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ABSTRACT

Scholarship on climate information use has focused significantly on engagement with practitioners as a

means to enhance knowledge use. In principle, working with practitioners to incorporate their knowledge and

priorities into the research process should improve information uptake by enhancing accessibility and im-

proving users’ perceptions of how well information meets their decision needs, including knowledge credi-

bility, understandability, and fit. Such interactive approaches, however, can entail high costs for participants,

especially in terms of financial, human, and time resources. Given the likely need to scale up engagement as

demand for climate information increases, it is important to examine whether and to what extent personal

interaction is always a necessary condition for increasing information use. In this article, we report the results

from two experimental studies using students as subjects to assess how three types of interaction (in-person

meeting, live webinar, and self-guided instruction) affect different aspects of climate information usability.

Our findings show that while in-person interaction is effective in enhancing understanding of climate

knowledge, in-person interaction may not always be necessary, depending on the kinds of information in-

volved and outcomes desired.

1. Introduction

Current and future impacts of climate change under-

score the need for climate information to support soci-

etal responses (Moss et al. 2013). Meeting this societal

need for information is nontrivial as traditional ways

to produce and communicate science often fail to yield

usable knowledge to meet users’ needs (Kirchhoff et al.

2013). Engagement with practitioners in the process of

creating climate information is believed to accelerate

the production of usable knowledge. While there have

been growing calls for interaction with stakeholders to

support climate adaptation, (NRC 2010; Williams et al.

2015) there has been relatively less empirical evidence

of its impact on actual knowledge use [but see Ford et al.

(2013) and Fujitani et al. (2017)]. Given the growing

costs and popularity of engagement and interaction

among environmental scientists and funding organiza-

tions, especially in communicating climate knowledge,

there is a critical need to better understand the role of

engagement and interaction in increasing knowledge

use. On the one hand, we need to design better ways to

evaluate and assess the impact of all forms of engage-

ment in increasing knowledge use and supporting soci-

etal and ecological well-being (Klenk et al. 2015; Lemos

et al. 2014; Meadow et al. 2015; Wall et al. 2017). On the

other hand, we need to make better use of the science of

understanding knowledge use to inform the practice

and design of engagement processes (Lemos et al. 2018).
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In this study, we use randomized-controlled experi-

ments to better understand how interaction between

scientists and potential users shapes drivers of knowl-

edge use, such as understanding, credibility, and per-

ceptions of fit (Briley et al. 2015; Cash et al. 2003;

Parris et al. 2016).

While there is growing evidence that engagement

enhances usability—that is, the likelihood that knowl-

edge will be used—recent scholarship has increasingly

called attention to the amount of resources necessary to

sustain face-to-face science–practice interactions (Kettle

and Trainor 2015; Lemos et al. 2014). These costs include

financial and logistical resources for getting scientists and

users together, the time spent by producers and users in

repeated interaction, and less tangible costs such as the

long-term commitment required to build trust and legit-

imacy, which are often mentioned as significant con-

straints to usability (Pidgeon and Fischhoff 2011). On the

one hand, concerns about resource demands for en-

gagement have centered on the resources required of

producers. These include the institutional and orga-

nizational constraints scientists face in engaging with

users (Briley et al. 2015; Lemos andMorehouse 2005),

the relatively low number of scientists willing to en-

gage, and a perceived mismatch between the growing

need for engagement and willingness to do so (McNie

2007). On the other hand, there is concern about re-

source demands placed on potential users such as fo-

cusing on a relatively small number of decision-makers

involved in climate-related decisions at the local level,

leading to ‘‘stakeholder fatigue,’’ and personal risks that

may be involved in engagement when their place of

employment discourages engagement (Lemos et al.

2018). Moreover, potential users are increasingly re-

luctant to interact with climate information producers

due to the high costs involved in traveling and lost work

days (e.g., Kettle and Trainor 2015). Finally, financial

and human resources to organize such interactions are

often not available. Understanding these costs and how

to offset them is important for both maximizing existing

resources and scaling up engagement processes across

new sectors and communities.

One way to reduce the costs of engagement, particu-

larly the cost and time associated with traveling and

hosting in-person meetings, is to explore different ways

of communicating and interacting with potential users.

With the steady advance of technology, there are now

many options to enable effective remote interaction,

perhaps making it a viable alternative to in-person in-

teractions. While the effectiveness of remote interaction

for building trust, for sustaining effective communica-

tion, and for knowledge exchange have been explored

in business and other contexts (Alsharo et al. 2017;

Henttonen and Blomqvist 2005; Jarvenpaa and Leidner

1999), relatively little work has been done within the

context of climate change research and application [but see

Kettle and Trainor (2015)]. As such, we know very little

about the effectiveness of remote interaction or its viability

as an alternative to face-to-face interaction in supporting

engagement in this context (Lach and Rayner 2017). This

is especially the case with oft-cited factors that influ-

ence the usability of climate information: understanding,

credibility, and fit (Lemos et al. 2012).

