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Abstract
The most pronounced mode of climate variability during the last glacial period are the so-called Dansgaard–Oeschger events. 
There is no consensus of the underlying dynamical mechanism of these abrupt climate changes and they are elusive in most 
simulations of state-of-the-art coupled climate models. There has been significant debate over whether the climate system 
is exhibiting self-sustained oscillations with vastly varying periods across these events, or rather noise-induced jumps in 
between two quasi-stable regimes. In previous studies, statistical model comparison has been employed to the NGRIP ice 
core record from Greenland in order to compare different classes of stochastic dynamical systems, representing different 
dynamical paradigms. Such model comparison studies typically rely on accurately reproducing the observed records. We aim 
to avoid this due to the large amount of stochasticity and uncertainty both on long and short time scales in the record. Instead, 
we focus on the most important qualitative features of the data, as captured by summary statistics. These are computed from 
the distributions of waiting times in between events and residence times in warm and cold regimes, as well as the stationary 
density and the autocorrelation function. We perform Bayesian inference and model comparison experiments based solely 
on these summary statistics via Approximate Bayesian Computation. This yields an alternative approach to existing studies 
that helps to reconcile and synthesize insights from Bayesian model comparison and qualitative statistical analysis.

Keywords Dansgaard–Oeschger events · Statistical model comparison · Approximate Bayesian computation · Abrupt 
climate change · Millennial-scale climate variability

1 Introduction

The last glacial period, lasting from roughly 120 to 12 kyr 
before present (1 kyr = 1 thousand years), has seen around 
30 very abrupt changes in climate conditions of the Northern 
Hemisphere, known as Dansgaard–Oeschger (DO) events 
(Dansgaard et al. 1993). These events are the most pro-
nounced climate variability on the sub-orbital timescales, 
i.e., below ≈ 20 kyr. In Greenland, they are marked by rapid 
warmings from cold conditions (stadials) to approximately 
10 K warmer conditions (interstadials) within a few decades 

(see Rasmussen et al. (2014) for a definition of stadials and 
interstadials from Greenland ice cores). This is usually fol-
lowed by a more gradual cooling, which precedes a quick 
jump back to stadial conditions. The spacing and duration 
of individual events is highly variable and largely uncor-
related in time over the course of the last glacial period. 
Some interstadials show gradual cooling for thousands of 
years, while others jump back to stadial conditions within 
100–200 years. DO events are the primary evidence that 
large-scale climate change can happen on centennial and 
even decadal timescales. It is thus imperative to understand 
the underlying mechanisms of past abrupt climate changes, 
in order to obtain a more complete understanding of the 
climate system and thereby improve predictions of future 
anthropogenic climate change.

While significant climate change concurrent with DO 
events is well documented in various climate proxies from 
marine and terrestrial archives all over the Northern Hemi-
sphere, it is most clearly observed in proxy records from 
Greenland ice cores. An important proxy is �18 O, which 
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measures the ratio of the heavy oxygen isotope 18 O to the 
light isotope 16 O in the ice. This ratio is widely accepted 
as a proxy for temperature at the accumulation site. We 
consider the �18 O record of the NGRIP ice core, which 
has been measured in 5 cm samples along the core. This 
results in an unevenly spaced time series with a resolution 
of   3 years at the end to 10 or more years at the begin-
ning of the last glacial period. It is a matter of debate 
whether the highest frequencies in ice core records cor-
respond to a true large-scale climate signal. Studies of ice 
coring sites with low accumulation rates have shown that 
the highest frequencies in the record can be dominated by 
post-depositional disturbances to the snow (Münch et al. 
2016). To facilitate analysis and to filter out some of these 
high frequencies, we will use an evenly spaced time series 
of 20 year binned and averaged �18 O measurements. Still, 
it is unclear to what degree adjacent samples of this time 
series represent true large-scale climate variability. In our 
attempt to analyze and model the data, we instead con-
centrate on characteristic statistical features, which do not 
concern the highest frequencies in the record.

Even after decades of research following their discov-
ery, there is no consensus on the triggers of DO events, 
or on whether they are a manifestation of internal climate 
variability. In simulations of globally coupled climate 
models, DO-type events are largely elusive, although some 
recent studies report occurrences thereof, albeit through 
different mechanisms at play. Furthermore, only very few 
instances of truly unforced abrupt, large-scale climate 
changes have been seen in realistic climate models (Dri-
jfhout et al. 2013; Kleppin et al. 2015). Development in 
this area is hampered by very high computational costs 
of investigating millennial-scale phenomena with high-
resolution climate models. Similarly, the paleoclimate data 
community has not settled on a comprehensive explanation 
by examining evidence from different proxy variables at 
different locations. With this work, we want to advance 
the understanding of mechanisms that could be a likely 
cause of DO events. We attempt to investigate whether 
it is possible to establish evidence in favor of one physi-
cal mechanism above others from the NGRIP �18 O time 
series alone. To this end, we compare a suite of simple, 
stochastic dynamical systems models to each other via 
Bayesian model comparison. The models represent differ-
ent dynamical paradigms and arise as conceptual climate 
models with different underlying physical hypotheses.

The NGRIP data set is characterized by high amounts of 
irregularity that is displayed both on very short time scales 
(possibly non-climatic noise) and longer time scales, as 
manifested in the high temporal irregularity of the abrupt 
events. We thus choose to view the time series at hand 
as one realization of a stochastic process, produced by 

the complex and chaotic dynamics of the climate system. 
As a consequence, we want to avoid fitting the models 
point-wise to the data, but rather demand the models to 
display similar qualitative, statistical features, such that 
the observations could be a likely or possible realization 
of the model. In order to do that in a quantitative way, we 
construct a set of summary statistics replacing the actual 
time series. Performing Bayesian parameter inference and 
model comparison implies the evaluation of a likelihood 
function of a model given a set of parameters and data. 
Since the likelihood function of our models is completely 
intractable, especially in the presence of summary sta-
tistics, we have to adopt a likelihood-free method. One 
method permitting this is called Approximate Bayesian 
Computation (ABC, first developed in Pritchard et  al. 
(1999), see Marin et al. (2012) for a review). This tech-
nique allows us to approximate Bayes factors and poste-
rior parameter distribution. Compared to simply estimat-
ing maximum likelihood parameters, this is advantageous 
because we can assess the models’ sensitivity in param-
eter space and see how well constrained individual model 
parameters are by the data.

The paper is organized in the following way. In Sect. 2 
we will present the models examined in this study, along 
with some physical considerations motivating the study of 
these. In Sect. 3, our method is presented, i.e., the construc-
tion of summary statistics as well as the parameter inference 
and model comparison approach. Our results are given in 
Sect. 4, where we first demonstrate the method with a study 
on synthetic data in Sect. 4.1 and then present the study on 
the NGRIP data set in Sect. 4.2. We discuss our results and 
conclude in Sect. 5.

