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Background: The alleged procognitive effects of nicotine and its metabolites in brain are

controversial.

Objective: Here, we review the pharmacologically active metabolites of nicotine in brain

and their effects on neuronal mechanisms involving two main cognitive domains, i.e.,

learning and memory.

Methods: We searched Embase, Medline via PubMed, Scopus, and Web of Science

databases for entries no later than May 2018, and restricted the search to articles about

nicotine metabolites and cognitive behavior or cognitive mechanisms.

Results: The initial search yielded 425 articles, of which 17 were eligible for inclusion

after application of exclusion criteria. Of these, 13 were experimental, two were clinical,

and two were conference papers.

Conclusions: The results revealed three pharmacologically active biotransformations

of nicotine in the brain, including cotinine, norcotinine, and nornicotine, among which

cotinine and nornicotine both had a procognitive impact without adverse effects. The

observed effect was significant only for cotinine.

Keywords: nicotine, metabolite, cotinine, norcotinine, nornicotine, cognition, systematic review

INTRODUCTION

The procognitive effects of nicotine are controversial. Some studies have shown positive effects of
nicotine on learning and memory impairment in specific neurological disorders (López-Hidalgo
et al., 2012; Newhouse et al., 2012; Allison and Shoaib, 2013; Majdi et al., 2018), while others
reported negative effects of nicotine on cognitive abilities (Mundy and Iwamoto, 1988; Park et al.,
2000).

After systemic administration, nicotine is extensively metabolized by the liver. Nicotine and
some of its metabolites are biotransformed in the brain where they affect cognitive outcomes
(Benowitz et al., 2009). Differentmetabolites of nicotinemediate different molecular and behavioral
effects (Barreto et al., 2014), reported in studies of the influence of the metabolites on specific brain
functions.
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As the target of nicotine and its metabolites, nicotinic
acetylcholine receptors (nAChR) modulate specific aspects of
learning and memory (Majdi et al., 2017). Among different
subtypes of nAChR, the α7 subtypemay bemainly responsible for
the procognitive and neuroprotective properties of acetylcholine
(Sadigh-Eteghad et al., 2014; Wong et al., 2018). Although the
metabolites of nicotine have lower affinity than nicotine to
nAChR, the products interact with the receptors most likely as
type 1 positive allosteric modulators (PAM) (Takeshima et al.,
2007). The biotransformed metabolite cotinine long has been
held to be responsible for memory supportive effects of nicotine,
without the adverse effects (Green et al., 2000; Echeverria et al.,
2011; Patel et al., 2014). In contrast, nornicotine has been
found to possess the same addictive characteristics as nicotine
(Green et al., 2000). Prevention of apoptosis, oxidative stress,
and neuroinflammation, as well as augmentation of synaptic
plasticity, modulation of glutamate release, and blockade of
amyloid-beta or tau protein production pathways, are among the
procognitive mechanisms proposed to underlie the effects of the
metabolites (Soto-Otero et al., 2002; Hooper et al., 2008; Rehani
et al., 2008; Echeverria et al., 2011; Moran, 2012), but the details
of the molecular and behavioral mechanisms are incompletely
understood.

Systematic reviews are tools that find relevant and unbiased
answers to a research question (Sena et al., 2014). Due to
the methodological strength, systematic reviews are reference
standards for topics of controversy (Moher et al., 2015).
The primary aim of this study was to identify known
biotransformed products of nicotine in the brain, and the
secondary aim was to reveal the known impacts on learning
and memory and the mechanisms mediating the effects.
First, we searched for specific biotransformed metabolites of
nicotine in the brain, and second, we attempted to resolve
the known effects on cognitive performance, including learning
and memory and the mechanisms that mediate these brain
functions.