In this article, we report the results of two experi-

mental studies, using University of Michigan students

as subjects, to assess how three types of interaction

(in-person meeting, live webinar, and self-guided in-

struction) affect different aspects of climate information

usability and uptake. To our knowledge, this is the first

effort using an experimental design to explore how dif-

ferent types of interaction—which is at the heart of en-

gagement—influence climate knowledge uptake. Our

findings show that while in-person interaction is some-

times effective at enhancing understanding of climate

knowledge, in-person interaction may not always be nec-

essary, depending on the kinds of information involved

and outcomes expected.

In choosing to carry out the experiment with students,

we are aware of the potential limitations of our findings

when compared with using actual decision-makers as

subjects. Our reasons to carry out the experiments with

students were twofold. First there was feasibility: the

logistics of carrying out randomized field experiments

with samples large enough to allow statistical analyses

were daunting without a compelling proof of concept

that our ideas were viable. Second, while working with

actual practitioners would have been ideal, previous

research has shown the benefits of using students, in

terms of the cost and recruitment efficiency, may out-

weigh the costs to external validity as student and non-

student responses often are largely equivalent (Anderson

and Edwards 2015).

In the next sections, we first describe the literature on

knowledge use that grounds our experiment and second,

the two studies that informed our findings. Subse-

quently, we describe each experiment in detail, includ-

ing methods, analyses, and findings.

2. Literature review

a. Information use and usability

Questions about the use of information attract broad

interest from scholars, policy-makers, practitioners,

and funders alike. As an area of social inquiry, these

questions motivate research to better understand the

conditions by which scientific information and other
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forms of knowledge gets used by people and organiza-

tions in the course of decision-making (Gitomer and

Crouse 2019). While pioneering work on this topic oc-

curred in the late 1970s and early 1980s (e.g., Caplan

1979; Rich 1981; Weiss 1979), more recent scholarship is

emerging in the context of different social problem do-

mains such as education (Tseng 2012), health (Holmes

et al. 2012), climate change (Kirchhoff et al. 2013), and

sustainable development (Clark et al. 2016).

Across these arenas, the meaning of ‘‘use’’ and what

drives the use of information open up to a range of defi-

nitions and explanations. First, use may refer to direct

inputs to decision-making and implementation to sup-

port problem-solving. Second, use may refer to shaping

how issues or agendas are framed, or for general en-

lightenment and rationalizing of preconceived actions,

decisions or value judgements for political or tactical ends

(Weiss 1979). Some explanations for why information is

used (or not used) examine the quality or form of the

information itself or the social or organizational context

in which it is used (Landry et al. 2003). A recurring and

dominant explanation examined across time and contexts

focuses on the disconnect—institutional, cultural, even

linguistic—between where information is produced and

where it is used (Caplan 1979). This disconnect, in turn,

hinders access to potentially useful information or leads

to the production of information that is not relevant or

does not fit decision contexts.

One line of study for understanding how to increase

information use in decision-making examines the role of

interaction between researchers and practitioners. For

example, early research by David Cash and colleagues

(Cash et al. 2003) found that environmental assessments

would be more likely to be perceived by practitioners as

credible, relevant, and legitimate if their production

entailed some form of interaction between the providers

and users of the assessments. Lemos and Morehouse

(2005) argued that iteration between researchers and

users was a necessary condition for the coproduction of

usable knowledge. Subsequent work further suggests

that particular kinds of information, like seasonal cli-

mate forecasts (Dilling and Lemos 2011) and down-

scaled climate projections (Vogel et al. 2016), could be

rendered more usable for decision-making when pro-

duced through producer and user interactions, especially

when addressing the complexities and uncertainties em-

bedded in data-intensive climate information (Briley

et al. 2015; Kirchhoff 2013; Kirchhoff et al. 2015b;

McNie 2013).

b. Types of engagement and interaction

Much of the research on how interaction enhances

climate information use centers on in-person engagements

between producers and users, leading many to argue

that sustained, in-person interactions increase usability.

This is not surprising given that research on scientist–

practitioner interaction tends to emphasize the impor-

tance of relationship building and trust (Brugger and

Crimmins 2015; Dilling and Lemos 2011; Jones et al.

