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Manual ability (dexterity) and hand preference (handedness)

are key features of human motor control. Recent magnetic

resonance imaging (MRI) studies casted new light on the neural

underpinnings of dexterity. In right-handers, MRI identified

structural brain features related to the right–left difference in

dexterity or skill acquisition. Functional MRI disclosed a

hierarchical and modular representation of discrete finger

sequences in sensorimotor cortical areas and uncovered

representational plasticity of the deprived sensorimotor cortex

in congenital one-handers. Functional MRI studies also

identified differences in sensorimotor activity and connectivity

between right-handers and left-handers. However, these

results are inherently ambiguous, because they may reflect a

consequence of handedness rather than its underlying cause.

We discuss future scientific strategies that might help to

resolve this ambiguity.
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Introduction
Dexterity refers to the ability to perform skilled hand

actions such as using tools with our hands. Dexterous

actions rely on finely tuned sequences of synergistic

muscle activity which enables us to ‘manipulate’ our

environment with a high degree of flexibility [1]. Dexter-

ous movements are highly automated and over-learned

and therefore require only whole-field sensorimotor con-

trol rather than close on-line monitoring of every move-

ment detail [2,3]. The high degree of automation renders

dexterous movements resistant to the interference of

concurrent motor or cognitive tasks [2,3]. Another key

feature is that dexterous movements rely on the ability to
www.sciencedirect.com 
make independent (non-enslaved) finger movements

[4,5]. The fast-conducting monosynaptic connections

from M1-HAND to cervical motoneurons are an impor-

tant anatomical substrate of independent finger move-

ments [6,7]. Both, the right and left M1-HAND, make

monosynaptic connections with the cervical motoneur-

ons. Hence, both hands are able to perform dexterous

movements, showing similar usage statistics [5].

The strong preference to use one of our hands for manip-

ulative actions is another striking feature of human motor

control. In most individuals, a strong preference for one

hand over the other can be observed for skilled manual

actions such as writing or tooth brushing. This strong

preferential bias to act with the right or left hand is called

handedness. The vast majority of humans show a strong

preference for using the right hand for fine motor skills

with the relative frequency of left-handedness varying

between 3% and 27% depending on the cultural back-

ground [8,9]. This preponderance of right-handed indi-

viduals in the general population explains why the word

‘dexterity’ stems from the Latin word ‘dexter’ (English:

‘right’). Yet, dexterity describes the general ability to act

with our hands quickly and skillfully, irrespective of hand

preference. Handedness can be quantified using laterality

scales, like the Edinburgh Handedness Inventory [9,10].

These scales yield a hand preference score (i.e., laterality

index) scaling from strongly left-handed to strongly-right

handed (see Figures 1 and 2).

Handedness reflects the habitual preference of acting

with one hand; but a strong habitual preference for one

hand cannot be equated with a strong asymmetry in

dexterity (see Figure 2). Many individuals with a strong

right-hand preference may perform a unimanual motor

skill equally well with both hands (or even slightly better

with the left non-dominant hand) [11]. For instance, a

recent study on circle drawing confirmed that the asym-

metry in dexterity and handedness for a given skill may

substantially vary at the individual level [12�]. In this

review, we highlight recent lines of research in which

magnetic resonance imaging (MRI) was used to unravel

the structural and functional underpinnings of handed-

ness and dexterity in the human brain.

Structural and functional correlates of
handedness
The preferred use of the right or left hand for skilled

manual actions and its neural correlates continue to be a

key area of motor control research. Some studies reported
Current Opinion in Behavioral Sciences 2018, 20:123–129
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Figure 1
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This figure schematically shows the population distribution in

handedness laterality index. Overall, about 90% of the world

population is believed to be consistent right-handers (positive

handedness laterality index scores), with about 60% being strongly

right-handed (handedness laterality index close to 1) and about 10%

being strongly left-handed (handedness laterality index close to �1).

This figure is a schematic representation inspired by Figure 2 in [9].

Figure 2
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Relationship between lateralization in handedness and dexterity. It is

important to acknowledge that the individually expressed asymmetry

in manual motor abilities (dexterity) is related but not identical to

asymmetry in preferred hand use (handedness) [11]. Rather than

displaying a simple one-to-one mapping, lateralization in dexterity

varies substantially in groups with identical levels of hand preference.

