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Abstract

Probability modelling for DNA sequence evolution is well established and provides a rich framework
for understanding genetic variation between samples of individuals from one or more populations.
We show that both classical and more recent models for coalescence (with or without recombination)
can be described in terms of the so-called phase-type theory, where complicated and tedious calcula-
tions are circumvented by the use of matrix manipulations. The application of phase-type theory in
population genetics consists of describing the biological system as a Markov model by appropriately
setting up a state space and calculating the corresponding intensity and reward matrices. Formulae
of interest are then expressed in terms of these aforementioned matrices. We illustrate this procedure
by a number of examples: (a) Calculating the mean, (co)variance and even higher order moments of
the site frequency spectrum in multiple merger coalescent models, (b) Analysing a sample of DNA
sequences from the Atlantic Cod using the Beta-coalescent, and (c) Determining the correlation of
the number of segregating sites for multiple samples in the two-locus ancestral recombination graph.
We believe that phase-type theory has great potential as a tool for analysing probability models in
population genetics. The compact matrix notation is useful for clarification of current models, and in
particular their formal manipulation and calculations, but also for further development or extensions.

Key words

Coalescent theory, multiple merger, phase-type theory, recombination, segregating sites, site fre-
quency spectrum.

1 Introduction

Phase-type distributions is a rather general class of distributions for positive random variables which
include mixtures and convolutions of exponential distributions [2]. The height and total branch length
of the genealogical tree in the basic coalescent model are examples of phase-type distributed random
variables. The number of singletons in a sample of DNA sequences is determined by the total length

1



of branches with one descendant. The total length of branches with one descendant is also phase-type
distributed, and more generally the total length of branches with a certain number of descendants is
phase-type distributed. The fact that key population genetics quantities are phase-type distributed is
useful because properties of phase-type distributed variables are very well understood. In particular,
phase-type theory provides explicit expressions of means, variances and higher-order moments in
terms of simple manipulations of the rate matrices and vectors that determine the distribution.

In this paper, we demonstrate that important quantities in coalescent models can often be ex-
pressed in terms of phase-type distributions. We first consider fundamental quantities such as the
height, total branch length and site frequency spectrum in the basic coalescent model (e.g. [26]). Sec-
ond, we extend from the basic coalescent to the multiple merger coalescent (e.g. [20]), and provide
an application of parameter estimation in the Beta-coalescent. We also extend the basic coalescent
to a structured coalescent model, namely the seed bank coalescent (e.g. [3]). Third, we extend to a
two-locus model with recombination.

The basic coalescent, multiple merger coalescent, structured coalescent, and coalescent with re-
combination have traditionally required methods tailored to each model. These solutions are often
based on computationally intensive or analytically challenging recursion schemes. Phase-type the-
ory, in contrast, preserves a high-level matrix structure of the biological system without the necessity
of breaking the matrices into their elements. In all our examples we take advantage of the close
connection between coalescent models and phase-type theory. We show that the often complex and
difficult-to-derive coalescent formulae are often easy to define and calculate using phase-type the-
ory and matrix notation. We thus provide a unified approach to the calculation of distributions and
moments in Markov genealogical models.

The tree height, total branch length, and total length of branches with a certain number of descen-
dants, are distributed according to a univariate phase-type distribution. The joint distribution of total
branch length in two neighbouring loci in the coalescent model with recombination are distributed
according to a multivariate phase-type distribution. The joint distribution of total branch length with
e.g. one and two descendants is another example of a multivariate phase-type distributed random vec-
tor. We extend the univariate phase-type theory to the multivariate situation. This extension allows us
to determine joint moments (e.g. covariances) of entries in the site frequency spectrum or total branch
length of the genealogical trees in two neighbouring loci.

The generating function (GF) method advocated in [15] and [16] is similar in spirit to the phase-
type theory that we suggest. [15] and [16] also take advantage of the Markovian property of the
coalescent models, and the GF methods can be used to analyse rather general demographic models
and multiple loci. The GF method can calculate the likelihood of a sample configuration for small
sample sizes (up to n = 6) and uses a recursive scheme. We focus on summary statistics, and our
method applies for sample sizes up to n = 25. Furthermore, the recursive procedure in [15] and [16]
is substituted by matrix manipulations.

2 Phase–type distributions

The purpose of this section is to provide an exposition of those parts of phase–type theory that we
believe are particularly relevant for genealogical models in population genetics. We illustrate the
theory by a number of examples from coalescent theory. The phase–type theory presented is mostly
well known, and further details may be found in the monograph [2], which will also serve as our main
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reference throughout.
We follow the standard notational conventions from phase–type theory which makes it easy to

distinguish between matrices, row vectors, column vectors, and their elements. Matrices are written
in bold majuscules (e.g. SSS and LLL), column vectors in bold, Roman minuscules (e.g. sss and ttt) while
row vectors are bold, Greek minuscules (e.g. aaa and bbb ). Elements of vectors and matrices are denoted
by their corresponding minuscule letters (e.g. aaa = (ai)i and SSS = {si j}i, j). Dimensions are usually not
explicitly stated unless needed. Throughout we let III denote the identity matrix, eee = (1,1, . . . ,1)0 the
(column) vector of ones, eeei = (0, . . . ,0,1,0, . . . ,0)0 (1 on the ith position) the ith unit (column) vector,
whereas 000 may either denote the zero vector or zero matrix.

2.1 Definition and examples

We now proceed to a formal definition of a phase–type distributed random variable. Consider a
Markov jump process (continuous time Markov chain) {Xt}t�0 with finite state-space {1,2, ..., p, p+
1}, where states 1, ..., p are transient and state p+1 is absorbing; in a genealogical context state p+1
is usually the MRCA. This means that {Xt}t�0 has an intensity (rate) matrix LLL of the form

LLL =

✓
SSS sss

000 0

◆
, (1)

and we refer to the p⇥ p sub-matrix of rates between the transient states, SSS = {si j}i, j=1,...,p, as a
sub-intensity matrix, the p-dimensional column vector sss = (si)i=1,...,p as an exit rate vector (since its
elements are the intensities for jumping to the absorbing state), and finally 000 is a p-dimensional row
vector of zeros. The assumption of states 1, ..., p being transient means that eventually the process
will jump to the absorbing state. Since rows sum to zero in intensity matrices (i.e. LLLeee = 000), row
sums are non–positive (zero or negative) in sub–intensity matrices. Furthermore, from LLLeee = 000 we get
sss = �SSSeee. Hence the exit rate vector sss is implicitly know from the specification of the sub-intensity
matrix SSS.

Assume that {Xt}t�0 begins in a transient state and let aaa = (a1, ...,ap) where ai = P(X0 = i),
i = 1, ..., p. Then aaaeee = Âp

i=1 ai = 1 and aaa is a probability vector on the set of transient states E =
{1,2, . . . , p}. Often aaa = (1,0,0, ...,0), i.e. we start in state 1 and progress through the transient states
2, ..., p before absorption in the MCRA.

The transition matrix of the Markov process, PPP
t = {p

t

i j
}i, j=1,...,p+1, where p

t

i j
=P(Xt = j|X0 = i),

can be calculated as the matrix exponential of the intensity matrix scaled by the time constant t, i.e.

PPP
t = e

LLLt =
•

Â
n=0

LLLn
t
n

n!
.

By using the fact that sss =�SSSeee it is easily proved that

PPP
t =

✓
e

SSSt
eee� e

SSSt
eee

000 1

◆
. (2)

The restriction of PPP
t to the transient states set E is therefore exp(SSSt). Hence for i, j 2 {1,2, ..., p},

p
t

i j
equals the (i, j)th element of exp(SSSt) which we write as (exp(SSSt))i j . This simple observation

provides the backbone for almost all deductions of explicit formulae in phase–type theory. From this
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we can for example calculate the distribution of Xt . To this, simply observe that

P(Xt = j) =
p

Â
i=1
P(Xt = j|X0 = i)P(X0 = i) =

p

Â
i=1

ai p
t

i j
=

p

Â
i=1

ai

⇣
e

SSSt

⌘

i j

.

