¼1

pðymn jS
cn
n ; S

cn� 1

n� 1 ; ym1:n� 1
Þ: ð29Þ

The right hand side is evaluated using expression (11).

Parallel processing. In parallel processing each spike train has its own attended stimulus.

Stimulus decoding can then estimate multiple components of the mixture. Each single spike

train is decoded independently using Algorithms 1 or 2, which produces estimates of each

neuron’s attended stimulus at each time point, and then the results from all spike trains give

an empirical distribution of the stimulus mixture at each time point. Then we run cluster anal-

ysis at each time point in one-dimensional space based on the estimates of stimuli. Since there

are outliers (see the Results section), we apply k-medoids clustering [37, 38, chpt. 14] using the

square root of Euclidean distance as the dissimilarity measure. The k-medoids clustering is

preferred over k-means because k-medoids can be more robust against outliers [38]. Further-

more, the square root of the Euclidean distance puts less weight on extreme outliers than the

Euclidean distance. Finally, we use the median of each cluster as the estimate for each compo-

nent of the stimulus mixture.

Another decoding method for parallel processing is to exploit the marginal likelihood

since we have multiple independent observations. Now each particle can decode all stimulus

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 13 / 35

https://doi.org/10.1371/journal.pone.0216322

components, and all decoded components will be used for the output estimation. When calcu-

lating the weights, we need the likelihood, which is the product of the marginal likelihoods of

all spike trains:

pðynjSn; Sn� 1; y1:n� 1Þ ¼
YM

m¼1

pðymn jSn; Sn� 1; y
m
1:n� 1
Þ; ð30Þ

and the right hand side is evaluated using Eq (24).

Adjusting auxiliary variables for large data size. In Algorithms 2 and 4 based on APF

for population decoding, the auxiliary variables are calculated using the likelihood, which can

take extreme values if the sample size is large, e.g., when the data contain multiple spike trains.

The consequence is that only few particles with extreme weight values survive the resampling,

reducing the posterior variance and leading to the degeneracy of parameter learning [39, 40].

To slow down the degeneracy, we use the geometric mean of the likelihood value over the

number of spike trains, ~pðynjmn; Sn� 1; y1:n� 1Þ ¼
QM

m¼1
pðymn jmn; Sn� 1; ym1:n� 1

Þ
� �1=M

, when calculat-

ing the auxiliary variables in Algorithms 2 and 4.

Semi-online smoothing. The above online algorithms return estimates of stimuli by

approximating the filtering probability conditional on the observation up to the current time,

p(s1:n|y1:n). An alternative is offline methods that make use of later observations or the entire

data set when estimating the stimuli at a past time point. This posterior is referred to as the

smoothing distribution. A full-length smoothing reports the posterior of the stimulus at

any time n conditional on all observations over 1: N, p(sn|y1:N), but we can also apply partial

smoothing when only certain delays are allowed. Say we need to report the stimulus after a

delay of Δn time points, then we can decode the stimulus at time n using partial smoothing,

p(sn−Δn|y1:n). Thus, filtering does real-time online decoding, while smoothing does semi-online

decoding with some delay or offline decoding after the full observation. Here we pursue the

semi-online decoding allowing a delay of Δn before reporting the stimulus, p(sn−Δn|y1:n). Two

smoothing methods have been tried, the fixed-lag smoothing and the fixed-interval smoothing

[41].

In the fixed-lag smoothing, we simply marginalize the filtering distribution p(s1:n|y1:n) for

time n − Δn:

p̂ðsn� Dnjy1:nÞ ¼
XI

i¼1

1fsn� Dn¼sn� Dn;ig �wn;i; ð31Þ

where the weights are the same as the online filtering weights. Then we estimate the stimulus

at time n − Δn as

Ŝn� Dn ¼
XI

i¼1

sn� Dn;i �wn;i ð32Þ

This requires additional memory to store the history of S.

In fixed-interval smoothing we apply the forward-filtering backward-smoothing algorithm,

and calculate the smoothing distribution p(sn−Δn|y1:n) for the desired time n − Δn, instead of

using the joint filtering distribution p(s1:n|y1:n). The smoothing distribution p(sn−Δn|y1:n) is

obtained using recursive backward smoothing from n after a full forward filtering up to n [41].

For the semi-online smoothing at n − Δn, we keep the online filtering running. Whenever we

receive new data yn, we proceed with the online filtering to obtain p(s1:n|y1:n) and go back Δn
time steps to obtain the smoothing distribution p(sn−Δn|y1:n). See Appendix II: Forward-

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 14 / 35

https://doi.org/10.1371/journal.pone.0216322

Filtering Backward-Smoothing for a full description of the forward-filtering backward-smooth-

ing algorithm.

Continuous-time switching. All the decoding algorithms assume that neuronal attention

is fixed within intervals of duration 100ms, and only switches between two intervals. To test

how robust the algorithms are when this assumption is violated, we also simulate spike trains

with continuous-time switching, i.e., the attentional switching does not need to take place

exactly between two intervals. One example is that the switching follows a Poisson process,

which is used in the simulations. If this is the case, then decoding with discretization will be

less accurate. However, if the switching rate is sufficiently low such that the average inter-

switch interval is much longer than the discretized intervals, the Poisson attentional switching

is well approximated by the approach based on discretization.

A fixed TPM on discretized time points approximates the Poisson switching model well

due to the memoryless property of the Poisson process. However, since the TPM is updated at

each time point as latent states, the model is easy to extend to non-Poissonian switching allow-

ing for memory effects by adapting the TPM for a specific model. This is not pursued here.

Results

Throughout the following examples, we use the parameters for the LIF encoding model shown

in Table 3. Fig 2 illustrates some realizations of spike trains generated from the encoding

model using different response kernels and stimuli.

In the decoding simulations, we perform many repetition trials. In each decoding trial, we

simulate the realizations of the stochastic stimuli and the spike trains, and then perform decod-

ing with the sequential Monte Carlo particle methods. Specifically, we simulate K new stimuli

according to the OU model. Each spike train is generated using the simulated stimuli within

the period [1, 6]s (a period of 5s after 1s burn-in). The time step size of generating the stimulus

is 0.01s. We then decode the stochastic mixtures from the spike trains.

The root mean squared deviation (RMSD) between true and decoded stimuli is used to

evaluate the performance. Since the stochastic stimuli are simulated with steps of 0.01s and we

approximate the stochastic process with a discretized piecewise constant function with steps of

0.1s, we can never achieve a perfect decoding and the RMSD will always be greater than 0. To

take this into account, a relative root mean square deviation (rRMSD) is used to measure the

Table 3. Parameters of the LIF encoding model used in the simulations.

