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Influence of a plasma on the observational signature
of a high-spin Kerr black hole

Haopeng Yan
The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark

(Received 18 March 2019; published 30 April 2019)

To approach a more reliable observational signature of a high-spin Kerr black hole, one should take into
account the effects of its surroundings. To this end, we study in this paper the influence of a surrounding
plasma. We consider its refractive and dispersive effects on photon trajectories and ignore the gravitational
effects of plasma particles as well as the absorption or scattering processes of photons. With two specific
plasma models, we obtain analytical formulas for the black hole shadow and for the observational
quantities of an orbiting “hot spot” seen by an observer located far away from the black hole. We find that
the plasma has a frequency-dependent dispersive effect on the size and shape of the black hole shadow and
on the image position and redshift of the hot spot. These results may be tested by the Event Horizon
Telescope in the future.
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I. INTRODUCTION

Nowadays, we are entering an exciting new era of
precise astronomical observations of black holes. The
observations with gravitational waves have achieved
a celebrated breakthrough in recent years [1–5].
Meanwhile, the Event Horizon Telescope (EHT)
Collaboration is making efforts to capturing the first image
of an astrophysical black hole through electromagnetic
wave observations [6]. Therefore, there is increasing
interest in studying theoretical templates for those obser-
vations among the gravity community [7,8]. The optical
signature of a high-spin Kerr black hole at the EHT
has been studied recently in Refs. [9–11], in which the
authors found some striking signatures which may serve as
a “smoking gun” to identify the black hole in the Universe.
A generalization of these signatures for a Kerr-like black
hole in a modified gravity has been discussed in Ref. [12].
In these studies, the light rays were assumed as lightlike
geodesics of the spacetime without being influenced by the
medium they passed through. However, an astrophysical
black hole is usually surrounded by a complicated envi-
ronment (such as a corona, a plasma and jets, etc.), and
photons near the black hole have to pass through this before
reaching to an observer far away from the black hole. In
general, the influence of these surroundings on astronomi-
cal observations cannot be neglected. Then, what about the
signatures at the EHT if we take this influence into
consideration?
Though there are various forms of matter surrounding a

black hole, in this work, we will only concentrate on the
influence of a plasma. Plenty of astronomical phenomena
of a black hole in a plasma have been studied since the

1960s [13,14], while there have also been some recent
studies on gravitational lensing [15–21] and the shadow of
black holes [21–25] and wormholes [26]. Here, we are
aiming to find the influence of a plasma on a) the shape and
size of a shadow for a high-spin black hole and b) the image
of an orbiting emitter (“hot spot”) near the black hole. To
achieve this target analytically, we will consider several
idealized plasma models which have power-law-like dis-
tributions and satisfy a separation condition proposed by
Perlick and Tsupko [25]. The shadow for a Kerr black hole
in a plasma has been studied in Refs. [23,25,27]. However,
it is worth revisiting this for a high-spin black hole since
doing so helps one understand the image of a hot spot (and
thus the signature at the EHT) better. Moreover, in contrast
with these works, we will calculate the shadow either using
a different method or with different plasma models (or
both). The complete signature at the EHT should be the
combined information of the black hole shadow and the
signal from the hot spot. In addition to the influence on
the size and shape of a black hole discussed in
Refs. [25,27], we find that there is a special segment of
the shadow edge originating from the near-horizon region
and is approximately the same for both of the power-law-
like models (18) and (19). Moreover, the image position
and redshift of the hot spot are obviously influenced by the
plasma as well. Furthermore, this observational signature is
frequency dependent, and there is a greater influence on
light rays with lower frequencies.
This paper is organized as follows. In Sec. II, we review

the photon motion in Kerr spacetime with a plasma and
introduce two plasma models with radial power-law-like
distributions to be considered later. In Sec. III, we revisit
the shadow of a Kerr black hole in the presence of a plasma,
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in particular, we study the extremal limit of the shadow and
the near-horizon extremal Kerr line (NHEKline). In Sec. IV,
we write down the lens equations for an orbiting emitter
and find solutions for a near-extremal black hole to the
leading order in the deviation from extremality. In Sec. V,
we present the results for the observational appearance of
this orbiting emitter and illustrate these with figures.
In Sec. VI, we give a summary and short conclusion.
We relegate some technical steps and discussions to
Appendixes.

II. PHOTON MOTION IN KERR SPACETIME
WITH A PLASMA

A. Photon motion

We work in the Kerr spacetime, which is thought
to describe astrophysical black holes in our Universe.
The Kerr metric in Boyer-Lindquist coordinates, x ¼
ðt; r; θ;ϕÞ, is given by

ds2 ¼ −
ΔΣ
Ξ

dt2 þ Σ
Δ
dr2 þ Σdθ2 þ Ξ sin2 θ

Σ
ðdϕ −WdtÞ2;

ð1Þ
where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2; ð2aÞ

W ¼ 2aMr
Ξ

; Ξ ¼ ðr2 þ a2Þ2 − Δa2sin2θ: ð2bÞ

We consider that there exists a nonmagnetized pressure-
less plasma with electron frequency [15]

ωpðxÞ2 ¼
4πe2

me
NeðxÞ; ð3Þ

where e and me are the electron charge and mass,
respectively, and Ne is the electron number density. In
the geometric optics limit, the Hamiltonian for a photon
propagation through this plasma can be written as [15]

Hðx; pÞ ¼ 1

2
ðgμνðxÞpμpν þ ωpðxÞ2Þ; ð4Þ

where pμ are the components of the four-momentum of the
photon and gμν are the contravariant components of the
metric. p ¼ ðpt; pr; pθ; pϕÞ are the canonical momentum
coordinates.
Note that the plasma has a refractive effect on the photon

trajectories and the index of refraction nðx;ωÞ is given by

nðx;ωÞ2 ¼ 1 −
ωpðxÞ2
ωðxÞ2 ; ð5Þ

where ωðxÞ is the photon frequency with respect to the
plasma medium. For a photon to be able to propagate
through this medium, one should require

ωðxÞ ≥ ωpðxÞ: ð6Þ

For details with regard to the plasma theory, readers may
refer to Refs. [15,16].
In order to find the equation of motion for photons in

the Kerr spacetime with a plasma, we should take care
of the plasma frequency. In the vacuum case ωpðxÞ ¼ 0,
there are four constants of the photon motion: the
Hamiltonian H ¼ 0, the total energy E ¼ −pt, the
angular momentum L ¼ pϕ, and the Carter constant
Q ¼ p2

θ − cos2 θða2p2
t − p2

ϕ csc
2 θÞ. Provided these con-

stants, the photon trajectories are uniquely determined,
and one may obtain them by solving the Hamilton-Jacobi
(H-J) equation. However, this is no longer the case in
general if there is a nonzero plasma. For photons propa-
gating through a plasma, the HamiltonianH ¼ 0 still holds.
If we assume that the plasma frequency depends only on
r and θ, then E ¼ −pt and L ¼ pϕ are still constants of
photon motion since ∂tH ¼ 0 and ∂ϕH ¼ 0. For later
reference, we introduce ω0 to denote the photon frequency
measured at infinity; then, we have E ¼ ℏω0 (hereafter, we
set ℏ ¼ 1 for convenience). Next, to make the H-J equation
separable, the plasma frequency ωpðr; θÞ should take the
following form [25],

ωpðr; θÞ2 ¼
frðrÞ þ fθðθÞ
r2 þ a2 cos2 θ

; ð7Þ

with some functions frðrÞ and fθðθÞ. Therefore, we can get
a generalized separation constant,

K ≔ p2
θ þ ðaω0 sin θ − L csc θÞ2 þ fθðθÞ

¼ −Δp2
r þ

1

Δ
½ðr2 þ a2Þω0 − aL�2 − frðrÞ: ð8Þ

Following the convention of Refs. [9,28], we define the
generalized Carter constant as Q ¼ K − ðL − aEÞ2; the
explicit expression is

Q ¼ p2
θ − cos2 θða2ω2

0 − L2 csc2 θÞ þ fθðθÞ: ð9Þ

Note that, if fθðθÞ is a constant function, we have
Q − fθðθÞ ≥ 0 for any photon passing through the equa-
torial plane since Q − fθðθÞ ¼ p2

θ ≥ 0 when θ ¼ π=2. It is
convenient to introduce the following rescaled quantities
and functions:

λ̂ ¼ L
ω0

; q̂ ¼
ffiffiffiffi
Q

p
ω0

; f̂r ¼
fr
ω2
0

; f̂θ ¼
fθ
ω2
0

: ð10Þ

In the vacuum case, the trajectory of a photon is indepen-
dent of its frequency and may be described only by the
rescaled quantities λ̂ and q̂ [29]. In the presence of a
plasma, however, the photon trajectory does depend on the
photon frequency and should be described also with an
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additional variable ω0 (since the functions fr and fθ are not
variables of photons). This can be seen from the trajectory
equations (11).
Provided that the surrounding plasma satisfies the

separation condition (7), one can obtain the equation of
motion for photons by using the H-J method, as follows,