In matrix notation we have
(P(Xt = 1), ...,P(Xt = p)) = aaae

SSSt . (3)

We say that aaae
SSSt is the defective distribution of Xt on {1,2, ..., p} because the probabilities do not

sum to one due to the possibility of having been absorbed prior to time t.
We are now in position to formally define a phase–type distributed random variable.

Definition 2.1 (Phase-type distribution). The time until absorption

t = inf{t > 0 : Xt = p+1}

is said to have a phase-type distribution of order p with phase-space E = {1,2, . . . , p}, initial distri-

bution aaa and sub-intensity (generator) matrix SSS, and we write

t ⇠ PHp(aaa,SSS).

The exit rate vector will always be denoted by a bold minuscule letter corresponding to the letter for

the generator, here sss.

In order to be able to formulate a specific genealogical model in terms of a Markov process with an
absorbing state (MCRA), it is instructive to observe its sample path. Let 0= S0 < S1 < S2 < .. . denote
the jump times (e.g. coalescence times) of {Xt}t�0 and Tn = Sn�Sn�1, n= 1,2, . . . , the corresponding
inter-arrival times (e.g. time between two consecutive coalescence times). Furthermore we define the
discrete time process Yn = XSn

, n = 0,1, ...., which keeps track of the states visited (e.g. the sample
size after the nth coalescence). Then {Yn}n2N is a Markov chain on {1,2, ..., p+ 1} with transition
probability matrix QQQ = {qi j}, say, and is referred to as the embedded Markov chain. Conditionally
on Yn�1 = i, Tn = Sn�Sn�1 has an exponential distribution with parameter LLLii =�lii = li. For i 6= j,
i, j = 1, ..., p, the relation between qi j and li j is given by li j = liqi j , which suggests the important
interpretation

li jdx = probability of a jump from i to j during a small time interval [x,x+dx). (4)

In Figure 1 we illustrate a sample path of a general Markov jump process with intensity matrix
(1) generating a phase-type distribution. The initial state is chosen according to aaa . Given initiation
in Y0 = X0 = 3, the time until the first jump, S1, will then be exponentially distributed with intensity
l3 = �l33 = �s33 > 0. The process then jumps to a state j 6= 3, with probability q3 j = l3 j/l3 =
�s3 j/s33 or to the absorbing state with probability q3,p+1 = l3,p+1/l3 =�s3/s33.
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t

Xt

1
2
3
4
5

p

p+1

S1 S2 S3 S4 S5 S6 t

absorption

Y0 = X0 ⇠ aaa T4 ⇠ exp(l4)

T7 ⇠ exp(l2)

Figure 1: A Markov process with p transient states (blue), one absorbing state (purple), times of jumps S1 <
S2, . . . and time to absorption t . The filled and empty circles indicate that the process is assumed continuous
from the right. The embedded chain Yn = XSn

here takes the values Y0 = 3, Y1 = 1, Y2 = 2, Y3 = 4 etc. Holding
times between jumps, Tn = Sn � Sn�1, are exponentially distributed with a parameter which depends on Yn�1
only.

Example 2.2 (Generalized Erlang). Let T1,T2, ...,Tn be independent random variables with Ti ⇠
Exp(li) for some li > 0, i = 1, ...,n. Then we say that t = T1 + · · ·+ Tn has a generalized Erlang
distribution with parameters l1, ...,ln and order n. If l1 = · · · = ln = l then we say that t has an
Erlang distribution with parameter l and order n, which will be denoted by Ern(l ).

Generalized Erlang distributions are phase-type distributions (Figure 2). Here, the process ini-
tiates in state 1 with probability 1 and jumps to state 2 with probability 1 after time T1 ⇠ exp(l1).
Continuing this way, from state n� 1 the process jumps to state n with probability 1 and remains in
this state for the time Tn ⇠ exp(ln). From here it jumps to the absorbing state. Thus the time t it
takes the process to reach the absorbing state n+1 is exactly the sum of the exponentially distributed
random variables. A phase-type representation is given by

aaa = (1,0,0, . . . ,0), SSS =

0

BBBBB@

�l1 l1 0 0 · · · 0
0 �l2 l2 0 · · · 0
0 0 �l3 l3 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · �ln

1

CCCCCA
.

Since it does not matter in which order we sum the random variables in S = T1 + · · ·+Tn we could
have chosen any other permutation of l1, ...,ln. Thus phase-type representations are not unique for a
given distribution.
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t

Xt

1
2
3
4
5

n

n+1 absorption

S1 S2 S3 S4 t

Figure 2: A phase-type representation of the convolution of n exponential distributions. Here Si =
T1 +T2 + · · ·+Ti is the time of the ith jump where Ti ⇠ exp(li) and T1, . . . ,Tn are independent.

Example 2.3 (Kingman’s n–coalescent). Consider independent Ti ⇠ exp(li) where li =
�

i

2
�
= i(i�

1)/2, i = n, ...,2. The tree height (time to the most recent common ancestor) is given by

tn = Tn + · · ·+T2

and the total branch length is

Ln = nTn +(n�1)Tn�1 + · · ·+2T2.

The tree height is then phase-type distributed tn ⇠ PHn�1(ppp,TTT ) with ppp = (1,0, . . . ,0) and

TTT =

0

BBBBB@

�n(n�1)/2 n(n�1)/2 0 · · · 0
0 �(n�1)(n�2)/2 (n�1)(n�2)/2 · · · 0
0 0 �(n�2)(n�3)/2 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · �1

1

CCCCCA
.

Since Ti ⇠ exp(li) implies iTi ⇠ exp(li/i) = exp(i� 1) we see that also Ln has a phase-type distri-
bution with representation PHn�1(ppp,SSS), where

SSS =
1
2

0

BBBBB@

�(n�1) n�1 0 · · · 0
0 �(n�2) n�2 · · · 0
0 0 �(n�3) · · · 0
...

...
...

...
...
...

...
0 0 0 · · · �1

1

CCCCCA
.

Example 2.4 (L–coalescent). The L-coalescent, introduced independently by Pitman [19] and Sag-
itov [21], defines a class of exchangeable coagulation processes including various useful models in
population genetics. Its dynamics are characterized by a finite measure L on [0,1]. When the process
has b lineages, each subset of k lineages merges at a rate

lb,k =
Z

[0,1]
x

k�2(1� x)b�kL(dx), k = 2, ...,b. (5)

6



The dynamics of Kingman’s coalescent is obtained by taking L = d0, the unit mass at zero, leading
to binary mergers only. In Figure 3 we show the five possible unlabelled L-coalescent topologies for
a sample of size n = 4.

A B C D E
Kingman’s coalescent trees Additional L-coalescent trees

Figure 3: The five possible L-coalescent topologies for four sequences.

In the general case, the height of the tree of a sample of size n is phase-type distributed PHn�1(aaa,SSS)
with aaa = (1,0, . . . ,0) and

SSS =

0

BBBBB@

�gn gn,2 gn,3 · · · gn,n�1
0 �gn�1 gn�1,2 · · · gn�1,n�2
0 0 �gn�2 · · · gn�2,n�3
...

...
...

...
...
...

...
0 0 0 · · · �g2

1

CCCCCA
(6)

where gi,k =
�

i

k

�
li,k for i = 2, . . . ,n and k = 2, . . . , i, and gi = Âi

k=2 gi,k (notice that g2 = 1).

Example 2.5 (Psi coalescent). A class of special interest is the Psi-coalescent that appears as the ge-
nealogical process of Moran models with highly skewed offspring distribution [8]. Rare reproduction
events implies that the progeny of an individual can replace a proportion y 2 (0,1) of the individuals
in the next generation. Here the probability measure L is the unit mass in y . This dynamics gives the
transition rates

lb,k = yk�2(1�y)b�k.