2016;Moss 2016). In particular, personal interaction that

builds trust and understanding in the context of copro-

duction also increases users’ willingness to share that

information and learning within their organizations and

networks (Kirchhoff et al. 2015a). While scientist–

practitioner interaction critically improves usability,

doing it ‘‘right’’ is resource intensive, requiring not only

financial and logistical resources but also time and long-

term commitment from both producers and users to sus-

tain collaboration over time (Pidgeon and Fischhoff 2011).

Mitigating this resource intensiveness and advancing

our ability to meet expected demand for climate infor-

mation requires exploring how different forms of in-

teraction affect information use. First, by better

understanding what specific characteristics of in-person

interaction enhance different dimensions of usability,

we may be able to reduce the costs of interaction

by leveraging the capacity for engagement through

webinars and other virtual technologies. Second, we may

also be able to better evaluate other forms of knowledge

sharing such as web-based decision-support tools, which

have great potential to scale up use. For example, the

proliferation of online decision support tools for climate

decision-making (see, e.g., NOAA’s resilience tool kit—

https://toolkit.climate.gov/) suggests that careful evalua-

tion of the usability of remote interaction with climate

information is overdue.

With the steady advance of technology, there are

many more options that potentially enable effective

remote interaction. Research in business and related

fields has explored different forms of remote interaction

and their role in building trust, sustaining effective

communication, and exchanging knowledge among vir-

tual teams (Alsharo et al. 2017; Bhappu et al. 2001;

Henttonen and Blomqvist 2005; Jarvenpaa and Leidner

1999). The evidence from these studies is mixed. For

example, Bhappu et al. (2001) found computer-mediated

communication helped virtual team members with

diverse backgrounds acquire and integrate different

knowledges more effectively. Alsharo et al. (2017) found

that sharing knowledge among virtual teams helped to

build trust and collaboration (although they did not find

a significant increase in team effectiveness as well). In

contrast, Cramton and Orvis (2003) found that social (e.g.,

information about an individual’s networks, motives, and

goals) and contextual (e.g., information about norms,

rules, expectations) information are particularly difficult
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to share in virtual environments, potentially leading

to misunderstanding and a breakdown of trust. Also,

Riopelle et al. (2003) found that remote technologies

must be carefully matched to the task and context. For

complex tasks with complex contexts, face-to-face

communication may be the best solution to facilitate

understanding and task completion (Riopelle et al.

2003). While we know a great deal about remote in-

teraction in business and related contexts, we know very

little about the effectiveness of remote interaction or its

viability as an alternative to face-to-face interaction in

supporting climate information use.

In the area of distance learning, evaluations of in-

person versus distance or remote learning has been

carried out for many years. Early research on online

learning signaled the possibility that few differences,

and perhaps even benefits, may occur in pursuing In-

ternet based learning (e.g., Bernard et al. 2004). Two

meta-analyses of such studies suggest that online learners

perform better than students in traditional learning

environments (Means et al. 2013; Means et al. 2009).

It is unclear, however, whether the results can be

attributed to the mode of delivery per se, as the in-

structional methods used in online courses and face-

to-face classrooms often differ. Furthermore, some

research has found that online learning only has signif-

icant advantages when it also includes an element of

face-to-face interaction (i.e., ‘‘blended’’ delivery mode).

In the context of training, such as for one-time skill de-

velopment or continuing education, additional studies

have found opportunities for similar or even enhanced

performance by learners, such as in the context of library

instruction or health training (Hemmati et al. 2013; Silk

et al. 2015). In the public health arena, online training

has become increasingly popular such that studies may

now be fully focused on the efficacy of online efforts

(Colleran et al. 2012; Webb et al. 2017), which seek the

promise of expanded and accelerated health worker

training in underserved or under-resourced areas (Rowe

et al. 2005).

3. Study experiments: Description and methods

Our studies investigate the influence of three different

forms of interaction and their influence on climate in-

formation use for decision-making: in-person meeting,

live webinar, and self-guided web-based instruction. For

ease of conducting the studies, our focus is on one-time

interactions, such as might be used to introduce practi-

tioners to new climate tools or to share new research

findings that may impact practitioners’ work. We as-

sume in-person meeting to be more resource intensive

(e.g., logistically, and in terms of human and financial

resources) than live webinar. Following the same logic,

we assume a live webinar to be more resource intensive

than self-guided instruction.

We compare these different forms of interaction

through two randomized experiments. In both studies,

experienced climate information brokers (scientists

who have worked with potential users to help them

learn about and potentially use scientific information)

interacted with participants in semicontrolled environ-

ments for the in-person meeting and live webinar. For

purposes of the experiment, we refer to the climate in-

formation broker as the ‘‘instructor.’’ The first study

(2015) was designed as a ‘‘proof of concept’’ seeking to

explore the assumption that ‘‘closer’’ interaction would

lead to better understanding and intention to use climate

information in a decision context. Study 2, carried out in

2016, sought to further explore and validate the results

of study 1 while also examining whether the type of in-

teraction affects decision-making. All study protocols

were approved by the Institutional Review Board at

the University of Michigan.