⨍ r dr

� ffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ −⨍ θ dθ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð11aÞ

Δϕ ¼ ⨍ r að2Mr − aλ̂Þ
�Δ

ffiffiffiffiffiffiffiffiffiffi
RðrÞp drþ ⨍ θ λ̂csc2θ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ð11bÞ

Δt ¼ ⨍ r 1

�Δ
ffiffiffiffiffiffiffiffiffiffi
RðrÞp ½r4 þ a2ðr2 þ 2MrÞ − 2aMrλ̂�dr

þ ⨍ θ a2cos2θ

� ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; ð11cÞ

where

RðrÞ ¼ RvacðrÞ − Δf̂rðrÞ; ð12Þ

ΘðθÞ ¼ ΘvacðθÞ − f̂θðθÞ; ð13Þ

with

RvacðrÞ ¼ ðr2 þ a2 − aλ̂Þ2 − Δ½q̂2 þ ða − λ̂Þ2�; ð14Þ

ΘvacðθÞ ¼ q̂2 þ a2cos2θ − λ̂2cot2θ: ð15Þ

The functions RðrÞ and ΘðθÞ are the radial and angular
potentials in a plasma, respectively, while the functions
RvacðrÞ and ΘvacðθÞ are the corresponding potentials in the
vacuum case, respectively. Note that the trajectory equa-
tions have the same formulas as those in the vacuum case
but the corrections are implied in these potentials. The
integrals in these equations are to be evaluated as path
integrals along each trajectory; thus, we use slash notations
to distinguish these with ordinary integrals. The plus/minus
signs in these equations are chosen to be the same as those
of the corresponding directions of photon propagation (sign
of dr or dθ). The direction is changed every time when the
light ray meets a turning point where either RðrÞ or ΘðθÞ
vanishes.
To summarize, the plasma contributes an additional term

to the Hamiltonian of a photon, which makes the H-J
equation nonseparable in general. By assuming that the
plasma frequency satisfies the separation condition (7),
the equation of motion for photons can be obtained, and the
influence of a plasma appears only from the radial potential
RðrÞ and angular potential ΘðθÞ.

B. Plasma models

As the black hole is stationary and axisymmetric, we will
consider several specific distributions for the surrounding
plasma which depend only on r and θ. The simplest and
well-studied model is the radial power-law density [16],
which depends only on r and satisfies

ωpðrÞ2 ¼
4πe2NeðrÞ

me
; NeðrÞ ¼

N0

rh
; ð16Þ

where N0 is a constant and h ≥ 0. Unfortunately, this does
not satisfy the separation condition (7); thus, the above-
mentioned procedure for obtaining photon motion cannot
be applied. Nevertheless, we may assume the plasma
density has an additional θ dependence such that the
separation condition is satisfied, and we make a choice
for frðrÞ and fθðθÞ in Eq. (7) as [25]

frðrÞ ¼ Crk; fθðθÞ ≥ 0; ð17Þ

where C > 0 and 0 ≤ k ≤ 2. Since the plasma density is
supposed to be negligible at infinity, we are going to
consider two models with k ¼ 0 and k ¼ 1.
In model 1, we have plasma density with frðrÞ ¼ 0,

fθðθÞ ¼ ω2
cM2 [or equivalently frðrÞ ¼ ω2

cM2, fθðθÞ ¼ 0]
such that ω2

p ∼ 1
r2 at large r,

ωpðr; θÞ2 ¼
ω2
cM2

r2 þ a2 sin2 θ
: ð18Þ

In model 2, we have plasma density with frðrÞ ¼ ω2
cMr,

fθðθÞ ¼ 0 such that ω2
p ∼ 1

r at large r,

ωpðr; θÞ2 ¼
ω2
cMr

r2 þ a2 sin2 θ
: ð19Þ

We have introduced a constant ωc in these models. For
later reference, we will also introduce a rescaled constant,
ω̂c ¼ ωc=ω0. We name the plasma distributions with the
form of Eqs. (7) and (17) the power-law-like models for the
reason that the distributions are approximately the same as
the power-law models at large r.
Since we are interested in the optical appearance of a

black hole, we may expect the existence of a light ray
anywhere outside of the black hole. As mentioned follow-
ing Eq. (10), light propagation in a plasma does depend on
the photon frequency ω0. The condition (6) gives a
constraint between the plasma frequencyωp and the photon
frequency ω0 [25],

ωpðr; θÞ2 ≤ ωðr; θÞ2 ¼ −gttðr; θÞ−1ω2
0; ð20Þ

where
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gtt ¼ 1 −
2Mr

r2 þ a2 sin2 θ
: ð21Þ

As we have already seen from Eqs. (11), in the presence of
a plasma, the relevant quantity to describe a photon
trajectory (and thus the observables) is the ratio of plasma
frequency and photon frequency which can be represented
by the ratio ω̂c for these two models. Note that this ratio
may reflect two kinds of different physics. On the one hand,
if we consider only the photons with a given frequency,
different ratios represent different case studies of plasmas
with different densities. On the other hand, for a given
plasma distribution, different ratios represent the chromatic
effect of the plasma. Later, we will study the dependence of
the optical appearance on the ratio ω̂c.
For the models (18) and (19), we always have ωp < ωc.

Therefore, the photon trajectory is similar, as it would
propagate in vacuum spacetime if ω̂c ≪ 1 [as from Eq. (5)
the refraction index n → 1]. However, if ω̂c ≫ 1, it is even
impossible for a photon to propagate in the plasma.
Even though the plasma models discussed here are

highly idealized, it is possible to extract some approximate
effects of a real plasma by using these toy models.
Therefore, we will assume the plasma density satisfies
the separation (7) and mostly focus on the power-law-like
models throughout the rest of the paper. For convenience,
later, we will also use the subscripts s and o to represent the
source of photons and the observer, respectively.

III. SHADOW OF AN EXTREMAL KERR BLACK
HOLE IN A PLASMA

In Ref. [25], the Kerr shadow in a plasma has been
analytically calculated by using the celestial angles [30]
which is appropriate for any position of the observer.
Moreover, it was also first shown in Ref. [25] that the
analytical approach based on solving the trajectory equa-
tions is possible only for a plasma distribution with the
form of (7)1 (as was reviewed in Sec. II). In addition, the
shadow also has been numerically performed in Ref. [27].
The numerical approach is, in principle, possible for any
distribution of plasma (for example, the power-law form
and exponential form are discussed in Ref. [27]).
Here, we revisit the shadow for a Kerr black hole in the

presence of a plasma by using the impact parameters [29]
(also referred to as “screen coordinates” in the literature;
see Appendix A for a review), which is appropriate for
observers at large distances. In particular, we will study the
extremal limit of the shadow and take care of the photons in
the near-horizon region, the images of which are supposed
to appear on a vertical line in the vacuum case, the so-called
NHEKline [9]. In Sec. IV, we will further study the

image of an orbiting emitter (hot spot) in this near-horizon
region to seek for more signals related to astronomical
observations.
The edge of a shadow corresponds to unstable spherical

photon orbits around a black hole, which satisfy

RðrÞ ¼ R0ðrÞ ¼ 0; ð22Þ

where the prime denotes derivative. Solving these equa-
tions, we have

λ̂ ¼ −
Mða2 − r2Þ þ Δr

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p

aðr −MÞ ; ð23aÞ

q̂ ¼ r3=2

aðr −MÞ
�
2MΔð1þ

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − rðr −MÞ2

þ ðr − 2MÞΔδ − a2ðr −MÞ2
r3

f̂rðrÞ
�
1=2

; ð23bÞ

where we have introduced

δ ¼ r −M
2r2

f̂0rðrÞ: ð24Þ

Note that in the near-horizon limit r → M, we have δ → 0.
As discussed below Eq. (9), a photon orbit crossing the
equatorial plane should satisfy

q̂2 − f̂θðθÞ ≥ 0: ð25Þ

Plugging (23b) into (25) gives a region of spacetime filled
with such spherical photon orbits. We call this region the
“photon region.” (Note that here the photon region is
slightly different from that in Ref. [25] since we only
include those photon orbits which cross the equatorial
plane).
We use the screen coordinates ðα; βÞ [Eq. (A4)] to

describe the image on the sky. The edge of a black hole
shadow is the curve ðα; βÞ with Eq. (23) for λ̂ and q̂ being
plugged in, as

αðrÞ ¼ −
λ̂ðrÞ
sin θo

; ð26aÞ

βðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂ðrÞ2 þ a2 cos2 θo − λ̂ðrÞ2 cot2 θo − f̂θðθoÞ

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘðθoÞ

p
; ð26bÞ

where the parameter r ranges over this photon region (25)
and also makes β be real at a desired inclination.