2  Models

The models considered in this study can be viewed as a 
collection of minimal models, which permit the different 
dynamical regimes that have been reported in studies show-
ing DO-type variability in detailed climate models, i.e., 
noise-induced transitions, excitability and self-sustained 
relaxation oscillations. This allows us to restrict our analysis 
to stochastic differential equations of two variables, where 
the variable x will be identified with the climate proxy. Sev-
eral well-studied stochastic dynamical systems models are 
of the following form:

The individual models investigated by us differ in the choice 
of f(x, y) and specific parameters. They are commonly known 

(1)
dxt =

(
a1xt − a3x

3
t
+ a0 + byt

)
dt + �xdWx,t

dyt = f (xt, yt)dt + �ydWy,t
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as double well potential (DW), Van der Pol oscillator (VDP, 
VDPY ) and FitzHugh-Nagumo model (FHN, FHNY ), and are 
defined as follows: 

The DW model corresponds to stochastic, overdamped 
motion of a particle in a double well potential. It has been 
proposed previously as model for glacial climate variability 
(Ditlevsen 1999; Timmermann and Lohmann 2000), and 
displays jumps in between cold and warm states at random 
times similar to a telegraph process. It can be derived from 
Stommel’s classic model of a bi-stable Atlantic Meridi-
onal Overturning Circulation (AMOC), which has been 
one of the most prevalent mechanisms invoked to explain 
DO events (Stommel 1961). Including stochastic wind 
stress forcing in the Stommel model in the limit of very fast 
ocean temperature equilibration yields stochastic motion in 
a double well potential, where the single remaining vari-
able describes the salinity difference of polar and equatorial 
Atlantic, which is proportional to the AMOC circulation 
strength (Stommel and Young 1993; Cessi 1994).

Similarly, relaxation oscillators, such as the VDP or 
FHN models, have been proposed for modeling Greenland 
ice cores (Kwasniok 2013; Roberts and Saha 2016; Mitsui 
and Crucifix 2017). At first glance, they seem good candi-
dates for generating DO events, since during a relaxation 
oscillation cycle one can get a characteristic fast rise and 
slow decay of the fast variable in a certain parameter regime 
( c ≠ 0 ). We illustrate the most important dynamical regimes 
in Fig. 1. In the VDP model, the oscillatory regime is given 
if |c| is small compared to the ratio a1∕a3 . On the other hand, 
as depicted in Fig. 1a, if |c| is beyond a certain critical value, 
the deterministic system has one stable fixed point. Noise 
perturbations can kick the system out of this fixed point and 
excite a larger excursion in phase space until the fixed point 
is reached again. This is often referred to as the excitable 
regime. If we decrease b in the oscillatory regime, the period 
of oscillation grows, as the trajectory spends more time close 
to the stable parts of the nullcline of the x variable, which 
is also referred to as the slow manifold and is indicated in 
Fig. 1b. In the limit of b = 0 in Eq. 1, the variables decou-
ple and we are left with a double well potential model for 
the variable x. Thus, both VDP and FHN models include a 
symmetric ( a0 = 0 ) DW model as a special case. The general 
form in Eq. 1 permits transitions between the very different 
models proposed in the literature by continuous changes of 

(2a)f = 0, b = 0 (DW)

(2b)f = −xt + c, a0 = 0 (VDPY )

(2c)f = −xt + c, a0 = 0, �y = 0 (VDP)

(2d)f = tan(�)yt − xt + c, a0 = 0 (FHNY )

(2e)f = tan(�)yt − xt + c, a0 = 0, �y = 0 (FHN).

parameter values. Similarly, the oscillator models we con-
sider are nested, as explained in the following.

The VDP model is a special case of the FHN model, 
obtained by setting � = 0 . Initially developed as simplified 
model for spiking neurons, the FHN model can display even 
richer dynamical behaviors including relaxation oscillations, 
excitability and bi-stability. The latter regime occurs for 
negative � , where below a certain critical value two sta-
ble fixed points emerge. As b decreases, this critical value 
gets closer to zero. Including additive noise in this regime 
induces stochastic jumps in between the two states. We indi-
cated a transition from oscillatory to excitable and bi-stable 
dynamics by changing � and otherwise fixed parameters 
in Fig. 1c. For more details on the dynamics of the VDP 
and FHN models, and the rich bifurcation structure that 
appears especially close to the boundaries of the dynamical 
regimes, we refer the reader to Rocsoreanu et al. (2000). 
Relaxation oscillator models, similar to the ones regarded in 
this study, can also be derived from Stommel’s model, e.g., 
by including an additional feedback from the ocean state to 
the atmosphere (Roberts and Saha 2016). In this case, the 
first variable describes the salinity difference of polar and 
equatorial Atlantic, and the second describes the ratio of the 

a b

c

Fig. 1  Phase portrait and nullclines of the VDP and FHN models 
with a1 = 4 and a3 = 1 . The nullclines of the x variables are given 
by y = (a3x

3 − a1x)∕b and are drawn in black for b = 1.5 in all pan-
els. The solid part of that curve is the slow manifold. Stable (unsta-
ble) spirals are marked by solid (open) circles, and saddle points 
by open diamonds. a Two y-nullclines of the VDP model given by 
x = c , indicating a transition from oscillatory ( c = −0.5 , limit cycle 
drawn in orange) to excitable dynamics ( c = −1.3 ). b x-nullclines 
of the VDP model for two different values of b indicating a stretch-
ing of the slow manifold and thus a lengthening of the period in the 
oscillatory regime. c Three y-nullclines of the FHN model given by 
y = (x − c)∕tan(x) , indicating a transition from oscillatory ( � = −0.1 ) 
to excitable ( � = −0.4 ) and bi-stable ( � = −1 ) dynamics
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effect of atmospheric salinity forcing on ocean density to 
that of atmospheric temperature forcing. We include noise 
forcing in the oscillator models, which is crucial in order to 
obtain the highly irregular oscillatory behavior that is seen 
in the data.

We simulate all models with a Euler-Maruyama method, 
a time step of �t = 0.0005 and time scaled to units of 1 kyr. 
The actual model output we consider is given as a binned 
average of 20 years, i.e. 40 time steps, mirroring the pre-
processing of the NGRIP data at hand.

3  Materials and methods

3.1  Data

Our model comparison study starts by preprocessing the 
NGRIP data set, as explained in the following. We use the 20 
year averaged �18 O data on the GICC05modelext time scale, 
as published by Rasmussen et al. (2014). We remove a 25 
kyr running mean, corresponding to a high pass eliminating 
variations due to orbital forcing on time scales longer than 
20 kyr, which are not investigated in this study. Like this, we 
are able to assess the statistical properties of the sub-orbital 
timescale dynamics in the signal using summary statistics. 
Finally, we cut the time series starting at 110 kyr, i.e. during 
GS-25 (GS = Greenland interstadial), and ending at 23 kyr 
b2k (before AD 2000), i.e. just after GI-2.2 (GI = Greenland 
interstadial). We do this in order to exclude the high early 
glacial �18 O values before GS-25 and the rising �18 O values 
in GS-2.1 with very high noise level in order to be able to 
objectively define warming events, as described below. The 
resulting time series is shown in Fig. 2.