Parameter Value Explanation

a 100 decay rate in LIF model

x− 0 reflecting boundary of Fokker-Planck equation

xth 1 firing threshold of potential

x0 0.4 reset potential

μ 0.5 resting potential

σ 1 diffusion parameter in LIF model

ηburst (50, 25, 40, 15) burst response kernel

ηdecay (0, 0, 2, 0.5) decay response kernel

ηdelay (20, 8, 50, 15) delay response kernel

Δt 0.002 time discretization in numerical solution

Δx 0.02 potential discretization in numerical solution

Δn 10 intervals time delay for particle smoothing

https://doi.org/10.1371/journal.pone.0216322.t003

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 15 / 35

https://doi.org/10.1371/journal.pone.0216322.t003
https://doi.org/10.1371/journal.pone.0216322

decoding accuracy:

rRMSD ¼

ffi
1

10N

PN
n¼1

P10

l¼1
ðŜn � Sn;lÞ

2
q

ffi
1

10N

PN
n¼1

P10

l¼1
ðŜ�n � Sn;lÞ

2
q : ð33Þ

where N is the number of discretized intervals, l ¼ 1; 2; . . . ; 0:1s
0:01s is an index for discretization

in each time step, Sn,l denotes the true stimulus, different for each n and l, Ŝn is the prediction

of the stimulus and Ŝ�n is an artificial stimulus that minimizes the RMSD, Ŝ�n ¼
1

10

P10

l¼1
Sn;l.

Then the best achievable value of rRMSD is 1.

Fig 2. Realizations of spike trains. The left panels show the three response kernels. The top panels show different types of stimuli. Spike trains are shown for each

combination of response kernel and stimulus. Each line represents an independent trial. For each combination, 50 example spike trains are simulated.

https://doi.org/10.1371/journal.pone.0216322.g002

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 16 / 35

https://doi.org/10.1371/journal.pone.0216322.g002
https://doi.org/10.1371/journal.pone.0216322

The effective sample size (ESS) measures the weight degeneracy of the sequential Monte

Carlo methods. The ESS at time n for I particles is given by

ðNeff Þn ¼
1

PI
i¼1
ð�wn;iÞ

2
: ð34Þ

If the weights are evenly spread, then (Neff)n = I takes its maximum value. The smaller ESS

is, the less effective are the particles in representing the distribution.

The performance of different particle methods are compared using rRMSD, ESS and the

trace of parameter learning over time.

We tried stimulus mixtures of K = 1, 2 and 3 components. A mixture of 1 component

implies that the neuron’s attention is fixed at the single stimulus. We set the TPM for the mix-

ture of two or three to

Γ2 ¼
0:8 0:2

0:2 0:8

" #

; Γ3 ¼

0:5 0:2 0:3

0:3 0:5 0:2

0:2 0:3 0:5

2

6
6
6
4

3

7
7
7
5
: ð35Þ

Table 4 shows the β parameters used for each component and the common γ values for

each mixture.

During initialization, the values of γ, β and the stimulus strength S are uniformly sampled

from U(0, 40), U(0, 200) and U(0, 200), respectively. The parameters for the algorithmic updat-

ing of Γ, γ and β are Vλ = 0.02, Vγ = 1 and Vβ = 4, respectively. For the AFP algorithm with

kernel smoothing, we use δ = 0.95. Throughout the experiments, the number of particles is

I = 500. The delay time for particle smoothing is Δn = 10 intervals equal to 1s.

All data are simulated according to the state-space model and the diffusion process

described in the Models and Methods section using the parameters given above.

In Table 5 we show a summary of the performance comparison of different methods from

the simulations. In both single and multiple spike train simulations, we focus on discrete-time

switching and the bursting kernel to compare between different particle algorithms. Then we

include extensions with continuous-time switching and other response kernels. The detailed

explanations of the results can be found in the following sections. The source code for per-

forming these experiments is in the repository https://osf.io/tkvhs/ (DOI: 10.17605/OSF.IO/

TKVHS).

Single spike trains

In single spike train experiments, the decoding trials are repeated 50 times. In each trial new

stimuli are generated and one spike train is simulated following the stimulus mixture. Then all

decoding is conducted only on this single spike train.

Fig 3 illustrates decoding examples for single spike trains using the online BF. Shown in the

figure are single spike trains and the corresponding decoding results (left) together with more

Table 4. Stimulus parameters, β and γ, of the stochastic stimulus mixtures using OU processes.

Mixture number one two three

Stimulus index 1 1 2 1 2 3

β 70 65 75 60 70 80

γ 20 20 20

https://doi.org/10.1371/journal.pone.0216322.t004

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 17 / 35

https://osf.io/tkvhs/
https://doi.org/10.17605/OSF.IO/TKVHS
https://doi.org/10.17605/OSF.IO/TKVHS
https://doi.org/10.1371/journal.pone.0216322.t004
https://doi.org/10.1371/journal.pone.0216322

detailed illustration of the posterior distributions (middle and right) at selected time points

(dashed lines in left figures), using stochastic mixtures of 1, 2 and 3 components in the upper,

middle and lower row panels. The posterior distribution (shaded area) is computed from

weighted kernel density smoothing using particles. In Fig 4 are shown decoding examples for

two stimuli, using online filtering, fixed-lag smoothing and fixed-interval smoothing with a

delay of Δn = 10 for the upper, middle and lower row panels. The same spike train is used for

the three methods.

Boxplots of rRMSD values from 50 repetitions are shown in Fig 5. Various combinations of

three filtering methods (online filtering, fixed-lag smoothing and fixed-interval smoothing),

two particle methods (BF and APF) and three component sizes (K = 1, 2 and 3) are tried. The

decoding performance tends to be better when there are less number of stimulus components

and when we use delayed smoothing rather than online filtering. The benefit of APF is not

observed for K = 1 and K = 2, but becomes notable when K = 3.

Fig 6 shows the ESS of different particle methods for different number of components.

The ESS is calculated for all time steps, so the boxplots cover 2500 samples for all 50 repeti-

tions at all 50 time steps. The ESS of APF outperforms BF only when K = 3. When K = 2,

the medians of APF and BF are comparable but the variance of BF is smaller. When K gets

larger, the weight degeneracy quickly becomes a problem for BF, but the weights are less

sensitive to K for APF. This finding here corresponds to the finding in the rRMSD plots in

Fig 5.

