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Abstract: In this work we show how a double-cover (DC) extension of the Cachazo, He

and Yuan formalism (CHY) can be used to provide a new realization for the factorization

of the amplitudes involving gluons and scalar fields. First, we propose a graphic representa-

tion for a color-ordered Yang-Mills (YM) and special Yang-Mills-Scalar (YMS) amplitudes

within the scattering equation formalism. Using the DC prescription, we are able to ob-

tain an algorithm (integration-rules) which decomposes amplitudes in terms of three-point

building-blocks. It is important to remark that the pole structure of this method is totally

different to ordinary factorization (which is a consequence of the scattering equations). Fi-

nally, as a byproduct, we show that the soft limit in the CHY approach, at leading order,

becomes trivial by using the technology described in this paper.
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1 Introduction

The Cachazo, He and Yuan (CHY) formalism, which was motivated by the remarkable work

of Witten [1], provides an intriguing novel way of computing gauge, gravity and effective

field theories S-matrix elements [2–6].

In the usual CHY formalism,1 amplitudes are contour integrals over the moduli space of

n-punctured Riemann spheres (M0,n). This contour integral is localized on the solutions of

the so-called scattering equations, Sa ≡
∑

b 6=a
ka·kb
σab

= 0, σab ≡ σa − σb, where (σ1, . . . , σn)

denote local coordinates over M0,n and the index “a” labels the external particles of

1We call this formalism the single-cover approach.
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momentum ka (and polarization vector εa) at the puncture “σa”. The prescription for the

tree-level S-matrix of any quantum field theory may be given by the expression

An =

∫
Γ
dµCHY

n ×∆(pqr) ∆(pqr)× ICHY
n (σ), (1.1)

where, ∆(pqr) ≡ σpqσqrσrp (Faddeev-Popov determinant), dµCHY
n ≡

∏n
a 6=p,q,r

dσa
Sa

, and

the Γ contour is defined by the n − 3 independent equations,2 Sa = 0, a 6= p, q, r. A

different integrand describes a different theory, in particular we focus our attention in pure

Yang-Mills and special Yang-Mills-Scalar theories. For example, for a color-ordered pure

Yang-Mills amplitude, AYM
n (1, 2, . . . , n), the CHY integrand is given by,

IYM
n (1, . . . , n) = PT(1,2,...,n) × Pf ′Ψn, (1.2)

with the Parke-Taylor factor (PT) and the reduced Pfaffian (Pf ′Ψn) define as

PT(1,2,...,n) =
1

σ12 σ23 · · ·σn1
, Pf ′Ψn =

(−1)i+j

σij
Pf[(Ψn)ijij ], (1.3)

where the 2n× 2n matrix, Ψn, is given by the blocks3

Ψn ≡

(
A −CT

C B

)
. (1.4)

These blocks are given by the expressions

Aab =
ka·kb
σab

, Bab =
εa·εb
σab

, Cab =
εa·kb
σab

, a 6= b, Aaa = Baa = 0, Caa = −
n∑
c=1
c 6=a

εa·kc
σac

.

(1.5)

The reduced matrix, (Ψn)ijij , is built by removing the rows and columns (i, j) from Ψn,

with 1 ≤ i < j ≤ n.

Recently, in [7] (see also ref. [8]), we showed how the CHY approach can be written

in a new formulation in which the basic variables σa live not on CP1 but on a quadratic

algebraic curve embedded in the complex projective plane CP2. Dubbed the “Λ-formalism”

in [7], we shall here refer to it as CHY on a double-cover (DC). At first sight it may seem to

be a complication to extend the CHY formalism in this manner. For example, the reduced

Pfaffian in the double cover representation is given by (see sections 2 and 3)

Pf ′ΨΛ
n =

(−1)i+j

(yi + σi)− (yj + σj)

[
n∏
a=1

ya + σa
ya

]
Pf
[
(ΨΛ

n)ijij

]
, with, y2

a = σ2
a − Λ2. (1.6)

However, as we shall demonstrate in the present paper the double-cover formalism adds a

new ingredient to the standard CHY formalism that is much more difficult to extract in

2It is simply to verify that,
∑n
a=1 Sa =

∑n
a=1 σa Sa =

∑n
a=1 σ

2
a Sa = 0, on the support of momentum

conservation and on-shell conditions, i.e. k1 + · · ·+ kn = 0 and k2
a = 0.

3Let us recall ourselves that the on-sell polarization vectors, εµa , obey the transverse condition, εa ·ka = 0.

The gauge symmetry of the theory is given by the shifting, εµa → εµa + kµa .

– 2 –
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Single Cover Double Cover

1. Symmetry: GL(2,C)

2. Fix 4-punctures on the curve

3. Apply the graphical rules.

It is not necessary to solve

any scattering equation

1. Symmetry: SL(2,C)

2. Fix 3-punctures on CP

3. Solve the scattering
equations

1

Figure 1. General characteristics of the single and double cover approach.

the single cover formulation. Briefly stated, it is this: after integrating the new auxiliary

variables, (y1, . . . , yn,Λ), the double-cover formalism naturally expresses the scattering

amplitudes so that they appear factorized into channels. Nevertheless, this procedure

must be performed with care, broadly speaking, the integral over the auxiliary variables is

based on two main points:

1. The number of fixed punctures (colored vertices) over each Riemann sheet.

2. The number of arrows cut by the branch-cut when it is getting closed.

In figure 2 and section 4 we will give detail about this subject. The propagator that forms

the bridge between two factorized pieces arises as the link between two separate CP1 in the

single-cover approach, thus intuitively explaining why the double-cover naturally expresses

amplitudes in a factorized manner. Since in most cases this process can be iterated, then, we

will not need to solve any scattering equation, which is one of the virtues of this approach.

In figure 1 we give a few characteristics of the single and double cover approach, in order

to reference some general differences among these two prescriptions.

It is interesting to remark that, in many cases, the factorizations obtained in this way

corresponds directly to the physical channels. Interestingly, there are instances where, un-

avoidably, the factorizations proceed in a slightly different manner: some physical channels

appear immediately, but others only resurface after pole-cancelling terms have rearranged

the expressions. This seems to lead to an intriguing connection to on-shell BCFW recur-

sion [9]. It turns out that momentum shifts that lead to poles at infinity become evaluated

in a quite straightforward way by means of the double-cover formalism.

On the other hand, several methods have been developed to compute the CHY contour

integral given in (1.1), most of them are applied to φ3 or focused on solving the scattering

equations [7, 10–24]. In this work, from the double-cover representation, we have been

able to achieve a graphic off-shell algorithm to carry out any color-ordered scattering of n-

gluons and interactions with scalar fields, resulting in an expansion in terms of three-point

amplitudes.4

4Notice that, although the methods presented in [14, 25] look somewhat similar to the one developed in

this paper, the process and the form of results obtained by us are different.

– 3 –
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In view that the algorithm obtained in this work is an off-shell method,5 then a natural

question arises, Is there any connection with the method proposed by Berends-Giele in [26]?

In order to illustrate the answer, we focus on the bi-adjoint φ3 theory (since its integration

rules are simpler [7]).

Usually, the double-color partial amplitude for the bi-adjoint φ3 theory is denoted as

m(0)(α|β), where α and β are two partial orderings [4]. When α = β, we denote m(0)(α|α)

as Aφ
3
(α) ≡ m(0)(α|α). In particular, let us analyse the five point example, Aφ

3
(1, 2, 3, 4, 5),

where the red label means an off-shell particle, k2
5 6= 0. Following the recurrence relation

obtained by us et al. from the double cover approach (see equation (C.7) in [13]), one has

Aφ
3
(1, 2, 3, 4, 5) =

Aφ
3
(3, 4, [5, 1], 2)

s̃234
+
Aφ

3
([3, 4], 5, 1, 2)

s̃34
+
Aφ

3
(3, [4, 5], 1, 2)

s̃123

=
1

s̃234

(
1

s̃2[5,1]
+

1

s̃23

)
+

1

s̃34

(
1

s̃12
+

1

s̃2[3,4]

)
+

1

s̃123

(
1

s̃12
+

1

s̃23

)
,

(1.7)

with, Aφ
3
(a, b, c, d) ≡ 1

s̃dc
+ 1

s̃da
, where {ka, kb, kc} can be off-shell. We have also introduced

the notation, k[a1,...,ap] ≡ ka1 +· · ·+kap , s̃a1a2...ap ≡
∑

i<j kai ·kaj and sa1a2...ap ≡ 1
2 k

2
[a1,...,ap].

Pictorially, (1.7) looks like [7],

1

5

43

2

1

43

2

11

1
43

111

43

2

3

2

2

1
4

3

1

3

4

1

224

2 1 4
3

14

1

4

3

2

113

2

2

2

2

2

5

5

5

5

5

5

5

5

5

. (1.8)

Although the color in each vertex has an important meaning, as we will explain later,

roughly speaking, the colored vertices symbolize the punctures have been fixed by the

5Since all intermediate particles are off-shell, including their polarization vectors, i.e. ε[i] · k[i] 6= 0, and

as it is an iterative program, then, we can consider this algorithm as an off-shell method.

– 4 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
8

global isometry generators (red means off-shell), while the black one means is unfixed

puncture over the double cover sphere.6

Otherwise, Mafra was able to obtain the Berends-Giele-like currents for the bi-adjoint

φ3 theory [27], where he used the Perturbiner method.7 For instance, the n-point ampli-

tude, Aφ
3
(1, . . . , n), is given by the recurrence relation

Aφ
3
(1, . . . , n) = lim

k2
n→0

s12...n−1 φ12...n−1 φn , (1.9)

where, φi = 1, φP = 1
sP

∑
XY=P φX φY , X, Y 6= ∅. The notation

∑
XY=P means a sum

over all possible ways to deconcatenate the word P in two non-empty words X and Y . For

example, φ1234 = 1
s1234

∑
XY=1234 φX φY = 1

s1234
(φ1 φ234 + φ12 φ34 + φ123 φ4). Therefore,

from (1.9), it is straightforward to see

Aφ
3
(1, 2, 3, 4, 5) = lim

k2
5→0

s1234 φ1234 φ5 = φ1 φ234 + φ12 φ34 + φ123 φ4

=
1

s234

(
1

s34
+

1

s23

)
+

1

s12 s34
+

1

s123

(
1

s12
+

1

s23

)
. (1.10)

Graphically, (1.10) is represented by the diagram,

   1

   1
   1

   1

   1

   1

   1

   1

   2

   2

   2

   2

   2

   2

   2

   2

   3

   3

   3

   3

   3

   3

   3

   3

   4

   4

   4

   4

   4

   4

   4

   4

21

4 3

, (1.11)

where the dashed line is an off-shell particle (k2
5 6= 0).

Clearly, the results obtained in (1.7) and (1.10) are related by the partial fraction

decomposition

1

s234 s34
=

1

s234(s34 − s234)
+

1

s34(s234 − s34)
=

1

s̃234 s̃2[5,1]
+

1

s̃34 s̃2[3,4]
, (1.12)

which is the same phenomenon found at loop-level [8, 31–38].

6Notice that the first diagram on the third column in (1.8) looks like the same to the fourth one. However,

they are different because during the Λ-algorithm process appeared spurious poles, as one can see in (1.7).

For instance, the first diagram is given by the expression, 1
s̃234 s̃2[5,1]

, and the fourth one by, 1
s̃34 s̃2[3,4]

.
7Currently, the Perturbiner method has been successfully used for several theories, [27–30].
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Nevertheless, although in Yang-Mills theory the double-cover approach also produces

spurious poles, such as those on the right-hand side in (1.12) (it can be checked in section 8

in the five-point example), we have no idea how to relate our method with the one de-

veloped by Berends-Giele in [26]. At four-point, the relation among these two methods is

straightforward, but at five-point, we do not know how to get it. This could be a possible

future direction in order to understand better the double-cover representation.

It is important to mention that in most of the case we will consider on-shell external

particles. Nevertheless, our method is able to support up to two off-shell gluons, such as

the example at four-point shows in section 8.

On the other hand, on the support of the scattering equations, the reduced Pfaffian

can write as a linear combination of Parke-Taylor factors [4, 39–41]

Pf ′Ψn =
∑

ρ∈Sn−2

PT(1,ρ(2,...,n−1),n)N
tree
1|ρ(2,...,n)|n, (1.13)

where the N tree
1|ρ(2,...,n)|n terms are the tree-level Bern-Carrasco-Johansson (BCJ) numera-

tors [42] and Sn−2 is the group of all possible permutations of the labels (2, . . . , n − 1).

Clearly, from the expansion in (1.13), the n-point ordered YM amplitude, AYM
n (1, . . . , n),

is written in terms of the (n− 2)! φ3-amplitudes, m(0)(1, . . . , n|1, ρ(2, . . . , n− 1), n), times

its corresponding BCJ factor, N tree
1|ρ(2,...,n)|n. Although this formula looks simple, notice that

the expansion grows quickly with the number of points, additionally, when the number

of points is large, the BCJ numerators are not straightforward to carry out. Conversely,

in the proposal given by us here, the n-point color-ordered YM amplitude is represented

just by one graph, and, after using iteratively the integration rules from figure 2, the final

answer is expressed as a product of the three-point amplitude, AYM
3 .

To end, it is interesting to remember that the usual CHY approach of the n-point color-

ordered YM amplitude can be seen as the d-dimensional version of the Roiban, Spradlin

and Volovich formula (RSV) [43] (which is called the connected prescription). Otherwise,

Cachazo, Svrcek and Witten (CSW) proposed an alternative8 formulation that describes

the same physical object given by the RSV formula (disconnected prescription) [44]. The

relation between the RSV and CSW was shown in refs. [45–47]. Since the double-cover

representation is able to express the n-point amplitude as a product of three-point building-

blocks, then, we think this is the disconnected version of the usual CHY approach. It

would be very interesting to obtain a relation between the CSW prescription and the CHY

double-cover representation.

Outline. The present work is organized in the following way:

In section 2, we give a simple review of the double-cover prescription for the double

color-ordered φ3 theory, for detail see [7].

In section 3, we introduce a new deferential form given by, Tab dσa ≡ dσa
(ya+σa)−(yb+σb)

,

which is the key to define the CHY matrices in the double-cover approach. In the original

paper where the double-cover prescription was introduced [7], the fundamental object is

8Historically speaking, the CSW approach was formulated before than the RSV.

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
8

given by the expression, τ(a,b)dσa ≡ 1
2ya

(
ya+yb
σab

+ 1
)
dσa, and although the relationship

between Tab and τ(a,b) looks pretty simple,

τ(a,b) =

(
ya + σa
ya

)
× Tab , (1.14)

on the support of y2
a = σ2

a − Λ2 and y2
b = σ2

b − Λ2, this is non-trivial.

Now, since Tab is antisymmetric, we define the mapping, 1
σab
→ Tab, to translate

the most familiar CHY matrices in the double-cover language. However, the Πα1,...,αp

matrix [48] must be treated with care [49].

To end the section, we propose the DC integrands to compute the scattering amplitudes

of n-gluons and interactions with scalar fields.

Section 3.1 is conceptually important, since here we introduce a graphical representa-

tion for CHY integrals, as much as in the double-as in the single-cover. These graphics are

essentials in this work, because all our computations are performed over them. Addition-

ally, we clarify the color notation of the vertices.

In section 4, we formulate the integration rules, perhaps the central part of the paper.

We perform an extensive and careful analysis of the double cover representation and the

integration over the auxiliary variables, (y1, . . . , yn,Λ).

First, we study a general situation, i.e. for any CHY integrand. In that case, we obtain

the rule-I, which basically claims that if any given cut does not encircle two colored-vertices,

then, that cut vanishes trivially. Next, we go to a particular case, the Yang-Mills integrand.

Thus, studying the Pfaffian, we obtain three more integration rules. Finally, in figure 2,

we have summarized all rules in a flowchart.

In sections 5 and 6, we compute the fundamental three-point building blocks. This

method is able to break a big graph as a product of three-point amplitudes, similar as it was

done in figure (1.8). Subsequent, we give the simplest example, the four-point Yang-Mills

amplitude. Applying the algorithm schematized in figure 2 over this four-point graph,

we obtain two standard factorization cuts and an additional (apparently) non-physical

contribution (which we call a strange-cut).

