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Abstract: The bitterness and toxicity of wild-type seeds of Prunoideae is due to the cyanogenic
glucoside amygdalin. In cultivated almond (Prunus dulcis (Mill.) D.A. Webb), a dominant mutation
at the Sk locus prevents amygdalin accumulation and thus results in edible sweet kernels. Here,
we exploited sequence similarity and synteny between the genomes of almond and peach (Prunus
persica (L.) Batsch) to identify cleaved amplified polymorphic sequence (CAPS) molecular markers
linked to the Sk locus. A segregant F1 population was used to map these markers on the Sk
genomic region, together with Sk-linked simple sequence repeat (SSR) markers previously described.
Molecular fingerprinting of a cultivar collection indicated the possibility to use CAPS polymorphisms
identified in this study in breeding programs arising from different parental combinations. Overall,
we highlight a set of codominant markers useful for early selection of sweet kernel genotypes,
an aspect of primary importance in almond breeding. In addition, by showing collinearity between
the physical map of peach and the genetic map of almond with respect to the Sk genomic region,
we provide valuable information for further marker development and Sk positional cloning.

Keywords: almond; plant breeding; mapping; molecular markers; kernel taste; Sk locus

1. Introduction

Wild-type seeds of Prunoidaeae are bitter and toxic, as they accumulate amygdalin, a cyanogenic
phytoanticipin, thought to play an important role in defense against herbivores and pathogens [1].
The sweet taste of kernels of cultivated almond (Prunus dulcis (Mill.) D.A. Webb syn. Prunus amygdalus
Batsch) likely originates from a mutation selected during domestication and maintained in modern
cultivars [2]. Previous genetic analyses have shown that kernel taste in almond depends on the
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genotype of the mother plant, regardless of the pollinizer [3]. Moreover, this trait is under monogenic
control, with the allele conferring sweetness (Sk) being dominant over the one conferring bitterness
(sk) [4,5]. The molecular nature of the Sk locus is still unknown, although it was proposed that the
Sk gene might encode a prunasin hydrolase (PH), converting prunasin, the amygdalin precursor,
to glucose and mandelonitrile [6]. Consistently with this hypothesis, the activity and localization of
two almond PH proteins, PH691 and PH692, are different in sweet and bitter almond genotypes [7].

DNA markers linked to economically important traits are routinely used to replace or complement
traditional phenotypic selection in plant breeding programs. Simple sequence repeat (SSR) markers,
revealing DNA length polymorphism at microsatellite loci, are widely used to investigate genetic
diversity in plants [8]. Cleaved amplified polymorphic sequence (CAPS) markers, based on the
digestion of PCR-amplified fragments, enable the capture of the most common source of DNA variation,
i.e., single nucleotide polymorphisms (SNPs), with common lab equipment and without the need of
sequencing technologies [9–11].

Phenotypic selection of sweet kernel individuals can only be performed after two-three years,
due to the vegetative juvenile period of almond. Therefore, in order to aid breeding activities, a number
of studies addressed the identification of molecular markers linked to the Sk gene (e.g., [4,12]). In one
of them, a number of SSR markers on the almond linkage group (LG) 5 was shown to be linked to
the Sk locus, and two maps for the Sk region were reported, one for each of the two parents of a F1

mapping population [12].
The genome sequence of peach (Prunus persica L.), a species evolutionarily close to almond,

has been released (the International Peach Genome Initiative 2013) and is publicly available. In addition,
comparative mapping of Prunus diploid species indicated high levels of synteny among their
genomes [13]. In this study, we exploited sequence similarity and synteny between the peach
and almond genomes to identify CAPS molecular markers linked to the Sk locus and suitable
for marker-assisted breeding programs. Genotyping of a segregating F1 population highlighted
full collinearity between peach and almond with respect to the Sk region, thus providing valuable
information for the development of further Sk-linked molecular markers and Sk positional cloning.

2. Materials and Methods

2.1. Plant Material and DNA Isolation

The F1 segregating population used in this study originates from the cross between the parental
genotypes R1000 (R) and Desmayo Largueta (D) (R x D), both heterozygous at the Sk locus. Besides the
167 individuals genotyped by Sánchez-Pérez et al. [12], 134 individuals obtained from crosses carried
out in 2009 and 2010 were used in the present study. All the plants are maintained at the experimental
orchard of the CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura, Consejo Superior
de Investigaciones Científicas) in Murcia, Spain.

A collection of 25 almond cultivars from different geographical origin (Table 1) was also genotyped
in this study. All the entries are maintained at CEBAS-CSIC.

For each genotype, DNA was extracted from about three young leaves of an individual plant,
according to a cetyltrimethylammonium bromide (CTAB) method [14]. DNA quality and concentration
were inferred by gel electrophoresis.