Finally, in Fig 7 we show examples of the time trajectory of parameter learning for γ, the dif-

fusion parameter in the OU model of the stimuli. Parameter learning converges faster using

APF than BF when there is more than one stimulus, but the learning is not as fast as the param-

eter degeneracy (observed and explained in the following population decoding).

Table 5. Summary of results. The signs�,< and> denote decoding performance comparison in different settings.

Single spike trains

Methods Performance comparison

BF, APF fewer stimuli > more stimuli

APF� BF for fewer stimuli

APF > BF for more stimuli

Smoothing > Filtering

Multiple spike trains

Methods Performance comparison

Serial (K = 2) BF, APF, APFg Multiple spike trains in serial > single spike trains

APF < BF

Smoothing� Filtering

APFg� APF

Parallel (K = 2) iBF, iAPF, mBF, mAPF, mAPFg APF� BF

Smoothing� Filtering for m-

Smoothing� Filtering for i-

APFg� APF

Extensions

Methods Comments

Continuous-time switching Poisson process switching Decoding at switching point may be unstable. Overall performance is close to discrete switching.

Response kernels Delaying Delaying� Bursting

Decaying Decaying < Bursting, due to low firing rate

https://doi.org/10.1371/journal.pone.0216322.t005

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 18 / 35

https://doi.org/10.1371/journal.pone.0216322.t005
https://doi.org/10.1371/journal.pone.0216322

Multiple spike trains

In population decoding of multiple spike trains, we use a mixture of two stimuli also of length

5 s. In each trial we simulate new stimuli and 20 simultaneous spike trains, and we conduct 50

repetitions. Population decoding assumes either serial processing or parallel processing.

A decoding example following serial processing is shown in Fig 8. The figure compares fil-

tering, fixed-lag smoothing and fixed-interval smoothing, all using BF. In the top of the figure

are shown the 20 spike trains used for decoding, which follow similar spiking patterns because

all of them attend to the same stimulus assuming serial processing.

A decoding example following parallel processing is shown in Fig 9. Spike trains can be

quite distinct due to different attended stimuli. All stimuli can be simultaneously decoded at

each time point. Two decoding methods are used. First we apply individual decoding of each

spike train, obtaining 20 estimates which are clustered into two categories. The median of each

category is the final estimate. The histograms to the right show the distributions of the 20 esti-

mates at two selected time points. Sometimes one category contains few estimates. This occurs

when the two components are different in strength and most spike trains happen to attend to

one stimulus component, or when the two components have similar strength and outliers

form a second category. A category with few estimates is marked by a red color and stars if

Fig 3. Decoding of stochastic stimulus mixtures using BF with filtering from a single spike train responding to stimulus mixtures containing 1 (upper panel), 2

(middle panel) or 3 (lower panel) components. Blue curves show all the stimulus components in the mixture, and the black curve switching between the blue curves

indicate the attended stimulus. Red piecewise-constant lines show the decoding results as the posterior mean, with each constant interval being 100ms long. The light red

shaded area indicates the posterior distribution at each time step. The spike train is plotted above each decoding figure as sequences of dots. The rRMSD values are shown

on the top-right corner of each figure. In the right side of each panel, the empirical posterior distributions at selected time points indicated by dashed lines in the left

panels are shown, computed from weighted kernel density smoothing using the particles. The red vertical line indicates the posterior mean, i.e., the decoding estimates

shown in the left panels. The black vertical line indicates the true stimulus averaged across the 100ms interval.

https://doi.org/10.1371/journal.pone.0216322.g003

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 19 / 35

https://doi.org/10.1371/journal.pone.0216322.g003
https://doi.org/10.1371/journal.pone.0216322

Fig 4. Decoding of stochastic stimulus mixtures from a single spike train. Decoding by BF with filtering, BF-F (upper panel), fixed-lag smoothing, BF-lag (middle

panel) and fixed-interval smoothing, BF-FB (lower panel). The three panels show the decoding of the same spike train. See caption of Fig 3 for explanation.

https://doi.org/10.1371/journal.pone.0216322.g004

Fig 5. The rRMSD values of decoding stochastic mixtures with K = 1, 2 and 3 components using different particle methods, calculated from 50 repetitions. In

the labels of the x-axis, F: filtering, Lag: fixed-lag smoothing, FB: fixed-interval smoothing using the forward-filtering backward-smoothing algorithm. For example,

APF-Lag means using APF and reporting estimates using fixed-lag smoothing.

https://doi.org/10.1371/journal.pone.0216322.g005

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 20 / 35

https://doi.org/10.1371/journal.pone.0216322.g004
https://doi.org/10.1371/journal.pone.0216322.g005
https://doi.org/10.1371/journal.pone.0216322

�5% of the total size. Starred estimates should be ignored to avoid the effect of outliers and the

other category will be used as the decoding result for both components. The stars at 4.9 s in the

middle panel captures a situation where the two stimuli are close. The second method for par-

allel population decoding is to use marginal likelihood. All stimulus components are decoded

due to multiple independent observations at each time point, shown in the lower panel.

In Fig 10 the rRMSD from 50 repetitions of different methods are shown as boxplots. Popu-

lation decoding using multiple spike trains generally performs better than single spike train

decoding. For serial processing, APF performs worse than BF, and for parallel processing APF

performs as well as or better than BF, judging from the rRMSD results. For both serial and

parallel population processing methods, smoothing yields little or no improvement over filter-

ing. However, the exception is the individual decoding methods for parallel processing, of

course, since they are based on decoding of single stimuli. Indeed, significant improvement is

observed when using smoothing instead of filtering for iBF and iAPF. The reason for the per-

formances of BF and APF, filtering and smoothing can be partly found from the ESS values

shown in Fig 11. Most notably, the ESS values are much smaller than the ESS values of single

spike train results (Fig 6), due to extreme weights for larger sample sizes. This can lead to

inaccurate approximations of the marginalization in fixed-lag smoothing and the integrals in

the forward-filtering backward-smoothing algorithm. The smoothing performance is more

affected by the small ESS than filtering. Furthermore, for serial processing BF has better ESS

with higher median and smaller variance than APF, whereas for parallel processing, APF

has better ESS. This explains the different performances of BF and APF in serial and parallel

processing in Fig 10. Finally, regarding using geometric means, we do not observe much

improvement of APFg and mAFPg over APF and mAPF. Using geometric means have positive

Fig 6. Effective sample sizes. ESS of BF and APF with K = 1, 2, 3 stimuli, shown in boxplots for 2500 samples of 50

repetitions at 50 time steps. The labels in the x-axis show the number of stimuli. For example, APF-2 means using APF

with 2 stimuli.

https://doi.org/10.1371/journal.pone.0216322.g006

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 21 / 35

https://doi.org/10.1371/journal.pone.0216322.g006
https://doi.org/10.1371/journal.pone.0216322

effects since the ESS’s are larger and the parameter degeneracy slows down (Fig 12) with APFg

and mAFPg. However, the geometric mean changes the resulting posterior distribution and

introduces a bias.