This figure is a schematic representation inspired by Figure 1 in [11].
associations between gray matter macrostructure and

handedness [13–16], while others have not found such

associations [17]. The lack of an association between

regional gray matter and handedness was recently con-

firmed in a large structural MRI study [18]. Cortical

surface area of regions related to manual motor control,

language, or visual processing showed no statistically

consistent difference between 1960 right-handers and

106 left-handers [18]. Accordingly, voxel based mor-

phometry showed no asymmetry differences between

30 left-handers and 30 right-handers [19]. Together, these

results speak against major differences in gray matter

macrostructure related to handedness.

Given the importance of monosynaptic corticospinal con-

nections for independent finger movements [6], a number

of MRI studies have related asymmetries in white matter

(WM) microstructure with handedness. Of note, the

human corticospinal tract (CST) displays a structural

asymmetry independent of handedness with higher mean

fractional anisotropy (FA) in left versus right CST [20–22].

A recent diffusion tensor imaging (DTI) study examined

the topology of left-hemispheric and right-hemispheric

WM structural networks in 32 right-handed and 24 left-

handed healthy individuals [23]. Graph-theoretical
Current Opinion in Behavioral Sciences 2018, 20:123–129 
analyses of the DTI-based tractography data yielded

stronger small-world attributes in the right as compared

to the left hemisphere [23]. Right-handers but not left-

handers showed a significant asymmetry of topological

network properties. This discrepancy might be a conse-

quence of life-long preferential use of the right hand

rather than a structural trait of handedness. Indeed, a

previous MRI-based shape analysis of the central sulcus

showed that cortical morphology in adults reflects both,

the innate preference of hand use (i.e., nature) as well as

early developmental experience (i.e., nurture) [24].

At the functional level, motor areas in the dominant

hemisphere might play a more prominent role in the

control of hand movements performed with the dominant

and non-dominant hand. Several recent studies employed

functional magnetic resonance imaging (fMRI), to

address the question of how hand preference influences

functional interactions among sensorimotor areas. Using

dynamic causal modeling, effective connectivity within

the motor network was examined during fist closures of

the dominant or non-dominant hand in 18 right-handed

and 18 left-handed individuals [25]. When performing fist

closures with the dominant hand, the contralateral
www.sciencedirect.com
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supplementary motor area (SMA) in the left dominant

hemisphere exerted a stronger influence on other cortical

and subcortical motor areas in right-handers as compared

to left-handers [25]. This effect was not present when

moving the non-dominant hand. In the same cohort,

resting-state functional connectivity between left M1-

HAND and right dorsal premotor cortex was found to

be stronger in right-handed relative to left-handed indi-

viduals [26].

Handedness-related differences in inter-hemispheric

interactions may also be a neural substrate of hand pref-

erence. In particular, a functional deactivation of ipsilat-

eral M1-HAND during unilateral finger tapping might

differ depending on whether tapping is performed with

the dominant or non-dominant hand. In a sample of

142 right-handed and 142 left-handed individuals, the

ipsilateral M1-HAND was more strongly deactivated

when right-handed subjects tapped with their dominant

hand relative to tapping with their non-dominant hand

[27]. In contrast, left-handed individuals displayed a

similar amount of ipsilateral M1-HAND deactivation

for unilateral finger tapping with either hand [27]. Impor-

tantly, the amount of deactivation in right M1-HAND

scaled proportionally with the right-hand advantage in

dexterity. Hence, the reduced functional asymmetry

between the dominant and non-dominant hemisphere

as well as the reduced inter-hemispheric functional con-

nectivity seen in left-handers compared with right-han-

ders, as discussed in the previous section, may simply

reflect a less prominent lateralization of manual abilities.

Even if one assumes that the differences in functional

activity and connectivity between consistent right-han-

ders and left-handers are related to handedness rather

than dexterity, it still remains unclear whether these

differences reflect the primary cause of hand preference

or a secondary brain change caused by experience-depen-

dent plasticity due to the life-long preferential use of the

right hand in right-handers or left hand in left-handers,

respectively.

Some neuroimaging studies included ‘forced’ right-han-

ders as additional group to disentangle brain correlates

related to innate left handedness from use-dependent

brain alterations [24,28–30]. These studies show that

forcing innate left-handers to become right-handers (at

least regarding writing) partly changes brain structure

[24,28] and function [29,30]. Forced right-handedness

is associated with a smaller volume of the left middle

putamen, presumably reflecting increased pruning during

motor development [28]. Forced right-handedness

resulted in a right–left asymmetry of central sulcus size

which is typical of innate right-handers [28]. Measure-

ments of functional activation with fMRI revealed greater

movement-related activity in the primary sensorimotor

hand area and caudal dorsal premotor cortex of the
www.sciencedirect.com 
non-dominant left hemisphere, the more successfully

innate left-handers had been switched to right-handed-

ness [29].