A. Extremal limit and NHEKline

Now, we consider the extremal limit following the
procedure of Ref. [9]. Letting a → M in Eqs. (23), we have

1Previously, Atamurotov, Ahmedov, and Abdujabbarov [23]
analytically calculated the shadowof aKerr black hole in a plasma,
but without taking into consideration the separation condition.
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Mλ̂ ¼ M2 þMrð1þ
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − r2M

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
; ð27aÞ

Mq̂ ¼ ½r3ð2Mð1þ
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − rþ ðr − 2MÞδÞ

−M2f̂rðrÞ�1=2: ð27bÞ

Then, the condition (25) on the radius r is expressed
explicitly as

r3

M2
½2Mð1þ

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − rþ ðr − 2MÞδ� ≥ f̂rðrÞ þ f̂θðθÞ:

ð28Þ

The shadow edge is then obtained by plugging (27) into
Eqs. (A4), as follows:

α ¼ −
�
M þ rð1þ

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − r2

M

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p �
csc θo; ð29aÞ

β ¼ �
�
r3

M2
ð2Mð1þ

ffiffiffiffiffiffiffiffiffiffi
1 − δ

p
Þ − rþ ðr − 2MÞδÞ

þ ðM2 − α2Þcos2θo − f̂θðθoÞ − f̂rðrÞ
�
1=2

: ð29bÞ

For different choices of a plasma model and an inclination
θo of the observer, the curves given by (29) may either be
closed or open. In case of an open curve, there are two end
points corresponding to r ¼ M, (i.e., photons originate
from the event horizon). For a radial power-law-like plasma
with

frðrÞ ¼ M2−kω2
crk; ð0 ≤ k ≤ 2Þ; fθðθÞ ¼ 0; ð30Þ

the end points are at [plugging r ¼ M into (29)]

αend ¼ −2M csc θo; ð31aÞ

βend ¼ �M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2 θo − 4 cot2 θo − ω̂2

c

q
: ð31bÞ

These end points exist, provided that βend is real, which
gives a critical inclination for the observer, θcrit < θo <
π − θcrit, where

θcrit ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − ω̂2

c −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 − ω̂2

cÞð4 − ω̂2
cÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 − ω̂2

cÞð4 − ω̂2
cÞ

p
− 6þ ω̂2

c

s
: ð32Þ

Note that there are no end points at all for ω̂c >
ffiffiffi
3

p
, and in

that case, the given curve is closed. Note also that a real βend
also requires that

ω̂c ≤ ω̂crit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2 θo − 4 cot2 θo

q
: ð33Þ

Later, we will consider that the observer is located at a
nearly edge-on inclination, θo ¼ 84.27° (corresponding to

ω̂crit ≈
ffiffiffiffiffiffiffiffiffi
2.97

p
); thus, for this observer, the end points exist,

provided that ω̂c ≲
ffiffiffiffiffiffiffiffiffi
2.97

p
. For later reference, we refer to

the plasma with ω̂c ≲
ffiffiffiffiffiffiffiffiffi
2.97

p
as “low density” plasma and

otherwise as “high density” plasma.
Since the edge of a shadow does close for all a < M,

such an open curve has missed an important piece origi-
nating from the near-horizon sources. To recover the
missing part, we consider the extremal limit again by
introducing

a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ2

p
; r ¼ Mð1þ σRÞ; ð34Þ

where σ is a small parameter. Then, for photons orbits
which cross the near-horizon region, Eqs. (23) give

λ̂ ¼ 2M þOðσÞ;

q̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

�
3 −

4

R

�
− f̂ð0Þr ðrÞ

s
þOðσÞ; ð35Þ

where f̂ð0Þr ðrÞ represents the leading order term in σ. Note
that the plasma has no influence on λ̂ in this limit. For the
radial power-law-like plasma with (30), we have

λ̂ ¼ 2M þOðσÞ; q̂ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ω̂2

cÞ −
4

R2

r
þOðσÞ:

ð36Þ

Then, the other piece of the shadow edge (originating from
near-horizon region) is traced by

αðRÞ ¼ −2M csc θo þOðσÞ; ð37aÞ

βðRÞ ¼ �M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2 θo − 4 cot2 θo − ω̂2

c −
4

R2

r
þOðσÞ: ð37bÞ

From the condition (25) and the requirement β ∈ R, we can
get the allowed range of R, as

R ∈
�

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2θo − 4cot2θo − ω̂2

c

p ;∞
�
þOðσÞ: ð38Þ

As σ → 0 and in the allowed range of R, we have

α ¼ −2M csc θθo ; ð39aÞ

jβj < M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ cos2 θo − 4 cot2 θo − ω̂2

c

q
: ð39bÞ

This gives precisely the missing part of an open curve,
which is the generalized NHEKline [9] in the presence of a
plasma. Note that, since both of the plasma models (18) and
(19) have the form of (30), this NHEKline [Eq. (39)] is
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applicable for both of them and is exactly the same for each
particular value of ω̂c. However, curves given by Eq. (29)
for these models are different.
To summarize, for an observer at θo ¼ 84.27°, the

shadow is given either by Eq. (29) for ω̂c >
ffiffiffiffiffiffiffiffiffi
2.97

p
or

by the union of Eqs. (29) and (39) for 0 ≤ ω̂c ≲
ffiffiffiffiffiffiffiffiffi
2.97

p
.

Note that any near-horizon source in a plasma with the
above-mentioned models with ω̂c >

ffiffiffiffiffiffiffiffiffi
2.97

p
cannot be seen

by this observer.

B. Silhouette of black hole

We now show the silhouette of a black hole shadow
observed at θo ¼ 84.27° for the two specific plasma models
(18) and (19) in Fig. 1. For model 1, ω2

p ¼ ω2
cM2=

ðr2 þ a2 cos2 θÞ, we choose fr ¼ ω2
cM2 and fθ ¼ 0 (or,

equivalently, fr ¼ 0 and fθ ¼ ω2
cM2); for model 2,

ω2
p ¼ ω2

cMr=ðr2 þ a2 cos2 θÞ, we choose fr ¼ ω2
cMr and

fθ ¼ 0. The silhouettes are obtained by plugging these
specific functions f̂r and f̂θ into Eq. (29) [and Eq. (39)]
over the allowed range of r for each given value of ω̂c.
This allowed range can be found numerically from the
inequality (28).
These exhibit the following dependencies of the shadows

on the plasma model and on the value of ω̂c. Each of the
shadow edges for a low density plasma has a vertical part,
while that for a high density plasma does not. The shadows
shrink in both model 1 and model 2 when ω̂c is increased.
Moreover, at a given value of ω̂c, the shadow shrinks
more in model 2 than in model 1. This is because model 2
has a larger plasma density at a given distance r since the
density scales like 1=r while in model 1 it scales like 1=r2.
Furthermore, in both models 1 and 2, photons in the

near-horizon region have contributions to the shadows
only for ω̂c <

ffiffiffiffiffiffiffiffiffi
2.97

p
(which gives the NHEKlines). At

each same value of ω̂c, the NHEKlines for these two
models are the same. When ω̂c goes from 0 to

ffiffiffiffiffiffiffiffiffi
2.97

p
, the

NHEKline appears at the same coordinate of α, while the
maximum absolute value of β decreases.
Note that the plasma distributions of example 2 and

example 3 in Ref. [25] also have the power-law-like form
(17) with ω2

p ∼ r−2 and r−3=2, respectively. The results in
Ref. [25] are exhibited with figures for an observer at
ro ¼ 5M and θo ¼ π=2 and for spin a ¼ 0.999M, while
our models 1 and 2 have ω2

p ∼ r−2 and r−1, respectively,
and the results are obtained for a → M, ro → ∞ and
θo ¼ 84.27°. We find good agreement between our results
and those in Ref. [25] on the general features discussed
above (except details of the NHEKlines since these are not
discussed in Ref. [25]). Moreover, the critical ratios for the
photon regions are also quantitatively comparable among
these results up to factors in these plasma models and the
approximations of observers’ locations and black hole
spins. Furthermore, these features for the power-law-like
plasma models also qualitatively agree with those for the
power-law models [with the form of (16)] which have been
numerically performed in Ref. [27] for ω2

p ∝ r−1, r−2, and
r−3. Therefore, even through the separation condition (7)
has been proposed based on a mathematical motivation
[25], it is nevertheless physically effective.

IV. ORBITING EMITTER IN A PLASMA

Now, we consider an isotropic point emitter (hot spot)
orbiting on a circular and equatorial geodesic at radius
rs around a Kerr black hole in the presence of a plasma.