In Fig 12, examples of parameter learning of γ are plotted for different methods. The APF

algorithm for serial population decoding suffers from parameter degeneracy. Parameter

degeneracy of APF with kernel smoothing [34] under large sample sizes has been reported

in previous studies [39], which is a phenomenon where the parameter distribution quickly

becomes narrow or collapses to a Dirac delta function. If parameter learning degenerates too

fast before it receives sufficient data to achieve a good estimate, the parameter can be fixed at

values far from the true one, reducing the decoding accuracy. Using the geometric mean slows

down the degeneracy for serial processing. Other parameter learning methods have previously

been studied using sufficient statistics, which may avoid the degeneracy problem [39, 40]; it is

not pursued here. For particle filtering with marginal likelihood on parallel population decod-

ing, there is not a large difference between APF and BF in terms of degeneracy.

Approximating continuous-time switching

Here we simulate the attentional switching in continuous time following a Poisson process to

test how robust the methods are to discretization errors. With the same setup and methods as

Fig 7. Examples of parameter learning of γ over time. The solid line is the mean of 500 particles, and dashed lines show ± the standard deviation. The red lines are the

true values.

https://doi.org/10.1371/journal.pone.0216322.g007

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 22 / 35

https://doi.org/10.1371/journal.pone.0216322.g007
https://doi.org/10.1371/journal.pone.0216322

above, we conduct the population decoding with parallel processing. In Fig 13 is shown the

decoding result of parallel population decoding, and in Fig 14 are shown two examples of sin-

gle spike train decoding selected from the 20 spike trains in Fig 13. The posterior distribution

to the right are taken from the switching time indicated by dashed lines. With a low Poisson

switching rate, the decoding accuracy is not severely affected for parallel population decoding.

For single spike train decoding, the estimate at switching times tends to be somewhere

between the two values before and after the switch (first spike train in the upper panel in Fig

14), but sometimes the estimation can be far from the true stimulus (second spike train at 0.8 s
in the lower panel in Fig 14).

Decoding with the delay and decay kernel

In the above analysis, we have been using the burst response kernel which generates rhythmic

and oscillatory bursting spiking patterns. Now we also try parallel population decoding using

the decay and the delay kernel, shown in Figs 15 and 16, respectively. Again we use the same

setup and methods. For the delay kernel, good performance is achieved, comparable with the

burst kernel. For our current specification of the decay kernel, the spiking rate decreases

Fig 8. Decoding from 20 spike trains on a stimulus mixture with two components assuming serial processing. Decoding is done by BF with online filtering (upper

middle panel), fixed-lag smoothing (lower middle panel) and fixed-interval smoothing (lower panel).

https://doi.org/10.1371/journal.pone.0216322.g008

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 23 / 35

https://doi.org/10.1371/journal.pone.0216322.g008
https://doi.org/10.1371/journal.pone.0216322

rapidly over time and we have to use stronger stimulus, but there are still long ISIs (e.g. in the

middle region from 2s to 4s) which reduce the decoding accuracy.

Discussion

We have shown how to decode mixtures of multiple stochastic stimuli in the framework

of visual attention under the hypothesis of probability mixing, which assumes the neuron

responds to only one single stimulus at any time. The opposing hypothesis is response averag-

ing [42], which assumes the neuron responds to a weighted average of the mixture. In this

case, the decoding of each single stimulus would be much harder or impossible due to the diffi-

culty in identifying each single stimulus based on the estimate of the weighted average, and

information of individual stimulus characteristics would not be identifiable. This is an argu-

ment for why the neural system probably follows the probability-mixing hypothesis, as also

shown in [3].

Fig 9. Decoding from 20 spike trains using BF assuming parallel processing. In the top panel 20 spike trains are shown. In the middle panel is shown the method

using individual decoding and clustering. Short gray bars show the individual decoding results of stimulus at each time point from 20 spike trains. Thick bars show the

medians of clustered categories. A more red color of the thick bars means less number of estimates inside the corresponding category. We mark by two stars if there

are less than or equal to 5% estimates in a category (in this case, 5% × 20 = 1 estimates, which only happens once, at time 4.9 s). Blue curves show the true stimuli. The

histograms to the right show the distribution of 20 estimates with red lines indicating the medians. In the lower panel is shown BF with marginal likelihood. For

graphical reasons, we plot the two dimensional posterior estimation of the two stimuli in one dimension. For both decoding methods assuming parallel processing, all

stimulus components are decoded at each time point. Blue curves show the true stimuli.

https://doi.org/10.1371/journal.pone.0216322.g009

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 24 / 35

https://doi.org/10.1371/journal.pone.0216322.g009
https://doi.org/10.1371/journal.pone.0216322

In the decoding simulations with stochastic mixtures, we successfully decode the attended

stimulus component using a single spike train or using population data under serial process-

ing. Using population data under parallel processing enables us to obtain information of all

stimulus components. Various types of particle methods are employed and compared. Inter-

estingly, we find that the more complicated techniques using APF and kernel-based parameter

learning do not necessarily perform better than basic methods using BF, and smoothing, con-

ditional on more observations, does not necessarily perform better than filtering. This is

related to sample size and model complexity.

Fig 10. The rRMSD values using different particle methods for serial and parallel processing, calculated from 50 repetitions. In the labels of the x-

axis, APFg: APF with geometric mean, iBF: individual decoding using BF, iAPF: individual decoding using APF, mBF: BF with marginal likelihood,

mAPF: APF with marginal likelihood, mAFPg: APF with marginal likelihood and geometric mean. For example, APFg-FB means using APF with

geometric mean, and reporting estimates using fixed-interval smoothing by the forward-filtering backward-smoothing algorithm.

https://doi.org/10.1371/journal.pone.0216322.g010

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 25 / 35

https://doi.org/10.1371/journal.pone.0216322.g010
https://doi.org/10.1371/journal.pone.0216322

For a limited number of particles (500 in our case), smoothing performance is closely

related to ESS and how extreme the weights are. If the sample size is increased, weights

become extreme and ESS decreases. After Δn = 10 times of resampling, the values

fSkn� Dn; k ¼ 1; . . . ;Kg used in fixed-lag smoothing only contain very few or only one unique

value, so the accuracy will be affected. The forward-filtering backward-smoothing algorithm

is also affected because the backward sweep requires the integration using the past particles.