3.2  Summary statistics

As next prerequisite to perform parameter inference and 
model comparison one needs to specify a measure to quan-
tify the goodness-of-fit of model output with respect to 
data. We do not compare model output time series and data 
pointwise, e.g., using a root mean squared error. Due to the 

high stochasticity displayed in the data, it is irrelevant and 
possibly overfitting to find a model which would be able to 
produce a time series which is pointwise close to the data. 
Practically, one can use one-step prediction errors, assuming 
these are uncorrelated Gaussian. This has been done with 
the NGRIP record using Kalman filtering (Kwasniok and 
Lohmann 2009; Kwasniok 2013; Mitsui and Crucifix 2017). 
However, due to the high noise level and uncertainty in the 
interpretation of high-frequencies in the ice core data, our 
strategy is to replace the time series with a set of summary 
statistics and assess goodness-of-fit by comparing summary 
statistics of model and data time series. The summary statis-
tics are described in the following.

We choose summary statistics which contain as much 
information as possible about the qualitative aspects of the 
NGRIP data that we want our models to reproduce. First of 
all, the models should show DO-type events, i.e. switching in 
between higher and lower proxy values. To define events, we 
introduce one lower and one upper threshold at x = −1 and 
x = 1.5 , respectively. An up-switching event is defined by 
the first up-crossing of the upper threshold after up-crossing 
the lower threshold (Ditlevsen et al. 2007). In the same way, 
the first down-crossing of the lower threshold after down-
crossing the upper threshold defines a down-switching event. 
The result of this procedure applied to the detrended NGRIP 
data can be seen in Fig. 2. Periods in between up- and down-
switching events (and vice versa) are denoted as interstadials 
(stadials). The thresholds are defined such that when applied 
to the detrended NGRIP data, the original classification of 
DO events and Greenland stadials/interstadials is reasonably 
well preserved (Rasmussen et al. 2014). Our classification 
differs such that GI-5.1 is not detected and GI-16.2 and 16.1 
are detected as one single interstadial. Additionally, three 
very short spikes, which are not classified DO events, are 
identified as warming events (in GS-8, GS-9 and GS 19.1). 
We furthermore detect some of the most pronounced climate 
changes typically classified as DO sub-events, yielding 35 
warming events in total.

With events defined as above we construct three summary 
statistics in the following way: Since one notable characteris-
tic of the data is a broad distribution of durations in between 

Fig. 2  Slice of the NGRIP �18 O time series high pass filtered with 25 kyr running mean, which our study is based on. Also shown are thresholds 
used to define warming (cooling) events, which are marked by red (blue) dots
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events, we compare models and data using empirical cumu-
lative distribution functions (ECDFs) of these durations. 
Specifically, given a time series, ECDFs are constructed for 
durations of stadials, interstadials, and for the waiting times 
in between adjacent warming events. Two time series are then 
compared by computing the Kolmogorov–Smirnov distance 
of the respective ECDFs, which yields a scalar measure of 
goodness-of-fit for each of the statistical properties. These 
are denoted as s1 , s2 and s3 , for stadial durations, intersta-
dial durations and waiting times in between warming events, 
respectively. We visualize this construction in Fig. 3a–c.

We introduce a fourth summary statistic in order to 
capture the bi-modal structure of the NGRIP time series, 
which is best observed from the stationary density shown in 
Fig. 3d. We compute the ECDF of the whole time series and 

make a pairwise comparison by computing the Kolmogo-
rov–Smirnov distance, which we denote as s4.

Finally, to capture the persistence properties of the 
detrended climate record, we base another summary sta-
tistic on the autocorrelation function up to a lag of 2250 
years, as shown in Fig. 3e for both NGRIP data and a DW 
model. Two time series are compared by computing the root 
mean squared deviation (RMSD) of their autocorrelation 
functions, which will be denoted as s5 . This yields a total of 
5 scalar quantities to assess the fit of model output to data, 
which we summarize in a vector s = (s1, s2, s3, s4, s5)

T . For 
a good fit, we require all individual components to be suf-
ficiently small, as will be discussed in more detail below.

An important qualitative feature of the NGRIP record so 
far missing from this description with summary statistics 

Fig. 3  Statistical properties 
investigated in this study. 
a–c Complement of empirical 
cumulative distribution function 
1 − ECDF = P(X > x) of stadial 
durations, interstadial durations 
and waiting times, respectively. 
The NGRIP data statistics are 
shown in red, the asymptotic 
statistics for a DW model with 
a0 = 0.16 , a1 = 2.86 , a3 = 0.93 
and � = 4.17 is shown in black, 
corresponding 95% simultane-
ous confidence bands are shown 
with blue shading and an exam-
ple realization is shown in gray. 
The maximal vertical distances 
of data and model realization 
are illustrated with dashed lines 
and correspond to our sum-
mary statistics s1 , s2 and s3 . d 
Probability density function 
(PDF) of the time series, used 
to compute s4 . e Autocorrela-
tion function up to a lag of 2250 
years, which underlies s5

a b

c d

e
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is the characteristic saw-tooth shape of the DO events. 
This behavior can also be captured with summary statis-
tics, but with the models considered here it turns out to be 
hardly compatible with the other summary statistics intro-
duced above. We discuss this statistical feature separately 
in Sect. 4.2.3. Statistical indicators, which go beyond the 
characteristic features of the record that we aim to describe, 
are not considered. As explained in the introduction, due 
to lack of confidence in the climatic signal of the highest 
frequencies in the record, we discard indicators concerning 
the ’fine-structure’ of the record, such as the distribution of 
increments. Furthermore, our analysis is restricted to station-
ary models, and thus statistical indicators measuring non-
stationarity cannot be included. Higher-order statistics, such 
as third-order correlations or cumulants, could be consid-
ered in future studies. While it is possible that higher-order 
statistics carry important features of the data, this is still 
debated (Rypdal and Rypdal 2016) and beyond the scope 
of our study.

3.3  Inference and model comparison

The measures for goodness-of-fit as defined above enable 
us to perform parameter inference and model comparison 
in an approximate Bayesian approach. Specifically, we aim 
to approximate two entities. First, for a given model i , 
we want to sample from the posterior distribution of model 
parameters �i given data D

where p(�i|i) is a prior distribution of the parameters. 
Second, we wish to compute the relative probabilities of 
different models given the data p(i|D) , which is evaluated 
using Bayes’ theorem:

Here, p(i) is the prior probability of model i . Thus, the 
relative posterior probability of two models is

where 1,2 is called the Bayes’ factor and p(D|i) is 
referred to as the model evidence. The latter is an integral 
over parameter space of the product of likelihood and prior:

As a consequence of this integration, models with high-
dimensional parameter spaces are disfavored over simpler, 
more parsimonious models that fit the data equally well. In 

(3)p(�i|D,i) =
p(D|�i,i) p(�i|i)

p(D|i)
,

(4)p(i|D) =
p(D|i) p(i)

p(D)
.