In both studies, we examine the effects of interaction

on three dimensions of usability: understanding, credibil-

ity, and fit. Given prior scholarship, we expected in-person

interactions would yield greater levels of understanding,

credibility, and perceived fit relative to other forms of

scientist-user interaction. We additionally measure up-

take of information. In study 1 this takes the form of

intentions to use the presented climate information

while in study 2, we ask participants to draw upon in-

formation provided to make a decision within a hypo-

thetical scenario and then reflect on which types of

information informed their decision making. Specifi-

cally, we expected the in-person group to be more

accepting of uncertain projections from climate models

and thus more likely to report using that information.

a. Study 1

In our first study, we tested whether the form of in-

teraction affects understanding of and intention to use

information provided in a climate adaptation planning

tool.

1) PARTICIPANTS AND PROCEDURE

To approximate potential users’ expertise in the con-

text of climate-related decision-making, we recruited

graduate students (N5 46) at the University ofMichigan

with either environmental/natural resources or urban

planning backgrounds. Students were offered a $35

Amazon gift card in exchange for their participation.

Students interested in participating provided their

availability during two 4-hour blocks inMay 2015. Those

who signed up for a given time block were then
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randomly assigned to one of three tutorials: in-person

meeting, live webinar, or self-guided instruction (i.e.,

written instructions and recorded videos). This stratified

randomization process helped ensure that students with

similar characteristics (e.g., motivated students who

signed up for the first time slot) would be distributed

across the three treatments. The final sample sizes per

condition were 11 students in the in-person meeting,

16 in the live webinar, and 19 in the self-directed group.

Students were told that the purpose of the study was to

evaluate the Cities Impact and Adaptation Tool (CIAT;

http://graham-maps.miserver.it.umich.edu/ciat/home.xhtml),

an online resource aimed at helping city planners to plan

and implement adaptive responses to climate change.

All students were asked to complete a tutorial about the

tool, which, depending on their assigned treatment, oc-

curred through an in-person meeting, a live webinar, or

self-guided instruction on the CIAT website. In all

conditions, students were shown how to look at both

historic climate data and modeled projections to ascer-

tain whether and how temperatures and precipitation

levels within a region might change. At the end of

the presentation, students had the opportunity to ask

questions of the presenter. Students in the in-person

condition tended to ask more questions than in the

webinar. Following the tutorial, participants completed

a survey about their understanding and perceptions of

the data presented.

2) MEASURES

To test objective understanding of CIAT data, stu-

dents completed a short quiz with 19 possible correct

answers. All other measures on the survey were assessed

through five- or seven-point scaled questions (seeTable 1).

Students separately rated the understandability and cred-

ibility of both the observed historical data in the tool as

well as the projected climate model data presented. We

also measured understanding of the tool itself by asking

students to rate their difficulty in learning the tool and

whether they wanted additional guidance for using it. To

assess fit—that is, the appropriateness of the informa-

tion for city decision-makers—we asked participants to

rate the perceived riskiness of making decisions based

on the tool. Finally, as a measure of uptake, we asked

respondents about their intentions to use or recom-

mend the tool in the future. Where appropriate, we

used principal component analysis with oblimin rotation

to reduce the number of items into a smaller set of

reliable scales.

3) RESULTS

Because of the small sample sizes and nonnormal

distribution of the data, we initially used Kruskal Wallis

TABLE 1. Study 1 survey items. Note: Unless otherwise noted, all

items were on 7-point scales. Understandability and Credibility

were rated on semantic differential scales while other items were

scaled from 1 5 strongly disagree to 7 5 strongly agree.

Cronbach’s

alpha

Evaluation of scientist instructor 0.88

The instructor. . .

Was well prepared

Stimulated my interest in the tool

Answered questions clearly

Related content to real-life situations

Held my attention

Quality of interaction —

Overall, how would you rate the level of

interaction between the instructor and

the participants? (from 1 5 very bad to

5 5 very good)

Understandability of observed, historical data 0.80

Difficult to understand–Easy to understand

Confusing–Straightforward

Understandability of climate model projections 0.85

Difficult to understand–Easy to understand

Confusing–Straightforward

Credibility of observed, historical data 0.80

Untrustworthy–Trustworthy

Unreliable–Reliable

Credibility of climate model projections 0.71

Untrustworthy–Trustworthy

Unreliable–Reliable

Difficulty of learning tool 0.77

Learning to use the tool was difficult.