Note that we deviate from the original model of [8] by a constant y2 so that we obtain the Kingman’s
coalescent as y ! 0.

Example 2.6 (Beta-coalescent). Another class of interest is the Beta-coalescent that appears as the
limit genealogical process of stable Galton-Watson populations [22] and has been applied to marine
populations [1]. Here the probability measure L is that of a Beta(2�a,a) distribution with 1  a <
2, i.e.

L(dx) =
1

G(2�a)G(a)
x

1�a(1� x)a�1
dx.

This model results in the transition rates

lb,k =
b (k�a,b� k+a)

b (a,2�a)
,k = 2, ...,b, (7)

where b is the Beta function. For a ! 2 we recover the Kingman coalescent, whereas the case
a = 1 is known as the Bolthausen-Sznitman coalescent, which appears as the genealogical model of
populations under strong selection [5, 18, 23].
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Example 2.7 (Seed bank coalescent). In this example we consider a genealogical process appearing
in peripatric metapopulations [14] and seed-bank models [3]. In this model lineages can be active
(continent or plants) or inactive (islands or seeds) and they switch from one state to the other at
a fixed rate. When they are active, lineages coalesce according to the dynamics of the Kingman
coalescent. More precisely, let c be the rate for an active branch to inactivate and let K be the rate
for an inactive branch to re-activate. Transition rates can then be defined in the following way. Let
li, j = (i� j)(i� j � 1)/2+(i� j)c+ jK, j = 0, . . . , i. Then define the following (i+ 1)⇥ (i+ 1)
matrices

LLL(i) =

0

BBBBBBB@

�li,0 ic 0 0 · · · 0 0
K �li,1 (i�1)c 0 · · · 0 0
0 2K �li,2 (i�2)c · · · 0 0
...

...
...

...
...
...

...
...

...
0 0 0 0 · · · �li,i�1 c

0 0 0 0 · · · iK �li,i

1

CCCCCCCA

and (i+1)⇥ i matrices

DDD(i) =

0

BBBBB@

i(i�1)/2 0 0 · · · 0
0 (i�1)(i�2)/2 0 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · 0
0 0 0 · · · 0

1

CCCCCA
.

The subintensity matrix for the height of the coalescent tree can then be represented as
0

BBBBB@

LLL(n) DDD(n) 000 000 · · · 000 000
000 LLL(n�1) DDD(n�1) 000 · · · 000 000
000 000 LLL(n�2) DDD(n�2) · · · 000 000
...

...
...

...
...
...
...

...
000 000 000 000 · · · 000 LLL(2)

1

CCCCCA
.

The matrix LLL(i) gives the transition rates when the whole system starts and remains with total size i,
and the matrix DDD(i) gives the transition rates when the whole system loses an element (by coalescence)
starting from total size i. Row j of LLL(i), j = 1, ..., i+ 1, corresponds to the case where out of the
remaining i branches, j�1 of them are presently inactive.

3 Review of Phase–type theory

3.1 Basic distributional properties

In the previous section we described how to express various genealogical models in terms of their
sub–intensity matrices. We now show how to manipulate these matrices in order to determine key
properties of the models. In the following we may think of SSS as a sub–intensity matrix from any
of the previous examples. Let t ⇠ PHp(aaa,SSS) and let {Xt}t�0 denote its underlying Markov jump
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process. We may think of t as being the tree height and Xt as the number of lineages present at time
t in a (p+1)–coalescent model.

From (3) we know that Xt ⇠ aaa exp(SSSt), and since the event {t > t} is identical to the event that
absorption has not yet occurred, which is the same as the event Xt 2 {1,2, ..., p}, i.e. Xt takes one of
the values 1,2, ..., p, we have that

P(t > t) =
p

Â
i=1
P(Xt = i) =

p

Â
i=1

(aaae
SSSt)i = aaae

SSSt
eee,

where we recall that eee is the column vector of ones. Hence we have derived a formula for the distri-
bution function F for t , namely

F(t) = 1�P(t > t) = 1�aaae
SSSt

eee.

The density f of t can then be deduced by a neat probabilistic argument as follows. From (3),

P(Xu = i) = aaae
SSSu

eeei,

and since sidu is the probability of jumping from state i to the absorbing state p+1 during [u,u+du)
we have

f (u)du =
p

Â
i=1
P(Xu+du = p+1|Xu = i)P(Xu = i) =

p

Â
i=1

aaae
SSSu

eeeisidu,

and we get
f (u) = aaae

SSSu
sss.

The Laplace transform for t can then be calculated as

Lt(t) =
Z •

0
e
�txaaae

SSSx
sssdx

= aaa
✓Z •

0
e
�(tIII�SSS)x

dx

◆
sss.

Here we have used that e
(AAA+BBB)x = e

AAAx
e

BBBx when the matrices AAA and BBB commute (AAABBB = BBBAAA), and that
III commutes with SSS.

The eigenvalues for SSS�tIII are on the form l �t, where l is an eigenvalue for SSS. Since eigenvalues
for SSS all have strictly negative real parts (see [2], p.134), the eigenvalues for SSS� tIII all have strictly
negative real parts whenever t is larger than or equal zero. In particular, SSS� tIII is invertible for t � 0
since the determinant of a matrix equals the product of its eigenvalues. Using that

Z
e

AAAx
dx = AAA

�1
e

AAAx

we get
Lt(t) = aaa(tIII �SSS)�1

sss. (8)

From the Laplace transform we obtain the moments of t by differentiation and evaluation in zero

µn = E(tn) = aaa(�SSS
�1)n

eee = aaaUUU
n
eee, (9)

where UUU = �SSS
�1. The matrix UUU = {ui j} is the so-called Green matrix and its elements have the

following interpretation: ui j equals the expected time the process {Xt} spends in state j prior to
absorption given that X0 = i. From this interpretation we can also obtain the formula for µ1 without
using the Laplace transform.
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Example 3.1. Using the fomula µi = i!aaa(�SSS)i
eee we calculate the two first moments (i = 1,2) of the

total tree height in the Kingman’s, Psi– and Beta–coalescent models.

0 20 40 60 80 100

0
1

2
3

4
5

Moments of total height for the Psi−coalescent

Sample size n

M
om

en
t

First moment
Second moment

Kingman (psi=0)
psi=0.25
psi=0.5

0 20 40 60 80 100

0
1

2
3

4
5

Moments of total height for the Beta−coalescent

Sample size n

M
om

en
t

First moment
Second moment

Kingman (alpha=2)
alpha=1.5
Bolthausen−Sznitman (alpha=1)

Figure 4: Two first moments of total tree height as a function of sample size. Left: Kingman’s and
Psi–coalescent model. Right: Kingman’s and Beta-coalescent model.

3.2 Transformations using rewards

Let t ⇠ PHp(aaa,SSS), {Xt}t�0 its underlying Markov jump process and rrr = (r(1), . . . ,r(p)) 2 Rp

+ a
vector of non-negative numbers (reward rates). We then define the total reward Y earned before time
t as

Y =
Z t

0
r(Xt)dt. (10)

If r(i) 6= 0 and T ⇠ exp(li) is a holding time in state i, then the reward earned during this holding
time is simply r(i) · T ⇠ exp(li/r(i)). Hence, if all r(i) 6= 0 and DDD(rrr) denotes the diagonal matrix
with rrr on the diagonal, we have that

Y ⇠ PHp(aaa,DDD�1(rrr)SSS).