(5)
p(1|D)
p(2|D)

=
p(D|1)

p(D|M2)
⋅

p(1)

p(2)
= 1,2

p(1)

p(2)
,

(6)p(D|i) = � p(D|�i,i) p(�i|i) d�i.

models with many parameters, a large part of the parameter 
space results in a poor fit to the data, which yields a low 
model evidence, since Eq. 6 can be viewed as an average 
over the parameter space weighted by the prior. The highest 
model evidence is obtained for models where most of the 
parameter space yields a good fit to the data. We explore 
the magnitude of this penalty on models with superfluous 
parameters in our model comparison implementation in 
Sect. 4.1.2.

The computation of both the posterior parameter distribu-
tion p(�i|D,i) and the model evidence p(D|i) require 
the likelihood p(D|�i,i) , which is intractable for our mod-
els and summary statistics. We thus adopt a likelihood-free 
method called Approximate Bayesian computation (ABC). In 
this method we assume the data D to be in a (high-dimen-
sional) data space  with a metric �(⋅, ⋅) . We can thus write

where x ∈  and �(x) is the Dirac delta function on  
defined by ∫ f (x)�(x)dx = f (0) . ��,D(x) is a normalized ker-
nel, defined as ��,D(x) = IB� (D)

(x)V−1
�

 , where IB� (D)
 is the indi-

cator function for a ball of radius � centered at D and V� is 
the volume of the ball. For small � , ��,D(x) is thus strongly 
peaked where x is similar to the data D according to the 
metric � . These definitions yield the following expression 
for the marginal likelihood

and the Bayes factor of two models is given by

In ABC, this expression is approximated by choosing a finite 
tolerance � and by estimating the integrals via Monte Carlo 
integration in the following way. For a given model one 
repeatedly samples a parameter � from the prior p(⋅|i) , 
simulates a model output xj and accepts the parameter value 
� as a sample from the posterior distribution if IB� (D)

(xj) = 1 , 
i.e. �(xj,D) ≤ � . This yields a sampling estimate of the ABC 
approximation to the desired posterior parameter distribu-
tion. By performing the procedure for two competing mod-
els, we obtain a Monte Carlo estimate of the ABC approxi-
mation to the Bayes factor

(7)
p(D|�i,i) = � p(x|�i,i) �(x − D)dx

= lim
�→0� p(x|�i,i)��,D(x)dx,

(8)

p(D|i) = lim
�→0� p(�i|i) p(x|�i,i)��,D(x) d�i dx,

(9)1,2 = lim
�→0

∫ p(�1|1) p(x|�1,1) IB� (D)
(x) d�1 dx

∫ p(�2|2) p(x|�2,2) IB� (D)
(x) d�2 dx

.

(10)�

1,2
=

1

J

∑J

j=1
IB� (D)

(xj)

1

L

∑L

l=1
IB� (D)

(xl)
,
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where xj is drawn from p(⋅|�1,j,1) and �1,j is drawn 
from p(⋅|1) , and accordingly xl ∼ p(⋅|�2,l,2) and 
�1,j ∼ p(⋅|2) . J and L are the total numbers of Monte Carlo 
simulations used for the respective models. The terms in 
denominator and numerator are thus equal to the rate at 
which parameter samples drawn at random from the prior 
of the respective model are accepted, i.e., yield model output 
that is closer to the data than � . The tolerance � is a trade-
off, which should be chosen as small as possible for a good 
approximation, but large enough so that a sufficient number 
of parameter samples with IB� (D)

(xj) = 1 can be generated in 
feasible computing time.

Instead of a scalar metric � and tolerance � , we use 
the vector of summary statistics s(x,D) introduced in the 
previous section, and a separate tolerance �k for each com-
ponent sk . The indicator function IB� (D)

 to accept parameter 
samples then operates on the set

Note that in the limit � → 0 the approximations of poste-
rior distribution and Bayes factor only converge to the exact 
Bayesian results if the summary statistics that define the 
metric are sufficient, i.e., if they carry as much information 
about the parameter of a model as the full model output x 
does. Only in very few cases this can be guaranteed, and 
thus one has to hope that the approximation is still good, 
given that one chooses summary statistics that are highly 
informative about the model parameters. On the other hand, 
we can view the results as an approximation to exact Bayes-
ian inference and model comparison based not on the actual 
data D but on the observed statistics of D, which mirrors our 
approach to the specific problem.

Sampling parameters from the prior distribution in 
order to obtain the posterior is typically inefficient, since 
most of the prior parameter space has very small posterior 
probability. Instead we use an approach known as ABC 
population Monte Carlo (ABC-PMC) (Beaumont et al. 
2009), which uses sequential importance sampling to 
approximate the posterior distribution through a sequence 
of intermediary distributions using decreasing values for 
the tolerances �k . In this approach, we start at some rela-
tively large tolerance and draw parameter samples from 
the prior distribution p(�) until a desired number of sam-
ples have satisfied sk(x,D) < 𝜖k . This population of param-
eters is then perturbed by a Gaussian kernel and sampled 
from in the next iteration with slightly lower tolerance. 
This perturbed distribution is referred to as the proposal 
distribution f (�) . From the second iteration on, the popu-
lation of accepted parameter samples has to be weighted 
according to importance sampling in order to compensate 
that it was not drawn from the prior distribution but from 
the proposal distribution. The weights of a particle j in 

(11)B�(D) =
{
z ∈  | sk(z,D) ≤ �k ∀ k = 1,… , 5

}
.

importance sampling is given by the likelihood ratio of 
prior and proposal distribution wj =

p(�j)

f (�j)
.

Furthermore, in ABC-PMC the Gaussian kernel used 
to perturb the previous population is adaptive at each 
iteration. Beaumont et al. (2009) use a diagonal multi-
variate Gaussian kernel where the diagonal entries of the 
covariance matrix are given by the two-fold variance of the 
population samples of the previous iteration, weighted by 
the importance weights introduced above. Instead, we use 
a multivariate Gaussian kernel with a covariance matrix 
given by the weighted covariance matrix of the previ-
ous population multiplied by 2. This allows us to sample 
more efficiently when there is co-variant structure in the 
parameter posterior, as shown later. We stop the iterative 
procedure when the tolerances are so low that it is com-
putationally very expensive to get a reasonable amount of 
posterior samples. In this study, computations have been 
performed on a personal desktop computer and obtaining 
500 posterior parameter samples at the lowest tolerance 
required up to 20 million model simulations. The algo-
rithm used in this study to obtain parameter posteriors and 
Bayes factors is explained in the “Appendix”.

An important choice to be made in Bayesian inference 
and model comparison are the prior parameter distribu-
tions. While the posterior distributions are relatively 
robust to changes in the priors if the latter are sufficiently 
flat, Bayes factors can behave more sensitively. We aim to 
use uninformative priors, i.e. priors that are as objective 
as possible and reflect that we do not have any a priori 
knowledge about likely parameter values in our models, 
except for the signs of certain parameters. Since for the 
models used in this study we cannot derive priors that are 
strictly uninformative in terms of certain criteria, such as 
Jeffrey’s priors or Bernardo’s reference priors, we choose 
diffuse uniform priors due to their flatness.