FIG. 1. Shadow edge of an extremal Kerr black in the presence of a plasma for model 1 (left) and model 2 (right), seen from an
inclination of θo ¼ 84.27°. For model 1, we have ω2

p ¼ ω2
cM2=ðr2 þ a2 cos2 θÞ; for model 2, we have ω2

p ¼ ω2
cMr=ðr2 þ a2 cos2 θÞ.

The photon regions for a spherical orbit crossing the equatorial plane vanish at ω̂2
c ≈ 27 for model 1 and at ω̂2

c ≈ 8 for model 2. For both
models, we have ω̂2

c ¼ ω2
c=ω2

0 ¼ 0 (red), 0.5 (blue), 1.2 (green), 2.5 (magenta), 5 (orange), and 7 (black). In addition, the gray curves
have ω̂2

c ¼ 26 (left) and 7.8 (right). The dashed lines are given by Eq. (29), and the solid vertical lines are given by Eq. (39). Note that for
ω̂2
c ¼ 0.5, 1.2, and 2.5, the NHEKlines are overlapped with the red solid lines but have shorter lengths which begin and end at the end

points of the corresponding dashed lines.
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This point emitter is supposed to be much heavier than the
plasma (for example, it could be a star); thus, we may
neglect the influence of the plasma on the motion of this
emitter. The angular velocity for such an emitter is given by
Ref. [31] (the same as in vacuum Kerr spacetime),

Ωs ¼ � M1=2

r3=2s � aM1=2
; ð40Þ

and the innermost stable circular orbit (ISCO) is given by

rISCO ¼ Mð3þ Z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
Þ; ð41Þ

where

Z1 ¼ 1þ ð1 − a2⋆Þ1=3½ð1þ a⋆Þ1=3 þ ð1 − a⋆Þ1=3�;
Z2 ¼ ð3a2⋆ þ Z2

1Þ1=2; a⋆ ¼ a
M

: ð42Þ

A. Lens equations

The orbiting emitter at ðts; rs; θs;ϕsÞ is connected to an
observer at ðto; ro; θo;ϕoÞ by photon trajectories described
by Eqs. (11). In these equations, the lower and upper
bounds for the radial integrals are chosen as rs and ro,
respectively, while the lower and upper bounds for the
angular integrals are chosen as θs and θo, respectively. In
addition, we have Δϕ ¼ ϕo − ϕs and Δt ¼ to − ts. Using
the relation ϕs ¼ Ωsts, we have

Δϕ −ΩsΔt ¼ ϕo −Ωsto; ð43Þ

then, the unknowns ϕs and ts can be decoupled from
Eqs. (11b) and (11c).
Following Ref. [9], we rearrange these equations (11) as

the Kerr lens equations in the presence of a plasma. First,
we introduce parameters b ∈ f0; 1g andm ∈ Z≥0 to denote
the number of radial and angular turning points, respec-
tively, and s ∈ f−1; 1g to denote the final orientation of pθ.
Then, we set ϕo ¼ 2πl with l ∈ Z recording the net
winding number executed by the photon relative to the
emitter between its emission time and reception time.
Finally, the lens equations can be reexpressed as

Ir þ bĨr ¼ Gm;s
θ ; ð44aÞ

Jr þ bJ̃r þ
λ̂Gm;s

ϕ −Ωsa2G
m;s
t

M
¼ −Ωsto þ 2πl; ð44bÞ

where Ir, Ĩr, Jr, and J̃r are radial integrals defined in
Appendix C 1 and Gm;s

i (i ∈ ft; θ;ϕg) are angular integrals
defined in Appendix C 2. These equations have the same
formulas as those in vacuum Kerr spacetime; however, the
differences are implied in the integrals. Solving these lens
equations for given parameters m, s, b and given values of
rs and θo, we can write the conserved quantities λ̂ and q̂ in

terms of to which label the photon trajectories connecting
the source to an observer.

B. Near-extremal solutions

We assume the emitter is on, or near, the prograde ISCO
of a near-extremal black hole. It is convenient to work with
a dimensionless radial coordinate R which is related to the
Boyer-Lindquist radius r by

R ¼ r −M
M

: ð45Þ

We introduce a small parameter ϵ ≪ 1 to describe the
condition for the near-extremality of a black hole, as
follows:

a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ3

p
: ð46Þ

Under this condition, the ISCO [Eq. (41)] is located at a
coordinate distance of approximately ϵ from the horizon,

RISCO ¼ 21=3ϵþOðϵ2Þ; ð47Þ

thus, the radial coordinate for the emitter can be written as

rs ¼ Mð1þ ϵR̄Þ þOðϵ2Þ; R̄ ≥
1

2
; ð48Þ

which means that the emitter is in the near-horizon region.
Even though the motion of this emitter is not affected by the
plasma, its image can only be seen if the plasma density has
ω̂c ≲

ffiffiffi
3

p
as the light rays are refracted by the plasma, and

in that case, the image appears on the NHEKline (see
discussions in Sec. VA).
Following Refs. [9,28], we introduce new quantities λ

and q instead of λ̂ and q̂ (see Appendix B 1 for interpre-
tations),

λ̂ ¼ 2Mð1þ ϵλÞ; q̂ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − q2

q
: ð49Þ

Plugging the expressions (46), (48), and (49) into the
lens equations (44) gives the near-extremal lens equations.
Then, for given values of rs and θo, we solve these
equations to the leading order in ϵ for the plasmas with
distributions (18) and (19), respectively, following the
procedure of Ref. [9].
Note that, even though we have considered a near-

extremal black hole with the condition (46), it turns out that
the results are identical to the leading order in ϵ if we
considered an extremal black hole with a ¼ M [9],

1. Model 1: ω2
p =ω2

cM2=ðr2 + a2sin2θÞ:
We choose frðrÞ ¼ 0 and fθðθÞ ¼ ω2

cM2. In this case,
the radial potential is the same as that in the vacuum Kerr
case [9]; thus, we have the same radial integrals, and then
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we obtain the same formulas of solutions for the lens
equations up to corrections in the angular integrals. These
integrals are performed in Appendix C.
First, we make a choice of the parameters b, m, and s.

Then, from the first equation (44a), we can obtain the
condition for the existence of a solution,

R̄ <
4ϒ
q2

�
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − q2
p �

if b ¼ 0; ð50aÞ

R̄ >
4ϒ
q2

�
1þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − q2
p �

if b ¼ 1; ð50bÞ

and the solution, as follows:

λ ¼ 2ϒ
4 − q2

�
2 − q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 − q2

2ϒ
R̄

r �
: ð51Þ

Here, ϒ > 0 is defined by

ϒ≡ q4Ro

q2 þ 2Ro þ qDo
e−qG

m̄;s
θ ; ð52Þ

where

Do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4Ro þ R2

o

q
; ð53Þ

and Gm̄;s
θ is defined in Eq. (C6), with

m̄ ¼ mþ 1

qGθ
log ϵ: ð54Þ

Next, regarding the second equation (44b), we introduce
a dimensionless time coordinate t̂o which is restricted to
unit period of the emitter,

t̂o ¼
to
Ts

¼ Ωsto
2π

¼ to
4πM

þOðϵÞ: ð55Þ

Thus, the second equation can be written in terms of this
dimensionless time coordinate, as

t̂o ¼ l −
1

2π

�
Jr þ bJ̃r þ 2Gm;s

ϕ −
1

2
Gm;s

t

�
; ð56Þ

where J integrals and G integrals are given in Appendix C.
Note that we have already obtained a function λðqÞ

[Eq. (51)] in the allowed range of q [Eq. (50)] from the first
equation; the second then gives a function t̂oðqÞ. Inverting
this function in each monotonic domain gives a function
qiðt̂oÞ for a given choice of integer l. Here, we have
introduced a discrete integer i to label the monotonic parts
of t̂oðqÞ in each of the allowed ranges of q. Since the
observational quantities can be expressed in terms of the

conserved quantities λ and q, each qiðt̂oÞ corresponds to a
specific track segment of the emitter’s image, which can be
labeled by ðm; b; s; l; iÞ.

2. Model 2: ω2
p =ω2

cMr=ðr2 + a2 sin2 θÞ
We choose frðrÞ ¼ ω2

cMr and fθðθÞ ¼ 0. Since the lens
equations for this case are similar to those for model 1
(see Appendix C for details), we can find the solutions
in a similar way for a given choice of parameters b, m,
and l. For convenience, we introduce a new param-
eter q̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ω̂2

c

p
.

The solution of the first equation (44a) and the condition
of its existence are given by replacing q with q̃ in the
formulas (51) and (50), respectively, where the expression
of ϒ is corrected as

ϒ≡ q̃4Ro

q̃2 þ ð2 − ω̂2
c
2
ÞRo þ q̃Do

e−q̃G
m̄;s
θ ; ð57Þ

with

Do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̃2 þ ð4 − ω̂2

cÞRo þ R2
o

q
; ð58Þ

and Gm̄;s
θ is given in Eq. (C6) with m̄ being defined in (54).