Table 1. Panel of cultivars genotyped in this study.

Cultivar Origin

Del Cid Spain
Ramillete Spain

Atocha Spain
Desmayo Largueta Spain

Marcona Spain
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Table 1. Cont.

Cultivar Origin

Vivot Spain
Peraleja Spain

Antoñeta Spain
Ferragnès France
Lauranne France

Marta Spain
R-1000 France
Mono USA
Tioga USA
Titan USA

Wawona USA
Nonpareil USA

Tardy-Nonpareil USA
Achaak Tunisia

Ardechoise France
Chellaston Australia
Primorskii Russia
Garrigues Spain

Genco Italy
Tuono Italy

2.2. Simple Sequence Repeat Marker Analysis

The SSR markers UDA045 and CPDCT028 were obtained using the primer pairs reported
by Dirlewanger et al. [15] and Mnejja et al. [16] and an annealing temperature (Ta) of 56 ◦C.
Fragment length polymorphisms were visualized on 2% agarose gel. The SSR markers EPDCU2584
and BPPCT037 were obtained according to the protocol described by Schuelke [17]. In detail,
forward primers reported by Dirlewanger et al. [15] were tagged by adding a 5′ tail with the universal
primer M13. PCR reactions were carried out with a Ta of 56 ◦C, using 0.032 µM forward primer,
0.16 µM reverse primer, and 0.08 µM of a primer complementary to the M13 tail and labeled with FAM
or HEX fluorescent dyes (Applied Biosystems, Foster City, CA, USA). Amplicons were separated by
capillary electrophoresis via automated sequencer (ABI-3500 Genetic Analyzer, Applied Biosystem,
Foster City, CA, USA).

2.3. Development of Sk-Linked CAPS Markers

Primer sequences of the markers BPPCT037, CPDCT028, EPDCU2584, and UDA045, previously
reported to be in linkage with the Sk locus [12], were used for a BLAST search against the Prunus persica
v1.0 genome assembly available at the Genomic Database of Rosaceae (GDR, www.rosaceae.org).
Best matching hits delimited a peach genomic region containing several predicted gene sequences,
which were used to design several primer pairs with the Primer3 software [18]. PCR were carried
out on the two parental genotypes R and D (Ta = 58 ◦C), and amplicons were next purified and
sequenced (Macrogen Europe, The Netherlands). Visual analysis of Sanger electropherograms allowed
for the distinguishing of heterozygous nucleotide sites segregating in the F1 mapping population.
Corresponding polymorphisms were used to choose restriction enzymes suitable for the obtainment
of CAPS markers, using the CAPS designer tool available at the Sol Genomics Network database [19].
Markers were scored by digesting 5 µL of amplification products with 5 U of the appropriate restriction
enzyme and the recovery of cleaved polymorphisms on 2.5% agarose gel.

2.4. Linkage Analysis

Simple Sequence Repeat and CAPS markers were tested on the R x D F1 population. Phenotyping was
carried out by tasting three kernels from each F1 individual. The Monte Carlo Maximum Likelihood

www.rosaceae.org


Genes 2018, 9, 385 4 of 9

algorithm implemented by the software JoinMap 4.0 [20] was used to analyze data and develop a
genetic map of the Sk region.

2.5. CAPS Assay on a Cultivar Collection

DNA of the cultivar collection reported in Table 1 was genotyped with the polymorphic CAPS
markers used in this study, as described above. For each marker, the polymorphic information content
(PIC) was calculated with PICcalc [21].

2.6. Bioinformatic Characterization of the Peach Sk Synthenic Region

Information on peach genes localized in a region synthenic to the one containing the Sk locus was
retrieved by using the GBrowse option available at GDR for the Prunus persica v1.0 genome assembly.
Putative functions of corresponding proteins were inferred by information available at the InterPro
database [22].

3. Results

3.1. Development of Sk-Linked CAPS Markers

High level of sequence similarity was reported to occur among Prunus genomes [13]. Therefore,
a BLAST search was performed to retrieve peach sequences orthologous to the SSR markers BPPCT037,
CPDCT028, EPDCU2584, and UDA045, previously shown to be linked to the Sk locus on the almond
LG5 [12]. Notably, best BLAST hits of these markers all localized on peach scaffold 5. Next, high level
of synteny between almond and peach in the Sk genomic region was assumed to develop new
markers linked to the Sk region. In more detail, primer pairs were designed on several peach genes
included in the 810 Kb interval flanked by the orthologous sequences of UDA045 and CPDCT028,
previously reported to delimit the Sk locus [12]. In addition, a primer pair was designed on a gene
mapping just outside the same interval and encoding a sugar transporter, named ppa018792m at
the GDR database. This transporter, if involved in prunasin translocation, could have explained
specific accumulation of prunasin only in the tegument of bitter almonds [7]. Sequence analysis of PCR
products revealed the presence of four SNPs segregating in the R x D mapping population, and this
information was used to develop CAPS markers named on basis of the peach genes they refer to
(ppa001838m, ppa006282m, ppa027182m, and ppa018792m) and the restriction enzyme used to reveal
polymorphism (Table 2 and Figure 1).