Next, in section 7, following the Pfaffian identities given in appendix B, we interpret

the strange-cuts as longitudinal contributions from some off-shell Yang-Mills amplitude.

To be more precise, we obtain the equality (up to overall sign),∫
dµCHY

(n−1) ×∆([1, 2] 3 4)2 × PT([1,2],3,...,n) ×
σ34

σ[1,2]3 σ4[1,2]
× Pf

[(
Ψ(n−1)

)[1,2]

[1,2]

]
=

∫
dµCHY

(n−1) ×∆([1, 2] 3 4)2 × PT([1,2],3,...,n) ×
1

σ[1,2]4
× Pf

[(
Ψ(n−1)

)[1,2] 4

[1,2] 4

]
= AYM

(n−1)([1, 2], 3, 4, . . . , n)
∣∣∣
εµ
[1,2]
→kµ

[1,2]

, (1.15)

where the integrand on the first line is a generic strange-cut, and the fixed puncture, σ[1,2],

is an off-shell vertex, (i.e. kµ[1,2] = kµ1 + kµ2 , ε
µ
[1,2] · k

µ
[1,2] 6= 0).

We also analyze the standard factorization cuts (standard-cuts), and the different ways

to glue their resulting-graphs. It is crucial in order to obtain a recursive method.

– 7 –
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CHY	Integral

Graph	Representation

Fix	4	Vertices
(Colored	Vertices)

Vanishes

The	graph	is	broken
by	a	vector	field	

(by	a	scalar-like	field)	

No

Yes

No

Yes

Yes

No

Yes

No

Vanishes

by	a	Longitudinal	vector	

Cut	encircling
2	colored-vertices

Cut	crossing
less	than	3	arrows

Cut	crossing
	3	arrows

Cut	crossing
	4	arrows

Singular	cut

The	graph is	broken

Figure 2. Integration rules as a Flowchart. Given a CHY integral, we build its graph representa-

tion, section 3.1. Each vertex of the graph represents a puncture on a Riemann sphere, including

its physical parameters (momentum and polarization vector). On the other hand, the arrows of the

graph represent the factors “ 1
σab

” while the reduced Pfaffian is always implicit in it. The integration

rules give a program to break any graph in terms of two smaller graphs (resulting-graphs). The

first step is to choose four vertices (colored vertices), we call to this process a gauge fixing. The

condition over the vertices, to obtain a good splitting of the graph (non-vanishing contribution), is

that each split part must contain two colored vertices. After getting a good splitting, we can focus

on the arrows. If the graph is split by cutting less than three arrows, then, this is a singular-cut

(section 4) and the method can not be applied, therefore, one must come back to choose a new

gauge fixing. Solving the singular-cut issue by choosing an appropriate gauge fixing, we have three

options: 1. The graph is split by cutting three arrows: in this case the two resulting graphs are

glued by an off-shell vector field. 2. The graph is split by cutting four arrows: in this case the two

resulting graphs are glued by a longitudinal vector field or scalar field. 3. The graph is split by

cutting more than four arrows: then, this contribution vanishes trivially. These rules are going to

be clearer after section 4.

In section 7.2, we basically generalize the results found previously in section 7 to more

than one off-shell particle. Additionally, we use reverse engineering to compute (applying

the algorithm in figure 2) some non-trivial standard factorization contributions.

In section 8 we apply all technology developed up to this point. Here, we carry out

analytically (and in a simple way) the five-point amplitude, AYM
5 (1, 2, 3, 4, 5).

– 8 –
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In sections 9 and 9.1, we see that the same ideas developed for Yang-Mills theory are

naturally extended to the special Yang-Mills-Scalar theory. We give some simple examples,

for instance, two gluons interacting with two scalars, and four and six scalars. Additionally,

in this section we examine as the Amatrix (the kinematic matrix) is factored into a product

of two matrices that involve scalars and gluons (usually denoted by Ψg,s:g).

In section 10, we obtain a connection between the Yang-Mills-Scalar amplitudes and

the strange-cuts. In other words, a strange-cut factorizes the reduced Pfaffian, Pf ′Ψn, into

a product of two Pfaffians that involve the matrix Ψg,s:g, which contains both gluons and

scalars.

Finally, in section 11, we see as the soft limit, at leading order, becomes simple to

carry out after using the ideas developed in this paper.

Some conclusions are presented in section 12, and in appendix A and B, we give a small

glossary and some properties of the off-shell Pfaffians, Pf
[
(Ψp)

i
i

]
, Pf

[
(Ψp)

ij
ij

]
, Pf

[
(Ψp)

ijk
ijk

]
.

In this work we describe carefully the results found by the author et al. in the recent

paper [50].

2 A brief review of the double cover representation

The double cover representation of the CHY construction is given as a contour integral on n-

punctured double-covered Riemann sphere. Restricted to the curves, Ca ≡ y2
a−σ2

a+Λ2 = 0

for a = 1, . . . , n, the pairs, (σ1, y1), (σ2, y2), . . . , (σn, yn), provide a set of doubled variables

(a translation table has been worked out in detail in ref. [7]).

As a fast overview, in the DC approach, a CHY-like integrand is built using the third

kind form, τ(a,b) dσa ≡
[

1
2

(
yb
ya

+ 1
)

1
σab

+ 1
2 ya

]
dσa, on the support Ca = Cb = 0, and the

integration measure is given by

dµΛ
n ×∆(pqr) ∆(pqr|m) =

 1

22
× dΛ

Λ
×

n∏
a=1

ya dya
Ca

×
n∏
d=1

d 6=p,q,r,m

dσd
Sτd

×∆(pqr) ∆(pqr|m) ,

(2.1)

where the Faddeev-Popov determinants, ∆(pqr) ∆(pqr|m), and the scattering equations, Sτa ’s,

are defined as (we use the notation (yσ)a ≡ ya + σa)

∆(pqr) =
yp yq yr

(yσ)p (yσ)q (yσ)r
×

∣∣∣∣∣∣∣∣
1 (yσ)p [(yσ)p]

2

1 (yσ)q [(yσ)q]
2

1 (yσ)r [(yσ)r]
2

∣∣∣∣∣∣∣∣ =
(
τ(p,q) τ(q,r) τ(r,p)

)−1
(2.2)

∆(pqr|m) = ∆(pqr) σm −∆(mpq) σr + ∆(rmp) σq −∆(qrm) σp, (2.3)

Sτa =

n∑
b 6=a

ka · kb τ(a,b) . (2.4)

Here is important to remind ourselves where the factors, ∆(pqr) and ∆(pqr|m), come

from. Such as in the single cover approach, the number of independent scattering equations,
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Sτa = 0, is “n−3”, which is straightforward to see of the identities (on the support Ca = 0),

n∑
a=1

ya S
τ
a =

n∑
a=1

ya (ya + σa)S
τ
a =

n∑
a=1

ya
ya + σa

Sτa = 0. (2.5)

From these identities, we can read the SL(2,C) generators given by global vectors

L±1 = Λ±1
n∑
a=1

ya (ya + σa)
∓1 ∂σa , L0 =

n∑
a=1

ya ∂σa , [L±1, L0] = ±L±1, [L1, L−1] = 2L0 .

(2.6)

The Faddeev-Popov determinant to fix the (2.5) redundancy is the factor defined in (2.2)

that we denoted by ∆(pqr).

When Λ is promoted as a variable, the double cover formulation is invariant under the

scale transformation, (σ1, . . . , σn, y1, . . . , yn,Λ) → (ρ σ1, . . . , ρ σn, y1, . . . , yn, ρΛ), ρ ∈ C∗,
which is generated by the vector field (on the support Ca = 0)

D = Λ ∂Λ +

n∑
a=1

σa ∂σa . (2.7)

The global vectors, {L±1, L0, D}, satisfy a gl(2,C) algebra, therefore, these generators can

be used to gauge four punctures, for example (σp, σq, σr, σm), and the integrand must be

multiplied by the Faddeev-Popov determinant defined in (2.3) and denoted by ∆(pqr|m) (in

the ∆(pqr|m) factor, the label “m” is referred to the scale generator). We call this process

a gauge fixing (or initial setup).

The amplitudes are derived from the integral

An =

∫
Γ
dµΛ

n ×
(−1) ∆(pqr) ×∆(pqr|m)

Sτm
× IΛ

n (σ, y) , (2.8)

where the Γ contour is defined by the equations,9 Λ = 0, Sτd = 0, for d 6= {p, q, r,m},
Ca = 0, ∀ a .

Like in the single-cover approach, the precise form of the integrand IΛ
n (σ, y) defines

the theory. For example, the double color-ordered partial amplitude φ3-theory, usually

denoted by m(0) = (α|β), corresponds to the integrand10

Iφ3

n (α|β) = PTτ
(α1,α2,...αn) × PTτ

(β1,β2,...βn) , (2.9)

with the Parke-Taylor factors, PTτ
(α1,α2,...αn) ≡ τ(α1,α2) τ(α2,α3) · · · τ(αn,α1) , where

α = (α1, . . . , αn) and β = (β1, . . . , βn) are two partial orderings (note that although τ(a,b)

is the equivalent to 1
σab

in the single-cover approach, this is neither antisymmetric nor

symmetric).

Similarly, other theories correspond to products of such modified Parke-Taylor factors

with additional expressions, much like in the original CHY formalism. Again, the inte-

grands for these other theories can be broken down to products of shuffled Parke-Taylor

expressions.

9The rewriting of the amplitude in terms of this contour “Γ”, which does not encircle the scattering

equation Sτm, follows from the global residue theorem.
10At loop level see [37, 38, 51].
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3 Matrices in the DC prescription

Since τ(a,b) 6= −τ(b,a), it is not immediately obvious how to define the CHY anti-symmetric

matrices to describe the double-cover analog of the pure Yang-Mills, Gravity, NLSM theory,

among others. In order to obtain a double-cover version for the CHY matrices, we rewrite

τ(a,b) as

τ(a,b) =
(yσ)a
ya
× Tab , with Tab =

1

(yσ)a − (yσ)b
on Ca = Cb = 0 . (3.1)

Clearly, Tab is an anti-symmetric form, Tab = −Tba, thus, we can establish the simple map,
1
σab
→ Tab, in order to define the matrices in the double-cover representation. For example,

the AΛ matrix is obtained from the A matrix by the replacement, AΛ ≡ A
∣∣∣

1
σab
→Tab

, i.e.

Aab = ka ·kb Tab, a 6= b and Aaa = 0. The same replacement is made for the other matrices,

BΛ ≡ B
∣∣∣

1
σab
→Tab

, CΛ ≡ C
∣∣∣

1
σab
→Tab

and ΨΛ
n ≡ Ψn

∣∣∣
1
σab
→Tab

. An identical correspondence

can be done for more matrices, for instance, XΛ
s and11 ΨΛ

g,s:g (see [48]), but, there is one

matrix that must be handled with care, the Πα1,...,αm matrix. This matrix has elements

such as,
∑

i′∈αp′ ,j∈αq
σi′ki′ ·kj
σi′j

, and we in [49] will explain how to deal with that type of

terms.

Before analyzing the pure and scalar Yang-Mills theories in the double-cover formalism,

it is useful to see how φ3-integrands may be rewritten in terms of Tab,

Iφ3

n (α|β) = PTτ
(α1,...αn) ×

[
n∏
a=1

(yσ)a
ya
× PTT

(β1,...βn)

]
,

=

(
n∏
a=1

(yσ)a
ya

)2

× PTT
(α1,...αn) × PTT

(β1,...βn), (3.2)

where PTT
(a1,a2,...an) ≡ Ta1a2 Ta2a3 · · ·Tana1 .

Following the CHY program developed in [4, 48], the DC prescription for the color-

ordered scattering amplitudes of the pure Yang-Mills theory can be obtained from (3.2) by

replacing, PTT
(β1,...,βn) → (−1)i+j Tij Pf[(ΨΛ

n)ijij ], i.e.

IYM
n (α) = PTτ

(α) ×Pf ′ΨΛ
n , Pf ′ΨΛ

n ≡ (−1)i+j Tij

([
n∏
a=1

(yσ)a
ya

]
Pf
[
(ΨΛ

n)ijij

])
, (3.3)

where (ΨΛ
n)ijij is built by removing the rows/columns i, j from ΨΛ

n , with 1 ≤ i < j ≤ n. In

a similar way, the DC integrand for the special Yang-Mills-Scalar theory is given by

IYMS
n (α) = PTτ

(α) ×
∑

{a,b}∈p.m.(s)

sgn({a,b}) δ
Ia1 ,Ib1 · · · δIam ,Ibm Ta1b1 · · ·Tambm Pf ′ΨΛ

g,s:g ,

(3.4)

11We will come back to the ΨΛ
g,s:g matrix later.
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where, Pf ′ΨΛ
g,s:g ≡ (−1)i+j Tij

([∏n
a=1

(yσ)a
ya

]
Pf
[
(ΨΛ

g,s:g)ijij

])
and ΨΛ

g,s:g ≡ Ψg,s:g

∣∣∣
1
σab
→Tab

.

Here, the set of gluons is denoted as “g” (g = {g1, . . . , gp}) while that the set of scalars12

as “s” (s = {s1, , . . . , s2m}). The symbol “p.m.” means perfect matching and, {a1, b1, . . . ,

am, bm} = s. Since the (3.4) expansion comes from the pfaffian, Pf(XΛ
s ) [48], then sgn({a,b})

means the corresponding signature (more details about this theory in section 9).

Finally, the pure Yang-Mills and the special Yang-Mills-Scalar amplitudes at tree-level

in the DC language are given by the integrals

AYM
n (α) =

∫
Γ
dµΛ

n

(−1) ∆(pqr) ∆(pqr|m)

Sτm
× IYM

n (α) , (3.5)

AYMS
n (α) =

∫
Γ
dµΛ

n

(−1) ∆(pqr) ∆(pqr|m)

Sτm
× IYMS

n (α) , (3.6)

where (α) ≡ (α1, α2, . . . , αn) is a partial (generic) ordering.

The following sections will be dedicated to the pure Yang-Mills theory. The general-

ization to the special Yang-Mills-Scalar theory is straightforward, and we will come back

to this model in section 9.

It is important to remark that due to the normalization of the kinematic parameters

and the polarization vectors chose in these notes, we are going to obtain an extra overall

factor, (2)
(4−n)

2 , compared with color-ordered Feynman rules given in13 [52].

3.1 Graphical representations of DC integrands

Since the method that we are going to describe in this work is based on so called the

Λ−algorithm, which is given by graphic rules [7], we introduce a simple graph representa-

tion for the amplitude AYM
n (α) in (3.5).

Like in φ3, a Parke-Taylor factor is drawn by lines join the vertices in a sequence way.

In order to specify the ordering we replace the lines by arrows, for example

PTτ
(1,...,n) =

n

4

3

2

1

= (−1)n ×
n

4

3

2

1

= (−1)n × PTτ
(n,...,1) . (3.7)

On the other hand, due to the factor, Pf
[
(ΨΛ

n)ijij

]
, is a non-ordered object, we do not

know how to build a graph representation for it. Nevertheless, there is a term in Pf ′ΨΛ
n that

one can draw, specifically Tij , which we sketch by red arrow, namely, Tij ≡ i→ j. Finally,

so as in [7], the factor,
(−1) ∆(pqr) ∆(pqr|m)

Sτm
, is symbolized by yellow vertices for (σp, σq, σr)

and a green one for the σm-puncture. Therefore, the complete graphs for the YM integrand

12We apologise for the abuse of notation between Maldenstand variables and the scalar particles. Addi-

tionally, notice that, p+ 2m = n, the total number of particles.
13In order to obtain the normalization given by Dixon in [52] for color ordered amplitudes, we just need

to perform the replacement, kµa →
√

2 kµa .
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in the DC representation is14

(−1) ∆(123) ∆(123|4)

Sτ4
× PTτ

(1,...,n) × (−1)2+pT2p

([
n∏
a=1

(yσ)a
ya

]
Pf
[
(ΨΛ

n)2p
2p

])
≡

4

3

2

1

n

p

,

(3.8)

where, without loss of generality, we have chosen (pqr|m) = (123|4) and (i, j) = (2, p). The

amplitude, AYM
n (1, 2, . . . , n), is given by

AYM
n (1, . . . , n) = A(2,p)

n (1, . . . , n) =

∫
dµΛ

n

4

3

2

1

n

p

, (3.9)

where the superscript denotes the (i, j) choosing, always with i < j in order to give the

direction to the red arrow, this is import in order to obtain the cyclic property. We call

to (3.9) a YM-graph.