The second equation (44b) can also be rewritten in a
form as (56); however, the J integrals and G integrals
therein are different from those for model 1 (see
Appendix C).
Similarly, we can also obtain the image track segment

qiðt̂oÞ of the emitter labeled by ðm; b; s; l; iÞ.

V. OBSERVATIONAL APPEARANCE OF THE
ORBITING EMITTER

In the vacuum case, the image of an emitter orbiting on
the ISCO of a rapidly rotating black hole appearing on the
NHEKline has a rich structure [9]. Next, we will study the
influence of plasma on this image.

A. Observational quantities

From the previous section, the photon conserved quan-
tities qðt̂oÞ and λ½qðt̂oÞ� (along trajectories) are obtained for
the plasma models (18) and (19). These conserved quan-
tities help describe the observational appearance of the
emitter: the image position, redshift, and flux. We briefly
review this for a general black hole in Appendix B and give
the results for a near-extremal black hole below.
In the near-extremal limit and to the leading order in ϵ,

we have (see Sec. IV B)

a ¼ M; rs ¼ Mð1þ ϵR̄Þ; ð59aÞ

λ̂ ¼ 2Mð1þ ϵλÞ; q̂ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − q2

q
: ð59bÞ
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Then, the apparent position (A4) on the celestial sphere is
expanded as

α ¼ −2M csc θo; ð60aÞ

β ¼ sM

�
3 − q2 þ cos2θo − 4cot2θo −

f̂θðθoÞ
M2

�
1=2

; ð60bÞ

where s is the final orientation of pθ. Note that λ does not
appear to the leading order and q should be in a range such
that β is real. For an observer at θo ¼ 84.27°, this range is

obtained as 0 ≤ q≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2.97 − f̂θðθoÞ=M2

q
. Combining with

another range of q discussed in Appendix B 1, we find that
the image of a hot spot in a plasma with models 1 and 2
appears on the NHEKline (see Sec. III A). The redshift
factor (B12) is expanded as

g ¼ 1ffiffiffi
3

p þ 4ffiffi
3

p λ
R̄

þOðϵÞ: ð61Þ

The flux (B13) is expanded as

Fo

FN
¼

ffiffiffi
3

p
ϵR̄

2Ds

qg3

sin θo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ0ðθoÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − q2 − f̂θðθsÞ

M2

q
×

���� det ∂ðB;AÞ∂ðλ; qÞ
����−1; ð62Þ

where A and B are defined in (B14) and

Θ0ðθoÞ ¼ 3 − q2 þ cos2 θo − 4 cot2 θo −
f̂θðθoÞ
M2

ð63Þ

and

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2R̄2 − 8λR̄þ 4λ2 −

f̂ð0Þr ðrsÞ
M2

R̄2

s
; ð64Þ

with f̂ð0Þr ðrsÞ being the leading order term of f̂rðrsÞ in ϵ.
Note that these results are obtained for each given choice

of discrete parametersm, s, b, and l, which corresponds to a

FIG. 2. Positions, fluxes, and redshifts of the brightest few images of the hot spot for ω2
p ¼ ω2

cM2=ðr2 þ a2 cos2 θÞ (model 1). From
left to right, we have ωc=ω0 ¼ 0,

ffiffiffiffiffiffi
0.5

p
,

ffiffiffiffiffiffi
1.2

p
, and

ffiffiffiffiffiffi
2.5

p
, respectively. We have color coded the images in the same way as in Ref. [9],

and each monochromatic line may be composed of several continuous track segments labeled by ðm; b; s; l; iÞ.
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specific image track. The full time-dependent image is
completed by finding all such tracks for all choices of these
parameters. The influences of plasma on these observables
are introduced from the functions f̂r and f̂θ, as well as from
the quantities λ and q, which label different photon
trajectories.

B. Hot spot image

We now describe the observational quantities of the hot
spot’s image with figures following the procedure of
Ref. [9] and using the open numerical code therein. The
image depends on the choice of the plasma distribution and
the parameters Ro, θo, ϵ, and R̄. We will consider the two
plasma models (18) and (19) with several certain values of
ω̂c, respectively. In order to compare the results with those
for the vacuum case [9], we make the following choice for
these parameters:

Ro ¼ 100; θo ¼
π

2
−

1

10
¼ 84.27°; ð65aÞ

ϵ ¼ 10−2; R̄ ¼ R̄ISCO ¼ 21=3: ð65bÞ

As described in Sec. IV B, for each choice of discrete
parameters m, b, s, and l and an additional label i, we can
obtain an image track segment qðt̂oÞ [and λðt̂oÞ]. The main
observables for the segment are given in Eqs. (60), (61),
and (62). The completed information of the image is built
up by including all such choices of parameters (in practice,
we consider only a few values of m and l since the image
segments for others are vanishingly small) [9]. Below, we
show the brightest few images for model 1 [Eq. (18)] in
Fig. 2 and for model 2 [Eq. (19)] in Fig. 3. We consider four
different values of the ratio ω̂c for each of the models and
also color code continuous image tracks in each of
these plots.
Comparing Fig. 2 with Fig. 3, we find that the images of

model 1 and model 2 (with a given value of ω̂c) are very
similar. This is because the difference between the lens
equations (44) among these two models is negligibly small.
First, the lens equations in the near-horizon region are the
same to the leading order in ϵ for both models. Second,

FIG. 3. Positions, fluxes, and redshifts of the brightest few images of the hot spot for ω2
p ¼ ω2

cMr=ðr2 þ a2 cos2 θÞ (model 2). From
left to right, we have ωc=ω0 ¼ 0,

ffiffiffiffiffiffi
0.5

p
,

ffiffiffiffiffiffi
1.2

p
, and

ffiffiffiffiffiffi
2.5

p
, respectively. We have color coded the images in the same way as in Ref. [9],

and each monochromatic line may be composed of several continuous track segments labeled by ðm; b; s; l; iÞ.
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even though there are differences appearing in the far
region, these have a negligible influence on the image since
the plasma densities decrease with r in an inverse power-
law behavior. [See the results and discussions for
plasma distributions with frðrÞ ¼ M2−kω2

crk, (k ¼ 0; 1),
and fθðθÞ ¼ 0 in Appendix C]. Therefore, here, we will
only discuss the features exhibited in Fig. 2 for model 1.
Figure 2 shows the main observables in a plasma with

ω2
p ¼ ω2

cM2=ðr2 þ a2 sin2 θÞ, where we have taken four
different values for ω̂2

c ¼ ω2
c=ω2

0 as 0, 0.5, 1.2, and 2.5. In
each case, the green line is for the brightest primary image,
while others are for the secondary images. Note that the
secondary images are, in general, much fainter than the
primary image and are important only when different image
tracks intersect. Therefore, below, we will focus on the
feature of the primary image. In each of these cases,
the primary image (if any) appears near the center of the
NHEKline before moving downward while spiking in
brightness. The image appears periodically, and the period
stays unchanged when ω̂c is increased. For ω̂2

c ¼ 0, this
corresponds to the vacuum case, and the results agree with
Ref. [9]. For a nonzero plasma, there are remarkable
influences on the image position and redshift, while there
is a smaller influence on the image flux. When ω̂c is
increased from zero, not only does the maximum elevation
of the NHEKline (βmax) decrease, but also the relative
portion of the NHEKline on which appears the image
(β=βmax) decreases, and so does the redshift factor and time
duration of the image. Note that for smaller values of ω̂c,
the primary image is blueshifted, while for larger ones, it
becomes redshifted. The primary image vanishes when ω̂c
is greater than a critical value, and the entire images vanish
when ω̂c ≳

ffiffiffiffiffiffiffiffiffi
2.97

p
.

