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Glucagon is secreted from the pancreatic alpha cells upon hypoglycemia and
stimulates hepatic glucose production. Type 2 diabetes is associated with dysregulated
glucagon secretion, and increased glucagon concentrations contribute to the diabetic
hyperglycemia. Antagonists of the glucagon receptor have been considered as glucose-
lowering therapy in type 2 diabetes patients, but their clinical applicability has been
questioned because of reports of therapy-induced increments in liver fat content
and increased plasma concentrations of low-density lipoprotein. Conversely, in animal
models, increased glucagon receptor signaling has been linked to improved lipid
metabolism. Glucagon acts primarily on the liver and by regulating hepatic lipid
metabolism glucagon may reduce hepatic lipid accumulation and decrease hepatic
lipid secretion. Regarding whole-body lipid metabolism, it is controversial to what
extent glucagon influences lipolysis in adipose tissue, particularly in humans. Glucagon
receptor agonists combined with glucagon-like peptide 1 receptor agonists (dual
agonists) improve dyslipidemia and reduce hepatic steatosis. Collectively, emerging data
support an essential role of glucagon for lipid metabolism.

Keywords: glucagon, lipid, liver, adipose tissue, alpha cell

INTRODUCTION

Glucagon is processed from its precursor, proglucagon, by prohormone convertase 2 and secreted
from pancreatic alpha cells (Rouille et al., 1994). The role of glucagon in glucose metabolism
has been intensively studied, and comprehensive reviews are found elsewhere (Jiang and Zhang,
2003; Ramnanan et al., 2011; Ahren, 2015; Holst et al., 2017a). In addition to regulating glucose
metabolism, glucagon also seems important for minute-to-minute regulation of amino acid
metabolism as part of the recently described liver-alpha cell axis (Solloway et al., 2015; Dean
et al., 2017; Galsgaard et al., 2017; Holst et al., 2017b; Kim et al., 2017), in which amino acids
stimulate glucagon secretion and glucagon in turn stimulates hepatic amino acid uptake and
metabolism (ureagenesis) and, thus, circulating amino acid concentrations as well as increased
hepatic NADH/NAD+ ratio. The actions of glucagon are mediated via the glucagon receptor,
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a seven transmembrane receptor coupled to Gαs- and
Gq-proteins, which regulate adenylate cyclase (AC) and
phospholipase C activities when activated (Wakelam et al.,
1986; Jelinek et al., 1993; Aromataris et al., 2006). The glucagon
receptor is primarily expressed in the liver, but it is also expressed
in varying amounts in the central nervous system, kidneys,
gastro-intestinal tract, heart (controversial), and pancreas
(Svoboda et al., 1994).

Glucagon receptor expression has been reported in rat
adipocytes (Svoboda et al., 1994; Hansen et al., 1995), where a
lipolytic effect of glucagon may be of physiological relevance.
As type 2 diabetic hyperglucagonaemia (Faerch et al., 2016)
contributes to the hyperglycemic state of patients with type 2
diabetes (T2D) (Unger and Orci, 1975; Baron et al., 1987),
inhibition of glucagon receptor signaling has been investigated
as glucose-lowering therapy in T2D patients (Kazda et al., 2016;
Kazierad et al., 2016, 2018; Vajda et al., 2017; Pettus et al.,
2018). Interestingly, potential adverse effects of this therapeutic
approach include increased low-density lipoprotein (LDL)
plasma concentrations and increased hepatic fat accumulation
(Guzman et al., 2017). Furthermore, hepatocyte studies have
shown that glucagon stimulates beta-oxidation (Pegorier et al.,
1989), inhibits lipogenesis and decrease triglyceride (TG) and
very-low-density lipoprotein (VLDL) secretion (Guettet et al.,
1988; Bobe et al., 2003) emphasizing a potentially important role
of glucagon in lipid metabolism.