Therefore, for a large sample size smoothing can perform worse than filtering. In addition,

the backward-smoothing procedure requires the transition probabilities p(zn|zn−1) that we

compute using different particles at time n and n − 1, and the performance is affected by

label switching.

The performance of APF compared with BF has previously been studied; see e.g. [43–45].

APF applies new proposal weights to resample particles by an early introduction of subsequent

distributions, as a variance reduction approach: the estimation variance is reduced if we

achieve a good prediction of subsequent weights and thus larger ESS. When the data size is

large, distributions become narrow and the first-stage weight in APF may not provide a good

prediction of the subsequent distribution; meanwhile, the more complicated two-stage numer-

ical calculations under a limited particle size could yield more variance and bias. Therefore,

the variance reduction can perform worse for a large data size. When the model is more com-

plicated, so are the prior and transition distributions of the states. It becomes difficult for BF to

have good samples with a limited number of particles. APF, on the other hand, gains advantage

by introducing the subsequent states information, and therefore suffers less from the increased

Fig 11. ESS using different methods in serial and parallel processing, shown in boxplots for 2500 samples of 50

repetitions at 50 time steps. The labels in the x-axis show the methods used. For example, parallel-mAPFg means

using mAPF with geometric mean for parallel processing.

https://doi.org/10.1371/journal.pone.0216322.g011

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 26 / 35

https://doi.org/10.1371/journal.pone.0216322.g011
https://doi.org/10.1371/journal.pone.0216322

model complexity than BF. Increased model complexity also makes the distributions less nar-

row under a large sample size due to higher dimensions. In summary, APF is more favored for

smaller sample sizes and more complex models. In our case, population decoding contains a

larger sample size than single spike train decoding. Increasing the stimulus number K yields

higher dimensions and thus a more complex model. With the same K, parallel processing with

mAPF (using full stimulus information) has larger dimensions than serial processing with

APF (using partial stimulus information).

In the simulations of parallel processing, the stimulus number K is much less than the

number of simultaneously recorded spike trains, and each stimulus component has suffi-

ciently large probability to be attended. Consequently, at all time points each component

is likely to be attended by some neurons and it becomes possible to decode all stimulus

components. If, on the other hand, K is too large, or the probability of attending to one of

more components is very small, the decoded stimuli will not likely form as many as K clus-

ters. In that case we could try out different K values for the clustering analysis, and report

the k� which minimizes the Bayesian information criterion. This means that among all K sti-

muli, k� are most likely attended by the recorded neurons and we decode those k� attended

stimuli.

Fig 12. Examples of parameter learning of γ over time. The solid line is the mean of 500 particles, and dashed lines show ± the standard deviation. The red lines are the

true value.

https://doi.org/10.1371/journal.pone.0216322.g012

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 27 / 35

https://doi.org/10.1371/journal.pone.0216322.g012
https://doi.org/10.1371/journal.pone.0216322

We have included some extensions, namely approximating continuous-time switching and

various response kernels. The framework can be further extended in much broader ways. For

example, we may consider other spiking neuron models like point processes, and spiking mod-

els incorporating neuronal interactions, or even other more sophisticated ion channel models

if we have access to intracellularly recorded membrane voltage data. This amounts to modify-

ing the likelihood of the observed data conditional on the stimulus and historical data in Eq

(6). Another feature of this state-space framework is that we take into account the hidden

attentional states, which is particularly useful if we have prior knowledge about neuronal atten-

tion. Using prior information, we can e.g. put constraints on the TPM of attention switching,

or set appropriate discretization intervals.

Our methods provide a state-space, Monte Carlo framework for neural decoding incorporat-

ing single neurons’ attention, which can be easily extended for different neural models and

experimental settings. The framework is especially useful for applications with complex stochas-

tic stimuli and multiple simultaneously recorded neurons, or when we want to infer the neuronal

attention scheme in addition to decoding the stimuli. The simulation results can serve as a refer-

ence to choose proper algorithms when researchers apply the methods to experimental data.

Fig 13. Decoding from 20 spike trains using BF assuming parallel processing. In each spike train, neuronal attention switches at continuous times following a Poisson

process.

https://doi.org/10.1371/journal.pone.0216322.g013

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 28 / 35

https://doi.org/10.1371/journal.pone.0216322.g013
https://doi.org/10.1371/journal.pone.0216322

Appendices

Appendix I: Probability of ISIs

Suppose the membrane potential x resets to x0 at time 0, and the spike time is t> 0. We use

the following notation:

f ðx; tjS;Ht� Þ ðtime � evolving probability density function of voltageÞ

Fðx; tjS;Ht� Þ ðtime � evolving cumulative distribution function of voltageÞ

gðtjS;Ht� Þ ðprobability density function of spiking at t; i:e:; PDF of the ISIÞ

GðtjS;Ht� Þ ðcumulative distribution function of spiking at t; i:e:; CDF of the ISIÞ

All the above probabilities depend on the stimulus S and the spike history up to the previous

spike, Ht� . In the following, we suppress S and Ht� in the notation for readability.

Fig 14. Decoding of two example single spike trains selected from Fig 13 using BF. Neuronal attention switches at continuous times following a Poisson process.

Example switching times are indicated by dashed lines.

https://doi.org/10.1371/journal.pone.0216322.g014

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 29 / 35

https://doi.org/10.1371/journal.pone.0216322.g014
https://doi.org/10.1371/journal.pone.0216322

The probability that the neuron has not yet fired at time t, 1 − G(t), is equivalent to the

probability that the potential has not yet reached xth, F(Xth, t). Thus, the probability density of

an ISI is

gðtÞ ¼ �
@

@t
Fðxth; tÞ ¼ �

@

@t

Z xth

� 1

f ðx0; tÞdx0: ð36Þ

The transition probability density with a resetting threshold follows the Fokker-Planck

equation, defined by the following partial differential equation (PDE):

@tf ðx; tÞ ¼ � @xðbðx; tÞf ðx; tÞÞ þ
s2

2
@

2

xxf ðx; tÞ; ð37Þ

with absorbing boundary condition f(xth, t) = 0 and initial condition f(x, 0) = δ(x − x0). For

numerical reasons, we also approximate by setting a reflecting boundary condition at a small

value x = x−, where the flux equals 0.