VI. SUMMARY AND CONCLUSION

In this paper, we investigated the observational signature
of a high-spin black hole in the presence of a surrounding
plasma. We considered the plasma as a dispersive medium
for photons but neglect its gravitational effects. We
assumed the plasma distributions satisfy a separation
condition (7) proposed by Perlick and Tsupko [25] such
that the photon trajectory can be solved analytically. Then,
we studied the shadow of the black hole and the signal
produced by a nearby hot spot.
To obtain the optical appearance, we first found the

equation of motion for photons by solving the Hamilton-
Jacobi equations under the separation condition. We found
that the corrections of these to the vacuum case are imposed
only from the radial potential RðrÞ and angular potential
ΘðθÞ [see Eq. (11)]. We also introduced two special power-
law-like models [(18) and (19)] which satisfy the separation
condition in Sec. II B as simple examples which were
studied in detail.
Next, we analytically studied the photon region and

shadow of an extremal Kerr black hole surrounded by a

plasma. For a power-law-like plasma, the photon region
was determined by (28), and the edge of a shadow was
described either by the union of Eqs. (29) and (37) or by
Eq. (29) only, depending on whether the near-horizon
source was in the photon region (low density plasma) or not
(high density plasma). The size of the shadow decreased
when the density of plasma was increased, and the shape of
the shadow was different for plasma with low or high
density. Moreover, in case of low density plasma, the near-
horizon sources all terminated at a vertical line: the
NHEKline. We showed these in Fig. 1 and discussed the
features in Sec. III B.
Then, we studied the signal produced by a hot spot

orbiting at the ISCO of the black hole (in the presence of a
power-law-like plasma). We solved the lens equations in
the near-extremal limit in Sec. IV and obtained analytical
formulas for the observational quantities: the image posi-
tion (60), the image redshift (61), and the image flux (62).
Note that, since the ISCO of a high-spin black hole was in
the near-horizon region, this signal could only be seen for a
low density plasma. The plasma had a remarkable influence
on the brightest image: the segment on the celestial sphere
for the image to appear was smaller than that in the vacuum
case, and so was the redshift. We showed these in Figs. 2
and 3 and discussed the features in Sec. V B.
In a real astrophysical setup (given the parameters for the

black hole and the surrounding plasma), the ratio ω̂c
depends on the frequency of photon; thus, the observational
signatures that we discussed above are all chromatic. Note
that the ratio ω̂c is greater for a photon with lower
frequency; thus, there is a larger influence on the trajectory
of such a photon. Combining the information of a black
hole shadow and hot spot signal, we can sketch a picture
(template) for what we may see from the Event Horizon
Telescope.
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APPENDIX A: SCREEN COORDINATES

In this Appendix, we introduce a pair of screen coor-
dinates, α and β, in the rest frame of an observer to describe
specific positions on the celestial sphere [29]. We choose
the following tetrad for the observer located at r ¼ ro:

eðtoÞ ¼
ffiffiffiffiffiffiffi
Ξ
ΔΣ

r
∂t þ

2Mar
ΞΣΔ

∂ϕ; eðroÞ ¼
ffiffiffiffi
Δ
Σ

r
∂r; ðA1aÞ
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eðθoÞ ¼
1ffiffiffi
Σ

p ∂θ; eðϕoÞ ¼
ffiffiffiffi
Σ
Ξ

r
1

sin θ
∂ϕ: ðA1bÞ

The frame components of four-vectors are defined in the
usual way,

VðaÞ ¼ ηðaÞðbÞeμðbÞVμ; ðA2Þ

where ηðaÞðbÞ ¼ diagð−1; 1; 1; 1Þ. For photons with con-
served quantities λ̂ and q̂ that reach to the observer, tracing
backward along their trajectories to the source gives the
image of the source. Thus, the coordinates can be defined
with the help of photon motions (see Sec. II A), as

α ¼ −ro
pðϕoÞ

pðtoÞ ¼ −ro

ffiffiffiffiffiffi
Δo

p
Σoλ̂ csc θo

Ξo − 2aMroλ̂
; ðA3aÞ

β ¼ �ro
pðθoÞ

pðtoÞ ¼ �ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔoΞoΘðθoÞ

p
Ξo − 2aMroλ̂

: ðA3bÞ

These describe the apparent displacements of the image
relative to the center of the black hole; α and β are,
respectively, in the direction perpendicular and parallel to
the axis of symmetry of the black hole.
As ro → ∞, the coordinates read

α ¼ −
λ̂

sin θo
; ðA4aÞ

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2 þ a2cos2θo − λ̂2cot2θo − f̂θðθoÞ

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘðθoÞ

p
: ðA4bÞ

APPENDIX B: OBSERVATIONAL APPEARANCE
OF THE ORBITING EMITTER

1. Interpretation of photon conserved quantities

We consider the photons originating from the orbiting
emitter described in Sec. IV. The conserved quantities λ̂ and
q̂ are related to the emission angle in the rest frame of the
source. We choose the following tetrad for the emitting
source,

eðtsÞ ¼ γ

ffiffiffiffiffiffiffi
Ξ
ΔΣ

r
ð∂t þ Ωs∂ϕÞ; ðB1aÞ

eðrsÞ ¼
ffiffiffiffi
Δ
Σ

r
∂r; eðθsÞ ¼

1ffiffiffi
Σ

p ∂θ; ðB1bÞ

eðϕsÞ ¼ γvs

ffiffiffiffiffiffiffi
Ξ
ΔΣ

r
ð∂t þW∂ϕÞ þ γ

ffiffiffiffi
Σ
Ξ

r
∂ϕ; ðB1cÞ

where

vs ¼
Ξs

Σs
ffiffiffiffiffiffi
Δs

p ðΩs −WsÞ; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2s

p : ðB2Þ

The cosines of the emission angles ðΦs;ΘsÞ are given by

cosΦs ¼
pðϕsÞ

pðtsÞ ; cosΘs ¼ −
pðθsÞ

pðtsÞ ; ðB3Þ

where the frame components are defined in the way of
(A2). From these relations, we can get

λ̂ ¼ cosΦs þ vs
ðΣs=ΞsÞ

ffiffiffiffiffiffi
Δs

p þΩs cosΦs þ ωsvs
; ðB4aÞ

q̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂θ

�
π

2

�
∓ rs cosΘ

g

s
: ðB4bÞ

Near-extremal limit.—In the near-extremal limit, a ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ3

p
, and for an emitter orbiting on (or near) the

ISCO [Eq. (48)], we can introduce a new quantity λ to keep
track of the small corrections by expanding Eq. (B4a), as

λ̂ ¼ 2Mð1 − ϵλÞ: ðB5Þ

Using the positivity of the kinetic energy in a local frame,
we have

3 −
q̂2 − f̂θðθÞ

M2
< 4ð1 − λϵþ λ2ϵ2Þ: ðB6Þ

For convenience, we may introduce a dimensionless shifted
Carter constant [28]:

q2 ¼ 3 −
q̂2

M2
: ðB7Þ

As mentioned below Eq. (9), we have Q − fθðθÞ ≥ 0 for
those photons emitted from equatorial plane. Thus, we have

q2 ≤ 3 −
f̂θðθÞ
M2

: ðB8Þ

Motion in the equatorial plane has q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − f̂θðθÞ=M2

q
.

We will show in Appendix C 1 that a light ray originating
from this emitter to an observer at a far region must also
have lower bounds on q2, and we can always have a
positive q. Together with the upper bound (B8), we can get
the range for a specific plasma model. For model 1
[Eq. (18)], we may choose either frðrÞ ¼ 0 and
fθðθÞ ¼ ω2

cM2, and then we have

0 < q2 ≤ 3 − ω̂2
c; ðB9Þ

or frðrÞ ¼ ω2
cM2 and fθðθÞ ¼ 0, and then we have
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ω̂2
c < q2 ≤ 3: ðB10Þ

Note that the range of qmay depend on the choice of fr and
fθ; however, the quantity q̂2 − f̂θ remains unchanged in
any case. For model 2 [Eq. (19)], we choose frðrÞ ¼ ω2

cMr
and fθðθÞ ¼ 0; then, we have

ð5ω̂2
c − ω̂4

cÞ=4 < q2 ≤ 3; q2 > ω̂2
c: ðB11Þ

2. Observational quantities

Following Refs. [9,32,33], we now consider the obser-
vational quantities of the orbiting emitter in a plasma: the
image position, redshift factor, and flux. These can be
expressed in terms of the photon conserved quantities (B4).
The apparent position of the image is obtained by

plugging Eqs. (B4) into Eqs. (A4) with the sign of β equal
to s (the final vertical orientation of pθ).
The frequency of photons observed by an observer is

shifted from the original frequency when they were emitted
from the source. The “redshift factor” is the ratio between
the frequency measured at infinity and measured at the
local rest frame of the source,

g ¼ ω0

ωs
¼ ω0

pðtsÞ ¼
1

γ

ffiffiffiffiffiffiffiffiffiffi
ΔsΣs

Ξs

s
1

1 − Ωsλ̂
: ðB12Þ

The normalized total flux of each image on the observ-
er’s screen relative to the comparable “Newtonian flux” in a
vacuum is obtained as

Fo

FN
¼ g3

q̂M
γ sin θo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣsΔs

ΞsΘðθoÞΘðθsÞRðrsÞ

s ���� det ∂ðB; AÞ∂ðλ̂; q̂Þ
����−1;
ðB13Þ

where we have defined

A≡ Ir þ bĨr − Gm;s
θ �M

Z
θs

π=2

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ðB14aÞ

B≡ Jr þ bJ̃r þ
λ̂Gm;s

ϕ − Ωsa2G
m;s
t

M
: ðB14bÞ

APPENDIX C: INTEGRALS AND LENS
EQUATIONS

In this Appendix, we write down the integrals appearing
in the “lens equations” (44) for plasma models that satisfy
the separation condition (7) with some undetermined
functions fr and fθ. Note that the functions fr and fθ
are appearing in the radial integral and angular integral,
respectively. We compute those integrals for some specific
choices of the functions fr and fθ. The results of the lens

equations for the power-law-like models (18) and (19) are
obtained by plugging in the corresponding integrals at the
same time.