It is worthwhile to note that because of the use of sum-
mary statistics there is no point to point model output and 
data comparison and thus we can use a length of model 
simulations different to the data length. Increasing model 
simulation length can sometimes increase performance, as 
will be discussed later.

4  Results

In order to demonstrate the method’s abilities, we first 
apply it to synthetic data from within our model ensem-
ble in Sect. 4.1. Thereafter, we present the results of the 
method when applied to the NGRIP data set in Sect. 4.2.
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4.1  Synthetic data study

As synthetic data, we choose a 87 kyr simulation output 
from the VDP model in a dynamical regime of noisy oscilla-
tions, which can be seen in Fig. 4. With this we demonstrate 
the following abilities of our method: (1) The correct model 
parameters are recovered from the posterior parameter dis-
tribution of the true model. (2) The true model is selected 
very strongly over a model which cannot operate in a com-
parable dynamical regime. (3) A model that can operate in 
the same dynamical regime as the true model but is of higher 
complexity is disfavored by the model selection procedure 
due to the higher number of parameters. (4) The results of 
model and parameter inference at sufficiently low tolerance 
are not critically dependent on data length and parameter 
prior distributions.

The model comparison parameters used in this synthetic 
data study are as follows. Each model simulation output was 
equally long as the data (87 kyr), and a total number of 500 
particles were used at each step. The prior parameter dis-
tributions for all models were chosen to be uniform. We 
used 15 ABC-PMC iterations with descending tolerances 
as specified in Table 1, which were chosen empirically such 
that no single tolerance �k limits the acceptance of param-
eter samples at a given iteration. The tolerances need to 
be adjusted individually, because the individual summary 
statistics sk that make up the state space metric have differ-
ent ranges. This procedure is certainly not unique, and thus 
some results might change if different choices in the metric 
are made, which is a well-known issue in ABC.

4.1.1  Parameter inference

We first discuss the results for parameter inference, starting 
with the true model. In the violin plot of Fig. 5, we show the 
kernel density estimates of the VDP intermediate marginal 
parameter distributions for each iteration and indicate the 
bounds of the uniform prior distributions (red). We observe 
a gradual decrease in dispersion of the distributions as well 
as a convergence of the medians close to the true values. Fig-
ure 6a shows in more detail the marginal posterior param-
eter distributions for the VDP model after the last iteration. 

Fig. 4  Time series of VDP model used as synthetic data to test the 
ABC-SMC method. The model parameters are b = 6 , a1 = 6 , a3 = 1 , 
c = −0.5 , �X = 4.5 and �Y = 0

Table 1  Sequence of tolerances used in the ABC-SMC experiment with synthetic data

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�1,2,3 0.4 0.325 0.275 0.25 0.225 0.2 0.19 0.18 0.175 0.17 0.165 0.16 0.155 0.15 0.145
�4,5 0.3 0.25 0.225 0.2 0.175 0.15 0.125 0.1 0.085 0.07 0.055 0.045 0.035 0.03 0.025

Fig. 5  Violin plot illustrating 
the convergence of VDP mar-
ginal intermediate distributions 
for increasing iterations of the 
ABC-PMC algorithm. For each 
iteration, a Gaussian kernel esti-
mate of the density is shown, 
together with the median. 
The true parameter values are 
indicated with a green dashed 
line. The bounds of the uniform 
distributions on the prior are 
indicated with the red lines

b a 1

c

a 3
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We can see that there remains both an uncertainty in the 
parameter estimate as well as a small bias of the distribution 
mode for some parameters. The uncertainty is mostly due 
to the non-zero tolerance and short simulation length, while 
the bias is due to random sampling and shortness of the 
test data. We conducted experiments with various data and 
model simulation lengths: When using shorter data length, 
the summary statistics are always quite different from the 
mean model statistics. Thus we find a bias in the inferred 
parameters. Longer data yields statistics closer to the model 
mean and thus less biased inference. However, the posterior 
dispersion does not change. If we increase the model simula-
tion length, we can reduce the posterior dispersion because 
the statistics of model output samples are sharper for a given 
parameter and thus less wrong parameter samples scatter 
into the posterior. The Bayes factors are not systematically 
influenced in either case.

We furthermore observe that some parameters are better 
constrained by our summary statistics than others and are 
thus easier to infer, such as can be seen for c in contrast to 
b. Additionally, while most parameters seem independent of 
each other, the parameters a1 and a3 show a linear depend-
ency in the posterior, which can be seen in the right-most 
panel of Fig. 6a. This gives rise to most of the uncertainty 
seen in the marginal posteriors.

The parameter inference results for the FHN model are 
shown in Fig. 6b. We see that parameters, which the FHN 
model has in common with the VDP model, also converge to 
the true values. The additional parameter � stays quite uncer-
tain but has most weight in a region close to 0, which would 
then correspond to the VDP model. We do not show mar-
ginal posterior parameter distributions for the DW model, 

since it is eliminated by our model selection procedure after 
iteration 6, as discussed in the following.

4.1.2  Model comparison

We now discuss model comparison results. In Fig. 7 we show 
Bayes factors for four different ABC experiments at all itera-
tions. The data from the experiment discussed in the previous 
section are shown in circle markers. The Bayes factors of the 
DW model over the VDP model, shown in Fig. 7a, drop to 
zero already at large tolerances, which means that the ABC 
procedure can efficiently exclude the wrong model. In contrast, 
Fig. 7b shows that the Bayes factors of the FHN model over the 
VDP model settles after some fluctuations to BFHN,VDP ≈ 0.5 

a

b

Fig. 6  Gaussian kernel density estimates of the marginal posterior 
distribution of a VDP and b FHN model parameters as obtained after 
the last iteration of ABC-SMC on synthetic data. The gray dashed 
lines indicated the true parameter values, and the red lines indicate 

the uniform prior distributions. In the right-most panel of a we show 
the two-dimensional marginal distribution of parameters a1 and a3 for 
the VDP model

a

b

Fig. 7  Bayes factors a BDW,VDP and b BFHN,VDP at all iterations of four 
different ABC-PMC runs using VDP synthetic data
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as the tolerance approaches zero. This is because the two mod-
els are nested, i.e. the FHN model includes the VDP model but 
has an additional parameter. We can thus use this Bayes factor 
as an estimate of how much an additional parameter is penal-
ized among models explaining the data equally well.

The squares in Fig. 7 show an ABC experiment where we 
doubled the prior range of the parameters b and a1 in the VDP 
model. It is seen that the model comparison results do not 
depend on the width of the priors, given they are wide enough 
to contain the full posterior distribution. In the third ABC 
experiment, marked with triangles, we used a synthetic data 
length of 1000 kyr. The last experiment is marked with dia-
monds and shows results for using a longer simulation length 
of 435 kyr. In both of these experiments the model comparison 
results do not change qualitatively.