Fig 15. Decoding from 20 spike trains using BF assuming parallel processing, using the decay response kernel.

https://doi.org/10.1371/journal.pone.0216322.g015

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 30 / 35

https://doi.org/10.1371/journal.pone.0216322.g015
https://doi.org/10.1371/journal.pone.0216322

Now we formulate a PDE based on the CDF, F(x, t) [22, 46, 47]. Plugging f(x, t) = @xF(x, t)
into (37) gives

@t@xFðx; tÞ ¼ � @x bðx; tÞ@xFðx; tÞ �
s2

2
@x@xFðx; tÞ

� �

: ð38Þ

Integrating both sides with respect to x yields

@tFðx; tÞ ¼ � bðx; tÞ@xFðx; tÞ þ
s2

2
@

2

xxFðx; tÞ þ CðtÞ: ð39Þ

At the lower reflecting boundary x = x−, we have F(x−, t) = 0 and thus @tF(x, t)|x = x− = 0.

The flux equals 0, so

Jðx� ; tÞ ¼ � bðx� ; tÞf ðx� ; tÞ þ
s2

2
@xf ðx; tÞjx¼x�

¼ � bðx; tÞ@xFðx; tÞjx¼x� þ
s2

2
@

2

xxFðx; tÞjx¼x�

¼ 0:

ð40Þ

Fig 16. Decoding from 20 spike trains using BF assuming parallel processing, using the delay response kernel.

https://doi.org/10.1371/journal.pone.0216322.g016

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 31 / 35

https://doi.org/10.1371/journal.pone.0216322.g016
https://doi.org/10.1371/journal.pone.0216322

Thus, C(t) = 0, and we obtain the PDE for F(x, t):

@tFðx; tÞ ¼ � bðx; tÞ@xFðx; tÞ þ
s2

2
@

2

xxFðx; tÞ; ð41Þ

with boundary conditions @xF(xth, t) = 0, F(x−, t) = 0, and initial condition F(x, 0) = H(x − x0),

where H(�) is the Heaviside step function.

The PDE is solved numerically using Crank-Nicholson finite difference method by discre-

tizing time and potential with grid size Δt and Δx. The result is the CDF F(x, t), which is differ-

entiated along time to obtain the desired g(t) following Eq (36).

Appendix II: Forward-filtering backward-smoothing

In the model, the hidden Markov processes are denoted by Z1:n and the observations by Y1:n.

Suppose we have observations up to time N, y1:N, and are interested in the smoothing distribu-

tion at time n< N, p(zn|y1:N). The smoothing distribution can be decomposed using

pðznjy1:NÞ

¼ pðznjy1:n; ynþ1:NÞ

¼
pðynþ1:N jzn; y1:nÞpðznjy1:nÞ

pðynþ1:N jy1:nÞ

¼ pðznjy1:nÞ

Z
pðznþ1jznÞpðynþ1:N jznþ1; y1:nÞ

pðynþ1:N jy1:nÞ
dznþ1

¼ pðznjy1:nÞ

Z

pðznþ1jznÞ
pðznþ1jy1:NÞ

pðznþ1jy1:nÞ
dznþ1

¼ pðznjy1:nÞ

Z

pðznþ1jznÞ
pðznþ1jy1:NÞR

pðznþ1jznÞpðznjy1:nÞdzn
dznþ1:

ð42Þ

Approximating the integrals using I particles, the smoothing weight of particle i is

�w� n;i � �wn;i

X

j

pðznþ1;jjzn;iÞ �w� nþ1;j
P

lpðznþ1;jjzn;lÞ�wn;l
; ð43Þ

where �wn;i is the normalized filtering weight at time n for particle i, which is calculated using

the bootstrap filter and auxiliary particle filter algorithms introduced in the main text. By a

backward sweep, the smoothing weights �w� n;i for n = N, N − 1, . . . can be recursively computed

using the forward filtering weights and the transition probabilities p(zn+1|zn) following the

state propagation given in (10).

For the semi-online smoothing p(zn−Δn|y1:n), at time n we proceed the forward filtering

to compute the filtering weights, and then run Δn steps backward using (43) to obtain the

smoothing weights. The approximation for semi-online smoothing distribution is

p̂ðzn� Dnjy1:nÞ ¼
XI

i¼1

1zn� Dn¼zn� Dn;i
�w� n� Dn;i ð44Þ

and the posterior mean of the stimulus is estimated as

Ŝn� Dn ¼
XI

i¼1

sn� Dn;i �w� n� Dn;i: ð45Þ

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 32 / 35

https://doi.org/10.1371/journal.pone.0216322

Acknowledgments

The work is part of Dynamical Systems Interdisciplinary Network, University of Copenhagen.

Author Contributions

Conceptualization: Kang Li, Susanne Ditlevsen.

Data curation: Kang Li.

Formal analysis: Kang Li, Susanne Ditlevsen.

Funding acquisition: Susanne Ditlevsen.

Investigation: Kang Li.

Methodology: Kang Li, Susanne Ditlevsen.

Project administration: Susanne Ditlevsen.

Resources: Susanne Ditlevsen.

Software: Kang Li.

Supervision: Susanne Ditlevsen.

Validation: Kang Li.

Visualization: Kang Li.

Writing – original draft: Kang Li.

Writing – review & editing: Kang Li, Susanne Ditlevsen.

References
1. Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural

systems. Computational neuroscience. Cambridge (Mass.), London: MIT Press; 2001. Available from:

http://opac.inria.fr/record=b1100424.

2. Bundesen C, Habekost T, Kyllingsbæk S. A neural theory of visual attention: bridging cognition and

neurophysiology. Psychological Review. 2005; 112(2):291. https://doi.org/10.1037/0033-295X.112.2.

291 PMID: 15783288

3. Li K, Kozyrev V, Kyllingsbæk S, Treue S, Ditlevsen S, Bundesen C. Neurons in primate visual cortex

alternate between responses to multiple stimuli in their receptive field. Frontiers in Computational Neu-

roscience. 2016; 10:141. https://doi.org/10.3389/fncom.2016.00141 PMID: 28082892

4. Nobre K, Kastner S. The Oxford handbook of attention. Oxford University Press; 2013.

5. Lebedev MA, Nicolelis MA. Brain–machine interfaces: past, present and future. TRENDS in Neurosci-

ences. 2006; 29(9):536–546. https://doi.org/10.1016/j.tins.2006.07.004 PMID: 16859758

6. Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, Mehring C. A review on directional information in neural

signals for brain-machine interfaces. Journal of Physiology-Paris. 2009; 103(3):244–254. https://doi.

org/10.1016/j.jphysparis.2009.08.007

7. Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Sci-

ence. 1986; 233(4771):1416–1419. https://doi.org/10.1126/science.3749885 PMID: 3749885

8. Rieke F. Spikes: exploring the neural code. MIT press; 1999.

9. Warland DK, Reinagel P, Meister M. Decoding visual information from a population of retinal ganglion

cells. Journal of Neurophysiology. 1997; 78(5):2336–2350. https://doi.org/10.1152/jn.1997.78.5.2336

PMID: 9356386

10. Eichhorn J, Tolias A, Zien A, Kuss M, Weston J, Logothetis N, et al. Prediction on Spike Data Using Ker-

nel Algorithms. In: Thrun S, Saul LK, Schölkopf PB, editors. Advances in Neural Information Processing

Systems 16. MIT Press; 2004. p. 1367–1374. Available from: http://papers.nips.cc/paper/2357-

prediction-on-spike-data-using-kernel-algorithms.pdf.