In the context of genealogical trees, consider an n–coalescent model in which the tree height has a
phase–type distribution PHn�1(ppp,TTT ) like in the Examples 2.3 to 2.6. Then the total branch length
will have a phase–type distribution PHn�1

�
ppp,DDD�1(rrr)TTT

�
, where rrr = (n,n�1, ...,2). This follows

immediately from a reward consideration.
As we shall see in relation to the site frequency spectrum for the multiple merger coalescent in

Section 4, and the coalescent with recombination in Section 5, some rewards may be zero. Then
the non-zero rewards earned during holding times will still be exponentially distributed obtained by
scaling with the appropriate reward, but the embedded chain of the new phase-type distribution will
change since going from one state with positive reward to another positive-reward state can take place
via transitions in zero-reward states.
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Define E
+ = {i 2 E : r(i)> 0} and E

0 = {i 2 E : r(i) = 0} and decompose accordingly the vector
aaa = (aaa+,aaa0) and transition matrix QQQ of the embedded chain {Yn}n2N

QQQ =

✓
QQQ

++
QQQ

+0

QQQ
0+

QQQ
00

◆
.

Let d = |E+| be the number of elements in E
+ and define

PPP = QQQ
+++QQQ

+0 �
III �QQQ

00��1
QQQ

0+

ppp = aaa++aaa0(III �QQQ
00)�1

QQQ
0+.

Then PPP = {pi j}i, j=1,...,d is the transition matrix of the Markov chain which is obtained from {Yn}n2N
at times when Yn 2 E

+. This follows by noticing that the (i, j)’th element of QQQ
+0(QQQ00)n

QQQ
0+ is the

probability of going from i to j by first making a transition to a state in E
0, remaining in E

0 for the
next n jumps, and finally jumping from a state in E

0 to j, and since

�
III �QQQ

00��1
=

•

Â
m=0

(QQQ00)
m.

With a similar argument, pi gives the probability that a Markov process starts earning rewards from
state i 2 E

+, which can either happen by X0 = i 2 E
+ or by X0 2 E

0 and eventually returning to E
+.

Since there in general exists the possibility of never entering E
+ if the process is started in E

0, there
will in general be an atom (point mass) at zero of size pd+1 = 1� pppeee. Hence we have proved the
following:

Theorem 3.2 ([2], p. 164). The random variable Y of (10) is a mixture distribution of a point mass

at 0 of size pd+1 = 1�pppeee and a phase-type distribution with representation PHd(ppp,TTT ⇤) where TTT
⇤ =

{t
⇤
i j

: (i, j) 2 E
+} is given by

t
⇤
i j
=� sii

r(i)
pi j for i 6= j and t

⇤
ii
=

sii

r(i)
(1� pii).

Example 3.3 (Seed bank model continued). In the seed bank model the mutation rate can be inferred
from the total branch length of the active part of the coalescent (because mutations only occur out of
the seed bank). To this end, we use the reward vector (n,n� 1, ...,1,0,n� 1,n� 2, ...,0, ....,2,1,0).
In the peripatric model, the population is separated in continent and islands, hence they can mutate at
both stages. The total number of mutations is in this case related to the total branch length, and in this
case the reward vector is (n, . . . ,n,n�1, . . . ,3,2,2,2). Results on expected heights and branch lengths
are summarized in Figure 5. Moreover, it is interesting to consider the total number of mutations as
the sum of continental mutations and island mutations. This problem can be studied in the multivariate
phase-type framework.
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Figure 5: Expected height, active branch length and total branch length of the peripatric/seed-bank
coalescent with respect to the sample size n, active branch rate c and inactive branch rate K. Left:
c = K = 1, Middle: n = 100 and K = 1. Right: n = 100 and c = 1.

3.3 Multivariate phase-type distributions

Let t ⇠PHp(aaa,SSS) and let {Xt}t�0 denote the underlying Markov jump process which generates t .
Let m be a positive integer and let RRR = {Ri j} be a p⇥m matrix of non-negative rewards. Each column
j of RRR may be considered to be a function r j : {1,2, . . . , p} ! R+ defined by r j(i) = Ri j. Then we
define

Yj =
Z t

0
r j(Xt)dt =

Z t

0
RXt , j dt,

and say that the random vector YYY =(Y1, . . . ,Ym) has a multivariate phase-type distribution parametrized
by aaa , SSS, and RRR, and write YYY ⇠MPH⇤

p
(aaa,SSS,RRR).

For example, we may consider the joint distribution of the times that the process {Xt}t�0 has spent
in different (possibly overlapping) subsets of the state-space prior to absorption. This will generate a
multivariate phase-type distribution based on rewards which are either zero or one (see Figure 6 for
an example).

t

Xt

1
2
3
4
5
6

S1 S2 S3 S4 S5 S6 t

absorption

Figure 6: A Markov process with 5 transient states (blue, green and black) and one absorbing state (purple).
The total time Y1 spent in states 2 and 3 prior to absorption (green) and the total time Y2 spent in states 1,2,3
(blue) prior to absorption defines a bivariate phase-type distribution.

The joint distribution of YYY can be expressed in a compact form in terms of the joint Laplace
transform.
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Theorem 3.4 (Theorem 8.1.2 in [2]). Let YYY ⇠ MPH
⇤(aaa,SSS,RRR) and h·, ·i denote the usual dot product.

Then for any vector qqq � 000, the joint Laplace transform LYYY (qqq) = E(exp(�hYYY ,qqqi)) is given by

LYYY (qqq) = aaa (DDD(RRRqqq)�SSS)�1
sss. (11)

In general it is not possible to provide explicit formulae for the joint density function or distri-
bution functions, however, in some important special cases it is possible to derive strikingly simple
expressions (see e.g. Section 8.1 of [2]). Of special interest are means, variances and covariances
between elements of YYY . Let RRR·i denotes the ith column of RRR and recall UUU =�SSS

�1 is the Green matrix.
Then we have that

E(Yi) = aaaUUURRR·i (12)
E(YiYj) = aaaUUUDDD(RRR·i)UUURRR· j +aaaUUUDDD(RRR· j)UUURRR·i (13)

for all i, j (including i = j), and from which we can calculate the covariance by the well known
formula

Cov(Yi,Yj) = E(YiYj)�E(Yi)E(Yj). (14)

Higher order moments (see Theorem 8.1.5 of [2]) can be calculated by the formula

E

 
p

’
j=1

Y
h j

j

!
= aaa

h!

Ầ
=1

 
h

’
i=1

UDDD
�
RRR·s`(i)

�
!

eee, (15)

where h = Ân

j=1 h j and s`(i) is the index value for entrance ` of the ith ordered permutation of the
indices. For example, if we want to calculate E(YiYjYk) for i, j,k all different, then we consider all
ordered permutations of (i, j,k) which amounts to (i, j,k),(i,k, j),( j, i,k),( j,k, i), (k, i, j) and (k, j, i)
resulting in the formula

E(YiYjYk) = aaaUUUDDD(RRR·i)UUUDDD(RRR· j)UUUDDD(RRR·k)eee+aaaUUUDDD(RRR·i)UUUDDD(RRR·k)UUUDDD(RRR· j)eee

+aaaUUUDDD(RRR· j)UUUDDD(RRR·i)UUUDDD(RRR·k)eee+aaaUUUDDD(RRR· j)UUUDDD(RRR·k)UUUDDD(RRR·i)eee

+aaaUUUDDD(RRR·k)UUUDDD(RRR·i)UUUDDD(RRR· j)eee+aaaUUUDDD(RRR·k)UUUDDD(RRR· j)UUUDDD(RRR·i)eee. (16)

For E(Y 2
i

YjYk) we would have to consider permutations of (i, i, j,k) and summing expressions on the
form

aaaUUUDDD(RRR·i1)UUUDDD(RRR·i2)UUUDDD(RRR·i3)UUUDDD(RRR·i4)eee,

where two among the i1, i2, i3, i4 are identical to i while among the remaining two one equals j and
the other equals k.