The directions for using the tool were unclear.

Explanations were too technical or complex.

Need additional guidance to use tool 0.71

After doing this tutorial, I still have questions

about how to use the information in this

tool.

I need more guidance on how to interpret and

use the information CIAT provides.

Fit: Perceived risk of using climate data 0.84

City planners should not make decisions based
on projected climate data.

City planners should not make decisions based
on observed climate data.

Projected changes in temperature and

precipitation are too uncertain to be used in

government decision-making.

I would be uncomfortable if planners in my city

used a tool like this to make decisions.

Making decisions based on projections from

climate models seems too risky.

Uptake intentions 0.79

If my future job involves climate change

adaptation planning, I would want a tool

like this.

I will recommend CIAT to others involved in

climate change adaptation planning.
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H tests with Dunn’s test for multiple comparisons to

identify differences between treatments. These analyses

revealed that the in-person and live webinar treatments

did not differ significantly in any respect (all p values .
0.3), including in participants’ evaluations of the scien-

tist presenter (referred to as the instructor in the study 1

survey; see Table 1) (U 5 73.5, p 5 0.481) and the per-

ceived level of interaction during the training (U5 73.5,

p5 0.481) (which were only measured for the in-person

and webinar groups). The relationships between each of

these two treatments and the self-guided treatment also

followed similar trends, with the exception of the results

for uptake intentions. We therefore combined the in-

person and group webinar treatments in subsequent

analyses to enhance statistical power. Combining these

treatments also resulted in observations that more

closely approximated a normal distribution, thereby

allowing us to use independent t tests to compare

scientist-led and self-directed groups.

As shown in Fig. 1, no differences were found between

scientist-led (in-person1 live webinar) and self-directed

trainings in terms of the understandability and credi-

bility of the climate information presented or in the

perceived riskiness of using climate models to inform

decision-making (i.e., fit). We did observe, however,

modest differences in objective knowledge, with the

self-guided group performing slightly worse (M 5 15.79

correct responses, SE 5 0.31) on the quiz than those

trained by a scientist [M5 17.07, SE5 0.32, t(44)5 2.75,

p5 0.009, d5 0.84]. Self-guided participants had greater

difficulty learning the tool (M 5 2.74, SE 5 0.22) and

reported wanting more guidance (M 5 5.11, SE 5 0.23)

on how to use it than those trained by a scientist

[difficulty:M5 2.12, SE5 0.19, t(44)5 2.10, p5 0.042,

d 5 0.65; guidance: M 5 4.07, SE 5 0.27, t(44) 5 2.72,

p5 0.009, d5 0.84] (Fig. 1). In terms of uptake intentions,

preliminary analyses suggested that the in-person group

had higher intentions than the self-guided group (padj 5
0.047, r 5 0.44), but the effect disappeared when the in-

person and webinar treatments were combined (Fig. 1).

b. Study 2

Study 2 tested whether the form of interaction influ-

ences climate information uptake in the context of a

risky decision. Unlike study 1, where students learned

about a climate tool for which they had no immediate

use, study 2 asked participants to play the role of a water

utility manager tasked with making a long-term invest-

ment decision to deal with harmful algal blooms (HABs).

To inform their decision making, we presented in-

formation about the potential impacts of climate change

on future occurrences of HABs, again manipulating

whether this information was delivered through an in-

person meeting, live webinar, or self-guided instruction

(via a prerecorded webinar).

1) PARTICIPANTS

Participants (N 5 156) were undergraduate and

graduate students at the University of Michigan with

backgrounds in natural resource management, urban

planning, and business. Students were offered a $30

Amazon gift card to complete a short reading assign-

ment, attend a presentation, and respond to two short

questionnaires. Participants included in the dataset

completed all parts of the study. The final sample sizes

per condition were 55 students in the in-person group

FIG. 1. Study 1: Mean ratings with 95% confidence intervals of climate data perceptions for scientist-led vs self-

guided trainings. All measures are on 7-point scales with higher values indicating higher endorsement.
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meeting, 50 in the live webinar, and 51 in the self-

directed group.

2) PROCEDURE AND MATERIALS

To participate in the study, students first completed an

online form that included questions about their program

of study and year in school. They then signed up for one

of nine time slots offered over a three-day period in

September 2016.We randomly assigned students to each

treatment through a two-stage process. In the first stage,

we randomized time slots such that four slots were

assigned to the in-person treatment, four to the live

webinar treatment, and one to the self-guided recorded

webinar treatment. Within each of the in-person and

webinar time slots, we then stratified participants

according to their major and tenure (year in program).