METHODS

Search Strategy
We electronically searched Embase, ISI Web of Science,
MEDLINE via PubMed, and SCOPUS for studies that
had investigated (1) nicotine metabolites in the brain as
follows: [(nicotine)] AND [(metabolite)] AND [(brain) OR
(central nervous system) OR (CNS)] and (2) the effects of
nicotine metabolites on cognitive impairment as follows:
[(memory) OR (learning) OR (cognition)] AND [(cotinine)
OR (nicotine metabolite) OR (nornicotine) OR (nor-nicotine)
OR (norcotinine) OR (nor-cotinine)]. Two investigators
independently screened title, abstract and, where necessary,
the full text, based on the inclusion and exclusion criteria.
Where there were disagreements, the third investigator
resolved the controversy. There was no date (all studies
until May 2018) or species restriction in the search, but
the search was limited to texts in English and original
articles.

Inclusion and Exclusion Criteria
We included all experimental and clinical studies reporting
the effects of nicotine metabolites (i.e., cotinine, nornicotine,
and norcotinine) as opposed to placebo or vehicle on learning
and memory. Because cognition is a broad topic, and because
evaluation of each domain requires comprehensive review, we
focused on learning and memory in this systematic review,
regardless of type or assessment task. All other domains of
cognition were not investigated in this review.We excluded every
study of the effects of smoking cigarettes, cigars, or pipe, or of
ingesting tobacco in any form, on cognitive abilities. We also
excluded studies that evaluated the effects of nicotine (rather
than its metabolites) on the cognitive function. We examined the
effects of nicotine in a previous publication (Majdi et al., 2017).

Study Outcomes
The primary outcome of this review was evidence of specific
biotransformed metabolites of nicotine in the brain, and the
secondary outcome was evidence of effects on learning and
memory and the mechanisms that mediate these brain functions.

Data Extraction
From the included articles, we extracted data of the metabolites,
the type of studies (clinical or experimental), the nature of the
condition in which metabolites had effects, the actual effect(s)
(positive or negative), and the mechanism, dose, duration, and
route of metabolite administration. We also noted study quality
measures to evaluate the risk of bias (see below).

Quality of Selected Studies
A modified version of the CAMARADES’ study quality checklist
(Sadigh-Eteghad et al., 2017) was used to evaluate the methods
used in the selected animal studies. The checklist provides
the tools for assessment of the internal validity of the
included studies (e.g., selection, performance, detection, and
attrition bias) and other study quality measures (e.g., reporting
quality and power). The items in the list include publication
in a peer-reviewed journal, randomization to treatment or
control, allocation concealment, blinded assessment of outcome,
statement of inclusion and exclusion of animals from the study,
sample-size calculation, statement of compliance with regulatory
requirements and statement regarding possible conflicts of
interest. The Cochrane risk of bias tool (Higgins et al., 2011)
was used for human studies to determine different forms of
bias, such as selection, performance, detection, attrition, and
reporting.

RESULTS AND DISCUSSION

Study Selection
The electronic search of the mentioned databases identified
426 articles of which 17 studies met the inclusion criteria
(Figure 1). Fifteen articles reported animal experiments, and two
articles reported studies of humans. The search identified five
nicotine metabolites in the brain including cotinine, nornicotine,
norcotinine, and two unnamed minor metabolites that have
not been characterized fully yet. All included articles addressed
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FIGURE 1 | Summary of included and excluded articles. The style was adopted from Moher et al. (2009).

the effects of cotinine on learning and memory, and no study
addressed the impact of other nicotine metabolites on cognition.

Study Quality
Low methodological quality of studies leads to overvaluation
of effect sizes (Sadigh-Eteghad et al., 2017). We included 13
out of 17 publications into CAMARADES assessment. Two
articles were human studies, assessed by the Cochrane tool,
and two articles were conference papers that could not be
evaluated by the checklists. The assessment showed that the
quality of the animal studies included in the systematic review
was modest (3.37 out of 8 items) (Figure 2). Some items on
the checklist, such as reporting of animal exclusions, sample
size calculation, and blinded induction of the model, usually
were not reported. In contrast, the two human studies included
in the review both had a low risk of bias. Considering the
bias items in the design of future studies will reduce the risk
of bias.