3.4 Discrete phase–type distributions and the number of segregating sites

A discrete phase–type distribution is defined very similar to the continuous case, where the Markov
jump process is simply replaced by a Markov chain. Thus we consider a Markov chain {Xn}n2N on
a state–space {1,2, ..., p, p+ 1}, where 1,2, ..., p are transient and p+ 1 absorbing. The transition
matrix for {Xn}n2N is hence on the form

PPP =

✓
TTT ttt

000 1

◆
,
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where TTT is now a sub-transition matrix and ttt the exit probability vector. The initial distribution ppp is
again supposed to be concentrated on {1, ..., p} so that the support for

td = inf{n � 1 : Xn = p+1}

is the positive natural numbers (not including zero). With arguments entirely similar to the continuous
case it is easy to prove that td has density

P(td = n) = pppTTT
n�1

ttt,

and distribution function
P(td  n) = 1�pppTTT

n
eee.

For discrete distributions it is mostly the probability generating function which is of interest which
amounts to

E(ztd ) =
•

Â
n=1
P(td = n)zn = zppp(III � zTTT )�1

ttt = ppp
�
z
�1

III �TTT
��1

ttt,

and from which we obtain the factorial moments,

E(td(td �1) · · ·(td � k+1)) = k!pppTTT
k�1(III �TTT )�k

eee.

In the discrete case the momentsE(tn

d
) are not directly available but can be deduced from the factorial

moments. For a detailed account on discrete phase–type distributions we refer to [2], pp. 29–36.
Discrete phase–type distributions appear in a natural way as the distribution of the number of

segregating sites. Consider a genealogical model where the total branch length L ⇠ PH(ppp,TTT ) and
let the mutation rate at the locus be l = q/2. Then the number of segregating sites S has a conditional
distribution given L = x which is Poisson with parameter lx. Thus

P(S = n) =
Z •

0

(lx)n

n!
e
�lxpppe

TTT x
tttdx

=
l n

n!

Z •

0
x

n
e
�lx

f (x)dx

=
l n

n!
(�1)n

∂ n

∂l n
L(l )

=
l n

n!
(�1)n(�1)n

n!ppp(l III �TTT )�(n+1)
ttt

= l�1ppp(III �l�1
TTT )�(n+1)

ttt,

where L(s) = ppp(sIII �TTT )�1
ttt is the Laplace transform for L . Now

(III �l�1
TTT )�1 = III +l�1(III �l�1

TTT )�1
TTT

from which
III � (III �l�1

TTT )�1 = (III �l�1
TTT )�1(�l�1

TTT ). (17)

The matrix RRR(l ) = (l III �TTT )�1 is called the resolvent of TTT , and

RRR(l ) = (l III �TTT )�1 =
Z •

0
e
�lx

e
TTT x

dx,
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or, in terms of individual elements,

ri j(l ) =
Z •

0
e
�lx

qi j(x)dx,

where QQQ(x) = exp(TTT x) is a sub–transition matrix, whose (i, j)’th element qi j(x) is the probability of
going from state i to state j in time x , where i and j are transient states. It follows that

l ri j(l ) =
Z •

0
le

�lx
qi j(x)dx.

Thus the (i, j)’th element of
lRRR(l ) = (III �l�1

TTT )�1

the probability that the Markov process underlying the phase–type distribution goes from state i to
state j at an exponentially distributed random time with parameter l . In particular, we conclude that

PPP = (III �l�1
TTT )�1 (18)

is a sub–transition matrix. Now from

ppp = eee�PPPeee =
�
III � (III �l�1

TTT
�1)

�
eee

and (17), we have then proven the following theorem.

Theorem 3.5. Let L ⇠ PHp(ppp,TTT ) and the mutation rate at the locus be l = q/2. Then the number

of segregating sites S has a density given by

P(S = n) = pppPPP
n
ppp, (19)

where PPP = (III �l�1
TTT )�1

and ppp = eee�PPPeee, i.e.

S+1 ⇠ DPHp(ppp,PPP).

The reason for adding one to S is that the support for discrete phase–type distributions is on the
natural numbers excluding zero (immediate absorption is not possible). It is of no practical relevance
at all but should be kept in mind when applying standard formlae from discrete phase–type theory.

Example 3.6 (Beta-coalescent continued). Take n = 5, a = 1.5 and q = 2. Then the matrix SSS in (6)
is

SSS =

0

BB@

�6.5625 5.46875 0.78125 0.234375
0 �4.375 3.75 0.5
0 0 �2.5 2.25
0 0 0 �1

1

CCA

so that the tree–height is phase–type distributed PH4(eee1,SSS) while the total branch length is phase–type
distributed PH4(eee1,TTT ) where

TTT =

0

BB@

1/5 0 0 0
0 1/4 0 0
0 0 1/3 0
0 0 0 1/2

1

CCASSS=

0

BB@

�1.31250000 1.09375000 0.156250000 0.004687500
0 �1.09375000 0.937500000 0.125000000
0 0 �0.833333313 0.750000000
0 0 0 �0.500000000

1

CCA .
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Then

PPP =

✓
III � 2

q
TTT

◆�1

=

0

BB@

0.432432443 0.225897521 0.152370825 0.108523726
0.00000000 0.477611929 0.244233400 0.161917701
0.00000000 0.00000000 0.545454562 0.272727311
0.00000000 0.00000000 0.00000000 0.666666687

1

CCA

and we get that

P(S = m) = (1,0,0,0)

0

B@
0.432432443 0.225897521 0.152370825 0.108523726
0.00000000 0.477611929 0.244233400 0.161917701
0.00000000 0.00000000 0.545454562 0.272727311
0.00000000 0.00000000 0.00000000 0.666666687

1

CA

m
0

B@
0.080775499
0.116236985
0.181818128
0.333333313

1

CA .

The point probabilities are given in Table 1 and plotted in Figure 7.

m P(S = m)
0 0.080775499
1 0.125065953
2 0.141926453
3 0.137703091
5 0.100281194
7 0.060273220
9 0.032527771

10 0.023270819
11 0.016433677
12 0.011484630
13 0.007958241
14 0.005476677
15 0.003747694
16 0.002552703
17 0.001732148
18 0.001171687
19 0.007905333
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Figure 7: Density of the number of segregat-
ing sites for the Beta-coalescent with a = 1.5.

Table 1: Density of S.

4 Coalescent theory without recombination

In order to study the site frequency spectrum we need to introduce an appropriate state-space and
a corresponding reward matrix. For a sample of size n, we represent the states by a vector aaa =
(a1,a2, ...,an) where ai denotes the number of branches with i descendants. The state-space is thus
given by

n
aaa = (a1, . . . ,an) 2 Zn

+ :
n

Â
i=1

iai = n

o
.

This representation is similar to the summary of a sample of DNA sequences used for the infinite
alleles model in Ewens’ sampling formula. For Kingman’s coalescent the possible transitions are

(a1, . . . ,an)! (a1, . . . ,ai �1, . . . ,a j �1 . . . ,ai+ j +1, . . . ,an)
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with rate aia j for ai,a j � 1, and

(a1, . . . ,an)! (a1, . . . ,ai �2, . . . ,a2i +1, . . . ,an)

with rate
�

ai

2
�

for ai � 2. The row in the reward matrix corresponding to a state aaa = (a1, ...,an) is
given by (a1, ...,an�1) because a1 is the number of branches with one descendant, a2 is the number of
branches with two descendants etc. (see also Table 2).

Example 4.1. Consider Kingman’s coalescent with n = 4. In Figure 8 we show the state space and
possible transitions.

(4,0,0,0) (2,1,0,0) (0,0,0,1)

(1,0,1,0)

(0,2,0,0)

A

B

Figure 8: A flow diagram for the case of four sequences in the Kingman’s coalescent, where circles
refer to the topologies from Figure 3.

The intensity and reward matrices are given in Table 2.