4.2  NGRIP data study

The ABC-PMC runs with NGRIP data were performed with 
the sequence of tolerances given in Table 2. Because none 
of the models can perfectly reproduce the NGRIP statistics, 
we had to stop the sequential algorithm due to computational 
demand at slightly higher tolerances compared to the synthetic 
data study. As in the synthetic data study, we used uniform 
priors for all parameters. The ranges of these priors can be seen 
in the respective figures showing the posterior distributions 
(Figs. 8, 9 and 10) and were chosen wide enough to contain 
the full posterior distribution.

4.2.1  Parameter inference

The posterior distributions of the DW model ( b = 0 ) are 
shown in Fig. 8 and lie well constrained within the priors. 
There remains considerable dispersion in the marginals of a1 
and a3 , most of which comes from a linear dependency of the 
two, as can be seen in the bottom right panel of the figure. 
With a0 close to zero, the double well potential inferred from 
the data is approximately symmetric.

We now discuss the inferred dynamics of the oscillator 
models when only including noise in the x variable, i.e., 
�Y = 0 . The posterior distributions are shown in Fig. 9. 
Because different regions in parameter space describe 
different dynamical regimes, we analyze the posterior 
samples as an ensemble. In the posterior samples of the 
VDP shown in Fig. 9a, we can see that the distribution 
of b is approaching 0. Thus the dynamics are effectively 

one-dimensional and approximate a symmetric double 
well potential, as discussed in Sect. 2. Still, 91% of the 
posterior samples are in a regime of noisy oscillations, 
because |c| is too small compared to the ratio a1∕a3 . How-
ever, the oscillation periods expected from the determinis-
tic system increase as b goes to zero and are much longer 
than the waiting times of the stochastic dynamics. The 
median ratio of deterministic period to stochastic waiting 
time is 38.4, with 10- and 90-percentiles at 8.2 and 165.1. 
Thus, the dynamics are such that much time can be spent 
on each branch of slow manifold, which is then escaped 
via noise. In effect, the model is noise dominated and the 
dynamics are closely similar to a double well potential.

Figure 9b shows the posterior distributions of the FHN 
model. We observe that b again becomes close to zero, 
albeit not as strongly as in the VDP model. Addition-
ally, � approaches its limit of −�∕2 . The combination of 
these two parameter regimes typically yields two stable 
steady states, as explained in Sect. 2. Indeed, 95% of the 
posterior samples are in a bi-stable regime, whereas the 
remaining ones are in the excitable regime. The dynamics 
in the x variable in a bi-stable regime are again effectively 
very similar to double well potential dynamics. There is 
a large remaining dispersion in c, since the effect of c on 
the dynamics becomes negligible as � approaches −�∕2.

Table 2  Sequence of tolerances 
used in the ABC-PMC 
experiment with NGRIP data

Iteration 1 2 3 4 5 6 7 8 9 10 11

�1,2,3 0.4 0.3 0.25 0.225 0.2 0.195 0.190 0.185 0.18 0.175 0.17
�4 0.3 0.225 0.175 0.15 0.125 0.1 0.08 0.075 0.07 0.065 0.06
�5 0.3 0.225 0.175 0.15 0.125 0.115 0.11 0.1 0.09 0.08 0.07

Fig. 8  Marginal posterior distribution of DW model parameters after 
the last iteration of the ABC-PMC inference using NGRIP data. The 
red lines indicate the uniform prior distributions. The bottom right 
panel shows the joint distribution of parameters a1 and a3
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As we include noise in the y variables of the oscillator 
models, the inferred parameter regimes change as seen from 
the marginal distributions in Fig. 10. In the VDPY model, 
the parameter b no longer tends to zero. As a result, the 
dynamics are no longer quasi one-dimensional. Out of the 
posterior samples, 83% are in an oscillatory regime, the rest 
being excitable. Within the oscillatory samples, the median 
ratio of deterministic period to stochastic waiting time is 
1.02 (10- and 90-percentile at 0.73 and 1.75). Due to the 
parameter a1 approaching very small values, the amplitude 
of the deterministic limit cycles is small compared to the 
amplitude of the noisy signal. Thus, the dynamics are again 
very noise-driven and apart from the mean period do not 
inherit any features of the deterministic system. For the FHN 
model, Fig. 10b shows that the parameters b and � no longer 
approach their boundaries of 0 and �∕2 , respectively. As 

a result, the FHNY model posterior samples contain 79% 
mono-stable, 17% oscillatory and 4% bi-stable parameter 
regimes. Thus, the excitable regime is the most prevalent. 
It does not seem to matter, whether the single fixed point in 
the mono-stable samples is in the ’warm’ or ’cold’ state, as 
they are roughly equally distributed among the ensemble. 
Furthermore, as for the VDP model, the parameter a1 tends 
to very small values.

To get an idea of the maximum likelihood parameters 
of our models and to show representative time series, we 
estimate the parameter sample which lies in the highest 
density region of the posterior distribution. This is done 
via Gaussian kernel smoothing, where the kernel width is 
chosen manually. Although the method is typically robust 
over a wide range of kernel widths, the result still has to be 
taken with care because of the relative sparseness of the 

a

b

Fig. 9  Marginal posterior distribution of a VDP and b FHN model parameters with �Y = 0 after the last iteration of the ABC-PMC inference 
using NGRIP data. The red lines indicate the uniform prior distributions

a

b

Fig. 10  Marginal posterior distribution of a VDPY and b FHNY model parameters with noise in the y variable after the last iteration of the ABC-
PMC inference using NGRIP data. The red lines indicate the uniform prior distributions
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posterior samples in parameter space. This is especially true 
if parameter samples tend to accumulate at the edges of their 
valid domain, as is often the case in our study. The resulting 
parameter estimates are given in Table 3 and model realiza-
tions are shown together with the data in Fig. 11.

4.2.2  Model comparison

As detailed in Sect. 3.3, the ratio of acceptance rates in 
ABC-PMC runs of two models at a given tolerance gives 
our approximation of the Bayes factor 1,2 . The results are 

Table 3  Highest probability 
parameters within the posterior 
sample estimated by Gaussian 
kernel smoothing

The models given with acronyms here are defined in Eqs. 1 and 2

Model Best parameter estimates

DW a0 = 0.16 a1 = 2.86 a3 = 0.93 � = 4.17

VDP b = 0.04 a1 = 4.42 a3 = 1.35 c = 0.07 � = 4.44

FHN b = 0.04 a1 = 2.23 a3 = 0.82 c = −6.98 � = 4.46 � = −1.51

VDPY b = 10.23 a1 = 1.43 a3 = 2.89 c = 0.01 �X = 4.90 �Y = 2.45

FHNY b = 2.55 a1 = 0.63 a3 = 2.71 c = 0.22 �X = 4.80 �Y = 11.08 � = −0.67

Fig. 11  a NGRIP data set used 
as basis of our study. b–f Model 
realizations of all models con-
sidered in the study with highest 
posterior probability parameters 
from Table 3. b–f correspond to 
the DW, VDP, FHN, VDPY and 
FHNY models, respectively

a

b

c

d

e

f
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summarized in the Table 4. As can be seen in the table’s 
first column, the DW model is slightly preferred over the 
oscillator models without noise in the y variable, while the 
converse is true as we add noise to both variables. Thus, 
the performance of the oscillators clearly improves by add-
ing noise also to the y-variable, which is reflected by Bayes 
factors of 6.27 and 4.83 for the VDPY over VDP and FHNY 
over FHN models, respectively. Comparing the two oscil-
lator models with and without noise in the y variable, we 
observe that in both cases the FHN model is very slightly 
preferred with Bayes factors of 1.24 and 1.61, respectively. 
As a result, the model that is most supported by the data in 
terms of the summary statistics chosen by us is the FHNY 
model with additive noise in both variables.