Obviously, when all polarization vectors are transverse and all particles are on-shell

(i.e. ka · εa = k2
a = 0), the above expression is independent of the red arrows and colored

vertices [3, 48] (physical amplitudes). However, when there is one off-shell particle, this

notation becomes important and that expression depends on the colored vertices and red

arrows, such as it will be shown later.

The generalization of the graph representation from the DC prescription to the single-

cover approach is simple, it is just to replace the green vertex by a black one, since the

single-cover is not scale invariant, namely

∫
dµΛ

n

4

3

2

1

n

p

=

∫
dµCHY

n

4

3

2

1

n

p

.

On the right hand side, the colored vertices mean the punctures (σ1, σ2, σ3) are fixed, i.e.

the Faddeev-Popov determinant, ∆(123)2 = (σpqσqrσrp)
2. The map from the double-cover

to the single one can be seen in [7].

At last, it is useful to observe the following two properties

A(2,p)
n (1, 2, . . . , n) = A(2,p)

n (2, . . . , n, 1) = A(p,2)
n (3, . . . , n, 1, 2) = · · · = A(2,p)

n (n, 1 . . . , n−1),

A(2,p)
n (1, 2, . . . , p, . . . , n) = (−1)nA(p,2)

n (n, . . . , p, . . . , 2, 1) ,

(3.10)

Notice the flipping in the superscript, (2, p) → (p, 2), which is because the position of the

label “p” is first that the label “2” in the partial ordering. These identities are satisfied

even if the particles are off-shell.

14From this graph representation we can conclude that, a vertex with two black arrow is a gluon and, a

vertex with two black arrows and a red one represents a gluon such that its row/column (among 1 and n)

must be removed from the matrix.
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We would like to clarify that, although right now the notation, A
(i,j)
n (1, 2, . . . , n), looks

useless, it will become important since the method developed here depends of the gauge

fixing, i.e. of the choosing of (pqr|m) and (i, j).

4 The double-cover integration rules

In this section, we schematize how the double cover formalism works. Following, we obtain

some integration rules, which are applied to the YM-graphs, in order to solve the CHY

integral.

Since the amplitudes are computed in a manner that differs in detail substantially from

the original CHY prescription, we will provide a few explicit examples. Let us start the

discussion with the integration measure of the double cover prescription, namely

dµΛ
n =

[
1

22

]
︸ ︷︷ ︸

symmetry
factor

×

[
n∏
a=1

ya dya
Ca

]
︸ ︷︷ ︸

sum over
all configurations

×
[
dΛ

Λ

]
︸ ︷︷ ︸

split the sphere
in two pieces

×

 n∏
d 6=1,2,3,4

dσd
Sτd

 , (4.1)

where we have fixed (pqr|m) = (123|4). Like it was shown in [7], after integrating the

ya coordinates around the solutions, Ca = 0 ⇒ ya = ±
√
σ2
a − Λ2, ∀ a, we obtain a sum

over all possible configurations (cuts), i.e. 2n possibilities, where we call the sign, +/−,

the upper/lower sheet.15 For example, at six-point one has 26 = 2× 32 possibilities given,

schematically, by16

AYM
6 (1, 2, 3, 4, 5, 6) =

-Λ Λ

6
4

1
2

3

5

+

5
3

1

2

-Λ Λ

4

6

+

4

5

6

3

1 2

-Λ Λ

+ · · ·+
4

5

6

3

1 2

-Λ Λ

+ · · ·+

5

1
2

-Λ Λ

6

3

4

.

where upper/lower spheres are represent by the local coordinates, (ya =
√
σ2
a − Λ2, σa)

and (ya = −
√
σ2
a − Λ2, σa), respectively. The neck that joins the spheres represents the

branch-cut and the branch-points, −Λ and Λ, give the width of the neck.

Integrating Λ (keeping Λ ∼ O(0)), the double cover formulation factorized into two

single covers attached by an off-shell propagator (the free scattering equation in the DC for-

malism reduce to the propagator when one performs the integration over Λ). For instance,

let us consider the punctures {σp+1, . . . , σn, σ1, σ2} on the upper sheet and {σ3, σ4, . . . , σp},
on the lower one. The measure and the Faddeev-Popov determinant turn into17 (expanding

15Since the Z2 symmetry, ya → −ya, a = 1, 2, . . . , n, there are 2n−1 nonequivalents configurations. In

other words, the upper and lower spheres are indistinguishable.
16The factor (1/22) fixes the discrete symmetry, see [7].
17Let us remember that in this work we are using the momentum notation, k[a1,a2,...,ap] ≡ ka1 + · · ·+kap ,

s̃a1a2...ap ≡
∑p
i<j kai · kaj and sa1a2...ap ≡ k2

[a1,a2,...,ap].
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around Λ = 0)

dµΛ
n

∣∣∣p+1,...,1,2

3, 4,...,p
=
dΛ

Λ
×
[
dσp+1

Sp+1
· · · dσn

Sn

]
×
[
dσ5

S5
· · · dσp

Sp

]
+O(Λ)

=
dΛ

Λ
× dµCHY

n−(p−2)+1 × dµ
CHY
(p−2)+1 +O(Λ),

(−1)∆(123)∆(123|4)

Sτ4

∣∣∣∣p+1,...,1,2

3, 4,...,p

=
25

Λ4
(σ12 σ2[up] σ[up]1)2

[
1

s̃34...p

]
(σ[down]3 σ34 σ4[down])

2 +O
(
Λ−2

)
.

(4.2)

The two new punctures, σ[up] ≡ σ[p+1,...,n,1,2] and σ[down] ≡ σ[3,4,...,p], are fixed at the point,

“σ[up] = σ[down] = 0′′, on the upper and lower sphere, respectively. It is import to remind

that the sub-index at the puncture is related with the momentum of the particle, e.g. the

punctures σ[p+1,...,n,1,2] and σ[3,4,...,p] are particles with momenta, k[p+1,...,n,1,2] and k[3,4,...,p],

respectively (off-shell particles). This process is exemplified in the following figure,

-Λ Λ

6
4

1
2

3

5

Λ ∼ 0−−−−−−→

6
4

1
2

3

5

CHY

CHY

= 0,

4

5

6

3

1 2

-Λ Λ

Λ ∼ 0−−−−−−→
4

5

6

3

1 2

~Sτ4 = s345

CHY

CHY

=
Could be

non-zero,
(4.3)

where we have introduced the red vertices to point out they are off-shell particles (σ[up]

and σ[down]). Since over each sphere there is a single-cover prescription (see (4.2)), then,

three punctures must be fixed by the PSL(2,C) redundancy. Thus, this is the reason why

the first graphic in (4.3) vanish trivially (the PSL(2,C) symmetry has not been completely

fixed on the upper sphere).

This analysis gives us the first integration rule [7]

• Rule-I. All configurations (or cuts) where there are less (or more) than two colored

vertices (yellow or green) on each branch, vanish trivially.

For simplicity, we represent a cut (or configuration) over a YM-graph by a dashed red

line, which separates (encircles) the punctures localized on the upper (or lower) sheet. For

example,

4

3

2

1

n

p

cut-1

= 0 ,

4

3

2

1

n

p

cut-2

, (4.4)

where cut-1 vanished trivially by rule-I, but cut-2 could give a non-zero contribution.

4.1 Specific rules

The rule-I is a general rule which works for any integrand IΛ(σ, y). In this section, we are

going to formulate some integration rules which depend on the integrand similar to those

discussed in [7] for φ3.
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Following the rule-I, it is enough to focus on all possible non-vanishing configurations.

Expanding the YM integrand of each possible non-zero cut around Λ = 0, we notice that

PTτ
(1,...,n) ×Pf ′ΨΛ

n ∼ O(Λ6), The dashed red line cuts more than four arrows.

PTτ
(1,...,n) ×Pf ′ΨΛ

n ∼ Λ4 +O(Λ2), The dashed red line cuts three or four arrows.

PTτ
(1,...,n) ×Pf ′ΨΛ

n ∼ Λ2 +O(Λ0), The dashed red line cuts two arrows (singular cut).

(4.5)

Therefore, considering the expansion obtained in (4.2), the next rule is obvious

• Rule-II. If the dashed red line cuts less than three arrows over the YM-graph, the

integrand must be expanded next to leading order. If the dashed red line cuts three or

four arrows, the leading order expansion is sufficient. Otherwise, the cut is zero.

This rule is equivalent to the Λ−theorem given in [7].

Finally, the last rule we are going to formulate is only applied when the leading order

expansion is sufficient, i.e. when the dashed red line cuts three or four arrows.

First, let us consider the case when the dashed red line cuts three arrows over a

YM-graph (see cut-2 in (4.4)). The only way to break the Pfaffian into two pieces is by

introducing new polarization vectors, one for each new puncture (one for σ[up] and one for

σ[down]) [3, 14]. For example,18 let us consider the four point matrix, (ΨΛ
4 )13

13, and let us

expand its Pfaffian around Λ = 0 when the punctures, (σ1, σ2), are on the upper sphere

(while, (σ3, σ4), are on the lower one). It is straightforward to check the leading order

expansion

Pf
[
(ΨΛ

4 )13
13

] ∣∣∣1,2
3,4

=
σ2

4[1,2] σ3[1,2]

2 Λ2
×
∑
r

Pf



0 −
εr
[3,4]
·k2

σ[3,4]2
− ε1·k2

σ12
−C22

εr
[3,4]
·k2

σ[3,4]2
0

εr
[3,4]
·ε1

σ[3,4]1

εr
[3,4]
·ε2

σ[3,4]2

ε1·k2
σ12

ε1·εr[3,4]

σ1[3,4]
0 ε1·ε2

σ12

C22
ε2·εr[3,4]

σ2[3,4]

ε2·ε1
σ21

0


×

Pf



0 −
εr
[1,2]
·k4

σ[1,2]4
− ε3·k4

σ34
−C44

εr
[1,2]
·k4

σ[1,2]4
0

εr
[1,2]
·ε3

σ[1,2]3

εr
[1,2]
·ε4

σ[1,2]4

ε3·k4
σ34

ε3·εr[1,2]

σ3[1,2]
0 ε3·ε4

σ34

C44
ε4·εr[1,2]

σ4[1,2]

ε4·ε3
σ43

0


+O(Λ0)

=
σ2

4[1,2] σ3[1,2]

2 Λ2

∑
r

Pf
[
(Ψ3)

[3,4]1
[3,4]1

]
Pf
[
(Ψ3)

[1,2]3
[1,2]3

]
(4.6)

18Here, we are assuming the dashed red line is cutting two arrows of the Parke-Taylor factor, i.e.

PTτ(1,2,3,4)

∣∣∣1,2
3,4
∼ Λ2.
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where,19 C22 = −
(
ε2·k1
σ21

+
ε2·k[3,4]

σ2[3,4]

)
, C44 = −

(
ε4·k3
σ43

+
ε4·k[1,2]

σ4[1,2]

)
, σ[1,2] = σ[3,4] = 0, and the

new polarization vectors, (εr,µ[3,4], ε
r,µ
[1,2]), must satisfy the identity,

∑
r ε
r,µ
[3,4] ε

r,ν
[1,2] = ηµν . The

same phenomenon is observed to higher number of points. Thus, we have one more rule,

• Rule-IIIa. If the dashed red line cut three arrows over a YM-graph, there is an off-

shell vector field (gluon) propagating among the two resulting graphs ( standard-cut).

These two resulting graphs must be glued by the identity,
∑

r ε
r,µ
[up] ε

r,ν
[down] = ηµν .

On the other hand, when the dashed red line cuts four arrows, the Pfaffian (Pf
[
(ΨΛ

n)ijij

]
)

breaks spontaneously into two pieces. For instance,20 let us consider again the matrix,

(ΨΛ
4 )13

13, and let us expand its Pfaffian around Λ = 0, but now, when the punctures, (σ1, σ3),

are on the upper sphere (and (σ2, σ4), are on the lower one). It is simple to show that the

leading order contribution is given by

Pf
[
(ΨΛ

4 )13
13

] ∣∣∣1,3
2,4

= −
2σ2

4[1,3] σ
2
2[1,3]

Λ4
×(ε1·ε3)

σ13
×(ε2·ε4) (k2·k4)

σ2
24

+O(Λ−2)

= −
2σ2

4[1,3] σ
2
2[1,3]

Λ4
×Pf

[
0 ε1·ε3

σ13

ε3·ε1
σ31

0

]
×Pf


0 k2·k4

σ24
−C22 − ε4·k2

σ42

k4·k2
σ42

0 − ε2·k4
σ24

−C44

C22
ε2·k4
σ24

0 ε2·ε4
σ24

ε4·k2
σ42

C44
ε4·ε2
σ42

0

+O(Λ−2) ,

(4.7)

where, C22 = −
(
ε2·k4
σ24

+
ε2·k[1,3]

σ2[1,3]

)
, C44 = −

(
ε4·k2
σ42

+
ε4·k[1,3]

σ4[1,3]

)
and σ[2,4] = σ[1,3] = 0. The

same behavior can be checked at higher number of points. Finally, notice that the matrices

in (4.7) do not have any rows/columns associated with the new punctures, σ[2,4] and σ[1,3].

So, we have the last integration rule

• Rule-IIIb. When the dashed red line cut four arrows, the YM-graph breaks spon-

taneously into two resulting graphs, which are written in the single-cover language

(times a propagator given by (4.2)). All rows/columns related to the new resulting

vertices (punctures with four arrows) must be removed from the resulting matrices.

We call to this type of cut a strange-cut, since it produces spurious poles, such as we will

show in the next section.

In general, a puncture with four arrows represents a scalar particle [7] (we will come

back to this point later). Nevertheless, in pure Yang-Mills a puncture with four arrows can

be interpreted as a longitudinal gluon, it will be explained in detail later. Therefore, this

means that two new punctures, σ[up] and σ[down], are longitudinal off-shell gluons when the

dashed red line cuts four arrows.

19It is useful to recall that, ε2 · k[3,4] = −ε2 · k1 and ε4 · k[1,2] = −ε4 · k3.
20Here, we are assuming the dashed red line is cutting four arrows of the Parke-Taylor factor, i.e.

PTτ(1,2,3,4)

∣∣∣1,2
3,4
∼ Λ4.
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We would like to draw attention to the importance of the green vertex. This is dif-

ferentiated since its scattering equation is responsible for generating the propagator of a

given cut, via equation (4.2).

As a final observation, in order to formulate a well-defined method, we remark that

the integration rules obtained in this section are independent of the embedding. The only

thing that one must keep in mind is the following additional rule

• Rule-IV. The number of intersection points among the dashed red-line and the arrows

is given mod 2.

This means that when the dashed red-line cuts an even number of times an arrow, it is

always possible to find an embedding such that the dashed red-line does not cut with that

arrow. In a similar way, when the dashed red-line cuts an odd number of times an arrow,

it is always possible to find an embedding such that the dashed red-line cuts just one time

with that arrow.

5 Three-point building-block

Before giving simple examples, it is going to be useful to introduce the three-point functions

that will work as building blocks. Additionally, in appendix A we give a small glossary in

order to remember the notation.

The first three-point function, which is important to remark its normalization, is the

biadjoint φ3 computation

∫
dµCHY

3 × (σ[a][b] σ[b][c] σ[c][a])
2 × PT2

([a],[b],[c]) =

∫
dµCHY

3

[ a ]

[ b ][ c ]

= 1 , (5.1)

where the punctures are off-shell, k2
[i] 6= 0 and k[a] + k[b] + k[c] = 0.

It is obvious to note that any three-point computation is just algebraic, i.e. there is no

an integral (its integration measure is trivial, dµCHY
3 = 1). Therefore, for the rest of the

paper, we will always omit the symbol
∫
dµCHY

3 .