GLUCAGON MIGHT STIMULATE
LIPOLYSIS IN ADIPOSE TISSUE IN
RODENTS BUT NOT IN HUMANS

Lipolysis in adipocytes depends on activation of AC and
thereby increased protein kinase A (PKA) activity. PKA
phosphorylates (hence activates) perilipins (Greenberg et al.,
1991) and hormone-sensitive lipase (HSL) (Stralfors et al., 1984;
Garton et al., 1988; Anthonsen et al., 1998), and two additional
lipases, resulting in hydrolysis of TGs and release of glycerol and
free fatty acids (FFAs), e.g., palmitate (Egan et al., 1992; Lass
et al., 2006; Granneman et al., 2009; Shen et al., 2009; Wang
et al., 2009; Figure 1). Circulating levels of FFAs and glycerol
therefore reflect the rate of lipolysis (Schweiger et al., 2014). For
glucagon to directly influence adipocyte function, its cognate
receptor must be expressed. Glucagon receptor mRNA has been
detected in rat adipocytes (Svoboda et al., 1994; Hansen et al.,
1995), but to determine the physiological relevance of glucagon
receptor mRNA expression, it is necessary to investigate whether
the mRNA is actually translated into a functional receptor.
Specific antibodies directed against the glucagon receptor are
necessary in addressing this question, but development of specific
antibodies against glucagon receptors has been challenging and
the antibodies available are unspecific and therefore not suitable
for receptor localization (van der Woning et al., 2016). As an
example, one study reported localization of the glucagon receptor
in rat adipocytes using a monoclonal antibody (Iwanij and
Vincent, 1990) whereas another using autoradiography, glucagon
receptors were not found to be expressed (Watanabe et al., 1998),

and no studies have demonstrated presence of glucagon receptors
on human adipocytes (Carranza et al., 1993). Clearly, future
studies should investigate glucagon receptor expression using
antibody and antibody-independent methods.