4.2.3  Time reversal asymmetry

We now address the characteristic saw-tooth shape of the 
DO events, which is not accounted for by the summary sta-
tistics used in the model comparison experiments of this 
study so far. On average, the NGRIP record rises much faster 
to high values during warming periods as it falls to low val-
ues during cooling periods. This feature is often referred to 
as time-reversal asymmetry and can be measured in a time 
series x(t) by the skewed difference statistic

where ⟨⋅⟩ denotes the expectation value over the time series 
and � corresponds to a characteristic time scale [see e.g. 
Theiler et al. (1992)]. A similar indicator has been used 
before to analyze the results of the model comparison study 
by Kwasniok (2013). In contrast to the DW model, both 
VDP and FHN models can in principle show such time 
reversal asymmetry, in a regime of relaxation oscillations. 
Due to similarity in shape of the DO events and relaxation 

(12)M(�) =
⟨[x(t) − x(t + �)]3⟩
⟨[x(t) − x(t + �)]2⟩

,

oscillations, the latter are often invoked as plausible dynami-
cal mechanism.

In order to test whether the oscillator models can show 
asymmetry behavior similar to the NGRIP time series, we 
include the RMSD of M(�) up to a lag of � = 2500 years for 
model output and data as an additional summary statistic s6 . 
The RMSD of the data curve M(�) to a straight line, i.e., a 
model with no asymmetry, is 0.92, which serves as a base-
line for our asymmetry summary statistic s6 and respective 
tolerance �6 . We restrict our analysis to the FHNY model 
since it has the richest dynamics.

In Fig. 12 we compare M(�) of data, and FHNY posterior 
samples of different ABC runs. For illustrative purposes, 
we conducted a ABC-PMC run that only used s6 and the 
standard deviation as summary statistics. The average model 
statistics for posterior samples obtained from this run are 
shown as a green line in the figure and demonstrate that the 
FHNY model has a dynamical regime with asymmetry of the 
desired magnitude. Next, we performed a ABC-PMC run 
with all six summaries s1,2,3,4,5,6 . We gradually decreased 
the tolerance of s6 from �6 = 0.8 to �6 = 0.575 , while low-
ering the other tolerances to the rather moderate values of 
�1,2,3 = 0.225 and �4,5 = 0.15 . At this point it becomes com-
putationally very expensive to continue with lower toler-
ances, mirroring the fact that the FHNY model cannot both 
display time reversal asymmetry and the statistical behav-
ior discussed earlier in this work. The summaries s1,2,3,4,5 
force the oscillator model into a regime, where it can only 
show asymmetry throughout a whole realization by chance, 
which is very rare. From the figure we can see that on aver-
age, the posterior samples of the run that included s6 show 
no asymmetry. The same holds for the posterior samples 
inferred from the ABC-PMC run without s6 . The posterior 
samples with s6 are also only marginally more likely to show 

Table 4  Bayes factors obtained from the ABC-PMC experiment with 
NGRIP data

The rows and columns are organized such that the value in column 
i and row j is the Bayes factor ij of model i in favor over model j, 
as defined in Eq. 5. The model that is most preferred by our model 
selection is FHNY

ij i

DW VDP FHN VDPY FHNY

j
 DW – 0.26 0.42 1.62 2.01
 VDP 3.87 – 1.61 6.27 7.78
 FHN 2.41 0.62 – 3.90 4.83
 VDPY 0.62 0.16 0.26 – 1.24
 FHNY 0.50 0.13 0.21 0.81 –

Fig. 12  Time-reversal asymmetry statistic M(�) for the NGRIP data 
(red) and model averages over the posterior samples from ABC-PMC 
runs with following summary statistics: 1. s1,2,3,4,5,6 (blue). 2. s1,2,3,4,5 
(orange dashed). 3. s6 and standard deviation (green). For the former 
two runs, 95% simultaneous confidence bands are shown. Two exam-
ple realizations of the first run are shown in gray
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significant asymmetry compared to the ones without s6 , as 
can be seen from the confidence bands.

5  Discussion and conclusion

This study presents Bayesian model comparison experi-
ments of stochastic dynamical systems given the NGRIP 
�18 O record of the last glacial period, and aims to further 
the knowledge on which dynamical mechanism underlies 
DO events. The highly stochastic nature of these climate 
changes, as well as of the underlying data set prompted us 
to base this model comparison solely on statistical prop-
erties of the time series, captured by summary statistics. 
This approach is different from previous model comparison 
studies concerned with Greenland ice core data and stochas-
tic dynamical systems (Kwasniok 2013; Krumscheid et al. 
2015; Mitsui and Crucifix 2017; Boers et al. 2017). Even 
though these studies also aim to compare different mod-
els in terms of their statistical properties, such as stationary 
densities and mean waiting times, they first estimate maxi-
mum-likelihood parameters from the 1-step prediction error 
with various techniques and subsequently use the Bayesian 
Information Criterion for model selection. Afterwards, they 
qualitatively compare the statistical properties of the best fit 
models. However, it is unclear how the statistical properties 
of the models emerge in the fitting procedure. As a conse-
quence, there might arise a mismatch in between the models 
or parameter regimes preferred by the model comparison 
procedure and by qualitative analysis of the statistical prop-
erties, as reported by Boers et al. (2017). This motivates 
us to base the entire parameter inference and model com-
parison on summary statistics. Additionally, our approach is 
different in that we are able to show full parameter posterior 
distributions, which allows the assessment of parameter sen-
sitivity and uncertainty. This becomes especially important 
in models with physically motivated parameters.

As prerequisite result, using synthetic data, we dem-
onstrated in Sect. 4.1 how parameter inference and model 
comparison can be successfully done with a set of summary 
statistics and the ensemble of models considered. For this 
purpose, we adopted a version of ABC to our needs, and 
showed that given a model realization from within the model 
ensemble, the true model and its parameters can be inferred 
in a robust way. Furthermore, we estimated the penalty on 
the Bayes factor arising if one model of our ensemble has 
a superfluous parameter. In the case of two models being 
both correct, we yield  ≈ 2 in favor of the model without 
the superfluous parameter, which we consider to be only a 
small penalty.