State Intensity matrix Reward RRR Number of
Type Index 1 2 3 4 5 RRR·1 RRR·2 RRR·3 branches

(4,0,0,0) 1 �
�4

2
� �4

2
�

0 0 0 4 0 0 4
(2,1,0,0) 2 0 �3 1 2 0 2 1 0 3
(0,2,0,0) 3 0 0 �1 0 1 0 2 0 2
(1,0,1,0) 4 0 0 0 �1 1 1 0 1 2
(0,0,0,1) 5 0 0 0 0 0 0 0 0 1

Table 2: Intensity matrix for Kingman’s coalescent and reward matrix for calculating the site fre-
quency spectrum for n = 4 sequences.

The elements of each row in RRR correspond to the number of branches with one, two or three
descendants. The row sums of the reward matrix equals the number of branches, except for the last
absorbing state where only one lineage is present.

We now provide an algorithm for generating the general state-space and corresponding transition
rates.

Algorithm 4.2. The state-space is determined as follows. The transition

aaa = (a1, . . . ,an)! bbb = (b1, . . . ,bn)

is possible if the vector ccc = (c1, . . . ,cn) = bbb�aaa fulfils the three conditions

(i) Ân

i=1 ci1{ci>0} = 1 (one new branch is created)
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(ii) Ân

i=1 ci1{ci<0} =�2 (two branches are merged)

(iii) Ân

i=1 ici = 0 (balance equation on the sample size).

The transition rates between the states are

Saaabbb = lÂn

i=1 ai,�Ân

i=1 ci1{ci<0} ’
i:ci<0

✓
ai

�ci

◆
. (20)

We start with aaa = (n,0, ...,0) and identify the remaining states subsequently. In Figure 9 we show the
state space and possible transitions for the general L-coalescent.

(4,0,0,0) (2,1,0,0) (0,0,0,1)

(1,0,1,0)

(0,2,0,0)

A

B

C

D

E

Kingman’s transitions Additional L-coalescent transitions

Figure 9: Flow diagram for the case of four sequences in the L-coalescent model. The numbers in
the circles refer to the topologies in Figure 3.

For a general L-coalescent process, mutations on branches with one descendant give rise to sin-
gletons in the site frequency spectrum, while mutations with two or three descendants give rise to
doubletons, tripletons and so on in the site frequency spectrum. The quantities

Yi =
Z t

0
RRRXt ,i dt, i = 1,2,3, ...,n�1,

are the total branch lengths where a mutation is shared by exactly i samples. If the mutation rate
is q/2, then the expected site frequency spectrum (SFS) is given by

E(xi) =
q
2
E(Yi),

where E(Yi) is given by (12). Covariances are given by

Cov(xi,x j) =
q 2

4
Cov(Yi,Yj),

for which we use (13) and (14).

Example 4.3. Here we consider the variance, covariance and expected site frequency spectrum for the
Psi-coalescent (Figure 10) and the Beta-coalescent (Figure 11). The parameter y gives the proportion
of lineages that merge at each jump. Hence, after the first jump we have one block of size yn. This
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explains the bumps in the SFS entry in index yn. For example, we have a bump at index 0.75 ·20= 15
for the green curve, and a bump at 0.5 ·20 = 10 for the blue curve.
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Figure 10: Psi-coalescence for y = 0.25 (red), y = 0.5 (blue), y = 0.75 (green) compared to King-
man’s coalescent (black) with a sample size of n = 20. Left: Logarithm of the expected SFS. Middle:
Logarithm of the variances of the SFS. Right: Anti–diagonal values for the covariance matrix of the
SFS.
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Figure 11: Beta-coalescence for a = 1.25 (red), a = 1.50 (blue), a = 1.75 (green) and Kingman’s
coalescent (black) with a sample size of n = 20. The left, middle and right plot show the same
summary statistics as in Figure 10.

Concerning the covariances we only plot the anti-diagonal entries of the covariance matrix as in
[6] p.56. Our results for the mean, variance and covariance agree with those obtained by the recursive
formulae presented in [1]. Higher order moments can also be calculated using (15). For example, [12]
use the 3rd order moments to derive analytical results for the bias of Tajima’s D and other neutrality
tests. Their derivation essentially reduces to calculating the formula (16).

4.1 Application: Analysis of the Faroe Island Atlantic Cod data

We now consider the Faroe Island Atlantic Cod mitochondrial data from [24]. The data is illustrated
in the left plot in Figure 12. The data consists of n = 74 sequences, the number of haplotypes is 41,
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and the data has S = 44 segregating sites. The folded site frequency spectrum is a vector of length
n/2 = 37 and is given by

h = (23,10,1,0,1,0,2,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0, . . . ,0).

Recall that if the unfolded SFS is given by xi, i= 1, . . . ,n�1, then the folded is given by hi = xi+xn�i

for i = 1, . . . ,n/2�1 and hn/2 = xn/2.
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Figure 12: Left: The segregating sites matrix and corresponding multiplicity for the Faroe Island
Atlantic Cod data. The data consists of 74 sequences, 41 haplotypes, and 44 segregating sites. Right:
Bootstrap distribution of the a parameter in the Beta-coalescent. Kingman’s coalescent corresponds
to a = 2, and this parameter value is not reasonable for this data. We find the parameter value 1.21 for
the original data, and a bootstrap mean of 1.21. These values are very similar to the pseudolikelihood
parameter estimate of 1.28 in [1].

This data was analysed using both the Psi- and the Beta-coalscent by [1]. They found that the
Beta-coalescent was the most appropriate, and therefore we also focus on the Beta-coalescent. Recall
from Example 2.6 that the Beta-coalescent is parametrized by a with parameter space 0 < a < 2.

[1] estimate a in the Beta-coalescent as the minimizer of an objective function that measures the
difference between the scaled observed and scaled expected values of the site frequency spectrum.
[1] derive recursions for the expected site frequency spectrum that apply for very large sample sizes
(in the order 10.000). Denote the observed scaled folded site frequency spectrum zi = hi/S, where
S = Ân/2

i=1 hi is the number of segregating sites, and denote the expected scaled folded site frequency
spectrum ri. Then [1] consider the Eucledian distance function

�
Ân/2

i=1(zi � ri)2 1/2 and the negative
pseudolikelihood distance �Ân

i=1 zi logri.
Unfortunately, our method for calculating the expected SFS suffers from a state space explosion.

For samples of size n = (5,10,15,20,25,30) the state space is of size (7,42,176,627,1958,5604). We
need to invert a matrix the size of the state space, and this means that we are limited to a sample size
of at most 25. We therefore applied a sub-sampling procedure for the Faroe Island Atlantic Cod data.
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In particular we sampled 20 sequences from the data 2000 times. For each sample we calculated the
scaled site frequency spectrum, and finally we calculated the average scaled site frequency spectrum.
We then applied the pseudolikelihood method from [1]. We obtained an estimated value of a of 1.21,
which is very similar to the value of 1.28 obtained by [1].

In order to understand the uncertainty in the parameter value we carried out a bootstrap proce-
dure. Each bootstrap sample was obtained by sampling a new set of 44 segregating sites uniformly
at random with replacement from the original columns of segregating sites. For each sample we es-
timated a using the same method as for the original data. In Figure 12 we show the histogram of
the parameter values based on 1000 bootstrap samples. The mean of the bootstrap values is almost
identical to the value of the original data, but more importantly the bootstrap distribution is far away
from the Kingman’s coalescent of a = 2.

5 Ancestral graph with recombination

In this section we show how multivariate phase-type theory applies as a model for the distribution of
branch length and can be used to express expected summaries for mutation patterns at different loci.
We begin with a sample of size n = 2 and then extend to larger sample sizes.

5.1 Sample size two

Recall the ancestral recombination graph for two loci and two samples originally presented in [25],
summarized as Figure 7.7 in [26], and recently discussed in detail in [11]. For reference the graph
is reproduced here in Figure 13. The filled circles represent material ancestral to the sample, and
the crosses indicate that the most common ancestor has been found. The lines between the circles
or crosses indicate if the ancestral material is present on the same chromosome. The starting state is
state 1 at present day with two samples from the same chromosome.
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Figure 13: Flow diagram for the two-locus ancestral recombination graph.