Glucagon has been reported to activate HSL (Vaughan
et al., 1964; Slavin et al., 1994) and lipolysis in rat adipocytes
(Vaughan and Steinberg, 1963; Rodbell and Jones, 1966; Prigge
and Grande, 1971; Manganiello and Vaughan, 1972; Lefebvre
et al., 1973; Livingston et al., 1974) within minutes (Honnor
et al., 1985) at concentrations as low as 6 × 10−10 M
(Lefebvre and Luyckx, 1969) and 10−11 M (Heckemeyer et al.,
1983). Glucagon has also been shown to stimulate lipolysis
in birds, rabbits (Richter et al., 1989; Wu et al., 1990), and
human adipocytes in vitro (Perea et al., 1995) at concentrations
near 10−8 M (Richter et al., 1989). At physiological plasma
concentrations (1–40 pM), a lipolytic effect of glucagon in
human adipocytes has been difficult to demonstrate (Mosinger
et al., 1965; Vizek et al., 1979; Gravholt et al., 2001). One of
the first human studies reporting a lipolytic effect of glucagon,
demonstrated that an injection of 7.5 µg glucagon into the
branchial artery resulted in a rapid increase in FFA plasma
concentrations in the corresponding vein (Pozza et al., 1971) but
this was not replicated in a similar study with mean increases
of glucagon plasma concentrations by 237 pM in overnight
fasted subjects (Pozefsky et al., 1976). An increase in FFA
plasma concentrations has been demonstrated upon glucagon
infusion (mean glucagon increment 209 ± 15 pM) (Schneider
et al., 1981) and intravenous injection of glucagon [reaching
plasma concentrations of >1,000 pM (Schade and Eaton, 1975)].
Since supra-physiological glucagon concentrations were applied,
these studies may lack specificity because of interaction of
glucagon with other related G protein-coupled receptors (e.g.,
the glucagon-like peptide 1 (GLP-1) receptor) (Hjorth et al.,
1994). Pharmacological concentrations of glucagon also stimulate
secretion of catecholamines and growth hormone, both of which
have powerful lipolytic effects (Mitchell et al., 1969; Stallknecht
et al., 1995), possibly as part of a generalized sympathetic nervous
system discharge (Paschoalini and Migliorini, 1990). Glucagon
was not found to have any lipolytic effects in clinical studies
using glucagon concentrations ranging from 19 to 64 pM (Wu
et al., 1990; Jensen et al., 1991; Gravholt et al., 2001; Xiao et al.,
2011). In some clinical studies investigating the lipolytic effect of
supra-physiological glucagon concentrations, the lipolytic effect
of glucagon could be abolished by insulin (Samols et al., 1965;
Goldfine et al., 1972; Liljenquist et al., 1974; Schade and Eaton,
1975; Schneider et al., 1981), and in rat adipocytes insulin is a
potent inhibitor of lipolysis (Rodbell and Jones, 1966; Lefebvre
and Luyckx, 1969; Prigge and Grande, 1971; Liljenquist et al.,
1974; Gerich et al., 1976). A lipolytic effect of glucagon, if any,
on human adipocytes may therefore only be physiologically
relevant when insulin secretion is low. Supporting this, a 2-h
infusion of 1 ng/kg × min glucagon (presumably resulting in
physiologically relevant elevations) and somatostatin in insulin-
deficient diabetic subjects caused a two to three-fold increase in
FFA and glycerol plasma concentrations, compared to infusion
of somatostatin alone. However, when insulin, somatostatin, and
glucagon were infused together, glucagon had no lipolytic effect
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FIGURE 1 | Glucagon ensures energy supply by mobilizing lipids. In the fasting state, glucagon is secreted and insulin concentrations are not sufficient to inhibit
lipolysis in adipocytes, where lipids are stored in lipid droplets consisting of a core of triglycerols (TG) and sterols esters coated with perilipins (P) (proteins restricting
access to the lipid core). In response to an appropriate stimuli, e.g., epinephrine and possibly glucagon, AC found in the plasma membrane of the adipocyte is
activated, leading to increased intracellular concentrations of cAMP stimulating protein kinase A (PKA) activity. PKA phosphorylates (hence activates) hormone
sensitive lipase (HSL) and P. The phosphorylation of P results in dissociation of the protein CGI-58. CGI-58 activates adipose triglycerol lipase (ATGL), which converts
TGs to diaglycerols (DG). The phosphorylated P bind HSL and allows it to access the lipid droplet where it coverts DGs to monoglycerols (MG). The monoglycerols
are hydrolyzed by monoacylglycerol lipase (MGL), yielding free fatty acids (FFAs) and glycerol, which are released to the blood. FFAs may stimulate glucagon
secretion, and glucagon in turn stimulates hepatic gluconeogenesis (using FFAs and glycerol as substrates), glycogenolysis, and beta-oxidation thus providing
substrates for the liver to secure sufficient energy supply to metabolically active tissue. Enzymes are written in italic and arrows indicate stimulation.

(Gerich et al., 1976). Furthermore, infusion with saline only gave
the same increase in FFA as compared to glucagon infusion.
In another study glucagon was infused at 1.2 ng/kg × min
(high but also relevant) together with somatostatin for 2 h, but
there was no lipolytic effect of glucagon at insulin concentrations

of 38 pM (Jensen et al., 1991). In contrast, a 2-h glucagon
infusion at 1.3 ng/kg × min, during a mean insulin plasma
concentration of 65 pM, increased the rate of appearance of
labeled FFA and glycerol by 40 and 36%, respectively (Carlson
et al., 1993). As glucagon receptors are expressed on beta
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cells (Adriaenssens et al., 2016; Svendsen et al., 2018) and may
stimulate insulin secretion through both GLP-1 and glucagon
receptors (Svendsen et al., 2018) it may be speculated that
intraislet regulation of insulin through glucagon may contribute
to its effect on lipid metabolism.