Nicotine
Nicotine Metabolism
Upon delivery to the systemic circulation, nicotine is distributed
throughout the body as ionized (69%) and unionized (31%)
forms, and its binding to proteins is insignificant (Benowitz et al.,

1982). The main organ of nicotine metabolism is liver, followed
by kidney, spleen, and lungs. The metabolism of nicotine is
also substantial in the brain, and due to the upregulation of
nAChR, the metabolism in the brain is higher in smokers than
in non-smokers (Hukkanen et al., 2005).

After distribution throughout the body, including the
liver, nicotine is extensively metabolized by the liver, and the
metabolites or the remaining nicotine are then excreted in
the urine. A main first pass pathway of nicotine metabolism
in the human liver is C-terminal oxidation to cotinine by
cytochrome P450 2A6 (CYP2A6) which is the predominant
metabolite (70–80%) of nicotine in mammals (Nakajima and
Yokoi, 2005). Other metabolites of nicotine are nicotine N′-
oxide (4–7%), nicotine glucuronide (3–5%), 4-oxo-4-(3-pyridyl)
butanoic acid (1–2%), nicotine isomethonium ion (0.4–1%),
and nornicotine (0.4–0.8%) (Byrd et al., 1992; Hukkanen et al.,
2005). Cotinine is further metabolized by cytochrome P450
2A5 (CYP2A5), mainly to trans-3′-hydroxycotinine and its
glucuronides (Ghosheh and Hawes, 2002; Kuehl and Murphy,
2003). Other metabolites of cotinine are 5′-hydroxycotinine,
cotinineN-oxide, cotininemethonium ion, cotinine glucuronide,
and norcotinine (Hukkanen et al., 2005). Nicotine, cotinine,
and their metabolites are then excreted in the urine by kidneys
(Meger et al., 2002).
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FIGURE 2 | Quality assessment of the included animal studies according to modified CAMARADES’ study quality checklist.

Nicotine Metabolism in the Brain
Nicotine distributes to the brain shortly after peripheral
administration (whether intraperitoneal, intravenous, oral, or
subcutaneous) with maximum between 30 and 60min, and
can be detected in the CNS as late as 4 h after injection
(Crooks and Dwoskin, 1997). In contrast to distribution after
peripheral administration, smoking causes nicotine to massively
distribute to the bloodstream and from there to the brain in
10–20 s (Majdi et al., 2017). Due to the prominence of the
base and associated lipid solubility, nicotine readily penetrates
the blood-brain barrier (BBB) at physiological pH (Oldendorf
et al., 1979; Tega et al., 2013). In addition, nicotine is
transported through the BBB as a monoprotonated cation by
organic cationic transport systems (Tega et al., 2013). Upon
administration of a single dose of nicotine (0.54 mg/kg) in
rats, the following quantities of metabolites were found in
the brain at 4 h post-injection: cotinine (44.6 ng/g brain),
nornicotine (11.7 ng/g brain), and norcotinine (3.1 ng/g brain)
(Crooks and Dwoskin, 1997).

Until recently, little attention has been paid to nicotine’s
metabolism in the central nervous system (CNS). The current
urge to study nicotine and its metabolites in the brain arose from
the evidence that the metabolites are pharmacologically active
and may mediate nicotine’s apparent effects in the brain (Crooks
et al., 1995).

Besides nicotine, five metabolites of nicotine can be identified
in the brain, including cotinine, norcotinine, nornicotine, and
two minor N-demethylated metabolites that as yet have not
been fully elucidated (Crooks et al., 1997; Ghosheh et al., 2001).
They are either transported from the periphery, or they are the
biotransformation products of nicotine in the brain (Crooks
and Dwoskin, 1997; Ghosheh et al., 2001). The half-lives of
the main metabolites (i.e., cotinine, norcotinine, nornicotine)
significantly exceed their precursor’s sojourn in the brain, and
their concentrations are 6, 4, and 3 times higher than that
of nicotine, respectively (Ghosheh et al., 2001). It has been
shown that repeated peripheral administration of nicotine can
cause significant accumulation of the metabolites in the brain
that may contribute to the neuropharmacological effects of
nicotine in the brain (Crooks et al., 1997; Dwoskin et al.,
1999).