1. Radial integrals

The radial integrals appearing in the lens equations (44)
are defined as [9]

Ir ¼ M
Z

ro

rs

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; Ĩr ¼ 2M

Z
rs

rmin

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ; ðC1aÞ

Jr ¼
Z

ro

rs

J rffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; J̃r ¼ 2

Z
rs

rmin

J rffiffiffiffiffiffiffiffiffiffi
RðrÞp dr; ðC1bÞ

J r¼
1

Δ
½að2Mr−aλ̂Þ−Ωsrðr3þa2ðrþ2MÞ−2aMλ̂Þ�;

ðC1cÞ

where the radial potentialRðrÞ is defined in (12) and rmin is
the largest (real) root of it. These equations are valid when
rmin < rs, which is always true for light that can reach
infinity.
In the near-extremal limit, we have expansions (59). We

will perform these integrals analytically to the leading order
in ϵ by using matched asymptotic expansions for light rays
connecting a source to an observer. We work in the
dimensionless radial coordinates R [defined in Eq. (45)]
and split each of the integrals into two pieces by intro-
ducing a scaling of ϵp (ϵ ≪ ϵp ≪ 1) with a constant
p ∈ ð0; 1Þ.
Take Ir, for example; under this regime, we have

Ir ≈M2

Z
ϵpC

ϵR̄

dRffiffiffiffiffiffiffi
Rn

p þM2

Z
Ro

ϵpC

dRffiffiffiffiffiffiffi
Rf

p ; ðC2Þ

whereRn andRf are the leading terms of the expansions in
the near-horizon region R ∼ ϵ and in the far region R ∼ 1,
respectively, and C is a positive constant. Note that scaling
of R ∼ ϵpC is in the overlap region.
For frðrÞ ¼ M2−kω2

crk (0 ≤ k ≤ 2), we have

RnðR ∼ ϵÞ ¼ M4ϵ2½ðq2 − ω̂2
cÞx2 þ 4λð2xþ λÞ�; ðC3aÞ

RfðR ∼ 1Þ ¼ M4½q2 þ 4Rþ R2 − ð1 − RÞkω̂2
c�; ðC3bÞ

where we have introduced x ¼ R=ϵ. At every point of a
photon trajectory that originates in the NHEK region and
reaches to the far region, one must have non-negative
potential RðrÞ ≥ 0. To guarantee that this condition holds
in the near region, we should take q2 > ω̂2

c; to guarantee
that this condition holds in the far region, we should take
q2 > ω̂2

c for k ¼ 0 and q2 > ð5ω̂2
c − ω̂4

cÞ=4 for k ¼ 1.
With the expansions (C3), we can analytically compute

the two pieces of integrals in Eq. (C2), respectively, and the
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complete integral is obtained by adding them together.
Moreover, the integrals Ĩr, Jr, and J̃r can be computed in a
similar way.
Next, we list the results for f̂rðrÞ ¼ ω̂2

cMr, as follows,

Ir ¼
1

q̃
log

�
4q̃4Ro

ðq̃2 þ ð2 − ω̂2
c
2
ÞRo þ q̃DoÞðq̃Ds þ q̃2R̄þ 4λÞ

�

−
log ϵ
q̃

þOðϵÞ; ðC4aÞ

Ĩr ¼
1

q̃
log

�ðq̃Ds þ q̃2R̄þ 4λÞ2
4ð4 − q̃2Þλ2

�
þOðϵÞ; ðC4bÞ

Jr ¼ log

�
R̄ð2þ q̃Þð2 − ω̂2

c
2
þ q̃Þ1þ1

4
ω̂2
c

ðDs þ 2R̄þ 2λÞð2 − ω̂2
c
2
þDo þ RoÞ1þ1

4
ω̂2
c

�

−
7

2
Ir þ

3

8λ
ðDs − q̃ R̄Þ þ 1

2
ðq̃ −DoÞ þOðϵÞ; ðC4cÞ

J̃r ¼ −
7

2
Ĩr −

3

4

Ds

λ
þ log

�ðDs þ 2R̄þ 2λÞ2
ð4 − q̃2ÞR̄2

�
þOðϵÞ;

ðC4dÞ

where q̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ω̂2

c

p
, and

Ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̃2R̄2 þ 8λR̄þ 4λ2

q
; ðC5aÞ

Do ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̃2 þ ð4 − ω̂2

cÞRo þ R2
o

q
: ðC5bÞ

Note that for ω̂c ¼ 0, these give the results for f̂rðrÞ ¼ 0.
For f̂rðrÞ ¼ M2ω̂2

c, the expansions (C3) are similar as
those for f̂rðrÞ ¼ 0 up to a replacement of q →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ω̂2

c

p
.

Thus, the final results of the integrals are obtained by
including this replacement in those for f̂rðrÞ ¼ 0.

2. Angular integrals

The angular integrals appearing in the lens equations (44)
are defined as [9]

Gm;s
i ¼

�
Ĝi m ¼ 0;

mGi − sĜi m ≥ 1;
i ∈ ft; θ;ϕg; ðC6Þ

with

Gi ¼ M
Z

θþ

θ−

giðθÞdθ; Ĝi ¼ M
Z

π=2

θo

giðθÞdθ; ðC7Þ

and

gθ¼
1ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; gϕ¼

csc2θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; gt¼

cos2θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ðC8Þ

where ΘðθÞ is the angular potential defined in (13) with an
arbitrary function fθðθÞ in it and θ� are roots of it.
We will perform the integrals for fθðθÞ ¼ ω2

cM2. In this
case, the angular potential can be written as

ΘðuÞ ¼ q̂2 − ω̂2
cM2 þ u½a2 − λ̂2ð1 − uÞ−1�; ðC9Þ

which are similar to those in the vacuum Kerr case up to the
replacement: q̂2 → q̂2 − ω̂2

cM2. Thus, following Ref. [9],
we obtain the results of the angular integrals in the near-
extremal regime, as follows

Gθ ¼
2ffiffiffiffiffiffiffiffiffi
−I−

p K

�
Iþ
I−

�
þOðϵÞ; ðC10aÞ

Ĝθ ¼
1ffiffiffiffiffiffiffiffiffi
−I−

p F

�
Ψo

��� Iþ
I−

�
þOðϵÞ; ðC10bÞ

Gϕ ¼ 2ffiffiffiffiffiffiffiffiffi
−I−

p Π
�
Iþ

��� Iþ
I−

�
þOðϵÞ; ðC10cÞ

Ĝϕ ¼ 1ffiffiffiffiffiffiffiffiffi
−I−

p Π
�
Iþ;Ψo

��� Iþ
I−

�
þOðϵÞ; ðC10dÞ

Gt ¼ −
4Iþffiffiffiffiffiffiffiffiffi
−I−

p E0
�
Iþ
I−

�
þOðϵÞ; ðC10eÞ

Ĝt ¼ −
2Iþffiffiffiffiffiffiffiffiffi
−I−

p E0
�
Ψo

��� Iþ
I−

�
þOðϵÞ; ðC10fÞ

where E0ðϕjmÞ ¼ ∂mEðϕjmÞ and

Ψo ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θo
Iþ

s
; ðC11Þ

and

I� ¼ q̄2

2
− 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − ð2q̄Þ2 þ

�
q̄2

2

�
2

s
; ðC12Þ

with

q̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ω̂2

c

q
: ðC13Þ

Furthermore, FðϕjmÞ, EðϕjmÞ, and Πðn;ϕjmÞ are the
incomplete elliptic integrals of the first, second, and third
kinds, respectively, and KðmÞ ¼ Fðπ

2
jmÞ, EðmÞ ¼ Eðπ

2
jmÞ,

and ΠðnjmÞ ¼ Πðn; π
2
jmÞ are the corresponding complete

elliptic integrals.
Note that for ω̂c ¼ 0, these give the results for f̂θðθÞ ¼ 0.
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3. Lens equations for the two plasma models

In Sec. IV B, we have solved the lens equations for the
power-law-like plasma models 1 and 2 [Eqs. (18) and (19)]
by choosing frðrÞ ¼ 0, fθðθÞ ¼ ω2

cM2 for model 1 and
frðrÞ ¼ ω2

cMr, fθðθÞ ¼ 0 for model 2. In order to compare
the lens equations for these two models, we may equiv-
alently choose frðrÞ ¼ ω2

cM2, fθðθÞ ¼ 0 for model 1
instead. Thus, the difference of the lens equations

between these two models is only imposed in the radial
integrals with the function frðrÞ taking the form of
frðrÞ ¼ M2−kω2

crk. Moreover, from the expansions (C3),
we see that the near-horizon pieces of the radial integrals
for the two models are exactly the same, while, even though
the far region piece contains differences among these
two models, the plasma densities are small in that region
since they scale like 1=rh (h ¼ 2 and 1, respectively).