Importantly, these studies also identified structural and

functional correlates of handedness that were resistant to

this early environmental challenge, forcing the use of the

right non-dominant hand. The ‘hand knob’ is a prominent

landmark of the hand motor representation in the central

sulcus and located more dorsally in the left hemisphere in

innate right-handers than in innate left-handers [24].

Forced right-handedness did not shift the hand knob

location: left-handed individuals forced to write with

the right non-dominant hand show a hand knob location

typical for innate left-handers [24]. Evidence for a per-

sistence of left-handedness was also found at the func-

tional level: compared to innate right-handers, functional

activation studies showed that ‘forced’ right-handers con-

tinue to recruit higher-order premotor and parietal motor

areas in their dominant right hemisphere, when they

perform handwriting or simple motor tasks [29,30].

Together, the functional and structural neuroimaging

studies on forced right-handedness show that the adult

brain holds an accumulated record of both innate biases of

preferred hand use (nature) and early developmental

experience (nurture).

Bimanual coordination
Dexterity often requires skillful coordination of both

hands. For instance, when opening a jar lid, one hand is

holding the jar, while the other hand is unscrewing the lid

[31]. A recent behavioral study found little or no transfer of

acquired skill across unimanual and bimanual sequential

finger movements [32], suggesting that motor integration

of both hands is represented at a different level of the

motor hierarchy than unimanual hand movements.

Inter-hemispheric interactions between sensorimotor

areas of both hemispheres are thought to be critical to

bimanual coordination. A DTI study showed that the

inter-individual variation in bimanual coordination skill

correlates with the microstructural properties of the inter-

hemispheric pathways connecting the left and right SMA

and caudal cingulate motor area [33]. A resection or

agenesis of the corpus callosum results in a decoupling

of forces and kinematics [34]. Extending these findings, a

recent electroencephalography (EEG) study showed a

decrease in cortico-cortical coherence between right

and left sensorimotor hand areas, when healthy individu-

als performed a strong bimanual isometric contraction

[35]. The decrease in inter-hemispheric coherence was

found in the alpha frequency band and was associated

with an increase in transcranial inhibition as probed with

transcranial magnetic stimulation (TMS).

Another study combined DTI with dual-site TMS to

assess how normal aging alters inter-hemispheric
Current Opinion in Behavioral Sciences 2018, 20:123–129
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interactions related to bimanual control [36]. The ability

to disinhibit projections from the right dorsolateral pre-

frontal cortex to the contralateral primary motor cortex

was reduced in older adults during the preparation of a

complex bimanual coordination task. DTI revealed

altered microstructural properties in the corresponding

transcallosal cortico-cortical tracts as indicated by a

regional change in FA. Age-related microstructural

changes scaled with the changes in inter-hemispheric

prefrontal-premotor interaction as revealed by dual-site

TMS as well as with the age-related decline in bimanual

performance.

Complementary insights into inter-hemispheric bimanual

motor control stem from recent studies on patients. In

patients with relapsing-remitting multiple sclerosis and

healthy controls, a combined DTI-TMS study showed

that the accuracy of out-of-phase bimanual tapping move-

ments correlates with structural and functional measures

of inter-hemispheric connectivity between the primary

motor hand areas [37]. Reductions in regional FA, as

measured with DTI, and inter-hemispheric inhibition,

as revealed by dual-site TMS, scaled with reduced tem-

poral accuracy of out-of-phase tapping movements. In

another study, resting-state functional connectivity was

found to be altered in individuals with congenital mirror

movements due to Kallmann Syndrome (KS), a syndrome

presenting with hypogonadotropic hypogonadism, hypos-

mia or anosmia with or without congenital mirror move-

ments [38]. Only KS individuals with congenital mirror

movements showed altered spectral patterns of cortico-

cortical and subcortico-cortical connectivity within the

sensorimotor network.