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 33 / 35

http://opac.inria.fr/record=b1100424
https://doi.org/10.1037/0033-295X.112.2.291
https://doi.org/10.1037/0033-295X.112.2.291
http://www.ncbi.nlm.nih.gov/pubmed/15783288
https://doi.org/10.3389/fncom.2016.00141
http://www.ncbi.nlm.nih.gov/pubmed/28082892
https://doi.org/10.1016/j.tins.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16859758
https://doi.org/10.1016/j.jphysparis.2009.08.007
https://doi.org/10.1016/j.jphysparis.2009.08.007
https://doi.org/10.1126/science.3749885
http://www.ncbi.nlm.nih.gov/pubmed/3749885
https://doi.org/10.1152/jn.1997.78.5.2336
http://www.ncbi.nlm.nih.gov/pubmed/9356386
http://papers.nips.cc/paper/2357-prediction-on-spike-data-using-kernel-algorithms.pdf
http://papers.nips.cc/paper/2357-prediction-on-spike-data-using-kernel-algorithms.pdf
https://doi.org/10.1371/journal.pone.0216322

11. Brockmeier AJ, Choi JS, Kriminger EG, Francis JT, Principe JC. Neural decoding with kernel-based

metric learning. Neural computation. 2014; 26(6):1080–1107. https://doi.org/10.1162/NECO_a_00591

PMID: 24684447

12. Koyama S, Eden UT, Brown EN, Kass RE. Bayesian decoding of neural spike trains. Annals of the Insti-

tute of Statistical Mathematics. 2010; 62(1):37–59. https://doi.org/10.1007/s10463-009-0249-x

13. Paninski L, Pillow J, Lewi J. Statistical models for neural encoding, decoding, and optimal stimulus

design. Progress in brain research. 2007; 165:493–507. https://doi.org/10.1016/S0079-6123(06)

65031-0 PMID: 17925266

14. Pillow JW, Ahmadian Y, Paninski L. Model-based decoding, information estimation, and change-point

detection techniques for multineuron spike trains. Neural Computation. 2011; 23(1):1–45. https://doi.

org/10.1162/NECO_a_00058 PMID: 20964538

15. Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN. A point process framework for relating

neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of

neurophysiology. 2005; 93(2):1074–1089. https://doi.org/10.1152/jn.00697.2004 PMID: 15356183

16. Kass RE, Eden UT, Brown EN. Analysis of neural data. Springer; 2014.

17. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. Bayesian population decoding of motor cortical

activity using a Kalman filter. Neural computation. 2006; 18(1):80–118. https://doi.org/10.1162/

089976606774841585 PMID: 16354382

18. Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rad KR, Vidne M, et al. A new look at state-space

models for neural data. Journal of computational neuroscience. 2010; 29(1-2):107–126. https://doi.org/

10.1007/s10827-009-0179-x PMID: 19649698

19. Kelly R, Lee TS. Decoding V1 neuronal activity using particle filtering with Volterra kernels. In: Advances

in neural information processing systems; 2003. p. None.

20. Brockwell AE, Rojas AL, Kass R. Recursive Bayesian decoding of motor cortical signals by particle fil-

tering. Journal of Neurophysiology. 2004; 91(4):1899–1907. https://doi.org/10.1152/jn.00438.2003

PMID: 15010499

21. Shoham S, Paninski LM, Fellows MR, Hatsopoulos NG, Donoghue JP, Normann RA. Statistical encod-

ing model for a primary motor cortical brain-machine interface. Biomedical Engineering, IEEE Transac-

tions on. 2005; 52(7):1312–1322. https://doi.org/10.1109/TBME.2005.847542

22. Li K, Bundesen C, Ditlevsen S. Responses of Leaky Integrate-and-Fire Neurons to a Plurality of Stimuli

in Their Receptive Fields. The Journal of Mathematical Neuroscience. 2016; 6(1):1. https://doi.org/10.

1186/s13408-016-0040-2

23. Bundesen C, Habekost T. Principles of visual attention: Linking mind and brain. Oxford Psychology

Series, Oxford; 2008.

24. Townsend JT. Serial vs. parallel processing: Sometimes they look like Tweedledum and Tweedledee

but they can (and should) be distinguished. Psychological Science. 1990; 1(1):46–54. https://doi.org/

10.1111/j.1467-9280.1990.tb00067.x

25. Fific M, Nosofsky RM, Townsend JT. Information-processing architectures in multidimensional classifi-

cation: A validation test of the systems factorial technology. Journal of Experimental Psychology:

Human Perception and Performance. 2008; 34(2):356. https://doi.org/10.1037/0096-1523.34.2.356

PMID: 18377176

26. Burkitt AN. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological

cybernetics. 2006; 95(1):1–19. https://doi.org/10.1007/s00422-006-0068-6 PMID: 16622699

27. Sacerdote L, Giraudo MT. Stochastic Integrate and Fire Models: A Review on Mathematical Methods

and Their Applications. In: Stochastic Biomathematical Models with Applications to Neuronal Modeling.

vol. 2058. New York: Lecture Notes in Mathematics series (Biosciences subseries), Springer; 2013. p.

99–148.

28. Kistler W, Gerstner W, Hemmen J. Reduction of the Hodgkin-Huxley equations to a single-variable

threshold model. Neural Computation. 1997; 9(5):1015–1045. https://doi.org/10.1162/neco.1997.9.5.