Although a large body of evidence supports the procognitive
effects of nicotine, there is insufficient knowledge of the
metabolites and their impact in the brain (White and Levin, 1999,
2004; Rezvani and Levin, 2001; Grizzell and Echeverria, 2015;
Majdi et al., 2017). There is evidence that nicotine metabolites
play a role in the positive neuropharmacological effects of
nicotine (e.g., on memory and learning) in the brain (Crooks
and Dwoskin, 1997), and the metabolites, and especially cotinine,
do not show the common cardiovascular and addictive effects of
nicotine in the tested subjects (Moran, 2012). Therefore, studies
of the role of nicotine metabolites in the treatment of cognitive
impairment have gained considerable attention.

Cotinine
Cotinine Properties
Cotinine [(S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone] is
believed to be the main proximate metabolite of nicotine in the
brain (Crooks et al., 1997). Structurally, it differs from nicotine
only by an acetyl group (Fox et al., 2015). The accumulation
of cotinine in the brain and its passage through the BBB are
much slower than those of nicotine. Nicotine has been found
to be present in the brain five min after subcutaneous injection,
compared to cotinine’s 30–60min. The concentration peaks
in 4 h and is detectable in the brain until 18 h after nicotine
injection. As a result, its residence in blood and brain tissue is
much longer than that of nicotine, and it may be responsible
for nicotine’s more prolonged pharmacological effects in the
brain (Ghosheh et al., 1999; Buccafusco and Terry, 2003; Terry
et al., 2005). Besides redistribution from the systemic circulation
by passage through the BBB, some cotinine in the brain can
also stem from local transformation of nicotine (Crooks and
Dwoskin, 1997).

Cotinine does not cause tachyphylaxis, addiction, or nicotine-
like withdrawal symptoms, and it has no negative cardiovascular
effects as opposed to nicotine (Terry et al., 2005; Benowitz et al.,
2009; Zeitlin et al., 2012). On the other hand, cotinine has
positive effects on cognition and enhances learning, memory,
and attention (Terry et al., 2005; Zeitlin et al., 2012). Therefore,
as a pharmacologically active metabolite of nicotine, it may be
a promising therapeutic option in the treatment of cognitive
disorders (Terry et al., 2005).
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Receptor Interactions
As a type 1 PAM of nAChR, cotinine’s affinity is low compared
to that of nicotine (Riah et al., 1999; Vainio and Tuominen, 2001;
Takeshima et al., 2007). However, the affinity is high enough to
trigger nicotinic responses in the brain (Vainio and Tuominen,
2001). Cotinine may enhance the effectiveness of endogenous
ligands, such as acetylcholine but is unlikely to have agonist
effects or to change the receptors’ expression. In contrast to
nicotine, cotinine does not interfere with receptor desensitization
(Wildeboer-Andrud et al., 2014).

The findings cited above are not universally replicated, and
some studies yielded opposite results. Rezvani and Levin (2001)
showed that cotinine administration has the same effects as
nicotine on the trafficking and assembly of nAChR and can up-
or downregulate their expression, but at higher concentrations
of cotinine, this effect appears to be lost. Although a majority
of cotinine effects are mediated via α7 subtype, a recent study
showed that chronic cotinine administration increases α4β2
subtype expression and the trafficking of receptors to the plasma
membrane at doses around 1µM, which equals its average blood
concentration in a typical smoker. On the other hand, the highest
doses (10µM) was found to induce endocytosis and decrease
α4β2 expression (Fox et al., 2015). More studies are needed to
resolve the exact interactions between cotinine and nAChR fully.

Cognition
A growing body of evidence supports a procognitive effect of
cotinine in animals (Herzig et al., 1998; Grizzell et al., 2014a;
Grizzell and Echeverria, 2015). However, the two studies of
cognition in humans included here failed to replicate the positive
effects of cotinine on the cognitive performance of animals
(Hatsukami et al., 1997; Herzig et al., 1998) (Table 1). The
discrepancy may stem from the fact that neither human study
examined the effects of chronic cotinine administration on
human subjects, with cotinine administered for either 1 or 3 days.
Thus, chronic cotinine administration in clinical studies deserves
further investigation. Also, interspecies differences between
rodents and humans may justify the observed differences among
studies. The limited qualities of experimental studies and the lack
of vigorous designs may also play a role in this regard. Figure 3
illustrates the major pathways found to mediate procognitive
effects of cotinine. The material discussed in the following
sections is based on evidence from animal studies.