The time when both loci have found their common ancestor is PH7(aaa,SSS) distributed with aaa =
(1,0,0,0,0,0,0) and

SSS =

0

BBBBBBBB@

�1�r r 0 0 0 0 0
1 �3�r/2 r/2 1 0 1 0
0 4 �6 0 1 0 1
0 0 0 �1�r/2 r/2 0 0
0 0 0 2 �3 0 0
0 0 0 0 0 �1�r/2 r/2
0 0 0 0 0 2 �3

1

CCCCCCCCA

, sss =

0

BBBBBBBB@

1
0
0
1
1
1
1

1

CCCCCCCCA

. (21)

We observe that SSS has the natural block structure partitioning

SSS =

0

@
SSS11 SSS12 SSS13
000 SSS22 000
000 000 SSS33

1

A , sss =

0

@
sss1
sss2
sss3

1

A ,

as already indicated in (21). Also note the highly symmetric structure of the partitioning where
SSS12 = SSS13, SSS22 = SSS33 and sss2 = sss3.

If the Markov jump process underlying PH7(aaa,SSS) exits to the absorbing state from state 1, then
the height ta of the left tree and the height tb of the right tree are the same, i.e. ta = tb with the
common height being phase-type distributed with representation PH3(aaa1,SSS11) where aaa1 = (1,0,0).
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The common distribution of ta = tb then has density

f (x) = (1,0,0)exp

8
<

:

0

@
�1�r r 0

1 �3�r/2 r/2
0 4 �6

1

Ax

9
=

;

0

@
1
0
0

1

A . (22)

The density for equal tree height is shown in the left plot in Figure 14. This is a defective distribution
since second and third exit rates are set to zero prohibiting the process to jump to the left or right
states of the diagram so

�SSS11eee 6= sss1 =

0

@
1
0
0

1

A .

The missing mass is exactly the probability of these events occurring and amounts to

1�
Z •

0
f (x)dx = 1�aaa1(�SSS11)

�1
sss1.

The density function (22) can also be evaluated explicitly, i.e. expressed in terms of polynomials and
exponentials involving r and x. However, this expression is lengthy and messy since the eigenvalues
of the intensity matrix are not particularly nice functions. On the other hand, for specific numeric
values of r , the numeric calculation of (22) is straightforward and efficient. Thus there seems to be
no reason for pursuing a non-matrix representation of (22) in practice.

Now let us consider the case where ta 6= tb. Assume that x = ta < y = tb. Then the right tree is
taller, and we must exit from states {1,2,3} to {4,5} at time x. The 3-dimensional row vector

aaa1e
SSS11x

contains the probabilities of being in state 1, 2 or 3 when exiting while the 2-dimensional row vector

ppp1 = aaa1e
SSS11x

SSS12

contains the probabilities that states 4 and 5 are entered. Thus ppp1 serves as the initial (defective)
distribution of entering states {4,5}, and the remaining time spent in states {4,5} prior to absorption
is hence phase-type distributed PH2(ppp1,SSS22). Hence we conclude that the joint density for (ta,tb),
f(ta,tb)(x,y), for the case of x < y is

f(ta,tb)(x,y) = aaa1e
SSS11x

SSS12e
SSS22(y�x)

sss2, x < y.

Similarly, for the case of x > y we get that

f(ta,tb)(x,y) = aaa1e
SSS11y

SSS13e
SSS33(x�y)

sss2, x > y,

and since SSS22 = SSS33 and SSS12 = SSS13 we get that the two densities are identical.
We can perform a reduction of the state-space. The exit rates are

sss2 = sss3 =

✓
1
1

◆
,

23



and therefore the phase-type distributions corresponding to the states {4,5} and {6,7} are both ex-
ponential distributions with rate 1. Thus the direct inter-action between states 4 and 5 (respectively 6
and 7) has no practical effect and we can reduce SSS to

S̃SS =

0

BBBB@

�1�r r 0 0 0
1 �3�r/2 r/2 1 1
0 4 �6 1 1
0 0 0 �1 0
0 0 0 0 �1

1

CCCCA
, s̃ss =

0

BBBB@

1
0
0
1
1

1

CCCCA
. (23)

The corresponding joint densities are then given by

f(ta,tb)(x,y) = (1,0,0)exp

8
<

:

0

@
�1�r r 0

1 �3�r/2 r/2
0 4 �6

1

Ax

9
=

;

0

@
0
1
1

1

Ae
�(y�x) (24)

for x < y and vice versa for x > y. The density is illustrated in the right plot in Figure 14.
In [26] it is noted that the inter-actions between states 4,5 and 6,7 are not needed. This remark

results in the reduction

SSS22 = SSS33 =

✓
�1 0
0 �1

◆

where the two states are preserved instead of collapsing them into a single one as in our case where
SSS22 = SSS33 = {�1}. This representation of course results in the same joint density as above.
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Figure 14: Left: The density for equal tree height (22) for values of r 2 {0,0.493,1.446,4.116}.
The density integrates to (1,0.75,0.50.25) for these values of r such that, for e.g. r = 1.446, the
probability for the two tree heights being equal is 0.5. Right: The joint density (24) for a right tree
height y for various values of a left tree height x.
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5.2 General sample size

In Figure 15 we recapitulate Figure 7.5 page 226 in [26] and introduce the notation. Four linked
sequences have evolved back in time according to the ancestral recombination graph. We are inter-
ested in the joint distribution of the total branch length La in locus a and the total branch length Lb

in locus b. This process was recently studied using a rather complex hyperbolic system of partial
differential equations [17] . We avoid labelling the sequences and consider the number of sequences
Kab with ancestral material in both loci, the number of sequences Ka with ancestral material in locus a

only, and the number of sequences Kb with ancestral material in locus b only.

Grand MRCA

MRCA

Tree in locus a Tree in locus b
Ancestral Recombination Graph

(Kab,Ka,Kb)
Ancestral state
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(3, 1, 1)
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Branches
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1

Figure 15: Ancestral recombination graph (in black) for two loci and four sequences and the corre-
sponding trees in the left locus (in red) and right locus (in blue). The figure is adapted from Figure 7.5
in [26].

Define the state of the ancestral recombination graph at time t to be A(t) = (Kab(t),Ka(t),Kb(t)).
The number of branches in the two loci at time t is then La(t) = Kab(t)+Ka(t) and Lb(t) = Kab(t)+
Kb(t). The time to the most recent common ancestor (the tree height) in each locus is given by

ta = inf{t � 0 : La(t) = 1} and tb = inf{t � 0 : Lb(t) = 1}.

The total branch length in each locus is

La =
Z ta

0
La(t)dt and Lb =

Z tb

0
Lb(t)dt.
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Similarly as for two samples we want to study the joint distribution of (La,Lb) as a function of the
recombination rate r .

The ancestral process for two loci and a sample of n unlabelled sequences has a state-space given
by triplets (kab,ka,kb) where entries are non-negative integers with kab +max{ka,kb}  n and with
triplets (0,ka,0) for 0  ka  n and (0,0,kb) for 0  kb  n removed. The grand MRCA (1,0,0) is
defined to be the absorbing state because at that time all the ancestral sequences have found common
ancestry.

The rates between the states are given by

QQQ = QQQ
c +

r
2

QQQ
r, (25)

where the transitions that correspond to coalescent events are

q
c

(kab,ka,kb),(kab�1,ka,kb)
=

✓
kab

2

◆

q
c

(kab,ka,kb),(kab,ka�1,kb)
=

✓
ka

2

◆
+ kabka

q
c

(kab,ka,kb),(kab,ka,kb�1) =

✓
kb

2

◆
+ kabkb,

and the transitions that correspond to recombination events are

q
r

(kab,ka,kb),(kab�1,ka+1,kb+1) = kab.