Sensorimotor representations of dexterity
In recent years, methodological advances have expanded

the possibilities of human brain mapping to trace senso-

rimotor activation patterns during skilled manual motor

tasks [39��,40��,41]. The advent of ultra-high field

(7 Tesla) MRI has enabled neuroscientists to push the

spatial resolution of sensorimotor mapping, zooming in on

relevant sensorimotor areas [40��,41]. Concurrently, mul-

tivariate pattern analysis (MVPA) has been applied to

fMRI data to delineate sensorimotor representations that

are distributed over multiple voxels and thus, cannot be

captured by standard univariate data analysis at single-

voxel level [42,43��,44]. Previously, it was difficult to map

synergistic digit representations in humans, but this has

recently become feasible by combining fMRI with novel

analysis methods [39��,40��].

The sensorimotor system coordinates the spatial and

temporal aspects of skilled hand movements. A recent

line of research used MVPA to chart cortical representa-

tions of discrete sequences of finger movements

[42,43��,44]. During fMRI, healthy individuals produced

discrete sequences of finger movements that differed in
Current Opinion in Behavioral Sciences 2018, 20:123–129 
their temporal (i.e., inter-movement interval) and spatial

(i.e., spatial order of finger movements). MVPA identified

multi-voxel patterns in cortical areas which coded

sequence-specific temporal or spatial features

[42,43��,44]. The set of cortical clusters representing

temporal aspects of the finger sequence were largely

distinct from the set of areas representing the spatial

properties with some overlap in premotor cortex and

posterior parietal cortex [42,43��,44]. Of note, the hand

representation of the contralateral primary motor cortex

(M1-HAND) was the only cortical region, where the

spatial and temporal features of discrete finger sequences

were integrated [42]. In another fMRI study, MVPA

identified sequence-specific multi-voxel patterns encod-

ing sequential rhythm and sequential order in multiple

fronto-parietal cortical areas, but not in subcortical gray

matter structures, such as the putamen and ventro-lateral

thalamus [44]. These results indicate a modular and

hierarchical control of discrete finger sequences at the

cortical level with the integration of sequence-specific

temporal and spatial features occurring mainly in the

M1-HAND [1]. This modular and hierarchical organization

is geared to flexibly assemble spatio-temporal patterns of

skilled muscle activity.

The MVPA findings may help to interpret the reorgani-

zation patterns that were observed in forced right-handers

using fMRI [29,30]. Univariate analyses revealed that

forced right-handedness shifted motor activation of exec-

utive areas such as the primary sensorimotor cortex and

caudal dorsal premotor cortex to the non-dominant left

hemisphere [29]. This suggests that lower-level hierar-

chies might be less fixed and may be transferable by

learning to the non-dominant hemisphere (i.e., when

being forced to learn handwriting with the non-dominant

right hand). On the other hand, ‘converted’ left-handers

(i.e., forced right-handers) showed stronger activation of

associative motor areas in the lateral premotor and inferior

parietal cortex in their dominant right hemisphere when

writing with the right hand [29,30]. The findings suggest

that higher-order representations in frontal premotor and

parietal cortex (reflecting representation at a higher hier-

archical level) are more hardwired and thus, cannot be

transferred to the non-dominant hemisphere by attempts

to convert handedness. Compared to voxel-based univar-

iate analysis, MVPA based approaches take into account

activation patterns distributed across multiple voxels.

Therefore, MVPA may be more suited to represent the

functional representation of different learned movements

and MVPA may be more sensitive to detect changes in

functional representations during motor skill learning.

After learning of novel sequences of discrete finger move-

ments, multi-voxel activity patterns became more distin-

guishable in fronto-parietal regions for trained finger

sequences relative to non-trained sequences [45]. At

the same time, task-related activation levels were lower

in bilateral PMd and along the intraparietal sulcus for
www.sciencedirect.com
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trained finger sequences indicating that task-related cor-

tical activity had become more discrete and more efficient

[45]. However, further studies are needed to fully under-

stand the neural underpinnings of the MVPA changes.

For instance, it has been recently shown that a simple

modulation of the behavioral context substantially mod-

ulates the expression of the multi-voxel patterns that

reflect cortical representations [46].