1015

29. Gerstner W, Van Hemmen JL, Cowan JD. What matters in neuronal locking? Neural computation.

1996; 8(8):1653–1676. https://doi.org/10.1162/neco.1996.8.8.1653 PMID: 8888612

30. Fiebelkorn IC, Saalmann YB, Kastner S. Rhythmic sampling within and between objects despite sus-

tained attention at a cued location. Current Biology. 2013; 23(24):2553–2558. https://doi.org/10.1016/j.

cub.2013.10.063 PMID: 24316204

31. Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N, et al. On particle methods for parameter esti-

mation in state-space models. Statistical science. 2015; 30(3):328–351. https://doi.org/10.1214/14-

STS511

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 34 / 35

https://doi.org/10.1162/NECO_a_00591
http://www.ncbi.nlm.nih.gov/pubmed/24684447
https://doi.org/10.1007/s10463-009-0249-x
https://doi.org/10.1016/S0079-6123(06)65031-0
https://doi.org/10.1016/S0079-6123(06)65031-0
http://www.ncbi.nlm.nih.gov/pubmed/17925266
https://doi.org/10.1162/NECO_a_00058
https://doi.org/10.1162/NECO_a_00058
http://www.ncbi.nlm.nih.gov/pubmed/20964538
https://doi.org/10.1152/jn.00697.2004
http://www.ncbi.nlm.nih.gov/pubmed/15356183
https://doi.org/10.1162/089976606774841585
https://doi.org/10.1162/089976606774841585
http://www.ncbi.nlm.nih.gov/pubmed/16354382
https://doi.org/10.1007/s10827-009-0179-x
https://doi.org/10.1007/s10827-009-0179-x
http://www.ncbi.nlm.nih.gov/pubmed/19649698
https://doi.org/10.1152/jn.00438.2003
http://www.ncbi.nlm.nih.gov/pubmed/15010499
https://doi.org/10.1109/TBME.2005.847542
https://doi.org/10.1186/s13408-016-0040-2
https://doi.org/10.1186/s13408-016-0040-2
https://doi.org/10.1111/j.1467-9280.1990.tb00067.x
https://doi.org/10.1111/j.1467-9280.1990.tb00067.x
https://doi.org/10.1037/0096-1523.34.2.356
http://www.ncbi.nlm.nih.gov/pubmed/18377176
https://doi.org/10.1007/s00422-006-0068-6
http://www.ncbi.nlm.nih.gov/pubmed/16622699
https://doi.org/10.1162/neco.1997.9.5.1015
https://doi.org/10.1162/neco.1997.9.5.1015
https://doi.org/10.1162/neco.1996.8.8.1653
http://www.ncbi.nlm.nih.gov/pubmed/8888612
https://doi.org/10.1016/j.cub.2013.10.063
https://doi.org/10.1016/j.cub.2013.10.063
http://www.ncbi.nlm.nih.gov/pubmed/24316204
https://doi.org/10.1214/14-STS511
https://doi.org/10.1214/14-STS511
https://doi.org/10.1371/journal.pone.0216322

32. Box M, Jones MW, Whiteley N. A hidden Markov model for decoding and the analysis of replay in spike

trains. Journal of Computational Neuroscience. 2016; 41(3):339–366. https://doi.org/10.1007/s10827-

016-0621-9 PMID: 27624733

33. Pitt MK, Shephard N. Filtering via simulation: Auxiliary particle filters. Journal of the American statistical

association. 1999; 94(446):590–599. https://doi.org/10.1080/01621459.1999.10474153

34. Liu J, West M. Combined parameter and state estimation in simulation-based filtering. In: Sequential

Monte Carlo methods in practice. Springer; 2001. p. 197–223.

35. Fearnhead P. Particle filters for mixture models with an unknown number of components. Statistics and

Computing. 2004; 14(1):11–21. https://doi.org/10.1023/B:STCO.0000009418.04621.cd

36. Stephens M. Dealing with label switching in mixture models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology). 2000; 62(4):795–809. https://doi.org/10.1111/1467-9868.00265

37. Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis. vol. 344. John

Wiley & Sons; 2009.

38. Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R. The elements of statistical learn-

ing. 2nd ed. New York: Springer; 2009.

39. Rios MP, Lopes HF. The extended Liu and West filter: Parameter learning in Markov switching stochas-

tic volatility models. In: State-Space Models. Springer; 2013. p. 23–61.

40. Carvalho C, Johannes MS, Lopes HF, Polson N. Particle learning and smoothing. Statistical Science.

2010; 25(1):88–106. https://doi.org/10.1214/10-STS325

41. Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering.

Statistics and computing. 2000; 10(3):197–208. https://doi.org/10.1023/A:1008935410038

42. Reynolds JH, Heeger DJ. The normalization model of attention. Neuron. 2009; 61(2):168–185. https://

doi.org/10.1016/j.neuron.2009.01.002 PMID: 19186161

43. Johansen AM, Doucet A. A note on auxiliary particle filters. Statistics & Probability Letters. 2008; 78

(12):1498–1504. https://doi.org/10.1016/j.spl.2008.01.032

44. Douc R, Moulines E, Olsson J. Optimality of the auxiliary particle filter. Probability and Mathematical

Statistics. 2009; 29(1):1–28.

45. Whiteley N, Johansen AM. Recent developments in auxiliary particle filtering. Barber, Cemgil, and

Chiappa, editors, Inference and Learning in Dynamic Models Cambridge University Press. 2010;

38:39–47.

46. Iolov A, Ditlevsen S, Longtin A. Fokker-Planck and Fortet Equation-Based Parameter Estimation for a

Leaky Integrate-and-Fire Model with Sinusoidal and Stochastic Forcing. The Journal of Mathematical

Neuroscience. 2014; 4(1):4. https://doi.org/10.1186/2190-8567-4-4 PMID: 24742022

47. Hurn A, Jeisman J, Lindsay K. ML Estimation of the Parameters of SDEs by Numerical Solution of the

Fokker-Planck Equation. In: MODSIM 2005: International Congress on Modelling and Simulation:

Advances and Applications for Management and Decision Making; 2005. p. 849–855.

Neural decoding with visual attention

PLOS ONE | https://doi.org/10.1371/journal.pone.0216322 May 14, 2019 35 / 35

https://doi.org/10.1007/s10827-016-0621-9
https://doi.org/10.1007/s10827-016-0621-9
http://www.ncbi.nlm.nih.gov/pubmed/27624733
https://doi.org/10.1080/01621459.1999.10474153
https://doi.org/10.1023/B:STCO.0000009418.04621.cd
https://doi.org/10.1111/1467-9868.00265
https://doi.org/10.1214/10-STS325
https://doi.org/10.1023/A:1008935410038
https://doi.org/10.1016/j.neuron.2009.01.002
https://doi.org/10.1016/j.neuron.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19186161
https://doi.org/10.1016/j.spl.2008.01.032
https://doi.org/10.1186/2190-8567-4-4
http://www.ncbi.nlm.nih.gov/pubmed/24742022
https://doi.org/10.1371/journal.pone.0216322