Additionally to the φ3 normalization, the off-shell (k2
[i] 6= 0 and k[a] + k[b] + k[c] = 0)

three-point building-block for the Yang-Mills amplitudes is given by the expression

A
([a],[b])
3 ([a], [b], [c]) =

[ a ]

[ c ] [ b ]

= (σ[a][b] σ[b][c] σ[c][a])
2×PT([a],[b],[c])

× (−1)

σ[a][b]
×Pf



0 − ε[a]·k[c]

σ[a][c]
− ε[b]·k[c]

σ[b][c]
−C[c][c]

ε[a]·k[c]

σ[a][c]
0

ε[a]·ε[b]
σ[a][b]

ε[a]·ε[c]
σ[a][c]

ε[b]·k[c]

σ[b][c]

ε[b]·ε[a]

σ[b][a]
0

ε[b]·ε[c]
σ[b][c]

C[c][c]
ε[c]·ε[a]

σ[c][a]

ε[c]·ε[b]
σ[c][b]

0
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= (ε[a]·ε[b])(ε[c]·k[a])−(ε[b]·ε[c])(ε[a]·k[c])+(ε[c]·ε[a])(ε[b]·k[c])

= εµ[a]ε
ν
[b]ε

ρ
[c]

{
1

2

[
ηµν(k[a]−k[b])ρ+ηνρ(k[b]−k[c])µ+ηρµ(k[c]−k[a])ν

]}
+

1

2

[
(ε[a]·k[a]) (ε[b]·ε[c])−(ε[b]·k[b]) (ε[a]·ε[c])

]
(5.2)

where C[c][c] = −
(
ε[c]·k[a]

σ[c][a]
+

ε[c]·k[b]

σ[c][b]

)
and ε[c] · k[c] = 0. Notice that the transverse constraint,

ε[c] · k[c] = 0, is a necessary and sufficient condition to obtain an expression independent of

σ[i]’s (the PSL(2,C) symmetry). In addition, the polarization vectors, ε[a] and ε[b], are not

necessarily transverse, i.e. ε[a] · k[a] 6= 0, ε[b] · k[b] 6= 0. This is an important fact since we

will need to apply the rule-IIIa to glue YM-graphs (
∑

r ε
r,µ
[up] ε

r,ν
[up] = ηµν).

Clearly, the three-point building block obtained in (5.2) is not the three-point Feynman

vertex (it has a correction which depends on the transversality of ε[a] and ε[b]). Therefore,

this means that the integration rules proposed in this paper are neither the Berends-Giele

method nor the usual Feynman rules.

It is trivial to see that under the transversality conditions, ε[a] · k[a] = 0 and ε[b] · k[b] =

0, (5.2) turns into the very well known three-point amplitude (the three-point Feynman

vertex), A
([a],[b])
3 ([a], [b], [c]) = (ε[a] · ε[b])(ε[c] · k[a]) + (ε[b] · ε[c])(ε[a] · k[b]) + (ε[c] · ε[a])(ε[b] · k[c]).

Finally, notice that although we have chosen a particular gauge in (5.2), i.e. (i, j) =

([a], [b]), by the properties in (3.10) one can always carry any off-shell three-point amplitude

to the form, A
([a],[b])
3 ([a], [b], [c]).

6 Simple examples

In this section, we show simple examples to understand the DC integration rules. First,

we start with the simple amplitude, AYM(1, 2, 3, 4). Next, we schematize the five-point

computation in order to introduce new concepts. The Yang-Mills amplitude at five-point

will be computed explicitly in section 8.

Before going explicitly to the computations, it is useful to understand which vertices

are fixed after using the integration rules, i.e. over the resulting graphs. By the rule-I, a

resulting graph inherits two fixed punctures from the gauge-fixing set, {p, q, r,m}. Addi-

tionally, as it was explained in section 4, the two new emerging punctures, (σ[up], σ[down]),

are also fixed, therefore, we can conclude that over a resulting the three fixed-vertices (since

those graphs are in the single-cover representation) are given by the set

{Fixed punctures} = ({All punctures in the graph}∩{p, q, r,m})∪{off-shell punctures}.
(6.1)

It is important to always keep this expression in mind, because our algorithm depends of

the gauge fixing.
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6.1 Four-point

First, we set the gauge fixing, (pqr|m) = (123|4). So, in order to avoid singular configura-

tions (see (4.5)), we choose the red arrow to join the vertices, (i, j) = (1, 3). Applying the

rule-I one has

A
(1,3)
4 (1, 2, 3, 4) =

∫
dµΛ

4

4 3

21

=

4 3

21

cut-1

+

4 3

21

cut-2

+

4 3

21

cut-3

.

(6.2)

Using the rules-II, III and the expansion in (4.2), the cuts become

4 3

21

cut-1

=
∑
r

  r[3,4 ]

21

×
(

1

s̃34

)
×

  r[1,2 ]

34

=

∑
r A

([3,4],1)
3 ([3, 4]r, 1, 2)×A([1,2],3)

3 ([1, 2]r, 3, 4)

s̃34
,

4 3

21

cut-2

=
∑
r

  r[2,3 ]

1

4

×
(

1

s̃14

)
×

  r[1,4 ]

2

3

=

∑
r A

(1,[2,3])
3 (1, [2, 3]r, 4)×A(3,[4,1])

3 (3, [4, 1]r, 2)

s̃14
,

4 3

21

cut-3

=

3

[ 2, 4 ]

1

×
(

1

s̃24

)
×

4

[ 1, 3 ]

2

,

(6.3)

where let us remind the red vertices mean they are fixed and off-shell punctures. Notice

the upper index “r” over the red vertices, for instance [a1, . . . , ai]
r, means the off-shell

punctures, σ[a1,...,ai], have as associated polarization vector, εr,µ[a1,...,ai]
.

As it was said above, the four black-arrows on the off-shell punctures over the resulting

graphs in cut-3 mean all rows/columns related with them must be removed from Ψ matrix

(rule-IIIb). In other words, these off-shell vertices have an associated polarization vector

proportional to their momentum, i.e. longitudinal gluons. The explicit computation will

be performed in (6.4), and in the next section we will give more details about this issue.

Using the three-point off-shell building-block, A
([a],[b])
3 ([a], [b], [c]) given in (5.2), and

the gluing identity,
∑

r ε
r,µ
[3,4] ε

r,ν
[1,2] = ηµν , it is simple to compute cut-1

cut-1 =

∑
r A

([3,4],1)
3 ([3, 4]r, 1, 2)×A([1,2],3)

3 ([1, 2]r, 3, 4)

s̃34

=

(
2

s12

)
×
{
−(ε1·k2)(ε2·ε3)(k3·ε4)−cyc(1,2,3,4) +(ε1·k2)(ε2·ε4)(k4·ε3)+cyc(1,2,4,3)

+
s13

2
(ε1·ε2)(ε3·ε4)

}
.

– 20 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
8

Analogously,

cut-2 =

∑
r A

(1,[2,3])
3 (1, [2, 3]r, 4)×A(3,[4,1])

3 (3, [4, 1]r, 2)

s̃14

= cut-1
∣∣∣
(1,2,3,4)→ (4,1,2,3)

,

with,
∑

r ε
r,µ
[2,3] ε

r,ν
[4,1] = ηµν .

Finally, to compute cut-3, we just read the resulting graphs, namely

3

[ 2, 4 ]

1

=
(σ1[2,4]σ[2,4]3σ31)2

(σ1[2,4]σ[2,4]1) (σ[2,4]3σ3[2,4])
× 1

σ13
Pf

[
0 ε1·ε3

σ13

ε3·ε1
σ31

0

]
= (ε1·ε3),

4

[ 1, 3 ]

2

=
(σ2[1,3]σ[1,3]4σ42)2

(σ[1,3]2σ2[1,3]) (σ[1,3]4σ4[1,3])
×Pf


0 s̃24

σ24
−C22 − ε4·k2σ42

s̃42
σ42

0 − ε2·k4σ24
−C44

C22
ε2·k4
σ24

0 ε2·ε4
σ24

ε4·k2
σ42

C44
ε4·ε2
σ42

0

 = s̃24 (ε2·ε4),

(6.4)

where, C22 = −
(
ε2·k4
σ24

+
ε2·k[1,3]

σ2[1,3]

)
and C44 = −

(
ε4·k2
σ42

+
ε4·k[1,3]

σ4[1,3]

)
. Therefore

cut-3 = (ε1 · ε3)(ε2 · ε4) . (6.5)

It is straightforward to check that, in fact, AYM
4 (1, 2, 3, 4) = cut-1 +cut-2 +cut-3.

As a final remark, it is interesting to see that the strange-cut 3 is related with the

quartic vertex, Tr
(

[Aµ, Aν ]2
)

. First, notice that the cut-3 can be rewritten as

cut-3 = εµ1 ε
ν
2 ε

ρ
3 ε

δ
4 [ηµρηνδ] . (6.6)

On other hand, the color-ordered contact vertex is given by21

1

2 3

4
= εµ1 ε

ν
2 ε

ρ
3 ε

δ
4

[
ηµρηνδ −

1

2
(ηµνηρδ + ηµδηνρ)

]
. (6.7)

Clearly, the first term matched perfectly, but, the others two are not present in cut-3. This

fact confirms that the integration rules proposed in this paper are not the Feynman rules,

as a consequence, we obtain spurious poles.

6.2 Five-point

Like in the previous example, we choose the gauge fixing (pqr|m) = (123|4). Additionally,

to avoid singular cuts (see (4.5)), we pick out the red arrow among the vertices, (i, j) =

21See Dixon normalization in [52].
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(1, 3). Thus, applying the integration rules, one has the cutting expansion

A
(1,3)
5 (1, 2, 3, 4, 5) =

∫
dµΛ

5
5

4 3

2

1

=
5

4 3

2

1

cut-1

+
5

4 3

2

1

cut-2

+
5

4 3

2

1

cut-3

+
5

4 3

2

1

cut-4

+
5

4 3

2

11

cut-5

. (6.8)

This expansion has been verified numerically and we will compute it explicitly in the last

section.

Since one of our objectives is to describe a Yang-Mills CHY-algorithm, we need to

understand how to apply the integration rules over the resulting graphs. For example, in

the φ3 algorithm obtained in [7], the resulting gauge fixing can not be modified on the go

to compute the resulting graphs. As an illustration, let us consider cut-2 in figure (6.8),

5

4 3

2

1

cut-2

=
∑
r

[ 3, 4, 5 ]

1 2

r

×
(

1

s̃345

)
×
∫
dµCHY

4

4 3

5 [1, 2 ] r

(6.9)

=

∑
r A

([3,4,5],1)
3 ([3, 4, 5]r, 1, 2)×A([1,2],3)

4 ([1, 2]r, 3, 4, 5)

s̃345
,

where the graphs are glued by the identity,
∑

r ε
r,µ
[3,4,5] ε

r,ν
[1,2] = ηµν . Clearly, the integration

rules can not be used over the resulting four-point graph because there is a singular cut (a

configuration that cuts two arrows). A naive solution would be just to change its resulting

setup, e.g. by moving the red arrow, (i, j) = ([1, 2], 3), to the one that joins the vertices,

(i, j) = ([1, 2], 4). However, a simple numerical computation shows a mismatch,

∑
r

[ 3, 4, 5 ]

1 2

r

∫
dµCHY

4

4 3

5 [1, 2 ] r

6=
∑
r

[ 3, 4, 5 ]

1 2

r

∫
dµCHY

4

[ 1, 2 ]
r

34

5

,

(6.10)

with
∑

r ε
r,µ
[3,4,5] ε

r,ν
[1,2] = ηµν . This fact is a consequence that the polarization vectors, εr,µ[3,4,5]

and εr,ν[1,2], are not transverse (εr[3,4,5] · k[3,4,5] 6= 0, εr[1,2] · k[1,2] 6= 0). In the next section, we

are going to solve this drawback.

7 Longitudinal and transverse gluons

Additionally to the standard factorization cuts, where a YM-graph is splitting in two

smaller ones with an off-shell gluon propagating among them (standard-cuts), we have also
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obtained some strange contributions (strange-cut), with no obvious physical interpretation.

In this section, we study these strange-cuts.

Under the gauge fixing, (pqr|m) = (123|4) and with the red arrow over, (i, j) = (1, 3),

a generic strange-cut encircles the vertices, (1, 3, p + 1, . . . , n), produces the following two

types of resulting graphs

∫
dµCHY

(n−p+3)

13

n

p+ 1[ 2 ..., p ]

,

∫
dµCHY

(p−1)

[ 1, 3, p+ 1 ..., n ]

2

5

p

4

=
k2

[1,3,p+1,...,n]

2

∫
dµCHY

(p−1)

[ 1, 3, p+1 ..., n ]

2

5

p

4

,

(7.1)

where we used the property-I (appendix B) to obtain the equality. Notice that from the

rule-IIIa, the associated matrices of these two resulting graphs are given by, (Ψg,s:g)
1 3 [2,4,...,p]
1 3 [2,4,...,p]

and (Ψg,s:g)
[1,3,p+1,...,n]
[1,3,p+1...,n] , where the gluon and scalar sets are given by the particles, g =

{1, 3, p + 1, . . . , n}, g = {2, 4, 5, . . . , p}, s = {[2, 4, . . . , p]} and s = {[1, 3, p + 1, . . . , n]},
respectively. In section 10, we will come back to this point.

Using (7.1) and the property-II of the appendix B, we obtain the identity

∫
dµCHY

(n−p+3)

13

n

p+ 1[ 2 ..., p ] ∫
dµCHY

(p−1)

[ 1, 3, p+ 1 ..., n ]

2

5

p

4

= 2
∑
L

∫
dµCHY

(n−p+3) n

p+ 1

13

[ 2 ..., p ]
L ∫

dµCHY
(p−1)

L

2

5

p

4

[ 1, 3, p+1 ..., n ]

,

(7.2)

with,22
∑

L ε
L,µ
[2,4,5,...,p] ε

L,ν
[1,3,p+1,...,n] =

kµ
[2,4,5,...,p]

kν
[1,3,p+1,...,n]

k[2,4,5,...,p]·k[1,3,p+1,...,n]
.

It is clear that this equality give us the following physical interpretation for the

strange cuts

• All strange-cuts can be rewritten as a product of two YM-graphs, which must be glued

by a longitudinal gluon.

For example, it is trivial to verify that the result found in (6.5) for cut-3 can be rewrit-

ten as, cut-3 =
(

2
s̃24

)∑
LA

([2,4],1)
3 ([2, 4]L, 1, 3) × A

(4,[1,3])
3 (4, [1, 3]L, 2) = (ε1 · ε3)(ε2 · ε4),

where the three-point building blocks are gluing by the identity,
∑

L ε
L,µ
[2,4] ε

L,ν
[1,3] =

kµ
[2,4]

kν
[1,3]

k[2,4]·k[1,3]

(longitudinal gluons).

7.1 Transverse gluons

On the other hand, despite to the result obtained in (7.2), we still do not know how to deal

with some resulting graphs, for example, the four-point in (6.9).

22This identity can be easily extended to another setup.
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Nevertheless, from the properties-III, IV in appendix B, it is straightforward to obtain

the following identities for a general standard cut

∫
dµCHY

(p−1)

p

4 3

L
[ p+1, .., n, 1, 2 ]

∣∣∣∣∣∣∣∣
εL,µ
[p+1...n,1,2]

→kµ
[p+1...n,1,2]

= (−)

∫
dµCHY

(p−1)

34

p L
[ p+1, .., n, 1, 2 ]

∣∣∣∣∣∣∣∣
εL,µ
[p+1...n,1,2]

→kµ
[p+1...n,1,2]

,

∑
T

∫
dµCHY

(n−p+3) n

p+ 1

12

[ 3, 4 ..., p ]
T ∫

dµCHY
(p−1)

p

4 3

T
[ p+1, .., n, 1, 2 ]

=
∑
T

∫
dµCHY

(n−p+3) n

p+ 1

12

[ 3, 4 ..., p ]
T ∫

dµCHY
(p−1)

34

p T
[ p+1, .., n, 1, 2 ]

,

∑
r

∫
dµCHY

(n−p+3) n

p+ 1

12

[ 3, 4 ..., p ]
r ∫

dµCHY
(p−1)

p

4 3

r
[ p+1, .., n, 1, 2 ]

=
∑
A

∫
dµCHY

(n−p+3) n

p+ 1

12

[ 3, 4 ..., p ] A ∫
dµCHY

(p−1)

34

p A
[ p+1, .., n, 1, 2 ]

,

(7.3)

where we have picked up as the initial setup, (pqr|m) = (123|4), the red arrow from,

(i, j) = (1, 3), and the gluing identities are given by,
∑

r ε
r,µ
[3,4,...,p] ε

r,ν
[p+1,...,n,1,2] = ηµν ,∑

T ε
T,µ
[3,4,...,p] ε

T,ν
[p+1,...,n,1,2] = ηµν −

kµ
[3,4,...,p]

kν
[p+1,...,n,1,2]

k[3,4,...,p]·k[p+1,...,n,1,2]
and

∑
A ε

A,µ
[3,4,...,p] ε

A,ν
[p+1,...,n,1,2] = ηµν −

2 kµ
[3,4,...,p]

kν
[p+1,...,n,1,2]

k[3,4,...,p]·k[p+1,...,n,1,2]
. Notice that the last equality is a consequence of the first two ones.