It is important to note that FFA and glycerol in plasma are
not only determined by release from adipocytes, but also by rate
of uptake and re-esterification in other tissues. A lack of effect
of glucagon on the free plasma pool of FFA and glycerol, does
therefore not rule out that glucagon has a direct effect on lipid
metabolism in adipocytes and hepatocytes (Figure 1).

GLUCAGON STIMULATES HEPATIC
BETA-OXIDATION AND
INHIBITS LIPOGENESIS

In hepatocytes, glucagon action increases the transcription
factor cAMP responsive element binding (CREB) protein, which
induces the transcription of carnitine acyl transferase 1 (CPT-1)
(Longuet et al., 2008). CPT-1 enables catabolism of long-chain
fatty acids by converting fatty acids to acyl-carnitines, which
are transported into the mitochondria and subjected to beta-
oxidation (Kim et al., 2000; Stephens et al., 2007). During
beta-oxidation the fatty acids are degraded into acetate, which
ultimately enters the citric acid cycle (DiMarco and Hoppel,
1975). Furthermore, through PKA-dependent phosphorylation,
glucagon receptor signaling inactivates acetyl-CoA carboxylase,
the enzyme catalyzing the formation of malonyl-CoA. Malonyl-
CoA is the first intermediate in fatty acid synthesis and inhibits
CPT-1 (i.e., inhibits beta-oxidation). By inhibiting the formation
of malonyl-CoA, glucagon diverts FFAs to beta-oxidation
rather than re-esterification into TGs (Figure 2). Periportal
and perivenous hepatocytes receive different concentrations
of substrates and oxygen and as a consequence periportal
hepatocytes primarily mediate oxidative processes, including
beta-oxidation, whereas perivenous hepatocytes preferentially
mediate glucose uptake and lipogenesis (Jungermann, 1988;
Guzman and Castro, 1989).

In hepatocytes, glucagon may bring about an energy-depleted
state (increasing the AMP/ATP ratio) sufficient to activate AMP-
activated kinase (Berglund et al., 2009), which phosphorylates
acetyl-CoA carboxylase (Peng et al., 2012) and p38 mitogen-
activated protein kinase, leading to transcriptional activation of
peroxisome proliferator-activated receptor-α (PPARα) (Longuet
et al., 2008). PPARα stimulates the transcription of genes
involved in beta-oxidation including CPT-1, CPT-2, and acetyl-
CoA oxidase (Patsouris et al., 2006), and the transcription of
fibroblast growth factor 21, which is produced in the liver
in response to glucagon (Xu et al., 2009; Cyphert et al.,
2014). Glucagon also stimulates forkhead transcription factor A2
activity (FoxA2), which induces transcription of genes involved
in beta-oxidation, such as CPT-1, very-, and medium- long-
chain acyl-CoA dehydrogenase (Wolfrum and Stoffel, 2006; von
Meyenn et al., 2013). Subsequent to activating its receptors on
hepatocytes, insulin suppresses most of these pathways, and the
metabolic state in the hepatocytes may therefore be determined

by the insulin-glucagon ratio, rather than by the hormone
concentrations per se (Parrilla et al., 1974). Insulin inhibits
lipolysis in adipocytes and by reducing the amount of substrate
(FFA and glycerol) reaching the liver may reduce (Perry et al.,
2015) hepatic gluconeogenesis.