We subsequently applied the model comparison frame-
work to the NGRIP data set, mainly aiming to establish evi-
dence in favor or against the DW model over one or both 

of the oscillator models. We found that the results depend 
on whether one includes noise only in the observed x vari-
able of the oscillators, or in both. There is evidence that the 
DW model is better supported by the data than the oscilla-
tor models without noise in the y variable. Our estimate of 
the Bayes factor in favor of the DW model over the VDP 
and FHN models is 3.87 and 2.41, respectively. By look-
ing at the posterior parameter distributions, we can see that 
the oscillator models in fact operate in regimes where they 
approximate dynamics similar to the DW model. Specifi-
cally, the VDP oscillator dynamics can be characterized 
by deterministic oscillations with very long residences in 
either of the two branches of the slow manifold, which are 
however abandoned prematurely by a stochastic jump to the 
other branch. The FHN model, on the other hand, operates 
in a bi-stable regime, where transitions are noise-induced. 
As a consequence, we believe that in the case of �Y = 0 
there is a large contribution to the Bayes factors by a pen-
alty on the additional parameters of the oscillator models. 
Even though the Bayes factors are not very high, we can thus 
conclude that the double well potential paradigm is clearly 
favored over oscillator models with additive noise only in 
the x variable.

As we add noise to the y variable of the oscillator models, 
we saw clear improvement over the case with �Y = 0 , as 
inferred from Bayes factors of 6.27 and 4.83 for the VDP 
and FHN model, respectively. We inferred from the poste-
rior parameter distributions that the oscillator models now 
operate in dynamical regimes different from the case �Y = 0 . 
While the VDP model still is in an oscillatory regime, albeit 
with different properties, the FHN model now prefers an 
excitable regime with one fixed point either in a ’warm’ or 
’cold’ state. From the Bayes factors of 1.62 and 2.01 we now 
find slight evidence in favor of the VDPY and FHNY models 
over the DW model. As a consequence, our results agree 
in principle with previous model comparison studies that 
also compare a DW potential model with a VDP oscillator 
including additive noise in both variables (Kwasniok 2013; 
Mitsui and Crucifix 2017). However, while these studies 
find quantitatively overwhelming evidence in favor of the 
oscillator, we only find very mild evidence. To complement 
our quantitative analysis via Bayes factors, one can qualita-
tively observe the models’ statistical properties underlying 
our summary statistics. We show this in the Electronic sup-
plementary material for both best fit parameter estimates and 
posterior parameter ensemble averages. We conclude that 
none of the models can fit all statistics at the same time in a 
robust way. Furthermore, the different models don’t fit the 
individual statistics equally well. Although there might be 
a slight overall advantage for the FHNY model, our analysis 
does not suggest that either one of the DW, VDPY and FHNY 
models is much worse than the others in describing the sta-
tistical properties of the record.
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Finally, we considered an additional summary statistic in 
our Bayesian model comparison experiment, which meas-
ures the time reversal asymmetry of a time series and cap-
tures the characteristic saw-tooth shape of the DO events. 
We used this additional statistic in a ABC-PMC run on the 
FHN model, which can show time reversal asymmetry in a 
regime of relaxation oscillations. We observe that it is not 
possible to yield time reversal asymmetry comparable to the 
data in the model when also obeying constraints posed by 
the other statistical properties s1,2,3,4,5 , in particular the tem-
poral irregularity of events captured by the long-tailed dis-
tributions of waiting times. This is consistent with the results 
of the study by Kwasniok (2013), where it is observed that 
the best-fit VDP model inferred from the NGRIP data also 
does not show time-reversal asymmetry. We thus conclude 
that the time-asymmetry of the record cannot be explained 
by chance. It is a real feature of the data, which is not cap-
tured by the simple class of models investigated here. More 
complex models are necessary, such as models including 
time delays, which were shown to yield time-reversal asym-
metry to a certain degree when inferred from the NGRIP 
data (Boers et al. 2017).

Our study does not address external forcing directly, since 
we use summary statistics based on stationary properties 
only. This can however readily be done by including sum-
mary statistics of time-varying properties in the data, such 
as the summary statistics used in Lohmann and Ditlevsen 
(2018). Even though there is evidence for a contribution of 
external modulation to the statistical properties in the record 
(Mitsui and Crucifix 2017; Lohmann and Ditlevsen 2018), 
we still find it useful to analyze a class of models that can 
approximate the observed statistics without a forced modula-
tion of parameters. We believe that the observed statistical 
properties are largely due to stationary variability and not 
external modulation.

In conclusion, this study investigates the ability of a 
class of models to explain the statistical properties of the 
glacial climate. This class of models incorporates different 
dynamical paradigms, which can be interpolated by con-
tinuous changes of parameters. We conducted model com-
parison experiments using only key statistical properties of 
the data. Although we find that relaxation oscillator models 
with noise in both variables have a slight advantage over sto-
chastic motion in a double well potential, the Bayes factors 
are not very conclusive. None of the models can accurately 
fit all data statistics and all models have to rely heavily on 
chance for a realization to fit closely. This means that the 
dynamics of simple stochastic dynamical systems inferred 
from the glacial climate record must be noise-dominated 
and the deterministic backbone is less well-defined. As a 
result, different deterministic regimes from the spectrum in 
between double well potential and relaxation oscillations can 
be equally consistent with the data.
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Appendix: ABC‑PMC algorithm

In this appendix we present our adaption of the ABC-PMC 
algorithm first presented in Beaumont et al. (2009). It is 
an iterative procedure over subsequent populations t of N 
parameter samples �jt , called particles in the following. Each 
population is weighted by importance sampling weights wj

t , 
which are the likelihood ratios of the prior parameter dis-
tribution p(�jt) and the proposal distribution. The proposal 
distribution is a perturbation of the previous population by 
a Gaussian kernel Kt(⋅|�) , whose kernel width adapts after 
every population t. As discussed in Sec. 3, s(D�,D) is a vec-
tor of summary statistics, and �

t
 is a vector of tolerances, 

whose entries decrease for increasing population t.

1. Set population indicator t = 0

2. Set particle indicator j = 1

3. If t = 0 sample �∗∗ from p(⋅).
  If t > 0 sample �∗ from previous population 

with weights {wj

t−1
} and perturb particle to obtain 

�∗∗ ∼ Kt(⋅|�∗) , where Kt is a Gaussian kernel with covar-
iance Σt−1.

  If p(�∗∗) = 0 return to 3.
  Simulate data D′ from p(⋅|�∗∗).
  If s(D�,D) > 𝜖

t
 return to 3.

4. Set �jt = �∗∗ and calculate the particle weight 
w
j

t =
p(�

j
t )∑N

i=1
wi
t−1

Kt(�
i
t−1

)��jt ))

  If j < N , set j = j + 1 and go to 3.
5. Normalize weights and set Σt to twice the covariance of 

{�
j

t}

  If t < T  set t = t + 1 and go to 2.
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