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,
Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170608: Observation of a 19-solar-mass binary
black hole coalescence, Astrophys. J. 851, L35 (2017).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Implications for the Stochastic
Gravitational-Wave Background from Compact Binary
Coalescences, Phys. Rev. Lett. 120, 091101 (2018).

[5] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Search for Subsolar-Mass Ultracompact Binaries in
Advanced LIGOs First Observing Run, Phys. Rev. Lett.
121, 231103 (2018).

[6] H. Falcke, Imaging black holes: Past, present and future,
J. Phys. Conf. Ser. 942, 012001 (2017).

[7] L. Barack et al., Black holes, gravitational waves and
fundamental physics: A roadmap, arXiv:1806.05195.

[8] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong
gravitational lensing: a brief review, Gen. Relativ. Gravit.
50, 42 (2018).

[9] S. E. Gralla, A. Lupsasca, and A. Strominger, Observational
signature of high spin at the event horizon telescope, Mon.
Not. R. Astron. Soc. 475, 3829 (2018).

[10] A. Lupsasca, A. P. Porfyriadis, and Y. Shi, Critical emission
from a high-spin black hole, Phys. Rev. D 97, 064017
(2018).

[11] D. Gates, D. Kapec, A. Lupsasca, Y. Shi, and A. Strominger,
Polarization whorls from M87 at the event horizon tele-
scope, arXiv:1809.09092.

[12] M. Guo, N. A. Obers, and H. Yan, Observational signatures
of near-extremal Kerr-like black holes in a modified gravity
theory at the event horizon telescope, Phys. Rev. D 98,
084063 (2018).

[13] D. Muhleman and I. Johnston, Radio Propagation in the
Solar Gravitational Field, Phys. Rev. Lett. 17, 455 (1966).

[14] D. Muhleman, R. Ekers, and E. Fomalont, Radio Interfero-
metric Test of the General Relativistic Light Bending Near
the Sun, Phys. Rev. Lett. 24, 1377 (1970).

[15] G. S. Bisnovatyi-Kogan and O. Yu. Tsupko, Gravitational
lensing in a non-uniform plasma, Mon. Not. R. Astron. Soc.
404, 1790 (2010).

[16] A. Rogers, Frequency-dependent effects of gravitational
lensing within plasma, Mon. Not. R. Astron. Soc. 451, 17
(2015).

[17] V. Morozova, B. Ahmedov, and A. Tursunov, Gravitational
lensing by a rotating massive object in a plasma, Astrophys.
Space Sci. 346, 513 (2013).

[18] C. A. Benavides-Gallego, A. A. Abdujabbarov, and C.
Bambi, Gravitational lensing for a boosted Kerr black hole
in the presence of plasma, Eur. Phys. J. C 78, 694 (2018).

[19] J. Schee, Z. Stuchlík, B. Ahmedov, A. Abdujabbarov, and B.
Toshmatov, Gravitational lensing by regular black holes
surrounded by plasma, Int. J. Mod. Phys. D 26, 1741011
(2017).

[20] G. Crisnejo and E. Gallo, Weak lensing in a plasma medium
and gravitational deflection of massive particles using the
Gauss-Bonnet theorem. A unified treatment, Phys. Rev. D
97, 124016 (2018).

[21] G. Bisnovatyi-Kogan and O. Tsupko, Gravitational lensing
in presence of plasma: Strong lens systems, black hole
lensing and shadow, Universe 3, 57 (2017).

[22] V. Perlick, O. Yu. Tsupko, and G. S. Bisnovatyi-Kogan,
Influence of a plasma on the shadow of a spherically
symmetric black hole, Phys. Rev. D 92, 104031 (2015).

[23] F. Atamurotov, B. Ahmedov, and A. Abdujabbarov, Optical
properties of black holes in the presence of a plasma: The
shadow, Phys. Rev. D 92, 084005 (2015).

[24] A. Abdujabbarov, B. Toshmatov, Z. Stuchlík, and B.
Ahmedov, Shadow of the rotating black hole with quintes-
sential energy in the presence of plasma, Int. J. Mod. Phys.
D 26, 1750051 (2017).

[25] V. Perlick and O. Yu. Tsupko, Light propagation in a plasma
on Kerr spacetime: Separation of the Hamilton-Jacobi
equation and calculation of the shadow, Phys. Rev. D 95,
104003 (2017).

[26] A. Abdujabbarov, B. Juraev, B. Ahmedov, and Z. Stuchlík,
Shadow of rotating wormhole in plasma environment,
Astrophys. Space Sci. 361, 226 (2016).

[27] Y. Huang, Y.-P. Dong, and D.-J. Liu, Revisiting the shadow
of a black hole in the presence of a plasma, Int. J. Mod.
Phys. D 27, 1850114 (2018).

INFLUENCE OF A PLASMA ON THE OBSERVATIONAL … PHYS. REV. D 99, 084050 (2019)

084050-15

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.120.091101
https://doi.org/10.1103/PhysRevLett.121.231103
https://doi.org/10.1103/PhysRevLett.121.231103
https://doi.org/10.1088/1742-6596/942/1/012001
http://arXiv.org/abs/1806.05195
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1093/mnras/sty039
https://doi.org/10.1093/mnras/sty039
https://doi.org/10.1103/PhysRevD.97.064017
https://doi.org/10.1103/PhysRevD.97.064017
http://arXiv.org/abs/1809.09092
https://doi.org/10.1103/PhysRevD.98.084063
https://doi.org/10.1103/PhysRevD.98.084063
https://doi.org/10.1103/PhysRevLett.17.455
https://doi.org/10.1103/PhysRevLett.24.1377
https://doi.org/10.1111/j.1365-2966.2010.16290.x
https://doi.org/10.1111/j.1365-2966.2010.16290.x
https://doi.org/10.1093/mnras/stv903
https://doi.org/10.1093/mnras/stv903
https://doi.org/10.1007/s10509-013-1458-6
https://doi.org/10.1007/s10509-013-1458-6
https://doi.org/10.1140/epjc/s10052-018-6170-9
https://doi.org/10.1142/S0218271817410115
https://doi.org/10.1142/S0218271817410115
https://doi.org/10.1103/PhysRevD.97.124016
https://doi.org/10.1103/PhysRevD.97.124016
https://doi.org/10.3390/universe3030057
https://doi.org/10.1103/PhysRevD.92.104031
https://doi.org/10.1103/PhysRevD.92.084005
https://doi.org/10.1142/S0218271817500511
https://doi.org/10.1142/S0218271817500511
https://doi.org/10.1103/PhysRevD.95.104003
https://doi.org/10.1103/PhysRevD.95.104003
https://doi.org/10.1007/s10509-016-2818-9
https://doi.org/10.1142/S0218271818501146
https://doi.org/10.1142/S0218271818501146


[28] A. P. Porfyriadis, Y. Shi, and A. Strominger, Photon
emission near extreme Kerr black holes, Phys. Rev. D
95, 064009 (2017).

[29] J. M. Bardeen, Timelike and null geodesics in the Kerr
metric, in Proceedings of the Ecole d’Et de Physique
Thorique: Les Astres Occlus: Les Houches, France, 1972
(Gordon and Breach, New York, 1973), pp. 215–240.

[30] A. Grenzebach, V. Perlick, and C. Lämmerzahl, Photon
regions and shadows of Kerr-Newman-NUT black holes with
a cosmological constant, Phys. Rev. D 89, 124004 (2014).

[31] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating
black holes: Locally nonrotating frames, energy extraction,
and scalar synchrotron radiation, Astrophys. J. 178, 347
(1972).

[32] C. Cunningham and J. Bardeen, The optical appearance of a
star orbiting an extreme kerr black hole, Astrophys. J. 173,
L137 (1972).

[33] C. Cunningham and J. M. Bardeen, The optical appearance
of a star orbiting an extreme kerr black hole, Astrophys. J.
183, 237 (1973).

HAOPENG YAN PHYS. REV. D 99, 084050 (2019)

084050-16

https://doi.org/10.1103/PhysRevD.95.064009
https://doi.org/10.1103/PhysRevD.95.064009
https://doi.org/10.1103/PhysRevD.89.124004
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1086/180933
https://doi.org/10.1086/180933
https://doi.org/10.1086/152223
https://doi.org/10.1086/152223