From these stratified groups, we randomly selected a set

number of students to participate in the self-directed

treatment (which was done online during the students’

own time). This process ensured that students with

similar experience and backgrounds were evenly dis-

tributed across the three treatments.

Upon signing up to participate, students were di-

rected to an online pretest survey. The survey

included a scenario (held constant across all three

treatments) in which we asked students to assume the

role of a drinking water utility manager for a city on

Lake Erie experiencing harmful algal blooms (HABs;

see the online supplemental material). The utility

manager (i.e., the experiment participant) had five in-

vestment options for protecting the city from future

HABs. Larger investments would provide greater

protection from HABs but would divert funds from

other important city programs. Participants had to

weigh the risk of future HABs against the risk of

wasting city funds, bearing in mind that the occurrence

of future HABs was uncertain and dependent on fac-

tors such as climate change and regional agricultural

practices. After reading the scenario, participants

completed the pretest survey by selecting their in-

vestment decision.

Students participated in the experimental portion of

the study (in-person group seminar, live webinar, or self-

guided recorded webinar) four to eight days later. In

each condition, an environmental scientist well-versed

in topics related to climate information and harmful

algal blooms (held constant across all treatments) pre-

sented information on how climate change could influ-

ence the occurrence and severity of HABs in the future.

During the presentation, the scientist explained that

changing temperature and precipitation levels may in-

fluence future HABs. Of these two factors, the con-

nection between precipitation and HABs was described

as being less certain. The presenter further explained

that decision-makers have three types of climate data

(for either temperature or precipitation) that might be

used to make predictions about future HABs: projec-

tions from historical data, current observations, and

projections from climate models.

To ensure a minimum level of interaction between the

scientist and participants, we used two confederate stu-

dents to ask the same predetermined questions in each

of the conditions (including the recorded webinar in

the self-directed condition). Students in the in-person

meeting and live webinar could ask additional questions.

More student-generated questions were observed in

the in-person meeting than in the live webinar. Im-

mediately following the presentation, students in the

in-person meeting completed the posttest survey in an

adjacent computer laboratory while participants in

the live webinar were emailed a link to the posttest

survey. Participants in the self-guided condition were

instructed via e-mail to visit a website where they

could watch a recorded webinar before completing the

posttest survey.

3) MEASURES

The investment options presented to students on

both the pretest and posttest are provided in the

supplemental material. The choices were scaled such

that each successive option required a greater upfront

investment of money. Students were told that spend-

ing more money upfront would reduce the cost of fu-

ture HAB events but doing so came with the risk of

wasting city funds. If the number of future HABs was

low, the money—which could have gone to other im-

portant city programs—would be wasted. If students

underinvested and the number of future HABs was

high, the city would have to borrow funds from other

programs.

The posttest also included items to assess the overall

quality of the tutorial and perceived usability of the in-

formation presented (Table 2). Similar to study 1, stu-

dents rated the level of interaction with the scientist

presenter (‘‘instructor’’ in the study 2 survey; Table 2),

the quality of the presentation, and how credible and

engaging they found the presenter to be. Additional

measures assessed the overall usability of the informa-

tion presented, using separate items for fit, credibility,

and understanding.

We also asked students about the fit and credibility of

the different types of climate data presented. We de-

fined fit in terms of how relevant, useful, and informative

students found the climate data presented for their de-

cision on how to handleHABs.An initial question asked

students to rate how much each type of climate data

JULY 2019 LEMOS ET AL . 541



(current and historical observations, projections from his-

torical data, and climate model predictions), in general,

influenced their decision making. Students then rated the

perceived fit and credibility of the different types of tem-

perature and precipitation data presented (i.e., projections

from historic temperature data, projections from historic

precipitation data, current observations of temperature,

current observations of precipitation, projections climate

model temperature data, projections from climate model

precipitation). To examine differences on these measures

between experimental conditions, we ran a series of mixed

factorial ANOVAs, treating data type (current observa-

tions, historical projections, and climate model pro-

jections) as the within-subjects factor and experimental

treatment as the between-subjects factor.

TABLE 2. Study 2 survey items.

Cronbach’s

alpha

Presentation quality

Amount of interaction —
Overall, how much interaction would you

say there was between the presenter

and the participants? (from 1 5 none to

5 5 a lot)

Instructor credibility (1 5 strongly disagree to

7 5 strongly agree)

0.82

The instructor. . .
Was well prepared

Was credible

Answered questions clearly

Is an expert in her area

Instructor engagement (1 5 strongly disagree to

7 5 strongly agree)

0.83

The instructor. . .
Stimulated my interest

Held my attention

Presentation quality —

Overall, if you were to give a letter grade for

the presentation, what grade would you give?