Example 5.1. Consider the case n= 4. In Figure 16 we illustrate the state space and the rates between
states. The intensity matrix is indexed in the order of (Kab +Ka,Kab +Kb) such that we begin with
the 9 blocks

(4,4),(4,3),(4,2),(3,4),(3,3),(3,2),(2,4),(2,3),(2,2),

where both loci have at least two lineages. The next 3 blocks are (4,1),(3,1),(2,1), where the tree in
locus b is finished. Then we have the 3 blocks (1,4),(1,3),(1,2) where the tree in locus a is finished.
The final block (1,1) is the overall absorbing state. In a block-partitioned form we write the intensity
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Figure 16: State-space and rates for four sequences. Red entries in the rate matrix correspond to
coalescent events and blue entries in the rate matrix correspond to recombination events.
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where the block matrices are defined in the obvious way.
If ta > tb it is because there is a transition from the SSSab block to the red square SSSa, the transition of

which is performed by the matrix SSS
a

ab
in the red rectangle. From SSSa the remaining time is phase-type

distributed with exit rate vector SSS
0
a
, denoted by the red rectangle at the level of SSSa. The situation where

tb > ta is entirely symmetrical. The density for (ta,tb) is hence given by

f(ta,tb)(x,y) =

8
<

:

eee
0
1e

SSSaby
SSS

a

ab
e

SSSa(x�y)
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eee
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eee
0
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SSSabx
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e

SSSb(y�x)
SSS

0
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(26)

where eee
0
1 = (1,0, . . . ,0) because the first state (indexed by (4,0,0)) is the starting state.

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6 ρ=0.000

ρ=0.493
ρ=1.446
ρ=4.116

0 1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20 x=0.1

x=0.5
x=1.0
x=1.5
x=2.0
x=2.5
x=3.0

Figure 17: Left: The density for equal tree height (26) for values of r 2 {0,0.493,1.446,4.116}.
Right: The joint density (26) for a right tree height y for various values of a left tree height x.
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Next we consider the total branch lengths. The reward matrix RRR is given by

RRR =

0

BBBBBBBBBBBBBBBBBBBBBBBBB@
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where eee are column vectors of ones, and 000 are column vectors of zero, all of appropriate dimensions.
Then

(La,Lb)⇠ MPH⇤(eee01,SSS,RRR),

where

SSS =

0

@
SSSab SSS

a

ab
SSS

b

ab
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b
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1

A .

While the joint Laplace transform and (cross) moments have explicit forms, this is in general not the
case for the densities and distribution functions in the MPH⇤ class, and the case of (La,Lb) presents
such an example.

5.3 Number of segregating sites

Now let Sa and Sb denote the number of segregating sites in locus a and locus b, and let the mutation
rates in the two loci be qa/2 and qb/2. Recall that Sa|La ⇠ Pois(Laqa/2) and Sb|Lb ⇠ Pois(Lbqb/2)
and Sa|(La,Lb) is independent of Sb|(La,Lb) (i.e. Sa and Sb are conditionally independent given
(La,Lb)). We get the means, (co)variances and correlation

E[Sa] = E
h
E[Sa|La]

i
=

qa

2
E[La]

E[SaSb] = E
h
E[SaSb|(La,Ln)]

i
=

qa

2
qb

2
E[LaLb]

Cov[Sa,Sb] = E[SaSb]�E[Sa]E[Sb] =
qaqb

4
Cov

⇥
La,Lb

⇤

Corr[Sa,Sb] =
Cov[Sa,Sb]p
Var[Sa]Var[Sb]

=
Cov[La,Lb]q

Var[La]+
2
qa

E[La]
q

Var[Lb]+
2
qb

E[Lb]
.

Remark 5.2. We emphasize the following six properties of the correlation structure

29



(i) The correlation is a separable function of qa and qb.

(ii) The correlation is increasing as a function of qa or qb.

(iii) Corr[Sa,Sb]< Corr[La,Lb] for any (qa,qb).

(iv) Corr[Sa,Sb]! Corr[La,Lb] for qa ! • and qb ! •.

(v) Corr[Sa,Sb]! 0 for qa ! 0 or qb ! 0.

(vi) For qa = qb = q we have Var[Sa] = Var[Sb] and

Corr[Sa,Sb] =
Cov[Sa,Sb]

Var[Sa]
=

Cov[La,Lb]

Var
⇥
La

⇤
+ 2

q E
⇥
La

⇤ . (27)

Example 5.3. In Figure 18 we show the correlation (27) between the number of segregating sites in
two loci for sample sizes n = (2,4,8) and mutation rates q = (0.1,1,10), and as a function of the
recombination rate r . For n = 2 we recover the well known result Corr(La,Lb) = (r + 18)/(r2 +
13r +18) (e.g. [26] equation (7.17) page 231).
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Figure 18: Correlation between the number of segregating sites (27) at two loci for sample sizes
n = (2,4,8) and mutation rates q = (0.1,1,10).

6 Discussion

In this paper we have provided a unified theory and analysis for a number of coalescent models. We
have demonstrated that the class of multivariate phase-type distributions is a useful tool for under-
standing the behaviour of key population genetics quantities.
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In our analysis of the Faroe Island Atlantic Cod data we estimated the a parameter in the Beta-
coalescent using a similarity measure between the observed and expected site frequency spectrum.
More generally, the focus in this paper has mainly been to quantify the behaviour of summary statis-
tics in various coalescent models. An important research topic could be to develop more principled
statistical inference methods for genetic data based on the phase-type framework. Statistical infer-
ence in phase-type distributions has traditionally been based on observations of the time of absorption
of the stochastic process. The observed genetic data is very different, and thus new methodology is
required.

We have demonstrated how phase-type theory is a useful framework for calculating distributions
and summary statistics in basic models in population genetics. The coalescent models that we have
analysed are time-homogeneous. The structured coalescent analysed in [13] is another example of
a time-homogeneous model that can be explored in the phase-type framework. A future research
direction could be to extend the analysis to time-inhomogeneous evolutionary models. [17] recently
computed the joint distribution of the total branch length in two loci with variable population size. It
could be interesting to extend our constant population size analysis in Section 4 and Section 5 to the
variable population size model. A first approach could be to consider a piecewise constant population
size model, handle each epoch of constant size separately, and finally merge the various epochs. Such
an approach requires calculations of moments in end-point conditioned continuous Markov chains,
and these can be found using results from [10].

Another important coalescent model is the isolation-with-migration model with multiple popu-
lations (e.g. [9]). This model is characterized by times in the past where populations merge, and
migration rates between the populations. Statistical inference in this model is very challenging, but
[15] and [16] have developed an efficient and general method for likelihood inference using generating
functions. [4] recently developed an alternative fast method for fitting a general isolation-with-initial-
migration model. The data in [4] is pairs of DNA sequences, and therefore the rate matrix during
the migration epoch in the past becomes analytically tractable. Perhaps [4] could constitute a build-
ing block for formulating general likelihood-based inference procedures for phase-type distributions
based on observed genetic data.

In a recent paper, [7] study the genealogical properties of nested samples in the Beta-coalescent
and in a time-changed Kingman coalescent. They study quantities such as (a) the probability that the
most recent common ancestor is shared between the complete sample and the subsample within the
complete sample, (b) the fraction between the tree height of the subsample and the complete sample,
and (c) the fraction between the total internal branches of the subsample and the complete sample. For
the latter two fractions, they use a simulation study where they vary the Beta-coalescent parameter
from 1 to 2 in steps of 0.1, the complete sample is of size 10000, and the subsample is of size 10,
100 and 1000. We are limited to much smaller sample sizes (at most 25), but for small sample sizes
it should be straight forward to determine the joint distribution for the height of the two samples, as
well as the joint distribution for the total internal branch length of the two samples. A future research
topic could be to investigate extensions to a larger state spaces, or more clever ways of defining the
coalescent model.
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