For example, it is not hard to check (numerically) the equality

∑
r

[ 3, 4, 5 ]

1 2

r

∫
dµCHY

4

4 3

5 [1, 2 ] r

=
∑
A

[ 3, 4, 5 ]

1 2

A

∫
dµCHY

4

[ 1, 2 ]
A

34

5

,

(7.4)

where,
∑

r ε
r,µ
[3,4,5] ε

r,ν
[1,2] = ηµν and

∑
A ε

A,µ
[3,4,5] ε

A,ν
[1,2] = ηµν−

2 kµ
[3,4,5]

kν
[1,2]

k[3,4,5]·k[1,2]
. This is very important

to observe that the integration rules can not be applied on the left-hand side, while that

on the right-hand side they work perfectly.

Up to this point, under the identities set down in this section, we are able to write

an ordered on-shell YM-amplitude as a sum of the product of two smaller partial off-shell

YM-amplitudes, which must be glued by off-shell gluons. However, it is important to

remark that those graphical identities proposed here involve only one red-vertex over each

resulting graph (off-shell gluon). In the next section, we will refine the gluing process to

go beyond more than one off-shell puncture.

7.2 More off-shell gluons

Since the above identities can only be applied to graphs with one off-shell particle, we

need to discuss what happens when there is more than one red puncture; this will help

us to develop a graph-algorithm for more general cases. In other words, we would like to

generalize the properties given in appendix B.
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Let us start by considering the following simple example, the cut-2 given in (6.9).

Using (7.3), it is enough just to focus on the graph

∫
dµCHY

4

[ 1, 2 ]
A

34

5

→
∫
dµΛ

4

[ 1, 2 ]
A

34

5

. (7.5)

Such as in (6.3), applying the integration rules and from the expansion in (4.2), this graph

turns into

∫
dµΛ

4

[ 1, 2 ]
A

34

5

=
∑
r

[
A

([1,2],[3,4])
3 ([1, 2]A, [3, 4]r, 5)A

(4,[5,1,2])
3 (4, [5, 1, 2]r, 3)

s̃5[1,2]

+
A

([1,2,3],4)
3 ([1, 2, 3]r, 4, 5)×A([4,5],[1,2])

3 ([4, 5]r, [1, 2]A, 3)

s̃54

]
+

4

[ 3, 5 ]

[ 1, 2 ]A

×
(

1

s̃53

)
×

5 3

[ 4, 1, 2 ]

,

(7.6)

with,
∑

r ε
r,µ
[3,4]ε

r,ν
[5,1,2] = ηµν and

∑
r ε
r,µ
[1,2,3]ε

r,ν
[4,5] = ηµν . The computation of these terms is

straightforward and the final result has been checked numerically. Note the emergence of

the spurious pole, s̃5[1,2] = k5 · (k1 + k2), which does not appear in any known method

before.23

This example showed us that the integration rules work perfectly over a YM-graph

with one off-shell particle (k2
[1,2] 6= 0 and εA[1,2] · k[1,2] 6= 0). In fact, we have successfully

tested them over bigger graphs and with more than one off-shell particles.24 Therefore, we

claim that our graph-method is recursive over YM-graphs. Now, we want to know what

happens with the strange-cuts, i.e. Can the conjecture in (7.2) be generalized to more than

one off-shell puncture?

In order to answer this question, let us consider the first strange-graph in (7.6),

4

[ 3, 5 ]

[ 1, 2 ]A

= (εA[1,2] · ε4) . (7.7)

Following the properties-I, II (appendix B), we are interested to compute the graph

[ 3, 5 ]

[ 1, 2 ]4

L

A

∣∣∣∣∣∣∣∣
εL,µ
[3,5]
→kµ

[3,5]

= (ε4 · k[3,5]) (εA[1,2] · k[3,4,5]) +
k2

[3,5] − k
2
[1,2]

2
(εA[1,2] · ε4). (7.8)

23These kind of poles are a direct consequence of the scattering equations, similar to the linear propagators

that appear at loop level [8, 31–36, 53–55].
24In this approach is enough to consider up three off-shell particles (the PSL(2,C) symmetry). In order

to extend these ideas to more off-shell particles, we must introduce the off-shell scattering equations.
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Notice that, although εA,µ[1,2] is not necessarily a transverse polarization vector, we can impose

the condition, εA[1,2] · k[1,2] = 0, since the desired result is independent of terms with the

form, εA[1,2] · ki. So, we now are able to reproduce (7.7) from (7.8). This result is easily

generalized to three off-shell punctures

[ c ]

[ a ]A[ b ]B

=
2

k2
[c] + k2

[b] − k
2
[a]

×

[ a ]

[ c ]

[ b ]

L

AB

∣∣∣∣∣∣∣∣ εL,µ
[c]
→kµ

[c]

εA
[a]
·k[a]=ε

B
[b]
·k[b]=0

= (εA[a] · ε
B
[b]) , (7.9)

with k[a] +k[b] +k[c] = 0 and k2
[i] 6= 0. Obviously, when the punctures “[a]” and “[b]” are on-

shell (k2
[a] = k2

[b] = ε[a] ·k[a] = ε[b] ·k[b] = 0), we obtain identity found in the previous section.

The same behavior has been seen over bigger graphs, so, we propose the generalization

∫
dµCHY

n

[ a ][ b ]

[ c ]

A

n - 3

1

B

=
2

k2
[c] + k2

[b] − k
2
[a]

×
∫
dµCHY

n

[ a ][ b ]

[ c ]

A

n - 3

1

B

L
∣∣∣∣∣∣∣∣ εL,µ

[c]
→kµ

[c]

εA
[a]
·k[a]=ε

B
[b]
·k[b]=0

, (7.10)

with, k[a] + k[b] + k[c] + k1 + · · · + k(n−3) = 0 and k2
[i] 6= 0, [i] ∈ {[a], [b], [c]}. Let us

remember ourselves that on the left-hand side the polarization vectors, εA,µ[a] and εB,µ[b] , are

not necessarily transverse, however, on the right-hand side, we impose the transversality

condition to carry out the computation.

On the other hand, the generalization of the second strange-graph in (7.6) is given by

[ C ]

[ p ] qP

=
k2

[C] − k
2
[p]

2
× (εP[p] · εq) , (7.11)

where, unlike to the graph in (7.9), the polarization vector εP,µ[p] must be transverse (εP[p] ·
k[p] = 0), this in order for the computation to not depend on σ′s (PSL(2,C) symmetry).

Note that we have only considered two off-shell punctures, k2
[C] 6= 0 and k2

[p] 6= 0, which is

enough since after gluing two strange graphs, such as those given in (7.10) and (7.11), one

must obtain a cut from a YM-graph, who can just have up to three off-shell particles.

Following the properties-I, II in appendix, we should focus on the graph (let us remind

that εP[p] · k[p] = 0)

(−)

[C ]

[ p ] q

L

P

∣∣∣∣∣∣∣∣
εL,µ
[C]
→kµ

[C]

=
k2

[C] − k
2
[p]

2
× (εP[p] · εq) =

[ C ]

[ p ] qP

. (7.12)

Visibly, we obtained a matching with (7.11).
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The same behavior is observed at four and five points, therefore, the generalization of

the identity obtained in (7.2) is direct

∫
dµCHY

n

[ a ][ b ]

[ c ]

A

n - 3

1

B

∫
dµCHY

m 1

m - 3

q[ p ]

[ C ]

P

= 2
∑
L

∫
dµCHY

n

[ a ][ b ]

[ c ]

A

n - 3

1

B

L
∣∣∣∣∣∣∣∣
εA
[a]
·k[a]=ε

B
[b]
·k[b]=0

∫
dµCHY

m 1

m - 3

q

L

P[ p ]

[C ]

,

(7.13)

where,
∑

L ε
L,µ
[c] εL,ν[C] = −

kµ
[c]
kν

[C]

k2
[c]

+k2
[b]
−k2

[a]

, and with εP[p] · k[p] = 0. It is useful to remember that

each graph satisfies the momentum conservation condition, k[a]+k[b]+k[c]+k1+· · ·+kn−3 =

k[p] + k[q] + k[C] + k1 + · · · + km−3 = 0, additionally, the forward limit, k[c] = −k[C], must

be imposed in order to glue the graphs.

7.2.1 Standard-cuts

Naively, one can think to achieve a recursive method the identities in (7.3) should be

generalized. However, when there is more than one off-shell particles with non-transverse

polarization vectors in a YM-graph, this generalization is not possible. Furthermore, notice

that the (7.3) relationships are not enough to carry out the four-point resulting graph

obtained from the cut-3 in the five-point amplitude. For instance, applying the third

identity given in (7.3) over the cut-3 in (6.8), one arrives

cut-3 =
1

s̃23
×
∑
r

[4, 5, 1 ]

3 2

r ∫
dµCHY

4

4

15

[2, 3 ] r

=
1

s̃23
×
∑
A

[4, 5, 1 ]

3 2

A ∫
dµCHY

4

4

15

[2, 3 ] A

,

(7.14)

where,
∑

r ε
r,µ
[4,5,1] ε

r,ν
[2,3] = ηµν and

∑
A ε

A,µ
[4,5,1] ε

A,ν
[2,3] = ηµν −

2 kµ
[4,5,1]

kν
[2,3]

k[4,5,1]·k[2,3]
. Clearly, the integra-

tion rules do not work over the above four-point graphs.

Fortunately, we have found two ways to face this issue, the first one is simple and

intuitive, and the second one is more systematic.

• First-method

The idea of this method is to use reverse engineering. First, we decompose the vectors,

εr,µ[i] , in two sectors, transverse and longitudinal, i.e.
∑

r ε
r,µ
[4,5,1] ε

r,ν
[2,3] =

∑
T ε

T,µ
[4,5,1] ε

T,ν
[2,3]+∑

L ε
L,µ
[4,5,1] ε

L,ν
[2,3], where,

∑
T ε

T,µ
[4,5,1] ε

T,ν
[2,3] = ηµν −

kµ
[4,5,1]

kν
[2,3]

k[4,5,1]·k[2,3]
and

∑
L ε

L,µ
[4,5,1] ε

L,ν
[2,3] =

kµ
[4,5,1]

kν
[2,3]

k[4,5,1]·k[2,3]
. By the property III in appendix B, over the transverse sector, we can

move the red arrow in the four-point graph from (i, j) = (1, [2, 3]T )→ (i, j) = (1, 4),

and now the integration rules can be applied.

On the other hand, although over the longitudinal sector the same trick doesn’t

work, we can make use reverse engineering with the help of (7.2) identity. To be

more precise, from the properties-I, II of the appendix B, it is straightforward to see
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the equality,

∫
dµCHY

4

4

15

[2, 3 ] L

∣∣∣∣∣∣∣∣
εL,µ
[2,3]
→kµ

[2,3]

=
k[2,4] · k[1,4,5]

2
×
∫
dµCHY

4

4

15

[2, 3 ]

. (7.15)

Clearly, the right-hand side graph is trivial to be computed via the integration rules,

however, it has a strange shape. Furthermore, observe that the matrix associated with

this graph is, (Ψg,s:g)
1 4 [2,3]
1 4 [2,3], where the gluon and scalar sets are given by, g = {1, 4, 5}

and s = {[2, 3]}. In section 9 we are going to discuss a little bit about this matrix.

This method can be extended to a higher number of particles or more off-shell

vertices.

• Second-method

The second method is based on the cross-ratio identities [13, 16]. For instance,

in (7.14) the scattering equation, S5 = s̃51
σ51

+
s̃5[2,3]

σ5[2,3]
+ s̃54

σ54
= 0, implies the cross-ratio

identity,
s̃[2,3]5

s̃45

(
σ1[2,3]σ45

σ[2,3]5σ41

)
= 1 or s̃54 PT(4,5,1,[2,3]) + s̃5[4,1] PT(4,1,5,[2,3]) = 0. Thus, the

four-point graph in (7.14) becomes

∫
dµCHY

4

4

15

[2, 3 ] r

=

(
s̃[2,3]5

s̃45

)∫
dµCHY

4

1

4r[ 2, 3 ]

5

, (7.16)

now the integration rules can be applied easily.

Let us consider one more example, the five-point off-shell graph,

∫
dµCHY

5

5 4

1

6

r
[ 2, 3 ]

. (7.17)

On the support of the scattering equations, S5 = s̃51
σ51

+
s̃5[2,3]

σ5[2,3]
+ s̃54

σ54
+ s̃56

σ56
=

0 and S6 = s̃61
σ61

+
s̃6[2,3]

σ6[2,3]
+ s̃64

σ64
+ s̃65

σ65
= 0, it is straightforward to get the cross-

ratio and the BCJ-like identity, s̃456 + s̃5[2,3]

(
σ[2,3]1σ54

σ5[2,3]σ41

)
+ s̃6[2,3]

(
σ[2,3]1σ64

σ6[2,3]σ41

)
= 0 and

PT(4,5,6,1,[2,3])s̃456 + PT(4,5,1,6,[2,3])(s̃456 + s̃61) + PT(4,1,5,6,[2,3])(s̃456 + s̃[5,6]1) = 0. So,

by using these identities, the five-point graph in (7.17) may be rewritten as

(
s̃5[2,3]

s̃456

)
×
∫
dµCHY

5

5

6 4

1

r
[ 2, 3 ]

+

(
s̃6[2,3]

s̃456

)
×
∫
dµCHY

5

5

4

1
r

[ 2, 3 ]

6
, (7.18)

(
s̃456 + s̃[5,6]1

s̃456

) ∫
dµCHY

5
5

6

4

1

r
[ 2, 3 ]

−
(
s̃456 + s̃61

s̃456

) ∫
dµCHY

5
5 6

4

1

r
[ 2, 3 ]

,

(7.19)
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respectively. On the second line, we obtained two YM graphs that can be computed

by using the integration rules. On the first line, a new type of graph has arisen,

and although we do not know its physical mean, the integration rules work perfectly

over it.25

From simple examples, we have presented two more ways to deal with that kind

of graphs. A generalization of the graph in (7.17) is given by

∫
dµCHY

p+3

[ a ]

[ b ][ c ]

1

p

, (7.20)

where, k2
[i] 6= 0, ε[i] ·k[i] 6= 0, [i] ∈ {[a], [b]}, and k2

[c] 6= 0, ε[c] ·k[c] = 0. Such as in above

examples, on the support, S1 = · · · = Sp = 0, the cross-ratio identity, s̃[c]1...p+· · · = 0,

and the BCJ-like identity, PT([c],1,...,p,[a],[b])s̃[c]1...p + PT([c],1,...,[a],p,[b])(s̃[c]1...p + s̃[a]p) +

· · ·+ PT([c],[a],1,...,p,[b])(s̃[c]1...p + s̃[a][p,...,1]) = 0, are satisfied. Thus, using one of these

two identities, we may rewrite (7.20) and apply the integration rules.

8 Examples

As a final illustration, in this section we would like to apply the previous ideas to compute,

explicitly, the five-point amplitude AYM
5 (1, 2, 3, 4, 5). The plan is to write its five cuts in

terms of the three-point building-block, AYM
3 .