(letter grades from A 5 5 to F 5 1)

Climate data usability (overall)

Think about the decision you had to make as

Director of Utilities. In regard to that decision,

to what extent would you say the information

presented today was. . . (5-point scale, not at all

to very much)

Fit of information 0.72

Relevant to your needs

Useful to you

Informative to your decision on how to handle

toxic HABs

Credibility of information in tutorial 0.70

Credible

High quality

Understandabilitya —
Ease of understanding

Fit of precipitation and temperature-related data

Respondents rated each type of data below using

the following questions:

To what extent did the following pieces

of information influence your decision

for addressing HABs in your community?

(5-pt scale from not at all to very much)

In deciding how to handle HABs in your

community, how relevant were the

following pieces of information to your

decisions: (5-pt scale from not at all to

very much)

Composite measures were created by averaging

ratings for the influence and relevance of each

data type:

Fit of current inches of precipitation 0.78

TABLE 2. (Continued)

Cronbach’s

alpha

Fit of projected inches based on historical trends 0.84

Fit projected inches based on climate models 0.84

Fit of current number of HAB-prone days 0.75

Fit of projected number of HAB-prone days

from historical trends

0.77

Fit of projected number of HAB-prone days

from climate models

0.75

Credibility of precipitation and

temperature-related information

Respondents rated each type of data below using

the following questions:

In deciding how to handle HABs in your

community, how much do you trust

the following pieces of information:

(5-pt scale from not at all to very much)

In deciding how to handle HABs in your

community, how confident are you

in utilizing the following pieces of

information: (5-pt scale from not at all to

very much)

Composite measures were created by averaging

ratings for the influence and relevance of each

data type:

Credibility of current inches of precipitation 0.73

Credibility of projected inches based on

historical trends

0.74

Credibility projected inches based on climate

models

0.74

Credibility of current number of HAB-prone

days

0.81

Credibility of projected number of HAB-

prone days from historical trends

0.73

Credibility of projected number of HAB-

prone days from climate models

0.74

a Preliminary analyses indicated that ‘‘ease of understanding’’

factored with ‘‘confusing’’ and ‘‘misleading.’’ However, the scale

was unreliable (a 5 0.52). We retained ‘‘ease of understanding’’

as a single-item measure of understandability.
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4) RESULTS

As shown in Fig. 2, the experimental manipulation

demonstrated that participants perceived three different

levels of interaction with the instructor [Welch’s F(2,

98.15) 5 49.68, p , 0.001, est. v2 5 0.38], but otherwise

found the quality of the presentation and the credibility

of the instructor to be equivalent. Perceptions of how

engaging the presenter was also varied across treatments

[F(2, 153) 5 6.90, p 5 0.001, v2 5 0.07] with in-person

participants rating the presenter as more engaging than

participants in either the live webinar (p 5 0.001, d 5

0.38) or prerecorded webinar (p 5 0.028, d 5 0.50).

Despite differences in perceived level of interaction,

the treatments did not lead participants to perceive

differences in terms of the overall fit, understandability,

or credibility of the information presented (Fig. 3).

Next, we examined whether perceptions of differ-

ent types of climate data varied by treatment. No main

effects were found for experimental condition on any

of the outcome variables, and, with one exception, no

interactions were found between data type and treat-

ment condition (see Figs. 4 and 5). The results, overall,

suggest that perceptions of different data sources did not

differ across treatments. The exception was for the

perceived fit of climate precipitation data. Here we

observed a significant interaction between data type and

experimental condition [F (4,306)5 3.56, p5 0.008]. As

shown in Fig. 5b, participants in the self-directed group

perceive the fit of the information as lower and, thus

FIG. 2. Study 2: Mean ratings with 95% confidence intervals of presentation quality across

treatment conditions, measured on (a) 5-point scales and (b) 7-point scales. Mean ratings

were compared using one-way analysis of variance (ANOVA) with Tukey or Games–Howell

post hoc tests, as appropriate.

JULY 2019 LEMOS ET AL . 543



according to the literature reviewed above, might be less

likely to use projected precipitation data from climate

models than participants in either the in-person group or

live webinar.

Finally, to assess whether treatment condition influ-

enced participants’ investment decisions, we calculated

change scores from pretest to posttest. As most students

did not change their investment plan, the data were not

normally distributed and required a Kruskal Wallis

H test to examine whether there were differences be-

tween treatments. No significant differences were found

[H(2) 5 1.91, p 5 0.384].