Apoptosis and neuronal survival
Apoptosis, a programmed form of cell death, has been implicated
in the pathogenesis of memory disorders, such as AD (Majdi
et al., 2016). This process is controlled by a variety of pro-
and anti-apoptotic signals inside neurons (Kim et al., 2001).
Akt is a family of serine-threonine-specific protein kinases that
inhibit programmed cell death and promote neuronal survival
by phosphorylation and inhibition of proapoptotic proteins,
such as glycogen synthase kinase 3 (GSK3) (Dudek et al., 1997;
Kim et al., 2001). Cotinine, by its positive allosteric effects on
α7 nAChR, activates the Akt pathway that subsequently raises
the expression of anti-apoptotic proteins, such as the cAMP
response element binding (CREB) protein and B-cell lymphoma

protein 2 (Bcl-2). Akt stimulation also decreases the activity of
pro-apoptotic factors including c-Jun N-terminal kinase (JNK)
by triggering apoptosis signal-regulating kinase 1 (Ask-1) that
ultimately promotes neuronal survival (Kim et al., 2001; Moran,
2012).

Synaptic plasticity and density
Synaptic plasticity and density are of central importance
to learning and memory (Silva, 2003). Studies prove that
synaptic dysfunction happens before neuronal degeneration in
neurodegenerative disorders and age-related cognitive decline
(Selkoe, 2002; VanGuilder et al., 2011; Phan et al., 2017). A
marker of synaptic density, synaptophysin is detected in synaptic
vesicles (Valtorta et al., 2004). Cotinine has been shown to
remarkably increase the expression of synaptophysin, and with it,
synaptic density in the prefrontal cortex and hippocampus and
thus to improve learning and memory (Grizzell et al., 2014a).
An increase in the expression of post-synaptic density protein-
95 (PSD-95), which also promotes synaptic plasticity, has been
reported with cotinine treatment. The mechanism of both of
these changes is the cotinine-induced modulation of α7 nAChR
that subsequently stimulates protein kinases phosphoinositide-3
kinase (PI3K). PI3K then induces Akt phosphorylation, leading
to increase in the CREB protein transcriptional activity. The
increase raises the expression of the synaptic proteins and
improves cognitive performance (Zeitlin et al., 2012; Grizzell
et al., 2014b).

Amyloid-beta production and aggregation
As the main neurotoxic forms of Aβ, amyloid-beta1−42

(Aβ1−42) oligomers are believed by some to cause the
cognitive dysfunction of AD (Resende et al., 2008; Sadigh-
Eteghad et al., 2015). Cotinine blocks Aβ1−42 aggregation and
oligomerisation, reduces number and size of plaques, decreases
the Aβ42/Aβ40 ratio. Protection of neurons against Aβ1−42-
induced neurotoxicity and possible subsequent improvement
of cognition (Burgess et al., 2011; Echeverria et al., 2011) are
not explained by interaction with nAChR, as the effects are
not eliminated by blockade of the receptors (Burgess et al.,
2011). The mechanism of cotinine’s effects on the Aβ clearance,
therefore, remains unclear, although cotinine inhibits activation
of GSK3β and may reduce Aβ1−42 production by Akt activation
in both cortex and hippocampus (Echeverria et al., 2011). GSK3β
is a proline-directed serine-threonine kinase, and excessive
activation may impair memory by increase of Aβ production and
hyperphosphorylation of tau (Hooper et al., 2008).