Before computing the cuts obtained in (6.8) from A
(1,3)
5 (1, 2, 3, 4, 5), it is useful to carry

out the off-shell four-point amplitude,

A
([a],[c])
4 ([a], b, [c], d) =

∫
dµΛ

4

[ a ]

b[ c ]

d

=

∑
r

[
A

([a],[b,c])
3 ([a], [b, c]r, d)×A([c],[d,a])

3 ([c], [d, a]r, b)

s̃d[a]
+
A

([a,b],[c])
3 ([a, b]r, [c], d)A

([c,d],[a])
3 ([c, d]r, [a], b)

s̃[c]d

]

+2
∑
L

A
(d,[a,c])
3 (d, [a, c]L, b)

s̃bd
×A([b,d],[a])

3 ([b, d]L, [a], [c])
∣∣∣ ε[a]·k[a]=0

ε[c]·k[c]=0

,

where,
∑

r ε
r,µ
[b,c]ε

r,ν
[d,a] =

∑
r ε
r,µ
[a,b]ε

r,ν
[c,d] = ηµν ,

∑
L ε

L,µ
[a,c]ε

L,ν
[b,d] = −

kµ
[a,c]

kν
[b,d]

k2
[b,d]

+k2
[c]
−k2

[a]

, and the parti-

cles, “[a] and [c]”, can be off-shell and non-transverse, i.e. k2
[a] 6= 0, k2

[c] 6= 0 and ε[a] ·k[a] 6= 0,

ε[c] · k[c] 6= 0. Let us keep in mind that the momentum conservation condition is satisfies,

k[a] + kb + k[c] + kd = 0, and the particles, “b” and “d”, are on-shell and transverse,

k2
b = k2

d = εb · kb = εd · kd = 0. This four-point result has been checked numerically.

Using the off-shell amplitude, A
([a],[c])
4 ([a], b, [c], d), and the methods proposed in this

work, the five cuts obtained in (6.8) for the amplitude, AYM
5 (1, 2, 3, 4, 5), are given, explic-

25Let us recall that the dashed arrow (anti-line) on this graph means the factor “σ46” is in the numerator.

In addition, so as in [7], when the integration rules are applied on this type of graphs, the anti-line subtracts

in one the total number of arrows cut by a given configuration (dashed red line).
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itly, by the expressions

5

4 3

2

1

cut-1

=
∑
r

A
([5,1,2],3)
3 ([5, 1, 2]r, 3, 4)×A(1,[3,4])

4 (1, 2, [3, 4]r, 5)

s̃34

5

4 3

2

1

cut-2

=
∑
r

A
(2,[3,4,5])
3 (2, [3, 4, 5]r, 1)×A([1,2],4)

4 ([1, 2]r, 3, 4, 5)

s̃345

5

4 3

2

1

cut-3

=

(
s̃[2,3]5

s̃45

)
×
∑
r

A
(3,[4,5,1])
3 (3, [4, 5, 1]r, 2)×A(1,[2,3])

4 (1, 4, [2, 3]r, 5)

s̃451

5

4 3

2

1

cut-4

= 2
∑
L

A
(4,[1,3,5])
3 (4, [1, 3, 5]L, 2)×A(1,[2,4])

4 (1, 3, [2, 4]L, 5)

s̃24

5

4 3

2

11

cut-5

= 2
∑
L

A
([2,4,5],1)
3 ([2, 4, 5]L, 1, 3)×A([1,3],4)

4 ([1, 3]L, 2, 4, 5)

s̃245

where26
∑

r ε
r,µ
[a] ε

r,ν
[b] = ηµν and

∑
L ε

L,µ
[i] ε

L,ν
[j] =

kµ
[i]
kν

[j]

k[i]·k[j]
. Finally, it is not hard to verify that,

AYM
5 (1, 2, 3, 4, 5) = −(cut-1 + cut-2 + cut-3 + cut-4 + cut-5 ).

As a last point, notice the non conventional structure of the poles, for example, in the

cut-1 and cut-2 one has, s̃5[3,4] and s̃5[1,2] = −s̃5[3,4], respectively. This fact is a consequence

from the scattering equations and the (4.2) expansion.

9 Special Yang-Mills-Scalar theory

After giving an extended analysis and obtaining an alternative algorithm of the pure Yang-

Mills theory in the CHY framework, the generalization to the special Yang-Mills-Scalar

theory is simple.

The Lagrangian for this theory is given by the expression

LYMS = −Tr

1

4
FµνF

µν +
1

2
DµφIDµφ

I − g2

4

∑
I 6=J

[
φI , φJ

] , (9.1)

26To compute the cut-3 we used the second method developed in section 7.2.1.
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where the gauge group is U(N) and the scalars have a flavor index from a global symmetry

group, SO(M).

In [48], it was conjectured that the tree-level color-ordered amplitude for a set “g” of p

gluons (i.e. g = {g1, . . . , gp}) and a set “s” of 2m scalars27 (i.e. s = {s1, . . . , s2m}) is given

by the CHY integral (note that, p+ 2m = n, where n is the total number of particles)

AYMS
g:s =

∫
dµCHY

n ∆(pqr)2 × IYMS
g:s (1, . . . , n), (9.2)

with

IYMS
g:s (1, . . . , n) = PT(1,...,n) ×

∑
{a,b}∈p.m.(s)

δIa1 ,Ib1 · · · δIam ,Ibm
sgn({a,b})

σa1b1 · · ·σambm
Pf ′Ψg,s:g ,

(9.3)

where the Ψg,s:g matrix is given by the blocks

Ψg,s:g =

b ∈ g b ∈ s b ∈ g


Aab Aab
(
−CT

)
ab

a ∈ g

−−−− −−−− −−−−
Aab Aab

(
−CT

)
ab

a ∈ s

−−−− −−−− −−−−
Cab Cab Bab a ∈ g

. (9.4)

It is useful to remind that “p.m.” means perfect matchings, and note, {a1, b1, . . . , am, bm} =

s. For instance, let us consider the punctures, (σ1), as a gluon (g = {1}), and (σ2, σ3) as

scalars (s = {2, 3}), then, Ψg,s:g is a 4× 4 matrix given by

Ψg,s:g =


0 s̃12

σ12

s̃13
σ13

−C11

s̃21
σ21

0 s̃23
σ23
− ε1·k2

σ12

s̃31
σ31

s̃32
σ32

0 − ε1·k3
σ13

C11
ε1·k2
σ12

ε1·k3
σ13

0

 , (9.5)

where, C11 = −
(
ε1·k2
σ12

+ ε1·k3
σ13

)
.

As it was found in (3.4), the double-cover version of the integrand, IYMS
g:s , is given by

the expression

IYMS
g:s (1, . . . , n) = PTτ

(1,...,n)×
∑

{a,b}∈p.m.(s)

sgn({a,b}) δ
Ia1 ,Ib1 · · · δIam ,Ibm Ta1b1 · · ·Tambm Pf ′ΨΛ

g,s:g ,

(9.6)

where, Pf ′ΨΛ
g,s:g ≡ (−1)i+j Tij

([∏n
a=1

(yσ)a
ya

]
Pf
[
(ΨΛ

g,s:g)ijij

])
and ΨΛ

g,s:g ≡ Ψg,s:g

∣∣∣
1
σab
→Tab

.

Therefore, a partial color-ordered amplitude among g-gluons and s-scalars is obtained from

the integral, AYMS
g:s =

∫
dµΛ

n
∆(pqr)∆(pqr|m)

Sτm
× IYMS

g:s (1, . . . , n).

27We apologize for the abuse of the notation. However, remember in this work we are calling the Man-

delstam variables as s̃a1,...,ap (see appendix A).
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Before to start with the examples, we define the partial color-flavor-ordered amplitude,

AYMS
g:s (1, . . . , n)(a1,b1:···:am,bm), as

AYMS
g:s (1, . . . , n)(a1,b1:···:am,bm) =

∫
dµΛ

n

∆(pqr)∆(pqr|m)

Sτm
PTτ

(1,...,n) × Ta1b1 · · ·Tambm Pf ′Ψg,s:g .

(9.7)

Visibly, AYMS
g:s (1, . . . , n) =

∑
sgn({a,b}) δ

Ia1 ,Ib1 · · · δIam ,Ibm AYMS
g:s (1, . . . , n)(a1,b1:···:am,bm), where∑

=
∑
{a,b}∈p.m.(s).

9.1 Special Yang-Mills-Scalar examples

The ideas presented up to this point can be easily extrapolated to this special Yang-Mills-

Scalar theory. Here, we show some simple examples to illustrate how the integration rules

work over the amplitude, AYMS
g:s . Such as in Yang-Mills, we will introduce a superscript in

order to indicate the red arrow, (i, j).

Let us consider the four-point example, g = {1, 2} and s = {3, 4}. The color-

ordered amplitude is given by the integral, AYMS
g:s (g1, g2, s3, s4)(3,4) =

∫
dµΛ

4
∆(123)∆(123|4)

Sτ4

×PTτ
(1,2,3,4) × T34 Pf ′ΨΛ

g,s:g, where we have chosen, (pqr|m) = (123|4). To avoid sin-

gular configurations (see (4.5)), we pick out the red arrow to join the vertices, (i, j) =

(1, 3). Therefore, following the graphical construction in section 3.1, the partial amplitude,

AYMS
g:s (g1, g2, s3, s4)(3,4), is represented by the graph (which we call as YMS-graph)

A(1,3)
g:s (g1, g2, s3, s4)(3,4) =

∫
dµΛ

4

4 3

21

=

4 3

21

cut-1

+

4

3

2

1

cut-2

, (9.8)

where we have applied the rules-I, II. It is very important to note that, the vertices with two

black arrows are gluons, while the vertices with three black arrows are scalars. Additionally,

from the Pf ′ΨΛ
g,s:g definition, the scalar vertex with four arrows (three black and one red)

does not appear in the ΨΛ
g,s:g matrix, i.e. all its associated rows/columns must be removed

of ΨΛ
g,s:g (such as it was said at the end of section 4.1). Applying the rule-III over the

above cuts one has

4 3

21

cut-1

=
∑
r

21

[ 3, 4 ] r

×
(

1

s̃34

)
×

34

[ 1, 2 ] r

=

∑
r A

([3,4],1)
3 ([3, 4]r, 1, 2)A

([1,2],3)
g:s (g[1,2]r , s3, s4)(3,4)

s̃34

=
(ε1·k3)(ε2·k1)−(ε1·k2)(ε2·k3)−(ε1·ε2) s̃13

s̃12
,
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4

3

2

1

cut-2

=

1

4

[ 2, 3 ]

×
(

1

s̃14

)
×

3

2

[ 1, 4 ]

=
A

(1,[2,3])
g:s (g1, s[2,3], s4)([2,3],4) A

([1,4],3)
g:s (s[1,4], g2, s3)(3,[1,4])

s̃14
=

(ε1·k4) (ε2·k3)

s̃14
,

(9.9)

where we have used the gluing identity (by the rule-III ),
∑

r ε
r,µ
[3,4] ε

r,ν
[1,2] = ηµν , and the three-

point building-block in (5.2). Finally, it is not hard to show that, AYMS
g:s (g1, g2, s3, s4)(3,4) =

cut-1 + cut-2 , up to overall sign.

It is straightforward to note that the three-point function, A
([1,2],3)
g:s (g[1,2]r , s3, s4)(3,4) =

(εr[1,2] · k4) = εr,µ[1,2] × [(k4)µ − (k3)µ]
(

1
2

)
− (εr[1,2] · k[1,2])

(
1
2

)
, is the Feynman vertex,

Tr
(
Aµ
[
φI , ∂µφ

I
])

(Lagrangian (9.1)), plus an extra term that measures the transversality

of the polarization vector εr,µ[1,2] (like in pure Yang-Mills, expression (5.2)).

9.1.1 Scalar amplitudes, from A to the Ψg,s:g matrix

In this section we consider the simplest examples, just scalar particles, i.e. ΨΛ
g,s:g = AΛ.

Let us begin with the four-point computations, AYMS
g:s (s1, s2, s3, s4)(1,3:2,4) and AYMS

g:s (s1, s2,

s3, s4)(1,2:3,4). We set the gauge fixing, (pqr|m) = (123|4) and, to avoid singular cuts, we

choose the red arrow among, (i, j) = (1, 4). So, for the amplitude A
(1,4)
g:s (s1, s2, s3, s4)(1,3:2,4),

one has

A(1,4)
g:s (s1, s2, s3, s4)(1,3:2,4) =

∫
dµΛ

4

4 3

21

=

4

3

2

1

cut-1

, (9.10)

where the rules-I, II have been applied. By the rule-IIIb, it is simple to carry out cut-1

4

3

2

1

cut-1

=

1

4

[ 2, 3 ]

×
(

1

s̃14

)
×

3

2

[ 1, 4 ]

= 1×
(

1

s̃14

)
×

(σ[1,4]2 σ23 σ3[1,4])
2

(σ[1,4]2 σ23 σ3[1,4])×(σ2[1,4] σ[1,4]3)
×Pf

[
0 s̃23

σ23
s̃32
σ32

0

]
=

1

s̃14
×s̃23 = 1,

(9.11)

where we have taken into account that a scalar vertex with four arrows means one must

remove its row/column of the matrix. This simple result matched with the one given in [48]

(equation (4.5)), in addition, an interesting question arises, what is the physical meaning
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of the three-point resulting graphs obtained in (9.11)? (There is no cubic scalar vertex28

in (9.1).)

Such as we learned in pure Yang-Mills (section 7), the spurious pole contribution

in (9.11) can be seen as a longitudinal gluon contribution. To be more precise, it is

straightforward to check

AYMS
g:s (s1, s2, s3, s4)(1,3:2,4) =

2
∑

L A
([2,3],4)
g,s:g (s1, g[2,3]L , s4)(4,1)×A

([1,4],3)
g,s:g (g[1,4]L , s2, s3)(3,2)

s̃14
,

(9.12)

with the gluing identity,
∑

L ε
L,µ
[2,3]ε

L,ν
[1,4] =

kµ
[2,3]

kν
[1,4]

k[2,3]·k[1,4]
. This expression means that the φ4

vertex can be factorized as a product of two Yang-Mills-Scalar three-point amplitudes glue

by a longitudinal off-shell gluon.29 We will give a non-trivial example later.

Let us consider the next example, , AYMS
g:s (s1, s2, s3, s4)(1,2:3,4). Its YMS-graph is

given by

A(4,1)
g:s (s1, s2, s3, s4)(1,2:3,4) =

∫
dµΛ

4

4 3

21

=

4

3

2

1

cut-1

+

4

3

2

1

cut-2

,

(9.13)

where we have used the rules-I, II. While the cut-1 was computed previously in (9.11),

cut-1 = 1, the cut-2 is not obvious to carry out. If one applies the rule-IIIa, the cut-2

should be factorized as

4

3

2

1

cut-2

=
∑
r

1 2

[ 3, 4 ] r

×
(

1

s̃34

)
×

4 3

[ 1, 2 ] r

. (9.14)

Now the question is, How to read these resulting graphics?

Notice that these resulting graphs have an identical structure as the second one ob-

tained in (9.9), and so, their meaning is the same. In other words, each graphs in (9.14) have

a off-shell gluon vertex with three arrows (i.e. its row/column must be removed of the Ψg,s:g

matrix) and two on-shell scalar vertices, one of them with four-arrows (its row/column must

28As one can note from the previous examples (YM and YMS), the number of arrows cut by a given

configuration (red dashed line) is related with the Feynman vertex. In the above example, (9.10), the

YMS-graph has a configuration that cuts four arrows, therefore, this must be related with the Feynman

vertex, Tr
(∑ [

φI , φJ
]2 )

. Since this cut is the only one contribution, we could assume in advance that

the final answer was 1.
29This is the equivalent to the identity found in (7.2) for pure Yang-Mills.
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be removed of the Ψg,s:g matrix). Thus, the first graph becomes

1 2

[ 3, 4 ] r

= A([3,4],1)
g:s (g[3,4]r , s1, s2)(1,2) = (σ12 σ2[3,4] σ[3,4]1)2 × PT(1,2,[3,4]) ×

1

σ12

× 1

σ[3,4]1
Pf

 0 −
εr
[3,4]
·k2

σ[3,4]2
εr
[3,4]
·k2

σ[3,4]2
0

 = (k2 · εr[3,4]). (9.15)

In a similar way we compute the second resulting graph, therefore the cut-2 turns into,

cut-2 = 1
s̃34

∑
r A

([3,4],1)
g:s (g[3,4]r , s1, s2)(1,2) × A

(4,[1,2])
g:s (s3, s4, g[1,2]r)(3,4) = s̃23

s̃34
. Finally, the

total result for AYMS
g:s (s1, s2, s3, s4)(1,2:3,4) is given by

AYMS
g:s (s1, s2, s3, s4)(1,2:3,4) = 1+

∑
r A

([3,4],1)
g:s (g[3,4]r , s1, s2)(1,2)A

(4,[1,2])
g:s (s3, s4, g[1,2]r)(3,4)

s̃34
= − s̃13

s̃12
,

(9.16)

which is the same aswer found in [48] (up to overall sign).