To investigate the physiological effects of glucagon in lipid
metabolism, several studies have relied on glucagon receptor
knockout (Gcgr−/−) mice or animals treated with GRA. In the
livers of Gcgr−/− mice there is an increase in glycolysis and
a decrease in gluconeogenesis and citric acid cycle activity,
which results in decreased acetyl-CoA oxidation and acetyl-
CoA accumulation. The accumulation of acetyl-CoA in the
cytosol of hepatocytes results in increased lipogenesis. Supporting
this, genes involved in lipogenesis, e.g., ATP citrate lyase and
fatty acid synthase, were found to be upregulated in livers of
Gcgr−/− mice at both the mRNA and protein level (Longuet
et al., 2008; Yang et al., 2011), while CPT-1 and -2 levels, and
other enzymes necessary for beta-oxidation, were downregulated
(Yang et al., 2011). Hepatic beta-oxidation is essential for the
production of both glucose and ketones since it provides the
substrates acetyl-CoA and acetate and mitochondrial energy
supply (ATP/NADH) needed for gluconeogenesis (Staehr et al.,
2003). The hepatic gene expression profile changes markedly in
response to fasting, and major differences have been reported in
expression levels of genes involved in lipid metabolism between
the fed and fasted state (Longuet et al., 2008; Zhang et al.,
2011). Following a prolonged fast (16 h), wild-type mice had
an increased hepatic expression of genes involved in beta-
oxidation, such as CPT-1, CPT-2, and acyl-CoA dehydrogenase,
but this was not observed in Gcgr−/− mice, which displayed
an impaired beta-oxidation in both the fasted and fed state
(Longuet et al., 2008) and Gcgr−/− mice failed to change the
hepatic energy state in response to fasting (Berglund et al.,
2009). Furthermore, Gcgr−/− mice showed increased hepatic TG
secretion and increased plasma concentrations of TG and FFA
after a 16 h fasting period, but not after 5 h of fasting (Longuet
et al., 2008). Others (Gelling et al., 2003) also found similar TG
and FFA plasma concentrations in Gcgr−/− and wild-type mice
after a short-term fast; they did, however, find increased plasma
concentrations of LDL in Gcgr−/− mice. Glucagon thus seems to
regulate hepatic metabolism in response to fasting by stimulating
glucose-producing processes, including beta-oxidation. When
challenged with a high fat diet (HFD) for 8 weeks, Gcgr−/−

mice did not increase the amount of inguinal and epididymal
fat, whereas the amount of both doubled in wild-type mice
(Longuet et al., 2008). In line with this, others (Gelling et al.,
2003) showed a decrease in white adipose tissue mass and an
increase in lean body mass in Gcgr−/− compared to wild-
type mice, without changes in bodyweight, food consumption,
or energy expenditure and one group (Conarello et al., 2007)
found that Gcgr−/− mice had lower amounts of white adipose
tissue when fed both a HFD and a low fat diet compared
to wild-type mice, and thus seemed to be resistant to diet-
induced obesity. This could reflect an inability of Gcgr−/−

mice to mobilize the hepatic lipid storage; instead adipocyte
lipolysis (by catecholamines) maintain the energy supply to other
metabolically active tissues.
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FIGURE 2 | The effects of glucagon receptor signaling on hepatic lipid metabolism. Glucagon activates its cognate receptor, a seven transmembrane receptor
coupled to a Gs protein, resulting in AC activity and cAMP production. The increase in intracellular cAMP activates protein kinase A (PKA), which phosphorylates
(hence inactivates) acetyl-CoA carboxylase (ACC). Glucagon thus inhibit malonyl-CoA formation and the subsequent de novo fatty acid synthesis. When formed, the
fatty acids are, after re-esterification, stored as trigycerides in and released from the hepatocytes in the form of very-low density lipoprotein (VLDL). Thus, glucagon
leads the free fatty acids toward beta-oxidation and decreases de novo fatty acid synthesis and VLDL release. cAMP accumulation in hepatocytes activates the
cAMP responsible binding element (CREB) protein, which induces the transcription of carnitine acyl transferase-1 (CPT-1), and other genes needed for
beta-oxidation. CPT-1 catalyzes the attachment of carnitine to fatty acyl-CoA, forming acyl-carnitine. The acyl-carnitines transverse the mitochondrial membrane
mediated via the carnitine-acylcarnitine translocase (CACT). Once in the mitochondrial matrix, carnitine acyl transferase-2 (CPT-2) is responsible for transferring the
acyl-group from the acyl-carnitine back to CoA. Carnitine leaves the mitochondria matrix through the carnitine-acylcarnitine translocase. During beta-oxidation, the
fatty acid chains are degraded into acetate. Acetate reacts with CoA to yield acetyl-CoA, which reacts with oxaloacetate to form citrate that inhibits glycolysis
through inhibition of pyruvate dehydrogenase and phosphofructokinase-1. Finally, citrate enters the citric acid cycle (TCA). Thus, glucagon increases fatty acid
catabolism, inhibits glycolysis, and fuels the TCA cycle. By increasing AC activity glucagon increase the AMP/ATP ratio sufficient to activate AMP-activated kinase
(AMPK), which phosphorylates ACC, leading to transcriptional activation of peroxisome proliferator-activated receptor-α (PPARα). PPARα stimulates the transcription
of genes involved in beta-oxidation including CPT-1, CPT-2, and acetyl-CoA oxidase. Glucagon stimulates FoxA2 activity, which induces transcription of genes such
as CPT-1, very-, and medium- long-chain acyl-CoA dehydrogenase. Enzymes and pathways inhibited by glucagon are shown in red, while enzymes and pathways
stimulated by glucagon are shown in black.