Table 2. Features of the cleaved amplified polymorphic sequence (CAPS) markers developed in this
study include the following: primer sequences, estimated length of PCR product, single nucleotide
polymorphisms (SNP) generating differential cleavage, and estimated length of digestion products in
the parental genotypes Desmayo Largueta (D) and R1000 (R).

Marker Primer Sequences (5′-3′) PCR Product
(bp) SNP Digestion

Products (bp)

ppa001838m/MspI F: GGTTGTTCTGGGAGATGGAA
R: ACTTGACCGCAACCAAAATC

800 T→G
D: 800, 650, 150
R: 800

ppa006282m/HpyCH4V F: GTTTCGCTCGATTGGGTCTC
R: ATCATTTCCCGCCTGAATGC

700 G→A
D: 400, 300, 250,
150
R:300, 250, 150

ppa027182m/Hpy188I F: AAAGAAGATTGGGGCCTTGT
R: TGGTTAAGCTTCTCGCGTCT

600 C→T
D: 450, 150
R: 450, 300, 150,

ppa018792m/AluI F: ACGTTGTCTCGTTCGTGGTT
R: AGGTGCTGCAAAGACACTGA

540 T→C
D:280, 180, 80
R:340, 280, 180, 80
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addition, the marker ppa027182m/Hpy188I co-segregated with the Sk locus. The markers 
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of 0.6 and 0.7 cM, respectively (Figure 2). This corresponds, in peach, to a physical genomic interval 
of about 151 Kb, spanning twenty predicted coding sequences (Table 3). 
  

Figure 1. Agarose gel electrophoresis of cleaved amplified polymorphic sequence (CAPS)
markers on the two parental genotypes R1000 (R) and Desmayo Largueta (D) and segregating F1

individuals. The panels (A–D) refer to the markers ppa001838m/MspI, ppa006282m/HpyCH4V,
ppa027182m/Hpy188I, and ppa018792m/AluI, respectively.

3.2. Sk Mapping and Syntenic Relationships with the Peach Genome

Newly identified CAPS markers and previously reported SSR markers were used to fingerprint a
mapping population of 301 individuals, originating from the parental lines R and D. The population
included the 167 mapping individuals genotyped in the previous work of Sánchez-Pérez et al. [12]
and additional 134 individuals. Marker data were merged with phenotypic scores and used to
produce a map of the Sk region. Notably, the order of markers on almond LG5 is fully in accordance
with the order of marker ortholog sequences on peach scaffold 5 (Figure 2), indicating collinearity
between the two genomes. Co-segregation was found for the marker pair BBCT037/EPDCU2584.
In addition, the marker ppa027182m/Hpy188I co-segregated with the Sk locus. The markers
ppa006282m/HpyCH4V and CPDCT028 were mapped on the two sides of the Sk locus, at distances of
0.6 and 0.7 cM, respectively (Figure 2). This corresponds, in peach, to a physical genomic interval of
about 151 Kb, spanning twenty predicted coding sequences (Table 3).
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Figure 2. Syntenic relationship between the almond Sk linkage map (left) and the peach physical map
(right) in the Sk genomic region.

Table 3. Features of peach genes included in the physical interval delimited by ppa006282m
and CPDCT028.

GDR ID Interval on Scaffold 5 InterPro Putative Function

ppa006282m 12.547.702-12.551.295 Uncharacterised protein family UPF0017, hydrolase-like, conserved site
ppa005470m 12.555.940-12.558.349 Cys/Met metabolism, pyridoxal phosphate-dependent enzyme
ppa003882m 12.562.194-12.564.053 Cytochrome P450
ppa011942m 12.576.856-12.578.103 Mediator complex, subunit Med10
ppa023406m 12.587.426-12.589.276 Glyoxal oxidase
ppa022201m 12.597.330-12.598.918 Helix-loop-helix DNA-binding-Transcription factor MYC/MYB
ppa025417m 12.603.688-12.605.325 Helix-loop-helix DNA-binding-Transcription factor MYC/MYB
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Table 3. Cont.