Roughly speaking, one of the interesting things here is that the Ψg,s:g matrix can emerge

exponentially after factoring the A matrix, to be more precise, Pf ′ [A] =
∑

L Pf ′ [Ψg,s:g]×
Pf ′ [Ψg,s:g] in (9.11) (longitudinal contributions), and Pf ′ [A] =

∑
r Pf ′ [Ψg,s:g]× Pf ′ [Ψg,s:g]

in (9.14). This implies there are virtual gluons in a process that involves just scalar parti-

cles, which in the context of the special Yang-Mills-Scalar Lagrangian in (9.1) is a natural

fact. However, it can also be seen in pure30 φ4, and additionally, a similar phenomenon

appears in the effective field theories framework, which will be deeply studied in [49].

Finally, we consider the six-point amplitude, A
(6,1)
g:s (s1, s2, s3, s4, s5, s6)(1,2:3,5:4,6),

∫
dµΛ

6
6

5 4

3

21

= 6

5 4

3

21

cut-1

+
6

5 4

3

2

1

cut-2

+ 6

5 4

3

21

cut- 3

, (9.17)

where we have chosen, (pqr|m) = (124|6) and (i, j) = (6, 1). It is simple to see that the

cut-1 is factorized by a vector field, while the cut-2 by a scalar one, namely,

cut-1 =

∑
r A

([3,4,5,6],1)
g:s (g[3,4,5,6]r , s1, s2)(1,2) ×A

(6,[1,2])
g:s (s6, g[1,2]r , s3, s4, s5, )(3,5:4,6)

s̃3456
, (9.18)

cut-2 =
A

([4,5,6],1)
g:s (s3, s[4,5,6], s1, s2)(1,2:3,[4,5,6]) ×A

(6,[1,2,3])
g:s (s4, s5, s6, s[1,2,3])([1,2,3],5:4,6)

s̃456
,

(9.19)

30The partial amplitude in (9.12) represents the φ4 vertex.
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with,
∑

r ε
r,µ
[4,5,6] ε

r,ν
[1,2] = ηµν . On the other hand, the resulting graphs obtained from the

cut-3 do not have an obvious physical interpretation,

6

5 4

3

21

cut- 3

=

1

6

[ 2, 3 , 4, 5 ]

×
(

1

s̃16

)
×
∫
dµCHY

5
5

4 3

2

[ 1, 6 ]

. (9.20)

Nevertheless, a similar example was shown in (12.5) (the φ4 vertex), thus, it is simple to

check that cut-3 can be rewritten as a product of two YMS-graphs glued by a longitudinal

gluon,

cut-3 = 2

∑
L A

([2,3,4,5],6)
g:s (s6, s1, g[2,3,4,5]L)(6,1) ×A

(4,[1,6])
g:s (s2, s3, s4, s5, g[1,6]L)(2,4:3,5)

s̃16
,

(9.21)

where,
∑

L ε
L,µ
[2,3,4,5] ε

L,ν
[1,6] =

kµ
[2,3,4,5]

kν
[1,6]

k[2,3,4,5]·k[1,6]
. This identity can be extended a higer numeber of

points, such as it was done for pure Yang-Mills in section 7.

Finally, it is not hard to carry out each cut contribution

cut-1 =
1

s̃12

(
s̃25 + s̃24

s̃345
+

s̃23

s̃3[1,2]
+

s̃23

s̃345

)
, cut-2 = −

s̃23 − s̃3[1,2]

s̃123 s̃3[1,2]
, cut-3 =

1

s̃345
. (9.22)

These computations confirm that, AYMS
g:s (s1, s2, s3, s4, s5, s6)(1,2:3,5:4,6) = cut-1 + cut-2 +

cut-3 , which is in agreement with the result presented in [48].

10 Strange-cuts and special Yang-Mills-Scalar amplitudes

From the previous section, we learned that a vertex with four arrows may be interpreted

as a scalar particle. Additionally, we saw as the Ψg,s:g matrix can emerge after factorizing

the A matrix.

In another way, the resulting graphs obtained from a strange-cut in pure Yang-Mills

have an off-shell vertex with four arrows, thus, in this section we come back to this point in

order to understand its relationship with the scalar particles in a special Yang-Mills-Scalar

theory.

The first observation we would like to do is that there are two types of resulting graphs

obtained from a strange-cut, which are related by (7.1) (property-I of the appendix B).

Therefore, it is enough just to work with one of them, to be more precise

∫
dµΛ

(n−p+3)

13

n

p+ 1[ 2 ..., p ]

. (10.1)

It is simple to note that the integration rules can be applied over above graph.

Such as it was remarked in section 7, the associated matrix to the above graph is given

by, (Ψg:s,g)
13[2,...,p]
13[2,...,p], where g = {1, 3, p + 1, p + 2, . . . , n} and s = {[2, . . . , p]}. So, from this

point of view, the puncture “σ[2,3,...,p]” looks like an off-shell scalar particle, nevertheless,

the CHY integrand of this graph does not fit over any theory known. It is important to
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note that the Ψg:s,g matrix has appeared after a factorization process, instead to squeeze

or compactify the theory. For instance, in (6.4) we wrote the matrices, (Ψg:s,g)
13[2,4]
13[2,4] and

(Ψg:s,g)
[1,3]
[1,3], for g = {1, 3}, s = {[2, 4]} and g = {2, 4}, s = {[1, 3]}, respectively.

In order to go beyond to the longitudinal gluon interpretation given in section 7, we

are going to apply the integration rules over the graph in (10.1). Before carrying out

the general case, we would like give a simple example. Let us consider the four-point

computation,

∫
dµΛ

4

1

5[ 2, 4 ]

3

=

1

5[ 2, 4 ]

3

cut-1

+
1

5

[ 2, 4 ]

3

cut- 2

=


3

[ 2, 4, 5 ]

1

×
(

1

s̃5[2,4]

)
×

[2, 4 ]

[1, 3 ] 5

 +


∑
r

3

[ 2, 4 ]

[ 1, 5 ] r

×
(

1

s̃51

)
×

[2, 3, 4 ]

51

r
 ,

(10.2)

where we have used the integration rules and,
∑

r ε
r,µ
[1,5]ε

r,ν
[2,3,4] = ηµν . Notice that second

resulting graph obtained in the first bracket was already found in the previous section,

after factorizing a scattering among two gluons with two scalar particles, equation (9.9).

Thus, by writing (10.2) in terms of the three-point amplitudes one has

cut-1 =
A

([2,4],[1,3])
g:s (s[2,4], g5, s[1,3])([1,3],[2,4])

s̃5[2,4]
× 2 A

([2,4,5],1)
3 ([2, 4, 5]L, 1, 3)

∣∣∣
εL,µ
[2,4,5]

→
−kµ

[2,4,5]
k[2,4,5]·k[1,3]

,

cut-2 =
∑
r

A
(1,[2,3,4])
3 (1, [2, 3, 4]r, 5)

s̃51
× 2 A

([2,4],[1,5])
3 ([2, 4]L, [1, 5]r, 3)

∣∣∣ εr
[1,5]
·k[1,5]=0

ε
L,µ
[2,4]
→

k
µ
[2,4]

k2
[2,4]
−k2

[1,5]

.

(10.3)

Clearly, on the first line, the puncture “σ[2,4]” behaves as an off-shell scalar particle, which

interacts with one more off-shell scalar and an on-shell gluon.31 Therefore, from the fac-

torization method developed in this paper, a scattering of pure gluons is able to generate

an off-shell scalar-like particle.32

The above example is straightforward to generalize to higher number of points. Ap-

plying the integration rules over the graph in (10.1), we obtained two types of resulting

31Computing the cuts in (10.3), it is straightforward to check their results are given by the expressions, cut-

1 =
(ε1·ε3) (ε5·k[1,3])

s̃5[2,4]
and cut-2 =

(ε1·ε3) (ε5·k1)+(ε5·ε1) (ε3·k5)+(ε3·ε5) (ε1·k[2,3,4])

s̃51
. Observe the non-conventional

pole, s̃5[2,4].

32Additionally, the replacement, εL,µ[2,4,5] →
−kµ

[2,4,5]

k[2,4,5]·k[1,3]
, also appears in [29], in the context of the boundary

conditions for the Berends-Giele currents obtained by using the new NLSM action proposed in [56, 57].
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graphs,

∫
dµΛ

(n−p+3)

13

n

p+ 1[ 2 ..., p ]

=

13

n

p+ 1

[ 2
...
,
p
]

Type-1

+
∑

cut∈C 13

n

p+ 1[ 2 ..., p ]

Type-2

, (10.4)

where C is the set given by all possible punctures that the dashed red line can encircle,

C = {(1, 3), (1, 3, n), (1, 3, n, n− 1), . . . , (1, 3, n, . . . , p+ 2)}. The first resulting graph is the

generalization of cut-2 in (10.3),

type-1 =
∑
r

A
(1,[3,...,p])
n−p+2 (1, [3, 2, 4, . . . , p]r, p+ 1, . . . , n)

s̃1p+1...n

× 2 A
([2,...,p],[1,...,n])
3 ([2, . . . , p]L, [1, p+ 1, . . . , n]r, 3)

∣∣∣
Cond.

. (10.5)

where,
∑

r ε
r,µ
[3,2,4,...,p]ε

r,ν
[1,p+1,...,n] = ηµν , and the conditions, Cond =

{
εr[1,p+1,...,n] · k[1,p+1,...,n] = 0,

εL,µ[2,...,p] →
kµ

[2,...,p]

k2
[2,...,p]

−k2
[1,p+1,...,n]

}
. On the other hand, the cuts type-2 give arisen to off-shell scalar-

like particles in the context of special Yang-Mills-Scalar theory. For instance, let us consider

a generic element of the set C, (1, 3, n, . . . , i) ∈ C, i > p + 1, then, for this configuration

the cut becomes

cut (1,3,n,...,i) =
A

([1,3,...,i],[2,4,...,p])
g:s (s[1,3,n,...,i], s[2,4,...,p], gp+1, . . . , gi−1)([2,4,...,p],[1,3,n,...,i])

s̃[2,4,...,p]p+1,...,i−1

×
∫
dµCHY

(n−i+4)

13

n

i[ 2 ..., i - 1]

. (10.6)

Clearly, we have obtained an off-shell Yang-Mills-Scalar amplitude multiplied by a graph

with the same structure as the original one, therefore, we can applied (10.4) again.

One of the important things to remark here is to see as some off-shell scalar particles

(in a special Yang-Mills-Scalar theory) can emerge from the strange cuts. This fact confirms

the interpretation of seeing the off-shell puncture, “σ[2,...,p]”, as a scalar-like particle.

11 Soft limit

As a final section, we would show how the soft limit in pure Yang-Mills theory [58], at

leading order, can be computed in a simple way by using the factorization method developed

in this paper.
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Before going to the general case, let us consider the four-point example, AYM
4 (1, 2, 3, 4).

Such as it was shown in section 6.1, this amplitude can be written in the following way

AYM
4 (1, 2, 3, 4) =

∑
r

[
A

([3,4],1)
3 ([3, 4]r, 1, 2)A

([1,2],3)
3 ([1, 2]r, 3, 4)

s̃43
+

+
A

(1,[2,3])
3 (1, [2, 3]r, 4)A

(3,[4,1])
3 (3, [4, 1]r, 2)

s̃41

]
+

3

[ 2, 4 ]

1

×
(

1

s̃42

)
×

4

[ 1, 3 ]

2

,

(11.1)

where,
∑

r ε
r,µ
[3,4]ε

r,ν
[1,2] =

∑
r ε
r,µ
[2,3]ε

r,ν
[4,1] = ηµν . This important to recall that the setup used

was, (pqr|m) = (123|4), and the red arrow by joining the punctures (i, j) = (1, 3).

Now, we are taking the particle at the puncture “σ4” as the soft particle, i.e. kµ4 =

z qµ4 , with z → 0. Since that the second resulting graph on the second line in (11.1) is

proportional to s̃42, the only leading order contribution comes from the first and second

terms (with poles, s̃43 = z(q4 ·k3) and s̃41 = z(q4 ·k1), respectively). Notice that when, z →
0, the off-shell momenta of the particles at σ[3,4] and σ[4,1] become the on-shell momenta,

kµ[3,4] → kµ3 and kµ[4,1] → kµ1 , respectively. Thus, we only worry by the three-point functions,

A
([1,2],3)
3 ([1, 2]r, 3, 4) and A

(1,[2,3])
3 (1, [2, 3]r, 4). Using the building block given in (5.2), these

functions turn into (at leading order in z.)

A
([1,2],3)
3 ([1, 2]r, 3, 4) = (εr[1,2] · ε3) (ε4 · k[1,2]), A

(1,[2,3])
3 (1, [2, 3]r, 4) = (ε1 · εr[2,3]) (ε4 · k1).

Finally, from the gluing identities,
∑

r ε
r,µ
[3,4]ε

r,ν
[1,2] =

∑
r ε
r,µ
[2,3]ε

r,ν
[4,1] =ηµν , one has,

∑
r ε
r,µ
[3,4](ε

r
[1,2]·

ε3) = εµ3 and
∑

r(ε1 · εr[2,3])ε
r,ν
[4,1] = εν1 . Therefore, at leading order, the four-point amplitude

is given by

AYM
4 (1, 2, 3, z q4) =

1

z

(
ε4 · k1

q4 · k1
− ε4 · k3

q4 · k3

)
AYM

3 (1, 2, 3) + O(z0),

where we have used,33 ε4 · k[1,2] = −ε4 · k3 and A
(3,1)
3 (3, 1, 2) = AYM

3 (1, 2, 3).

This simple analysis can be generalized to a higher number of points, the main key is

that the soft particle must be surrounded by fixed punctures (yellow vertices). In order

to satisfy this requirement, we choose the gauge fixing, (pqr|m) = ((n − 1)12|n), the red

arrow on, (i, j) = (2, n), and the soft particle, kµn = z qµn, with z → 0. Under this setup,

one can apply the integration rules over the amplitude, AYM
n (1, . . . , n), to obtain

AYM
n (1, . . . , n) =

n−4∑
i=0

∑
r

A
(2,[O∗i ,n−1,n])
i+3 (1, 2,Oi, [O∗i , n−1, n]r)×A([1,2,Oi],n)

n−(i+1) ([1, 2,Oi]r,O∗i , n−1, n)

s̃nn−1O∗i

+
∑
r

A
([2,On−4,n−1],n)
3 ([2,On−4, n−1]r, n, 1)×A(2,[n,1])

n−1 (2,On−4, n−1, [n, 1]r, )

s̃n 1
+strange-cuts ,

(11.2)

33Notice that when, kµ[3,4] → kµ3 and εr,µ[3,4] → εµ3 , we may relabel the puncture σ[3,4] by σ3, in order to

indicate its associated momentum and polarization vector. Of course, this is also applied for σ[4,1].

– 39 –



J
H
E
P
0
5
(
2
0
1
9
)
1
2
8

where we have defined, O0 ≡ ∅, Oi ≡ {3, 4, . . . , i+2}, i = 0, . . . , n−4, O∗i ≡ {3, 4, 5, . . . , n−
2}�Oi, i = 0, . . . , n− 4, and with the gluing identities,

∑
r ε
r,µ
[i] ε

r,ν
[j] = ηµν . By the property

in (7.1), the resulting graphs obtained from a strange-cut always cancel out the pole (spu-

rious pole), therefore, those configurations do not contribute to the soft limit at leading

order. On the other hand, the leading order contribution from the second line in (11.2) is

given when O∗i is an empty set, i.e. when i = n − 4 (O∗n−4 = ∅). Thus, when z → 0 the

leading order contribution of (11.2) is given by

AYM
n (1, . . . , z qn) =

∑
r

A
(2,[n−1,n])
n−1 (1, 2,On−4, [n−1, n]r)×A(n,[1,2,On−4])

3 (n, [1, 2,On−4]r, n−1)

z qn·kn−1

+
∑
r

A
([2,On−4,n−1],n)
3 ([2,On−4, n−1]r, n, 1)×A(2,[n,1])

n−1 (2,On−4, n−1, [n, 1]r)

z qn·k1
+O(z0) .