Dexterity and microstructure in the
corticospinal tract
We have already mentioned that the microstructure of

transcallosal motor tracts reflect inter-individual variation

in bimanual coordination abilities. A structure–function

relationship also exists between the microstructure of the

CST and dexterity. A recent DTI study on typically

developing, right-handed adolescents revealed that the

right–left asymmetry in dexterity is reflected in the

microstructure of the CST [12�]. Although all subjects

were consistently right-handed, they showed a large

between-subject variability regarding the right-hand

advantage for circle drawing [12�]. The right–left asym-

metry in dexterity scaled proportionally with the right–

left asymmetry of mean FA between the left and right

CST. The stronger the dexterity advantage for the right

hand the higher was mean FA of the left compared to the

right CST. This might indicate increased myelination or

larger axon diameters in the left relative to the right CST,

contributing to a better drawing skill of the right hand in

consistent right-handers. Future studies need to address

whether an analog relationship between the right–left

asymmetry in CST microstructure and dexterity levels is

also present in individuals who are consistently left

handed.

A stronger right–left asymmetry of FA was found in the

CST of musical string players (violinists and cellists)

relative to keyboard players and non-musicians [47]. In

the combined group, dexterity, measured using maxi-

mum index finger-tapping rate, correlated with contralat-

eral FA in the pathway descending from primary motor

cortex [47]. In another study, congenital one-handers

showed increased laterality of FA in the CST as compared

with controls, with decreased FA in the contralateral

hemisphere to the missing hand [48]. In congenital

one-handers and arm-amputees, the degree of intact hand

representation in the deprived cortex was associated with

increased FA in the underlying CST [49]. Immobilization

of the right upper limb after injury led to a FA decrease in

left CST, while behavioral improvement of the left (non-

injured arm) was correlated with increased FA-values in

the right CST [50]. Taken together, these studies provide

consistent evidence for a close link between the structural

CST properties and dexterous movements. The results

also show that one has to take into account right–left

asymmetries in dexterity, when testing for structural

correlates of preferred hand use.
www.sciencedirect.com 
Sensorimotor reorganization in congenital
one-handers
Another interesting line of recent research on dexterity

and preferred hand use focused on individuals who were

born without one hand, shedding light on the capability of

the deprived sensorimotor cortex to undergo functional

reorganization [48,49,51��]. Reorganization in these indi-

viduals is determined by two mechanisms. First, the

missing hand causes life-long sensorimotor deprivation

of the hand representation contralateral to the missing

hand. Second, the missing hand enhances the skilled use

of the residual hand, but also of distant body parts, such as

lips and feet, to substitute the function of the missing

hand in daily life. In congenital one-handers, the residual

arm representation as well as representations of distant

body parts were found to be functionally represented in

the ‘deprived’ cortical territory of the missing hand

[48,49,51��]. The fMRI results show that the congenital

absence of a hand does not only lead to local remapping

within the upper limb representation of the missing hand,

but triggers large-scale somatotopical reorganization with

the deprived sensorimotor hand area hosting functional

representations of distant body parts. Magnetic resonance

spectroscopy also revealed reduced regional GABA levels

in the cortical territory of the missing hand [51��]. This

finding was interpreted as metabolic evidence for reduced

connectional selectivity which ‘could unmask normally

silenced inputs, allowing for increased representation of

cortically displaced inputs from other body parts in the

missing-hand territory’ [51��]. While these findings are

interesting, the impact of the reorganization on dexterity

has not yet been convincingly shown. One might predict

that the strength of representations of the residual arm or

of a remote body part in the deprived cortex should

correlate with the level of dexterity in the residual arm

or the remote body part. Since there were no significant

correlations between the functional reorganization pat-

terns and behavioral performance on motor tasks [51��],
the functional relevance of the experience-dependent

reorganization of the cortex contralateral to the missing

limb remains to be clarified.

Conclusion
In recent years, state-of-the-art MRI-based methodology

has provided important new insights into the functional

and structural underpinnings of dexterity, including

skilled use of a single hand or both hands in combination.

Yet it remains a challenge to identify the neural substrate

of handedness with MRI. Most MRI studies have com-

pared brain structure or function of adult right-handers

and left-handers. This approach cannot separate between

primary mechanisms that cause handedness and second-

ary mechanisms that are the consequence of preferred

hand use. This chicken-egg problem needs to be tackled

in future MRI studies designed to establish causal links

between the individual expression of handedness and

brain structure and function. One way to disentangle
Current Opinion in Behavioral Sciences 2018, 20:123–129
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these factors is to prospectively capture the developmen-

tal trajectories of handedness and dexterity at the behav-

ioral and brain level, integrating information about hand

use and hand function during early motor development

with prospective multimodal MRI of brain maturation.
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