IMPLICATIONS OF GLUCAGON
RECEPTOR SIGNALING IN THE
DEVELOPMENT OF STEATOSIS

Administration of GRAs has been associated with increased
hepatic fat content (assessed as hepatic fat fraction
measured by magnetic resonance imaging) and increased
plasma concentrations of LDL (Guzman et al., 2017).
Furthermore, subjects with endogenous glucagon deficiency
(pancreatectomized subjects) (Dresler et al., 1991) and rats

(Sloop et al., 2004) and diabetic (db/db) mice (Liang et al.,
2004) treated with glucagon antisense oligonucleotide have
increased hepatic fat. These data suggest that inhibition of
glucagon receptor signaling results in hepatic lipid accumulation.
In addition, Gcgr−/− mice may be prone to steatosis when
challenged with a high fat diet (HFD) for 8 weeks (Longuet
et al., 2008). However, a study involving a similar HFD diet
for 12 weeks and mice with the same sex, gene modification,
and background (C57BL/6J), showed that Gcgr−/− mice were
protected from steatosis (Conarello et al., 2007). Of notice,
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C57BL/6J mice do not consistently develop steatosis upon
HFD feeding (Charlton et al., 2011), and this might have
influenced the results. In rats, impaired glucagon action also
associates with development of hepatic steatosis (Charbonneau
et al., 2005a). Interestingly, HFD feeding has been reported
to decrease glucagon receptor expression at the plasma
membrane of rat hepatocytes (Charbonneau et al., 2005b,
2007). These data suggest that hepatic lipid accumulation
may cause impaired glucagon receptor signaling, and that this
(as demonstrated using GRAs) may contribute to and accelerate
hepatic lipid accumulation.