Tau hyperphosphorylation and NFT formation
Hyperphosphorylated tau is the major component of
neurofibrillary tangles (NFT) that are a key pathological
finding in AD and other cognitive disorders (Mitchell et al.,
2002). Tau accumulation in the temporal lobe correlates better
with cognitive dysfunction than Aβ deposition in any region of
the brain (Brier et al., 2016). Tau is phosphorylated by GSK3β,
and this enzyme’s activity is closely associated with NFT burden
in AD brains (Baum et al., 1996; Plattner et al., 2006). As
discussed above, cotinine inhibits tau hyperphosphorylation
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FIGURE 3 | Schematic illustration of metabolites of nicotine in brain and mechanisms involved in the procognitive effects of cotinine (the main procognitive

metabolite). As a type 1 PAM, cotinine modulates the function of α7 nAChR that in turn leads to reduced Aβ1−42 production and decreased neuroinflammation, tau

hyperphosphorylation, and apoptosis. It also improves synaptic plasticity. In the end, the changes may contribute to the reduction of age-related cognitive impairment.

PAM, positive allosteric modulator; nAChR, nicotinic acetylcholine receptor; NMDAR, N-methyl-D-aspartic acid receptor; ER, endoplasmic reticulum; PKA, protein

kinase A; Aβ, amyloid-beta.

through activation of the Akt pathway and subsequent blockade
of GSK3β in a concentration-dependent manner. Evidence
suggests that α7 nAChR may mediate these effects of cotinine on
the brain (Burgess et al., 2008; Echeverria et al., 2011).

Modulation of glutamate release
Controlled release of glutamate in the cortex regulates high
cortical functions, such as learning and memory (Rahn et al.,
2012), and disruption of glutamatergic neurotransmission has
been implicated in the pathogenesis of cognitive decline
(Tsai and Coyle, 2002). It has been shown that cotinine
administration enhances attention and executive function in
glutamate antagonist-induced cognitive impairment in the rat,
possibly due to the activation of α7 nAChR (Terry et al., 2012).

Activation of α7 receptors stimulates calcium release from
intracellular sources (Dajas-Bailador et al., 2002). Also, α7
nAChR enhance depolarization of nerve terminals, opening
voltage-gated calcium channels with calcium entry into the

cell. Increased calcium levels then, directly and indirectly, raise
glutamate release from synapses through activation of cAMP-
PKA-dependent pathways (Girod et al., 2000; Cheng and Yakel,
2015). The α7 nAChR induced glutamate surge also plays a role in
presynaptic facilitation and synaptic plasticity (Livingstone et al.,
2010).

Neuroinflammation
The anti-inflammatory properties of nAChR, especially the α7
subtype, are well-known from numerous studies (Metz and
Tracey, 2005; de Jonge and Ulloa, 2007; Egea et al., 2015).
Neuroinflammation is a hallmark both of normal brain aging
and of pathological aging with cognitive disorders, such as
AD (Ownby, 2010; Sadigh-Eteghad et al., 2016), and elevation
of inflammatory markers is directly linked to the degree of
cognitive impairment (Ownby, 2010). Through an nAChR
and NF-κB-dependent pathway, cotinine lowers the levels of
pro-inflammatory molecules, such as TNF-α, IL-1β as well as

Frontiers in Neuroscience | www.frontiersin.org 7 January 2019 | Volume 12 | Article 1002

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Majdi et al. Procognitive Metabolites of Nicotine in Brain

IL-6 and enforces anti-inflammatory cytokines including IL-10
production (Rehani et al., 2008). Also, cotinine exerts its anti-
inflammatory effects via regulation of PI3K-Akt and inhibition
of the GSK3β pathways that provoke neuroinflammation (Rehani
et al., 2008; Echeverria et al., 2016). This action makes cotinine a
potential candidate for the treatment of the neuroinflammatory
disorders, e.g., as seen in AD.