4. Discussion

Based on our two studies, we find limited support for

the hypothesis that in-person interactions will yield a

greater level of understanding and use of information

FIG. 3. Study 2: Mean ratings with 95% confidence intervals of climate data usability (in

general). All measures are on 5-point scales with higher values indicating greater endorse-

ment. Mean ratings were compared using one-way analysis of variance (ANOVA) with

Tukey or Games–Howell post hoc tests, as appropriate.

FIG. 4. Study 2: Influence of different types of climate data on investment decision by

experimental condition. Participants rated how much each type of data influenced their de-

cision for treating HABs on a scale from 1 5 Not at all to 5 5 Very much.
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relative to other forms of scientist–user interaction.

While study 1 suggests there may bemarginal benefits to

disseminating climate information through forms of in-

teraction where practitioners have direct contact with

knowledge producers, we found no differences in per-

ception of overall fit, understandability, or credibility of

the information between treatment groups in study 2.

Yet, a few observations deserve attention. In study 1,

participants who had a scientist guide them through

the CIAT tool found it easier to understand and dem-

onstrated greater understanding of the information

presented. However, it does not appear to matter

whether that guidance is delivered in person or through

a live webinar.While study 2 indicates that both webinar

and self-guided instruction may be reasonable alterna-

tives to in-person interaction for enhancing usability (fit,

understanding, and credibility of information), we found

one exception—the perceived fit of climate precipitation

data. Participants in the self-directed group reported

lower perceived fit of climate precipitation data than

participants in either the in-person group or live webinar.

This suggests that for more uncertain climate change

FIG. 5. Study 2: Mean ratings of credibility and fit for each of the six types of climate data

presented.
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projections such as precipitation, more interaction is

better.

Based on these results, we argue that to improve and

potentially scale up climate information uptake, climate

scientists and information brokers should consider the

transaction costs associated with in-person interaction

against the expected gains of that interaction. In such

cases, it may be that intensive efforts to interact with

practitioners should be reserved for complex informa-

tion and contexts in which theremay be no substitute for

in-person interaction. For example, situations in which

information is complex or highly uncertain, such as cli-

mate precipitation projections, may require in-person

interaction. Similarly, in contexts where local politics or

distrust of science may inhibit action, close and mean-

ingful interaction to build legitimacy and trust may be

desirable. In contrast, where credibility may not be an

issue (e.g., when information is delivered by a well-

respected university-based scientist with knowledge

brokering expertise) remote means of interaction could

present tangible advantages in terms of lower human

and time costs without forgoing the opportunity for trust

building.

Several methodological limitations point to avenues

for future research. First, as mentioned before our

studies were conducted with a relatively small sample of

students and not practitioners in the field. While we

attempted to recruit students who might reasonably use

climate information in their future careers and our ex-

perimental design sought to instigate realistic stakes in a

decision-making process, students may not have been as

personally invested in the quality of the tool presented

in study 1 or in the tradeoffs associated with the harmful

algal bloom scenario described in study 2. Second, our

studies only speak to the effects of one-time interac-

tions between knowledge producers and users. De-

spite these limitations, our findings are consistent

with those of scholars finding that virtual interaction

can achieve certain goals as effectively as face-to-

face instruction (Alsharo et al. 2017; Bhappu et al.

2001; Means et al. 2013). Additional field research is

needed to determine how and when the results might

generalize to different real-world contexts, including

how power dynamics and governance contexts among

and between different groups of practitioners would

influence the role of in-person versus virtual interaction

with scientists.

5. Conclusions

Through two randomized experiments, we exam-

ined whether different forms of interaction influence

knowledge users’ understanding of climate information

as well as their perceptions of credibility and fit in uti-

lizing climate tools to support decision-making. The

results of studies 1 and 2 together show that in the con-

text of one-off efforts to enhance climate information us-

ability, increased interaction betweenknowledge producers

and users may offer few advantages over less resource-

intensive approaches. In both studies, the live webinar

and in-person meetings led to similar outcomes, and with

rare exception, offered little advantage over groups of

participants who viewed the same materials on their own.

Our study is one of the first attempts to investigate

the effects of science–practice interaction on different

drivers of climate science usability through a random-

ized experiment.We believe this experimental approach

has the potential to significantly increase understanding

of how different forms of remote communication can be

used to augment in-person engagement efforts. Rather

than challenge the compelling evidence that person-to-

person interaction fosters usability, our results suggest

that there may be alternative avenues to enhance us-

ability and to aid interaction that complement (rather

than replace) well-established best practices docu-

mented in the climate science literature. While there are

many others aspects of the role of engagement in in-

creasing the usability of scientific knowledge that need to

be explored, our findings suggest that climate scientists,

information brokers, and practitioners should consider

that more face-to face interaction may not always be

better. Given limited resources and the urgency of climate

change, strategic investment of time and effort is essential.
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