Acute administration of 30 µg/kg glucagon decreased FFA
and TG plasma concentrations and reduced hepatic TG
content and secretion in mice (Longuet et al., 2008). Chronic
hyperglucagonemia (injection of 10 µg glucagon every 8 h
for 21 days) had hypolipidemic effects in rats, evident by a
70 and 38% decrease in plasma concentrations of TGs and
phospholipids, respectively (Guettet et al., 1988). Consistent
with this, glucagon inhibited synthesis and secretion of TGs in
cultured hepatocytes (Longuet et al., 2008), in perfused rat livers
(Penhos et al., 1966; Heimberg et al., 1969), and decreased the
synthesis of hepatic VLDL in rats (Eaton, 1973). In humans,
hyperglucagonemia (56 ± 20 pM), during a pancreatic clamp,
reduced hepatic lipoprotein particle turnover (Xiao et al., 2011),
and glucagon administration increased hepatic beta-oxidation in
humans (Prip-Buus et al., 1990). In diet-induced obese (DIO)
mice, a once-weekly treatment with 70 nmol/kg glucagon/GLP-1
receptor co-agonist resulted in loss of fat mass, which in
the same study was also found, although less pronounced in
GLP-1 receptor knockout mice, and improved hepatic lipid
metabolism and steatosis within 4 weeks (Day et al., 2009).
Another glucagon/GLP-1 co-agonist (1.9 µmol/kg daily for
14 days) decreased acetyl-CoA and malonyl-CoA concentrations
and increased CPT-1 mRNA in the livers of DIO mice, whereas a
selective GLP-1 receptor agonist had no effect (Pocai et al., 2009).
Both of these dual agonists reduced hepatic steatosis, increased
HSL activity in adipocytes, and improved dyslipidemia in DIO
mice (Day et al., 2009; Pocai et al., 2009). Supporting these data,
other glucagon/GLP-1 receptor co-agonists have been reported to
lower plasma concentrations of TG and cholesterol (Clemmensen
et al., 2014), decrease hepatic fat content (Henderson et al.,
2016), and reduce adipose mass in rodent models of T2D and
obesity (Evers et al., 2017; Zhou et al., 2017). Importantly,
acute administration of 25 nmol/kg glucagon/GLP-1 co-agonist
decreased plasma concentration of TGs, cholesterol, and LDL
in DIO mice within 1 h, whereas liraglutide (a pure GLP-1
receptor agonist) administration had no effect (More et al.,
2017). In addition, hepatic synthesis of VLDL and palmitate,
and fatty acid esterification decreased, while beta-oxidation and
LDL receptors expression increased upon co-agonist, but not
liraglutide, administration (More et al., 2017). The inhibitory
effect on hepatic lipogenesis and stimulatory effect on beta-
oxidation therefore seems to be mediated by glucagon receptor
signaling. Several clinical studies are currently investigating the
potential treatment of obesity and T2D using glucagon/GLP-1
co-agonists (Capozzi et al., 2018).