Oxidative Stress
Under controlled circumstances, cotinine blocks Fenton’s
reaction and prevents free radical production in the brain (Soto-
Otero et al., 2002). Evidence suggests that addition of cotinine
and iron to the media before H2O2 blocks free radical formation
and reduces oxidative stress. This can be partly explained by
the fact that addition of nicotine or cotinine chelates iron and
halts Fenton’s reaction (Nakajima et al., 1996; Soto-Otero et al.,
2002). It appears that cotinine also lowers lipid peroxidation
in a manner that cannot be explained by the effects on
Fenton’s reaction. The reduction can result from chain-breaking
antioxidant properties of cotinine (Soto-Otero et al., 2002).
Oxidative stress and lipid peroxidation are of crucial importance
to brain aging and neurodegeneration and the accompanying
cognitive decline (Sadigh-Eteghad et al., 2015; Pourmemar et al.,
2017). Thus, treatment with anti-oxidant effect is a top priority
in these conditions (Fukui et al., 2002; Mecocci, 2004; Williams
et al., 2006; Schrag et al., 2013).

Nornicotine
Nornicotine or demethylcotinine is a major pharmacologically
active metabolite of nicotine in the brain which possibly acts
via nAChR (Dwoskin et al., 2001). Oxidative N-demethylation of
nicotine is the major pathway by which nornicotine is produced
in the CNS (Crooks et al., 1997; Ghosheh et al., 2001). Compared
with the periphery where nornicotine is considered to be a minor
metabolite ( 0.8%), its concentration in the brain is higher for
several reasons, including the longer half-life in comparison to
nicotine, its superior partitioning as well as active transport to the
CNS and transformation of nicotine to nornicotine in the brain
(Ghosheh et al., 2001).

Although nornicotine is as potent as nicotine, it is less
desensitizing at the major nAChR subtypes in the brain, and
nornicotine’s presence leads to the activation of α7 nAChR.
Nornicotine’s potency and efficacy differ by several folds, but it
has been shown that peak currents caused by nornicotine acting
at α7 nAChR are equal to those of acetylcholine. Considering
nornicotine’s durable presence in the brain, the molecule may
mediate some of the neuroprotective effects of nicotine. A study
showed that α7 receptors are responsive to nornicotine, and
the action at the receptors of this nicotine metabolite leads to
improved cognition and attention (Papke, 2006; Papke et al.,
2007). Nornicotine may also alter Aβ’s aggregation, possibly via
reduced plaque formation or altered clearance of the peptide, or
both, as well as by attenuated toxicity of soluble Aβ aggregates
(Dickerson and Janda, 2003). More studies are needed to better
define nornicotine effects on brain function, learning, and
memory.

Norcotinine
In addition to the major metabolites mentioned above, there are
minor CNS biotransformation products of nicotine, including
norcotinine. After peripheral injection of nicotine, norcotinine
is detected in the brain, and it is likely produced by
5′-C-oxidation of brain nornicotine. This fate is different
from the processing in the periphery where N-demethylation
of cotinine produces norcotinine. It has been shown that
only 0.16% of cotinine is metabolized into norcotinine (Li
et al., 2015). In vivo, the metabolite neither evoked the
release of dopamine from rat striatal slices nor inhibited
dopamine uptake into rat striatal synaptosomes (Crooks et al.,
1995), suggesting that this minor metabolite, in fact, may
be pharmacologically inactive (Crooks et al., 1997). Thus,
there is no information on norcotinine’s effects on cognitive
performance, but possible effects are under investigation
because of the pharmacological and therapeutic potentials
of cotinine in cognitive disorders, such as AD (Li et al.,
2012).

CONCLUSION

Nicotine lowers learning and memory impairment in some
neurological disorders. However, its adverse cardiovascular and
addictive effects limit the application in the clinical setting.
Possible biological effects of nicotine in the human brain
in principle could be mediated by nicotine itself or by its
metabolites, but there is a considerable lack of evidence of
the mechanistic effects of specific compounds in humans. This
shortage of evidence can be rectified only by focused research
in the future. On the other hand, evidence suggests that
the biotransformation product cotinine is pharmacologically
active in the brain of animal models with no adverse effects.
Accumulating evidence makes it likely that this metabolite
mediates the memory supportive effects of nicotine in the
brain. Thus, a great deal of effort has been exerted to
clinically apply cotinine as a treatment of learning and memory
impairment and its underlying disorders. Taken together, we
claim that this biologically active metabolite is more than just
a biomarker of nicotine consumption and has potentially novel
therapeutic value in the treatment of learning and memory
declines.
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