GDR ID Interval on Scaffold 5 InterPro Putative Function

ppa027182m 12.612.821-12.614.522 Helix-loop-helix DNA-binding-Transcription factor MYC/MYB
ppa015634m 12.625.785-12.627.695 Helix-loop-helix DNA-binding-Transcription factor MYC/MYB
ppa005343m 12.636.946-12.638.591 Helix-loop-helix DNA-binding-Transcription factor MYC/MYB
ppa005388m 12.644.406-12.646.982 Alpha/beta hydrolase fold-1
ppa021506m 12.649.801-12.651.659 GDSL lipase
ppa010428m 12.662.679-12.664.291 Domain of unknown function DUF4033
ppa004653m 12.666.017-12.668.186 Glycoside hydrolase, family 9
ppa005847m 12.669.378-12.670.953 Transmembrane receptor, eukaryota
ppa022759m 12.673.586-12.675.114 Unknown
ppa019752m 12.677.592-12.679.579 WRC domain protein
ppa021141m 12.680.973-12.682.964 IQ motif, EF-hand binding site
ppa019815m 12.687.460-12.688.443 Glutaredoxin
ppa006801m 12.695.757-12.697.169 No apical meristem (NAM) protein
CPDCT028 12.699.037-12.699.598

3.3. Marker Validation in An Almond Germplasm Collection

In order to be useful in breeding programs, markers should highlight polymorphism in
different combinations of parental genotypes. Therefore, we tested the CAPS markers identified
in this study on an almond germplasm collection of 25 cultivars of different geographical origin
(Table 1). All the markers highlighted polymorphism. The polymorphic information content (PIC)
associated with each marker were 0.04 for ppa001838m/MspI, 0.37 for ppa006282m/HpyCH4V, 0.26 for
ppa027182m/Hpy188I and 0.18 for ppa018792m/AluI.

4. Discussion

The selection of sweet kernel genotypes is a major task in almond breeding programs, which often
involve populations segregating at the Sk locus. Phenotypic selection for kernel taste is costly and
time-consuming, as this trait is manifested only after a long juvenile phase, thus marker-assisted
selection is highly desirable. In this study, we exploited sequence similarity and synteny between the
peach and almond genomes to identify four co-dominant CAPS markers highly predictive of kernel
taste. Indeed, by the analysis of a large F1 population, these markers displayed either co-segregation or
tight linkage (0.6, 1.7 and 2.3 cM) with the Sk locus. Except for ppa001838m/MspI, the other three CAPS
markers reported here were associated with good PIC estimates (0.18, 0.26 to 0.37) when tested on a
germplasm collection of 25 individuals, thus indicating that they are suitable to reveal polymorphism
in different breeding populations. Concerning technical aspects, all the CAPS markers identified in
this study are based on agarose gel electrophoresis, so they can be easily obtained with relatively
inexpensive laboratory equipment. However, the same SNP polymorphisms used here for CAPS
marker development might be conveniently used to set up marker assays which are more suitable to
automation, such as high resolution melting (HRM) and competitive allele-specific polymerase chain
reaction [10,23].

Prior to this study, Sánchez-Pérez et al. [12] also performed a linkage analysis of the Sk genomic
region, using a panel of SSR molecular markers and a F1 population of 167 individuals originating from
the two parental genotypes R1000 and Desmayo Largueta. However, the two maps obtained in that
work, one for each parent, displayed some inconsistencies regarding the position of common markers,
and their distance from the Sk locus. Here, de novo genotyping of four of these SSR markers (BPPCT037,
CPDCT028, EPDCU2584, and UDA045) on the same F1 individuals resulted in the detection of a few
scoring errors. Most of them refer to the marker BPPCT037, harboring a length polymorphism of a
single base pair (131/132) in the parental genotype R1000. Calling these two alleles was straightforward
in our hands, as we used capillary electrophoresis on automated sequencer, whereas it was troublesome
in the work of Sánchez-Pérez et al. [12], which made use of polyacrylamide gel electrophoresis.
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The accuracy of our map was further improved by increasing the size of the mapping population with
additional 134 individuals.

Importantly, the order of markers in the genetic map provided in this study is fully consistent with
the one of ortholog sequences in the peach physical map (Figure 2), thus corroborating the notion that
genomes across the Prunus genus are collinear [13]. Based on our data, the Sk gene is likely located in
a genomic interval flanked by two markers ppa006282m/HpyCH4V and CPDCT028, corresponding in
peach to a physical region of about 151 Kb. Notably, none of the twenty genes included in this interval
encodes proteins known to play an obvious role in the biosynthesis or degradation of cyanogenic
glucosides, including prunasin hydrolases, which were previously hypothesized to be the product of
the Sk gene [6]. The presence, in the same region, of several putative helix-loop-helix proteins might
suggest that amygdalin accumulation is controlled at the transcriptional level.

Overall, this study provides valuable tools to aid the selection of sweet kernel genotypes in
almond breeding programs and lays a foundation for the isolation of the Sk gene via positional cloning.
Aiming to further delimit the Sk genomic region, we are currently working at the development of new
F1 individuals and Sk-linked molecular markers.
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