REGULATION OF GLUCAGON
SECRETION BY LIPIDS

FFAs are under certain circumstances insulin secretagogs (Boden
and Carnell, 2003) but their ability to stimulate glucagon
secretion remains debated (Gerich et al., 1974; Bollheimer
et al., 2004; Gromada et al., 2007). Some clinical studies
found a suppression of glucagon secretion at increased FFA
concentrations (Madison et al., 1968; Edwards and Taylor, 1970;
Luyckx and Lefebvre, 1970; Gerich et al., 1974) whereas isolated
alpha cells were shown to secrete glucagon in response to
FFA stimulation (Gross and Mialhe, 1986; Collins et al., 2008).
In isolated rat pancreatic islets, palmitate stimulated glucagon
secretion (Gremlich et al., 1997; Dumonteil et al., 2000). Others
found palmitate to stimulate glucagon secretion in a glucose-
dependent manner using isolated pancreatic islets; increasing at
glucose concentrations of 2.8, 5.6, and 10 mM (Olofsson et al.,
2004) but not at 16.7 mM (Bollheimer et al., 2004). Medium
and long-chain fatty acids (>C5) have been reported to stimulate
glucagon secretion by activation of FFA receptor G protein-
coupled receptor 40 (GPR40) (Wang et al., 2011; Kristinsson
et al., 2017) and GPR119 (Hansen et al., 2012; Li et al., 2018),
both present in the pancreatic islets (Briscoe et al., 2003). FFAs
may also function as metabolic substrate and stimulate alpha
cell secretion through beta-oxidation (Kristinsson et al., 2017;
Briant et al., 2018). FFAs decrease secretion of somatostatin
(Gromada et al., 2001), and may lower the tonic inhibition
of somatostatin on alpha cells (Gromada et al., 2007; Müller
et al., 2017). A clinical study investigating the effects of ingestion
of lipids on hormone secretion, found no change in glucagon
secretion after intravenous or oral administration of a lipid
emulsion (3 ml/kg) (Lindgren et al., 2011), neither did glucagon
plasma concentrations change upon a 300 min lipid infusion
raising FFA plasma concentrations from 0.4 to 0.8 mM (Staehr
et al., 2003). No difference in glucagon secretion was observed
between subjects consuming a HFD or a low-fat diet for 2 weeks
(Raben et al., 2001). In contrast to this, ingestion of long–
chain fatty acids (olive oil and C8 fatty acids) lead to increased
plasma concentrations of glucagon 40 min after, whereas no
increase was observed after ingestion of short-chain fatty acids
(C4), however, glucose-dependent insulinotropic polypeptide
(GIP) concentrations also increased upon ingestion of long-
chain fatty acids and this may have caused an increase in
glucagon secretion (Mandoe et al., 2015). Another study observed
that a meal rich in mono-unsaturated fatty acids resulted
in a larger glucagon response when compared to a control
meal (Sloth et al., 2009). Others also observed an increase in
glucagon concentrations upon fat-enriched meals (Radulescu
et al., 2010; Niederwanger et al., 2014). The glucagon response
observed upon a 90 min intraduodenal infusion of linoleic,
oleic, and palmitic acids were significant lower than observed
upon protein infusion (Ryan et al., 2013). Studies of ability of
FFAs to stimulate glucagon secretion are complex, since FFAs
are found in many forms and their stimulatory effect may vary
(Radulescu et al., 2010) [as is the case for incretin secretion
(Feltrin et al., 2004; Thomsen et al., 1999)]. Furthermore, the
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increased glucagon concentrations reported in some studies
may result from other proglucagon products (e.g., glicentin
or oxyntomodulin), since measurements of plasma glucagon
concentrations have been marred with problems regarding
sensitivity and specificity (Wewer Albrechtsen et al., 2016), and
further studies investigating the regulation of glucagon secretion
by FFAs are needed.

CONCLUSION

Glucagon may, aside from its physiological actions on glucose
and amino acid metabolism, also be important for lipid
metabolism via effects on hepatic beta-oxidation and lipogenesis,
and potentially increased lipolysis in adipocytes. A direct role
of glucagon on adipocytes may be of importance in rodents,
as glucagon stimulates lipolysis (Vaughan and Steinberg, 1963;
Rodbell and Jones, 1966; Prigge and Grande, 1971; Manganiello
and Vaughan, 1972; Lefebvre et al., 1973; Livingston et al., 1974),
whereas in humans an adipocyte-dependent lipolysis of glucagon
is more complex. In both rodents and humans, glucagon is
a powerful regulator of hepatic lipid metabolism (Day et al.,
2009; Xiao et al., 2011) as highlighted in studies using GRAs
(Guzman et al., 2017). The clinical use of GRAs is further
challenged by glucagon’s role in amino acid metabolism, and
blocking the glucagon receptor results in hyperaminoacidemia
and eventually alpha cell hyperplasia (Holst et al., 2017b).
Treatment of diabetes using the current GRAs may therefore not

be feasible, however, one may speculate that targeted antagonism
of glucagon signaling may circumvent these unwarranted side-
effects. Currently glucagon receptor agonists, combined with
GLP-1 and GIP receptor agonists, are investigated as possible
therapeutic agents (Gu et al., 2011; Sadry and Drucker, 2013;
Sanchez-Garrido et al., 2017; Capozzi et al., 2018). In preclinical
studies, these agents improve steatosis and dyslipidemia, possibly
as a consequence of regulation of hepatic lipid metabolism by
glucagon agonism (Day et al., 2009).

Taken together, glucagon seems to play an important
physiological role in the acute regulation of lipid metabolism but
clearly further studies particularly in humans are warranted.
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