(11.3)

Now, performing the same procedure as in the previous four-point example, it is trivial to

see that

AYM
n (1, . . . , z qn) =

1

z

(
εn · k1

qn · k1
− εn · kn−1

qn · kn−1

)
AYM
n−1(1, 2, . . . , n− 1) +O(z0) , (11.4)

which is the right answer [58].

12 Conclusions

In this work, we have obtained a new graphical method to compute the scattering of n-

gluons and interactions with scalar particles, which was developed under the double-cover

formulation of the CHY-approach. The main idea was to define a graph representation for

an ordered amplitude from the double-cover (and single-cover) prescription. By integrating

the extra parameter, “Λ”, the double-cover breaks into two single-cover and the integration

rules arose naturally. This process generates smaller YM/YMS-graphs and, as a byproduct,

some strange-graphs. The strange-graphs did not seem to have a simple physical interpre-

tation, however, we were able to conjecture that these are just longitudinal contributions

from YM/YMS amplitudes. To be more precise, under the gauge fixing, (pqr|m) = (123|4),

and by choosing the red arrow from the vertices, (i, j) = (1, 3), the integration rules over

the Yang-Mills amplitude, AYM
n (1, . . . , n), produce the off-shell general formula

• When n = 2m+ 1

AYM
n (1, 2, . . . , n) = (−1)×

{∑
r

A
(3,[On−3,1])
3 (3, [On−3, 1]r, 2)×A(1,[2,3])

n−1 (1, [2, 3]r,On−3)

s̃On−31

+

n−3∑
i=1

∑
r

A
(1,[3,Oi])
n−i (1, 2, [3,Oi]r,O∗i )×A

([O∗i ,1,2],3)
i+2 ([O∗i , 1, 2]r, 3,Oi)

s̃3Oi

−2×
n−3∑
i=1

∑
L

A
(1,[3,Oi])
n−i (1, 2, [3,Oi]L,O∗i )×A

([O∗i ,1,2],3)
i+2 ([O∗i , 1, 2]L, 3,Oi)

s̃3Oi

∣∣∣∣∣
2↔3

}
.

(12.1)
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• When n = 2m

AYM
n (1, 2, . . . , n) =

∑
r

A
(3,[On−3,1])
3 (3, [On−3, 1]r, 2)×A(1,[2,3])

n−1 (1, [2, 3]r,On−3)

s̃On−31

+

n−3∑
i=1

∑
r

(−1)(i+1)×
A

(1,[3,Oi])
n−i (1, 2, [3,Oi]r,O∗i )×A

([O∗i ,1,2],3)
i+2 ([O∗i , 1, 2]r, 3,Oi)

s̃3Oi

−2×
n−3∑
i=1

∑
L

(−1)(i+1)×
A

(1,[3,Oi])
n−i (1, 2, [3,Oi]L,O∗i )×A

([O∗i ,1,2],3)
i+2 ([O∗i , 1, 2]L, 3,Oi)

s̃3Oi

∣∣∣∣∣
2↔3

,

(12.2)

where we have defined the sets, O0 ≡ ∅, Oi ≡ {4, 5, . . . , i+ 3}, i = 1, . . . , n− 3, O∗n−3 ≡ ∅,
O∗i ≡ {4, 5, . . . , n}�Oi, i = 1, . . . , n− 3, and with the gluing identities,

∑
r ε
r,µ
[3,Oi]ε

r,ν
[O∗i ,1,2] =∑

r ε
r,µ
[On−3,1]ε

r,ν
[2,3] = ηµν ,

∑
L ε

L,µ
[2,Oi]ε

L,ν
[1,3,O∗i ] =

kµ
[2,Oi]

kν
[1,3,O∗

i
]

k[2,Oi]·k[1,3,O∗
i

]
. Let us remind ourselves the three

punctures which must be fixed in the smaller off-shell Yang-Mills amplitudes are given

by the set in (6.1), namely, {Fixed punctures} = ({All punctures in the graph} ∩
{1, 2, 3, 4}) ∪ {off-shell punctures}.

Notice that the poles, s̃2Oi , are not physical and these must cancel out. Although we do

not have a formal proof, we have carried out several examples to verify that, in effect, the

amplitudes, A
(1,[2,Oi])
n−i (1, 3, [2,Oi]L,O∗i ) and A

([1,3,O∗i ],4)
i+2 ([1, 3,O∗i ]L, 2,Oi), are proportional

to s̃2Oi when the off-shell gluons are longitudinal, εL,µ[2,Oi] = kµ[2,Oi] and εL,µ[1,3,O∗i ] = kµ[1,3,O∗i ],

respectively. Additionally, we are looking for formal proof (it is enough just to prove the

off-shell Pfaffian properties presented in appendix B).

One of the more amazing things we would like to remark is the computational in-

formation that there is behind of the identities obtained in section 7 (properties-I, II in

appendix). For example, in the identity obtained in (7.1), we related a graph with a matrix

2(p − 2) × 2(p − 2) to another graph with a matrix 2(p − 2) − 2 × 2(p − 2) − 2, and the

relationship is given just for an overall factor. Computationally, this is very important,

let us suppose that p = 5, we are simplifying the problem from a matrix 6 × 6 to a new

one 4× 4.

On the other hand, although the integration rules emerged from the pure Yang-Mills

amplitudes, these can be applied naturally over a large spectrum of graphs, such as special

Yang-Mills-Scalar theory, effective field theories [49], and an others strange graphs. In

addition to this fact, it was very interesting to see as the A and Ψn matrices can be

factorized in terms of the off-shell Ψg,s:g matrix.34

Feynman diagrams and BCJ numerators. A direct relation between the CHY and

Feynman diagrams is unknown. However, since that the method developed in this paper

is a factorization-like approach, perhaps, this is the closest bridge among CHY amplitudes

and Feynman rules. Let us observe how to obtain the four-point Feynman diagrams since

our method.

34Let us remind that in [48], the Ψg,s:g matrix arose after compactifying.
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From the general formula in (12.2), one has

AYM
4 (1, 2, 3, 4) =∑

r

[
A

([1,2],3)
3 ([1, 2]r, 3, 4)A

([3,4],1)
3 ([3, 4]r, 1, 2)

s̃12
+
A

(1,[2,3])
3 (1, [2, 3]r, 4)A

(3,[4,1])
3 (3, [4, 1]r, 2)

s̃14

]

+
∑
L

2
A

(4,[1,3])
3 (4, [1, 3]L, 2)×A([2,4],1)

3 ([2, 4]L, 1, 3)

s̃13
.

(12.3)

As it was shown in (5.2), to obtain the three-point Feynman vertex, the polarization

vectors on the first line, “εr[i]”, must be transverse, thus, we use the identity,
∑

r ε
r,µ
[1,2]ε

r,ν
[3,4] =∑

T ε
T,µ
[1,2]ε

T,ν
[3,4] +

∑
L ε

L,µ
[1,2]ε

L,ν
[3,4], where,

∑
T ε

T,µ
[1,2]ε

T,ν
[3,4] = ηµν −

kµ
[1,2]

kν
[3,4]

k[1,2]·k[3,4]
and

∑
L ε

L,µ
[1,2]ε

L,ν
[3,4] =

kµ
[1,2]

kν
[3,4]

k[1,2]·k[3,4]
(in a similar way for εr[2,3] and εr[4,1]). Therefore, (12.3) becomes

AYM
4 (1, 2, 3, 4) =∑

T

[
A

([1,2],3)
3 ([1, 2]T , 3, 4)A

([3,4],1)
3 ([3, 4]T , 1, 2)

s̃12
+
A

(1,[2,3])
3 (1, [2, 3]T , 4)A

(3,[4,1])
3 (3, [4, 1]T , 2)

s̃14

]

+
∑
L

[
2
A

(4,[1,3])
3 (4, [1, 3]L, 2)×A([2,4],1)

3 ([2, 4]L, 1, 3)

s̃13
+
A

([1,2],3)
3 ([1, 2]L, 3, 4)×A([3,4],1)

3 ([3, 4]L, 1, 2)

s̃12

+
A

(1,[2,3])
3 (1, [2, 3]L, 4)×A(3,[4,1])

3 (3, [4, 1]L, 2)

s̃14

]
.

(12.4)

It is trivial to check that the two terms on the second line are just the Feynman diagrams,

1

2 3

4
and

1

2 3

4
, respectively, and the last three terms give us the color-ordered quartic vertex

1

2 3

4
, [52].

To obtain the BCJ numerators, it is necessary to reorganize (12.4) in the following way

AYM
4 (1, 2, 3, 4) =

ns12

s̃12
+

ns14

s̃14
, with,

ns12 =
∑
T

A
([1,2],3)
3 ([1, 2]T , 3, 4)×A([3,4],1)

3 ([3, 4]T , 1, 2) +

s̃12×
∑
L

[
A

(4,[1,3])
3 (4, [1, 3]L, 2)A

([2,4],1)
3 ([2, 4]L, 1, 3)

s̃13
+
A

(1,[2,3])
3 (1, [2, 3]L, 4)A

(3,[4,1])
3 (3, [4, 1]L, 2)

s̃14

]

ns14 =
∑
T

A
(1,[2,3])
3 (1, [2, 3]T , 4)×A(3,[4,1])

3 (3, [4, 1]T , 2) +

s̃14×
∑
L

[
A

(4,[1,3])
3 (4, [1, 3]L, 2)A

([2,4],1)
3 ([2, 4]L, 1, 3)

s̃13
+
A

([1,2],3)
3 ([1, 2]L, 3, 4)A

([3,4],1)
3 ([3, 4]L, 1, 2)

s̃12

]
.

(12.5)

From the above nsij definitions, it is trivial to check the identity, ns12 −ns14 = ns13 , where

ns13 is obtained from ns12 under the permutation, (1, 2, 3, 4) → (1, 3, 2, 4), i.e. ns13 =

ns12

∣∣∣
(1,2,3,4)→(1,3,2,4)

.
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delimiter for a given cut

massive puncture fixed by PSL(2,C) unfixed massless puncture

massless puncture fixed by PSL(2,C) massless puncture fixed by scale symmetry

Figure 3. Vertex Color code in the CHY-graphs.

Nevertheless, the generalization of these ideas (using this approach) to higher number

of points is unknown and it would be very interesting to be studied.

Effective field theories and final remarks. In [49], we applied the ideas presented

in this paper to effective field theories, such as NLSM, multi-trace and special Galileon

theory. Additionally, we are going to present a new NLSM prescription in order to obtain

a relationship among the CHY approach and the gauge theory version for NLSM. found

in [56, 57].

Although, the soft limit, at leading order, was trivially obtained using the technology

developed in this paper, we would like to look for the sub-leading order contributions, and

the extension to others theories.

As a final point, we would like to understand the connection among our graphic

method, the ambitwistor string [5] and the gluing operator in [25].
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A Notation

For convenience, in this paper we use the following notation

ka1,...,am ≡
m∑
i=1

kai = [a1, . . . , am], sa1...am ≡ k2
a1,...,am , s̃a1...am ≡

m∑
ai<aj

kai · kaj . (A.1)

Clearly, when k2
i = 0, then, sa1...am = 2 s̃a1...am

To have a graphical description for the CHY integrands, it is useful to represent each

puncture, σa (or (ya, σa) in double-cover prescription), by a vertex, the factor 1
σab

or Tab
by an arrow and the numerator σab or T−1

ab by a dashed arrow that we call as anti-line.

Additionally, in figure 3 we give the color code for a mnemonic understanding.
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B Off-shell Pfaffian properties

In this appendix we are going to give some properties of the Pfaffian when there is an

off-shell particle. These properties involve the matrices, Ψn and Ψg,s:g.

This is very important to remark that those properties are supported on the solution

of the scattering equations, and, although we do not have a formal proof, they have been

checked up to eight points.

First of all, we remind the notation, (Ψn)
i1...ip
j1...jp

and (Ψg,s:g)
i1...ip
j1...jp

, which means that the

rows, (i1, . . . , ip), and the columns, (j1, . . . , jp), must be removed from, Ψn and Ψg,s:g.

Let us consider the total number of particles is n, i.e. k1 + · · ·+ kn = 0. Additionally,

since we are interested to show some off-shell properties, we choose a configuration where

the off-shell particle has momentum, k[1,...,p] = k1 + · · ·+kp, and its puncture is fixed,35 i.e.

σ[1,2,...,p] = c1 ∈ C. In order to complete the setup, we fix the punctures, (σp+1, σp+2) =

(c2, c3) ∈ C2, where c1 6= c2 6= c3. Therefore, we are going to work on the support of the

“n− (p+ 2)” scattering equations

Sa =

n∑
b=p+1
a 6=b

ka · kb
σab

+
ka · k[1,...,p]

σa[1,...,p]
= 0, with a = p+ 3, . . . , n. (B.1)

Properties. Under the previous setup, we have the following properties

I.

Pf
[
(Ψg,s:g)

[1,...,p]
[1,...,p]

]
=
k2

[1,...,p]

2
× 1

σp+1 p+2
Pf
[
(Ψg,s:g)

p+1 p+2 [1,...,p]
p+1 p+2 [1,...,p]

]
, (B.2)

where the gluon and scalar sets are given by particles, g = {p + 1, . . . , n} and s =

{[1, . . . , p]}. Notice that if all particles are on-shell, k2
i = 0, the right hand side

vanishes trivially by the overall factor, k2
[1,...,p].

II.

1

σp+2[1,...,p]
×Pf

[
(Ψg,s:g)

[1,...,p]
[1,...,p]

]
=

1

σp+1 p+2
×Pf

[
(Ψn−p+1)

p+1 [1,...,p]
p+1 [1,...,p]

]∣∣∣
εL,µ
[1,...,p]

→kµ
[1,...,p]

,

(B.3)

with the gluons and scalars given by the sets, g = {p+ 1, . . . , n} and s = {[1, . . . , p]},
on the left-hand side. On the right hand side, the polarization vector, εL,µ[1,...,p], is longi-

tudinal. Clearly, if all particle are on-shell the Pfaffian on the right-hand side vanishes

trivially, since the replacement, εL,µ[1,...,p] → kµ[1,...,p], becomes a gauge transformation.

This fact agrees with the property-I.

III.

1

σp+1[1,...,p]
× Pf

[
(Ψn−p+1)

p+1 [1,...,p]
p+1 [1,...,p]

]
=

(−1)

σp+2[1,...,p]
× Pf

[
(Ψn−p+1)

p+2 [1,...,p]
p+2 [1,...,p]

]
=

(−1)

σp+1p+2
× Pf

[
(Ψn−p+1)p+1 p+2

p+1 p+2

]
, (B.4)

35Usually we fix the puncture, σ[1,2,...,p] = 0.
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where the polarization vector of the off-shell puncture, which we denote by εT,µ[1,...,p],

must be transverse, i.e. εT[1,...,p] · k[1,...,p] = 0. This property just involves the fixed

punctures, (σp+1, σp+2, σ[1,...,p]), of course, when all particles are on-shell this prop-

erty works for any couple of punctures.

IV.

σp+2[1,...,p]

σp+1[1,...,p]
Pf
[
(Ψn−p+1)

p+1 [1,...,p]
p+1 [1,...,p]

]∣∣∣
εL,µ
[1,...,p]

→kµ
[1,...,p]

= Pf
[
(Ψn−p+1)

p+2 [1,...,p]
p+2 [1,...,p]

]∣∣∣
εL,µ
[1,...,p]

→kµ
[1,...,p]

.

(B.5)

It is important to remark that the overall signs in (B.4) and (B.5) are different.

Open Access. This article is distributed under the terms of the Creative Commons
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